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Abstract

A mechanical model is proposed which quantitatively describes the dynamics of the centre of gravity (c.g.) during the take-o! phase
of the long jump. The model entails a minimal but necessary number of components: a linear leg spring with the ability of lengthening
to describe the active peak of the force time curve and a distal mass coupled with nonlinear visco-elastic elements to describe the
passive peak. The in#uence of the positions and velocities of the supported body and the jumper's leg as well as of systemic parameters
such as leg sti!ness and mass distribution on the jumping distance were investigated. Techniques for optimum operation are
identi"ed: (1) There is a minimum sti!ness for optimum performance. Further increase of the sti!ness does not lead to longer jumps.
(2) For any given sti!ness there is always an optimum angle of attack. (3) The same distance can be achieved by di!erent techniques. (4)
The losses due to deceleration of the supporting leg do not result in reduced jumping distance as this deceleration results in a higher
vertical momentum. (5) Thus, increasing the touch-down velocity of the jumper's supporting leg increases jumping distance. ( 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Running and jumping are two types of fast saltatoric
movements, characterised by a series of alternating aerial
and contact phases. The impact occurring during each
contact phase serves to negate the vertical momentum.
The #ight phase is determined by the initial velocity
vector of the centre of gravity at take-o! and the gravi-
tational acceleration.

The function of the leg in repetitive ground contacts at
a constant energy level like in hopping or running is
comparable to a spring as shown e.g. by Blickhan (1989),
Alexander et al. (1986), McMahon and Cheng (1990) and
Farley et al. (1993). Modelling the leg as a spring is suited
to describe the landing if the body mass, the leg sti!ness,
and the initial conditions are known.

The spring}mass model is suitable to describe conser-
vative systems. During the human long jump energy is in
fact largely conserved. Nevertheless, due to the high
running speed, the "rst so-called passive impact immedi-
ately after touch-down strongly in#uences the system

dynamics. In the long jump this contribution accounts
to about 25% of the total momentum and cannot be
neglected.

Alexander (1990) proposed a two-segment model with
an Hill-type extensor to predict optimum take-o! tech-
niques of the jumpers stance leg in high and long jump-
ing. However, to cope with observed jumping distances
unrealistic muscle properties had to be chosen. Even
a detailed musculo-skeletal system with 17 segments in-
cluding all important muscles (Hatze, 1981) does not
describe the complete ground reaction force pattern in
su$cient detail.

The understanding of body dynamics during landing
or falling was signi"cantly improved by the concept of
wobbling masses introduced by Gruber (Gruber, 1987;
Gruber et al., 1998). She showed that the di!erent re-
sponses of soft tissues and hard skeleton to impacts are
essential for predicting dynamical loads. In long jumping
high impacts occur with forces up to 10 times body
weight.

Our approach to long jumping is to describe the mech-
anics of the centre of mass and the mechanical function of
the supporting leg using a 2D lumped parameter model
with a minimum number of mechanical components. The
action of the leg is described by a spring, the e!ect of soft
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Nomenclature

a angle of the leg to the x-axis
c, d constants in the nonlinear visco-elastic force

function
e leg lengthening constant e"r

`
/(a

E
!a

0
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F
G

ground reaction force (GRF)
g gravitational acceleration
k leg sti!ness
k
$:/

generalised dynamic leg sti!ness
l relaxed length of the leg (varies from r

0
to r

E
)

j positional relationship, j"r
2
(t
0
)/r

1
(t
0
)

m total body mass
k mass ratio k"m

2
/m

1
l exponent of the visco-elastic element
u natural frequency u2"k m~1

*q displacement of swing mass m
2

along r
r leg length (distance between the c.g. and the

ball of the foot)

r
`

leg lengthening r
`
"r

E
!r

0
*r leg shortening *r(t)"l(a)!r(t)
*s tangential displacement of swing mass (m

2
)

v velocity
x horizontal coordinate
y vertical coordinate
*y displacement in y

Subscripts

0 refers to the instant of touch-down
1 refers to the proximal mass m

1
2 refers to the distal swing mass m

2
E refers to the instant of take-o!
MAX refers to the instant of maximal leg shortening
q refers to the displacement of the swing mass

m
2

along r
r refers to the orientation of the leg
s tangential displacement of the swing mass (m

2
)

Fig. 1. Experimental set-up for the analysis of the last ground contact in long jumping. The body con"guration de"ned by the positions of the joint
markers was used to calculate the c.g. trajectory during the last ground contact and the #ight phase. The jumping distance is estimated as the
intersection point of the elongated ballistic curve (dashed line) and the ground.

tissues by the introduction of a visco-elastically coupled
mass. Thereby, the in#uence of either initial conditions
such as running speed and angle of attack (measured by
video analysis) or model properties (like leg sti!ness) on
the jumping performance are investigated. The quality of
the mechanical approach is judged by comparing the
experimental force records with the results of the simula-
tion.

2. Methods

2.1. Experiments

In training competitions in 1995 and 1996, 30 long
jumps (distance: [5.49$0.86 SD] m) of 18 male and
female sport students (m"[75.1$5.13 SD] kg, body
height: [1.81$0.06 SD] m) were "lmed for later analysis

with a VHS camera (50 half-frames/s). The vertical and
horizontal ground reaction forces were recorded with
a 3D force plate (IAT, Leipzig). Kinematic input para-
meters for the dynamic models were obtained by digitis-
ing the video sequences (APAS, Ariel) (Fig. 1).

2.2. The concept of leg stiwness

The leg length r is de"ned as the distance of the c.g. to
the ball of the foot as the rotational centre of the system
during the stance phase. The initial leg length r

0
and the

"nal leg length r
E

are generally not identical. Therefore,
we introduce the leg lengthening parameter r

`
as the

di!erence between both leg lengths:

r
`
"r

E
!r

0
. (1)

The actual length of the relaxed leg l(a) during the
contact phase is then de"ned in a linear approach by
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Fig. 2. Di!erent leg lengths at touch-down and take-o! can be de-
scribed by the leg lengthening r

`
. The actual shortening of the leg is *r,

l(a) denotes the length of the relaxed leg which increases with a.

Fig. 3. Experimental result for the ground reaction force F
'

and the
instantaneous leg sti!ness k

$:/
as a function of the time.

(Blickhan et al., 1995):

l(a)"r
0
#r

`
(a!a

0
)/(a

E
!a

0
)

"r
0
#e(a!a

0
) (2)

with e constant, leg angle a at touch-down a
0
, at take-o!

a
E
, initial leg length r

0
, change in r by r

`
during contact.

Leg shortening *r(t)"l(a(t))!r(t) is zero at the instan-
ces of touch-down and take-o! (Fig. 2).

The force exerted by the leg is related by the sti!ness to
the shortening of the leg *r. The leg sti!ness is de"ned by
the ratio of the ground reaction force to the leg shorten-
ing *r at maximum leg shortening:

k"F
G, MAX

/*r
MAX

. (3)

We generalise the instantaneous ratio in Eq. (3) as the
dynamic leg sti!ness:

k
$:/

(t)"F
G
(t)/*r(t). (4)

This de"nition is equal to Eq. (3) for the instant of
maximum shortening of the leg and corresponds to the
understanding in the literature (Farley and GonzaH lez,
1996).

2.3. Numerical methods

The mechanical models were built using standard soft-
ware packages for dynamic simulations (ALASKA, In-
stitut fuK r Mechatronik; ADAMS, Mechanical Dynamics
Inc.). Using given initial conditions, the parameter set
was estimated which ful"ls the least-square criterion be-
tween measured and calculated ground reaction forces.

For further parameter studies the models were trans-
lated into the equations of motion using the Lagrangian
formalism, and solved by a numerical integration proced-
ure using a fourth order Runge}Kutta algorithm (IDL,
Creaso). The in#uence of initial and model speci"c para-
meters on the jumping result were investigated by vary-
ing parameter values. The model parameters were "rst
adjusted visually and then calculated using a genetic
optimization algorithm.

3. Model description and veri5cation

A simple spring}mass system already predicts opti-
mum strategies for the maximum jumping distance. For
quantitative descriptions leg lengthening and mass distri-
butions must be taken into account.

3.1. The leg as a linear spring

In a "rst approach to long jumping we will consider
a model in which the leg operates as a spring. This gives
basic insights into the in#uence of geometric parameters
and the role of leg sti!ness.

It is typical that the ground reaction force during the
take-o! phase shows a passive and an active peak (Fig. 3).
The derived dynamic leg sti!ness k

$:/
(t) has a "rst peak

during the passive phase followed by a relatively constant
sti!ness during the active phase up to the last 30 ms
before take-o!.

Neglecting the passive peak, we can use a simple
spring}mass system (Fig. 4) to describe the functionality
of the contacting leg during #exion under the assumption
of energy conservation. The equations of motion are
(Blickhan, 1989):

xK"xu2A
l

Jx2#y2
!1B, (5a)

yK"yu2A
l

Jx2#y2
!1B!g, (5b)

where u is the natural frequency of the system with
u2"k m~1. The relaxed spring length l corresponds to
the initial leg length r

0
which is in this "rst approach

equal to "nal leg length r
E
.

Since the vector of the landing velocity in long jump-
ing has usually only a small vertical component
(Dv

0,Y
D(1 m s~1), it is su$cient to consider the horizon-

tal approach speed v
0
"v

0,X
. For a given speed the
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Fig. 4. (A) Schematic drawing showing the planar spring}mass model. The leg spring is de"ned by the sti!ness k. The angle a describes the orientation
of the leg with respect to the ground. (B) The model re#ects a part of the measured ground reaction forces. The passive peak is missing and the active
peak is either to short or to high.

in#uence of the angle of attack a
0

and the leg sti!ness
k on the jumping distance can be studied (Fig. 5A).

There is an optimum in jumping distance for a proper
angle of attack and the appropriate leg sti!ness. At
a lower angle of attack the loss in horizontal velocity will
prevail the in#uence of a higher vertical velocity and the
jumping distance decreases. A steeper angle leads to over
running with a smaller vertical impact. This is a general
feature observed in all models.

The in#uence of leg sti!ness is comparable to that of
the angle of attack: A sti!er leg leads to faster repulsion
and thus at a lower angle of attack to a loss in horizontal
velocity and jumping distance. In contrast, a softer leg
cannot produce the necessary vertical impact.

A high vertical impact requires a su$ciently high
product of the mean vertical ground reaction force and
contact time. This is only possible if the leg sti!ness
achieves a certain minimum value. With a higher sti!ness
and a corresponding optimal angle of attack (that is
steeper angles and shorter contact times) the jumping
distance remains nearly constant. The better the jump the
closer the values come to the range where almost max-
imum jumping distance can be achieved (Fig. 5A). These
features have been observed in all models.

An increase in running speed (not shown in Fig. 5)
leads to a shift of the predicted optimum angle of attack
to #atter (smaller) angles but has almost no in#uence on
the minimal leg sti!ness necessary to obtain the optimal
jumping distance.

3.2. Considering leg lengthening

The simple spring}mass model predicts a signi"cantly
shorter active peak than has been measured (Fig. 4).
Extending the model by considering lengthening of the
relaxed length (i.e., leg length when leg force is zero)
during ground contact improves the predictions (Eq. (2),

Blickhan et al., 1995). Leg lengthening results on average
in a more compliant spring and thus in longer contact
times. Note that in order to obtain a similar change in
momentum leg lengthening calculated from the active
peak force pattern must be less than the cinematographic
estimates as long as the passive peak and the correspond-
ing momentum is excluded in the model (Fig. 6B).

Introduction of the leg lengthening shifts the range
of close to optimum jumps to larger angles of attack
(Fig. 5D). The optimum itself becomes more pronounced
and shifts to low sti!ness. In general very long jumps
require higher active forces (Fig. 5F) and moderate leg
shortenings (Fig. 5E). Even elite jumpers are not able to
produce the forces and leg compressions to achieve the
predicted range of close to optimum operation.

3.3. Mechanical model for the passive peak

The passive peak in jumping occurs directly after
touch-down of the foot. The measured force pattern can
be described accurately when a representative mass is
coupled with a nonlinear viscosity to the rigid frame of
the spring leg. This mass represents the rigid skeleton and
its deceleration during touch-down as well as the relative
movement of the soft tissues (muscle etc.) with respect to
the rigid frame. We use the following dependency to
describe the coupling between soft and hard tissues in
one direction (here *y):

F"!(c sgn(*y)#d ) v
y
) ) D*yDl (6)

where c and d are constants, the exponent l is about
2.5}4.5, and sgn describes the Signum function

sgn(*y)"G
1 for *y'0,

0 for *y"0,

!1 for *y(0.

(7)

1262 A. Seyfarth et al. / Journal of Biomechanics 32 (1999) 1259}1267



Fig. 5. In#uence of angle of attack a
0

and leg sti!ness k on jumping distance x
JUMP

(A, D, G), maximum leg shortening *r
MAX

(B, E, H), and maximum
active force F

MAX,r
(C, F, I) predicted using the simple spring}mass model (A, B, C), the spring}mass model with leg lengthening (D, E, F), and the

two-mass model for the long jump (G, H, I). The remaining parameters have been chosen according to the mean values for the analysed jumps
(m"75 kg, r

0
"1.19 m, v

0
"8.2 m s~1, see Table 1). The contour lines mark values of constant jumping distance x

JUMP
in meters (A, D, G), maximum

leg shortening *r
MAX

in meters (B, E, H), and maximum active forces F
MAX,r

in Newton (C, F, I).
The general dependencies are similar for the three models. The jumpers do not reach the optimum because their inability to generate high forces at

large leg de#ections. The spring}mass model with leg lengthening predicts longer jumps due to the absence of the passive peak (Fig. 6), # the
predicted optimum for jumping distance, ] jumps according to their angle of attack and calculated leg sti!ness with x

JUMP
(5 m, and h jumps with

x
JUMP

'6 m.
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Fig. 6. (A) Ground reaction forces as predicted by the spring}mass model with leg lengthening. (B) Force-leg length relationship of the jumping leg.
The measured leg lengthening r

`
cannot be reproduced with a spring}mass model with lacking passive peak when the active peak forces should be

correct.

Fig. 7. The planar model for the long jump (schematic drawing with
geometric parameters).

The selected visco-elastic coupling ful"ls the following
requirements

1. due to the nonlinearity the ground reaction force
increases gradually within the "rst 10 ms,

2. the "rst peak is symmetric with time, and
3. the active and passive peak are clearly separated.

3.4. Assembling with the spring}mass system

A one-dimensional description of the vertical compon-
ent of the ground reaction force during the long jump can
now be obtained by combining the linear spring}mass
model with the nonlinear visco-elastic system described
above. The two force peaks are described by two systems
in parallel with di!erent dynamics.

A stack of two masses representing the body and the
foot, respectively (Alexander et al., 1986; OG zguK ven and
Berme, 1988) does not result in realistic dependencies.
Nonlinear coupling is necessary. Both masses are e!ec-
tive masses taking the vertical projection and the bending
of the leg into account. Depending on the orientation of
the leg segments the masses of the leg and the body
contribute. The mass of the foot is not su$cient to
explain the transferred momentum during the passive
impact.

We can separate the leg mass into the masses of the
rigid bones, the foot, and of the soft tissues. If the coup-
ling to the ground and the skeleton di!ers strongly, we
would see several damped force oscillations during
touch-down. This is not the case during the long jump.

Our experimental data can be described accurately
with one distal mass and only one type of coupling. In
this "nal model m

2
entails the foot, the skeleton and the

wobbling masses distributed all over the body especially
in the stance leg. Descriptions with realistic masses are
only possible within a planar model.

3.5. The planar model for the long jump

By taking planar movements of two distributed masses
into account the model is able to describe the relation-
ship between the horizontal and vertical force. Strategies
of impact generation or avoidance can now be investi-
gated. By actively hitting the supporting leg onto the
board jumpers increase the passive peak and thereby
vertical momentum and jumping distance.

In a simple planar spring}mass model the ground
reaction force points always in the direction of the spring.
During the actual long jump, however, signi"cant devi-
ations in the force direction can be observed within the
"rst 40 ms. These can be attributed to the movement of
the distal mass.

In our model the body mass (m
1
) is supposed to glide

on a massless rod. The orientation of this rod is de"ned
by the position of the ball of the foot and the centre of the
body mass. Similar to the simple spring}mass model, the
body is coupled to the ground via a linear spring, repres-
enting the spring-like operation of the human leg (active
peak). At a certain height, a second mass is "xed to the
rod by nonlinear visco-elastic elements (Fig. 7).
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Fig. 8. Comparison between experimental and model results: (A) Ground reaction forces (GRF) in vertical F
y
and horizontal F

x
components as time

series. (B) Tracings of the GRF in the F
x
!F

y
plane. During heel strike (passive peak) the experimental GRF directs steeper than predicted by the

model. (C) The positions of body-mass and swing}mass in the model de"nes the resulting c.g. (circles). Measured c.g.: crosses. (D) Force-leg length
relationship of the jumping leg as simulated by the two-mass model and experimental result.

The equations of motion are

rK
1
"a5 2r

1
!

k

m
1

(r
1
!l(a))!g ) sin a (8a)

aK"!

1

m
1
r2
1

(r
2
)F

s
!*s )F

q
)!

1

r
1

(2r5
1
) a5 #g ) cos a) (8b)

*qK"*s ) aK#r
2
) a5 2#2*s5 ) a5 #(F

q
/m

2
)!g ) sin a (8c)

*sK"!r
2
) aK#*s ) a5 2!2*q5 ) a5 #(F

s
/m

2
)!g ) cos a (8d)

with the nonlinear visco-elastic force functions:

F
q
(*q, *q5 )"!(c

q
) sgn(*q)#d

q
*q5 )*qlq (9a)

F
s
(*s, *s5 )"!(c

s
) sgn(*s)#d

s
*s5 )*sls. (9b)

The properties of the element's coupling in radial
and tangential direction are assumed to be the same
(c

q
"c

s
"c, d

q
"d

s
"d, l

q
"l

s
"l). In addition to the

parameters describing the mechanical properties of
the simple spring-mass system (k, e), the mass ratio
k"m

2
/m

1
, the positional ratio j"r

2
(t
0
)/r

1
(t
0
), and the

parameters describing the nonlinear visco-elastic ele-
ments must be identi"ed (Eqs. (9a) and (9b)).

The simulations are calculated for given total mass, its
touch-down velocity, given initial leg length and angle of
attack. All other parameters including the initial condi-
tions for the distal mass are estimated "tting the time
course of the horizontal and vertical component of the
ground reaction force (Figs. 8A, D and Table 1). Some of
the parameters can be estimated independently using the
experimental data: e can be obtained from cinemato-
graphic data, k can be calculated by dividing the maximal
force F

MAX
during the active peak by the maximum leg

shortening *r
MAX

.
Remaining systematic di!erences (Fig. 8B) occur be-

cause the point of centre of pressure shifts during the
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Table 1
System properties and initial conditions. Means and standard deviations (SD) are given for the experimental data of 30 trials and the corresponding
numerical simulation

Symbol Parameter Model value
(mean$ SD)

Experimental result
(mean $ SD)

Units

k Leg sti!ness 14.6$3.72 16.2$3.80 kN m~1

e Leg lengthening constant 3.36$1.44 3.07$1.28 10~3 m deg~1

j Positional relation 0.252$0.049 No data available 1
k Mass relation 0.269$0.064 No data available 1
log d

2
Non-linear spring-damper constant 7.45$0.55 No data available 1

v(0)
2

Initial velocity of swing mass 5.31$0.59 Foot: 3.96$1.40 m/s
a(0)
v2

Initial direction of v
2

(downwards) 32.7$4.4 Foot: 30.05$11.45 deg

ground contact which is not realised in the presented
model.

The results are fairly stable with respect to the position
and size of the second mass. The e!ective distal mass can
be considered to be "xed at about 25% of the leg length
from the ground (Fig. 8C) and amounts to approximately
27% of the body mass.

The parameters specifying the coupling to the skeleton
are less sensitive as long as the basic properties described
above are ful"lled. Interestingly, the predictions for the
initial velocity of the distal mass are similar to the values
obtained for the jumpers leg from video-graphic data
(Table 1). The deviation can be explained by the fact that
the average velocity of the leg is higher and less down-
ward orientated than that of the foot.

Measured values for the leg sti!ness come fairly close
to the predicted optimum (Fig. 5G). The di!erence in
general dependencies of the active force (Fig. 5I) is due to
an increasing dominance of the passive peak for larger
angles of attack at low leg sti!ness.

4. Discussion

The presented mechanical model describes with a min-
imal set of parameters the dynamics of the long jump. As
it is well known (e.g. Hay, 1993), the most in#uential
factor for jumping distance is the running speed. The
model predicts also that a certain angle of attack of the
leg optimises jumping performance (Alexander, 1990).
This optimum requires a relatively low minimal sti!ness
of the leg.

The controlled musculo-skeleton unit with its connect-
ive tissues behaves similarly to a spring with a certain
sti!ness. This sti!ness and the leg shortening (Table 2)
are not very di!erent from that necessary for running (leg
sti!ness about 12}15 kN m~1, leg shortening in running
about 14 cm (Farley and GonzaH lez, 1996), in jumping: ca.
17 cm). To which extent this sti!ness can be contributed
to intrinsic properties of the participating tissues remains
to be investigated.

For su$ciently high sti!ness values many strategies
with di!erent angles of attack are possible to achieve
distances which come close (up to 95%) to the theoretical
maximum. Indeed, several techniques can result in the
same jumping distance (Fig. 5). The proper strategy for
an athlete depends on his ability to generate sti!ness.
Di!erences in sti!ness can be compensated by changing
the angle of attack of the leg. The kinetic energy of the
runner dominates the energetics of the jump (Hay, 1993).
To conserve this energy a quasi-elastic strategy is essen-
tial for a good performance. The leg largely redirects the
movement.

Leg lengthening at take-o! is mainly an active process.
The runner places his leg with the knee slightly bent and
takes o! with a completely straight leg. This process
* enhanced by lifting the arms and the swing leg* in-
creases the distance over which acceleration takes place.
It also compensates partly for the losses which necessar-
ily occur during landing (passive peak).

It is impossible to avoid the impact during touch-down.
Jumpers take, however, advantage of the passive peak
generated during the impact by actively hitting the jump-
ing leg onto the board. By this measure the passive peak,
especially in the vertical component of the ground reaction
force, is increased. Despite the fact that the generation of
this peak clearly absorbs energy it enhances vertical
momentum which is important to achieve long jumping
distances. Thus, the new model describes quantitatively
the dynamics and mechanisms of the most essential parts
of the long jump and helps to understand jumping tech-
niques. For individual jumpers detailed diagnostics are
possible about techniques or conditional shortcomings.

4.1. General signixcance

Many models have been proposed to describe human
jumping. As jumping in a less extreme form is part of
standard locomotion, modelling of jumping is of general
signi"cance for human locomotion. Most studies so far
have either been descriptive (Hay, 1993; Lees, 1994) or
alternatively were based on very detailed modelling.
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But even extremely detailed models using all major
muscles (Hatze, 1981; Bobbert and Van Soest, 1994) fall
short in describing the general dynamics of the process.
The major reason is that the landing impact (contri-
buting 25% of the total change in momentum) is not
described adequately. The activation dynamics of the
musculature precludes active generation of this peak, i.e.
even if the musculature was activated and deactivated
within 40 ms the muscle could not follow.

Force enhancement due to stretching of the activated
muscle (Alexander, 1990) may contribute to the passive
peak. Presently, we investigate the quantitative contribu-
tion of muscle forces. A major cause of the impact is the
deceleration of distal masses. These masses consist of the
skeleton and of soft tissues and are visco-elastically
coupled to the ground or to each other.

The comparison between our results from the simula-
tions and the experiments reveals that a large fraction of
these masses can be identi"ed as muscle masses. The type
of coupling as measured for the heel (Gruber, 1987)
proves to be necessary for adequate description of the
time course of the event. The right damping is necessary
to avoid injuries (sti! coupling) or elastic ringing (com-
pliant coupling) making control at least di$cult.

The spring-like behaviour of the leg could be replaced
by a suitably activated musculo-skeletal system. Never-
theless, it is surprising to which extent the leg performs
like a spring. It might be a strategy to simplify control
(Bobbert et al., 1996). The shortening of the leg amounts
to about 15% (*r

MAX
/r

0
). A corresponding rotation of

the knee results in lengthening of the quadriceps}patella
tendon complex by about 35 mm. For the high loads
observed the patellar tendon would be stretched by ca.
5 mm. The long aponeuroses of the musculus quadriceps
may stretch elastically by about 20 mm. In this case the
elastic properties of the passive tissues would largely
determine the quasi-elastic operation of the leg and thus
its sti!ness. At higher knee #exion the conservative
operation of the knee can probably not be kept up any
longer due to the increasing demand of muscle force
and the properties of the connecting tissues. Therefore
the limited properties of the human leg do not allow
to reach the theoretically possible maximum values.
A higher take-o! velocity angle will be accompanied by
a smaller take-o! velocity and thus a shorter jumping
distance.
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