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Abstract-Walk can be classified as 'static walk' and 'dynamic walk'. It is said that dynamic walk is superior 
in both speed and energy consumption. This paper describes how a quadruped robot should walk 
dynamically to realize these advantages. Such consideration is lacking in past research. 

In this paper, three criteria are introduced to evaluate the walk-'stability', 'maximum speed', and 'energy 
consumption'. The relations between these three criteria and the parameters (gait, speed, period, stride, 
length of the leg, joint angles, etc.) are formulated accordingly to the dynamics. The conclusions are as 
follows: 

(1) The shorter a period is, the more stably the quadruped can walk. 
(2) It is desirable to walk with a longer period and wider stride in order to increase the maximum speed. 
(3) There is a period which maximizes the speed. 
(4) There is a period which minimizes the energy consumption for a given speed. 
(5) Trot gait is desirable when the priority is placed on energy consumption. Pace gait is recommended 

when the priority is placed on maximum speed. 

From experiments using the quadruped robot Collie-2, the validity and usefulness of these relations are 
verified. 

1. INTRODUCTION 

The legged locomotion of robots has been studied actively. The research in this field 
can be divided into two areas: 

(a) static walk-the centre of gravity is projected inside the polygon formed by the 

supporting legs; and 

(b) dynamic walk-the centre of gravity is not necessarily projected within the 

polygon formed by the supporting legs. However, dynamic balance is to be 
maintained. 

Control in static walk is quite simple and this makes it easy for a robot to walk over 

irregular terrain. Dynamic walk is superior in speed and energy consumption. 
We have studied the dynamic walk of a quadruped robot with the intention of 

realizing a robot which can choose either walk according to the environment and 
realized 'pace gait' and 'trot gait' [1, 2]. Including our studies, researchers in the area 
of dynamic walk had been concentrating solely on realizing the walk. They had 
realized various dynamic walks of a one [3], two [4, 5], four [6-9], and six [10]- 
legged robot. Now we are going to determine the conditions which make dynamic 
walk better. In this paper in order to evaluate dynamic walk, three criteria for the 
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quadruped are proposed: stability, maximum speed, and energy consumption. The 

relations between these three criteria and the parameters (gait, speed, period, stride, 

length of the leg, joint angles, etc.) are formulated accordingly to the dynamics. These 

relations are useful for designing the robot and planning the dynamic walk. 

2. EQUATIONS OF MOTION 

2.1. Modelling of the quadruped 
When we analyse the dynamics of the quadruped, it is necessary to determine the 
mechanism and the types of actuators (i.e. hydraulic or electric, the gear ratio, etc.). In 
this paper, the quadruped Collie-2, which can walk dynamically, is considered. The 

following are assumed for the quadruped: 

Assumption 1. The coordinates of the quadruped are as shown in Fig. 1. 

Figure 1. Construction of Collie-2. It has six joints and actuators on each leg. The total weight is about 
7.5 kg. The origin of the coordinate is located at the centre of the body. 

Assumption 2. The actuators are DC servo motors with a small gear ratio (about 
10-15). 

Assumption 3. Friction at the joints can be ignored as it is small. 

In addition, the following are assumed to simplify the equations of motion: 

Assumption 4. The centripetal force and Coriolis' force can be ignored. 

Assumption 5. There is no interference between the motion around each axis 

(pitch, roll, and yaw) except that caused by the reaction forces from the floor. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
U

di
ne

] 
at

 0
8:

02
 0

2 
M

ay
 2

01
3 



285 

The origin of the coordinate is located at the centre of the body. We choose the state 
variables as follows: 

Leg = FR (fore right), HR (hind right), FL (fore left), HL (hind left). The meanings of 
the symbols used in this paper are given in Table 1. 

Table 1. 
Meanings of symbols 

2.2. Dynamics and problems in inverse dynamics 

The constraints between the robot and the floor are expressed as 

and the equations of motion with constraint (1) are expressed as (2) [11] ] 

where 

For a given trajectory x(t), the feedforward torque u(t) must satisfy (2). However, 
the following problems arise: 

(a) Torque u(t) which satisfies (2) for given arbitrary x and f does not exist because 
k < n in general; 

(b) f must satisfy the following conditions: 

(1) (vertical floor reaction force) # 0; 
(2) (horizontal floor reaction force) < (vertical floor reaction force) x (friction 

coefficient). 
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2.3. Reduction of the equations of motion 

As long as constraint (1) is satisfied, the precise value of f is not important for realizing 
the walk. Eliminating the term E? fin (2), the dimension of the equations is reduced to 
n - m as shown in (3) (Appendix A): 

where 

Note that (3) is redundant on u contrary to (2), and other conditions are necessary 
to determine u. 

3. BASIC SYMMETRICAL GAITS 

3.1. Gaits considered in this paper 
The following is assumed about the gait to simplify the analysis: 

Assumption 6. The walk is steady. 

Assumption 7. The motion of each leg is similar except for the phase difference. 

Three basic gaits that use pairs of legs in union are noticed in animals [9]. They are: 

trot : diagonal pairs of legs move at the same time; 

pace : lateral pairs of legs move at the same time; 

bound : the front legs move at the same time, as do the rear. 

These gaits are shown in Fig. 2. As bound needs large power actuators at the pitch hip 
joints, it is not suitable for the walk. 

The duty factor, a(0 < a < 1), is defined as the ratio of the time in which the leg 
contacts the floor over one cycle of the walk. When a < 0.5, all legs are off the ground 
at some particular moment. In this paper, this case is not considered. 

Assumption 8. Only trot and pace with a a 0.5 are considered. 

3.2. Realizable trajectory and the model as an inverted pendulum 

When we calculate the torques u from (3) in the two-leg supporting phases which 

appear in the basic symmetrical gaits, condition (b.l) in Section 2.2 is generally not 

satisfied. This means that the walk is statically unstable and such a trajectory is 

unrealizable. Therefore we must plan the trajectory x(t) which satisfies condition (b.l ). 
In this paper, we plan this trajectory using the model of an inverted pendulum in 

which no actuator exists at the ankle joints of the supporting legs. This model was 
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Figure 2. Three symmetrical gaits. These gaits move the legs in pairs. 

introduced in the studies of the biped [4]. We let the inverted pendulum shown in 

Fig. 3b represent the surface constructed by diagonal pairs of supporting legs in trot. 
We let the inverted pendulum shown in Fig. 4b represent the surface constructed by 
lateral pairs of supporting legs in pace. 

Figure 3. Trot gait and the model as an inverted pendulum. 

Figure 4. Pace gait and the model as an inverted pendulum. 
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4. STABILITY 

4.1. Stability and maximum period in dynamic walk 
The dynamic walk is realized by a series of unstable inverted pendulums alternatively 
changing the supporting legs [4]. As described in Section 3.2, we let the inverted 

pendulums shown in Figs 3b and 4b represent simple models of the quadruped robot 
in each gait. 

In this paper, the steady walk which satisfies the following equations is considered: 

In the steady walk, when the period T is increased, the amplitude of the rolling 
motion becomes large. If the amplitude is too large, the robot falls over. Therefore, 
there exists a period T max in each gait such that the robot does not fall. 

4.2. Maximum period in trot gait 

The motion of the inverted pendulum shown in Fig. 3b is greatly influenced by the 
initial angle. By carrying out experiments, we can determine the maximum period 
Tmax in which growth of the angle is tolerable. Here increase of the stride S causes an 
increase in the initial angle of the inverted pendulum (see Fig. 5) and a decrease 
of T max' 

Figure 5. In trot, the initial angle of the inverted pendulum increases according to the increase of the stride. 
This casuses a decrease of the maximum period Tm... 
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In Collie-2, we obtained the following results from experiments in which the roll 

joints at hips were mechanically constrained: 

4.3. Maximum period in pace gait 

The roll motion in pace is represented by the double-inverted pendulum shown in 

Fig. 4b. Like the biped [4], this inverted pendulum should steadily reciprocate by 
changing the supporting legs. The equation of motion of the inverted pendulum is 
written as (Appendix B): 

The phase plot of the supporting leg's angle from (8) is shown in Fig. 6. 

Figure 6. Phase plot of the supporting leg's roll motion. 

When ?1 is small throughout the motion, the second term in (8), b, is dominant. In 
this case, the motion of the supporting leg is simple and easily satisfies the conditions 
of steady walk (line a in Fig. 6). When becomes large, the influence of the first term 
of (8) makes the motion unstable and finally the supporting leg falls down (line b in 

Fig. 6). Therefore Ç1max ( = çI(To/2» should satisfy the following: 

where ç 1 limit is the limit angle obtained from the experiments. 
We ignore the first term of (9) as ?1 is small. Then from (5)-(9) we obtain 

From the experiments, we find that = 10° and Tmax = 0.85 s. 
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5. MAXIMUM SPEED 

Let a be 0.5, then the speed VG can be written as 

where S and T are the relative stride to the body and the period, respectively. 
In order to increase the speed VG, we need to increase the stride S or to decrease the 

period T. Then the maximum speed V.... is determined by Ulimit (the limitation of the 

actuator torque which activates the swinging leg). The relation between VG..,,, S, and 
T is formulated in the following. 

To swing a leg by the stride S, it is necessary to accelerate and decelerate a leg. The 
maximum inertial torque Umax is obtained by using the simple model of a swinging leg 
shown in Fig. 7 (Appendix C) as follows: 

Figure 7. One-link model of a swinging leg. 

where S, T, I, and J are the stride, the period, the length of a swinging leg, and the 
moment of inertia of a swinging leg, respectively. 

As U max should be smaller than Ulimit' we can get the following by substituting ( 12) 
into U max < Ulimit: 

This means that the upper bound of the stride is a function of the period. Here, the 
maximum stride Smax is determined as follows by the maximum period Tmax in which 
the robot can walk stably as described in Section 4: 

In addition, by substituting (11) into (13) we obtain 
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(15) means that decreasing the period to increase the speed is not a better way with 

respect to the maximum speed and it is desirable to walk with as large a period and as 

large a stride as possible. But there also exists a structural limitation of stride, Slimit: 

There are two cases according to which condition is effective, (14) or (16). 

Type a: The case where Smax < 21 is obtained because U,;m;, is relatively smaller than 

the other parameters (J, I, etc.). 

Type b: The case where Smax > 21 is obtained because Ulimit is relatively larger than 

the other parameters (J, I, etc.). 

In the case of type a, (16) can be ignored and the maximum speed VGmax is 

determined by the maximum period T .. ax (shown as point A in Fig. 8) from (15) and 

expressed as follows: 

Figure 8. Relation between the period and the stride. 

In the case of type b, the stride is limited by (16) and there exists a period which 

maximizes the speed (shown as point B in Fig. 8): 

Then the maximum speed V Gmax is written as 

In the case of Collie-2, the physical values are 
' 
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Therefore it can be said that Collie-2 belongs to type a. On the contrary, as it is 
observed that animals (for an example, a dog) walk with a constant stride at any speed, 
it can be said that animals belong to type b. 

6. ENERGY CONSUMPTION 

6.1. Definition of energy consumption 
There are many kinds of energy consumed in the walk. For example, 

(a) kinetic energy; 
(b) energy loss by friction; 
(c) energy loss by collision between the legs and the floor; and 

(d) Joule thermal loss by the current in the motors. 

Which term is dominant depends on the structure of the quadruped, the actuator, etc. 
Here we consider only (a) and (d) according to the assumptions described in 

Section 2.1. We define the kinetic energy as 

and the Joule thermal loss as 

where R;, G;, and Ki are the armature resistance, gear ratio, and torque factor, 
respectively, and the torque u, is obtained by solving (3) for a given trajectory. 

The calculation results in Collie-2 are listed in Table 2. They indicate that in the 
case of robots where a high torque is generated by the large current in the motor, the 

energy consumed during walking is mainly the Joule thermal loss. Therefore we use 
the Joule thermal loss defined by (21) as the consumed energy. 

Table 2. 
Comparison of the two kinds of energy 

The energy consumption (the energy consumed in walking a unit distance) is 
defined as 
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The parameters used in planning the walk can be calculated under the condition of 

minimizing P as described in the following sections. 

6.2. Parameters minimizing the consumed energy 

6.2.1. Period. The energy consumption P can be represented by the period T and 

speed VG as follows (Appendix D): 

Each term has the following meaning: 

(1) energy to accelerate or decelerate the forward motions of the swinging legs; 
(2) energy to accelerate or decelerate the lifting motions of the swinging legs; 
(3) energy to compensate the gravity according to the angles of the supporting legs; 
(4) energy to compensate the weight of the body. 

The coefficients (CgW, C.P, etc.) can be obtained by dividing the value of P calculated 
from (21) and (22) into each term. 

Topt which minimizes P can be obtained by solving dP/dT = 0. The results 
calculated for trot and pace are shown in Fig. 9. The reason why Topt exists can be 

explained as follows: 

As T increases, the third term increases because S increases. As T decreases, the 
first and second terms increase because the acceleration and deceleration of the 

swinging leg become larger. 

6.2.2. Trajectory. Since (3) is very complicated, it is difficult to determine the 

trajectory which minimizes (21) while satisfying (3). Therefore, the motion of the robot 

Figure 9. Optimal period in each gait. 
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is conveniently separated into the following: 

(1) the roll motion; 
(2) the pitch motion of the swinging leg; and 

(3) the pitch motion of the supporting leg. 

Motions (1) and (2) are mainly decided by T alone and are hard to optimize. However, 
the pitch motion of the supporting legs as shown in Fig. 10 can be optimized locally. 
Let the simplified equation of motion be represented in the form of a linear combina- 
tion of xi and as follows: 

Figure 10. Simple model of a supporting leg. In this model, it is assumed thatf. = 0 andf. = Mg/2, where 
M is the total mass of the robot. 

Minimizing (21) is equivalent to minimizing (25): 

Figure 11 shows the motion obtained using Galerkin's method. The height h increases 
to reduce the load of the weight and the floor reaction force. 

6.2.3. Torques. To determine the necessary torque u for the planned trajectory x 
from (3), another condition must be introduced as mentioned in Section 2.3. One of 
the conditions is 

This condition minimizes the energy consumption defined in Section 6.1 for a given x. 

Moreover, this condition prevents the horizontal reaction forces from becoming large 
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Figure 11. Optimized motion of a supporting leg. The height of a leg increases during the motion in order 
to reduce the load of the weight. 

by the unnecessary straddle and helps satisfy condition (b.2) mentioned in Section 2.2. 

Torque u satisfying (3) and (26) can be obtained by solving the following equations 

using Lagrange's multiplier method: 

7. RESULTS OF CALCULATION 

Figure 12 shows the energy consumption P calculated from (21) and (22) for trot, 

pace, and the static walk (crawl gait, a = 0.75). In each figure, the point located on the 

extreme right for a given period is the maximum speed attainable for the period. 

Figure 12. Energy consumption in each gait. Calculated from (21) and (22), and optimized as described in 
Section 6.2. 
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8. EXPERIMENT AND DISCUSSION 

8.1. Results of experiments 
Figure 13 shows the results of experiments corresponding to Fig. 12. Figure 14 shows 

photographs of Collie-2 walking in trot and pace. 

Figure 13. Energy consumption in each gait. Results of experiments. P was calculated from the outputs to 
D/A converters. In trot, the walk becomes unstable with increasing speed. 

Figure 14. Photograph of Collie-2 walking in trot and pace. 

8.2. Effect of the period 

8.2.1. Period and stability. In trot, the walk becomes unstable as the stride and 

period increase. In pace, the walk becomes unstable as the period increases. When the 

period is larger than 0.9 s, Collie-2 cannot continue to walk stably. 
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8.2.2. Period and maximum speed. The maximum speed, VG..., of Collie-2 in- 

creases as the period increases, for the reason given in Section 5. 

8.2.3. Period and energy consumption. The period T = 0.8 s which makes the 

energy consumption P minimum in trot in Fig. 13 coincides with the calculated results 

of Fig. 9. 

8.3. Comparison of the gaits 

8.3.1. Gaits and energy consumption. Trot is the best when considering energy 

consumption. 

8.3.2. Gaits and maximum speed. In the static walk, the maximum speed is very low 

because the duty factor cannot exceed 0.75. In trot, increasing the stride causes 

instability. Then T",aX must be reduced to keep the dynamic walk within the bounds of 

stability. This causes the maximum speed to decrease. 

8.3.3. Condition of gait selection. We can say the following from the previous 
discussions. In the case of Collie-2, trot is better in view of the energy consumption at 

the speed where both trot and pace are possible. Pace is required at the speed where 

trot is not possible. 

9. CONCLUSION 

Walking is a complicated motion with many degrees of freedom. There are many 
kinds of parameters in planning and realizing the walk (for example, the duty factor 

and phase difference between the legs which determine the gait, speed, period, stride, 

height of body, the condition needed to determine torques, etc.). In order to take 

advantage of the many degrees of freedom, some indices must be introduced in the 

walk. In this paper, three criteria have been pointed out as useful indices for evaluating 
the dynamic walk of a quadruped robot. They are stability, maximum speed, and 

energy consumption. The relations between these three criteria and the parameters for 

the dynamic walk have been formulated. The following conclusions were obtained 

and verified by experiments using Collie-2: 

(1) The period is a very significant parameter. It is desirable to walk with a longer 

period and a wider stride in order to increase the maximum speed. But there exists 

a maximum value of the period at which stable dynamic walk can be realized. The 

maximum speed is limited by this maximum period. There exists a period in which 

energy consumption becomes a minimum for a given speed. 

(2) The three basic gaits are trot, pace, and bound. The gait greatly affects these 

criteria. Trot is desirable as long as it is available. Otherwise, pace is recommen- 

ded. 
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APPENDIX A. REDUCING THE EQUATIONS OF MOTION 

Consider the elimination of E'f from (A2) under (A1): ): 

By differentiating (Al), Ez = 0 is derived. Upon further differentiation, the following is derived: 

We express this in general as 

Here we choose the vectors e, ... e.-m which are independent of ... e. and of each other, and let 

Then we can get the following: 

From (A2), we get 

Substituting (A8) into (A5), we obtain 

From this, we obtain 

We can determine the constraint forces f from (AIO) when the torques u are given. Furthermore, by 
substituting (A10) into (A8), we get 

We can determine the acceleration z from (All) when the torques u are given. 
When multiplying both sides of (Al l) by E*, the part derived by multiplying E is automatically satisfied. 

Therefore, the relation between x and u is reduced to the following equation with n - m dimension which is 
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obtained by multiplying (Al l) by EP: 

APPENDIX B. SIMPLIFYING THE EQUATIONS OF MOTION AROUND THE ROLL AXIS 
The equation of motion of the inverted pendulum shown in Fig. 4b is written as 

To lift the swinging legs, the angle of the body must satisfy j2 S 3/2n. Considering the collision with the 
floor, the following trajectory is used here: 

For simplicity, we let Ç2max = 0. Then by eliminating u from (A14) and linearizing it, we get the following: 

APPENDIX C. FORMULATING THE MAXIMUM SPEED 

Using the simple one-link model (Fig. 7), the maximum inertial torque U max needed to accelerate and 
decelerate the swinging leg is formulated as follows. 

U max is proportional to the maximum acceleration of the link: 

where 
J: inertia of the swinging leg, 

8( t) : angle of the swinging leg, 

max (ê): maximum value of 0(t), (0 -< t < To, To = T/2). 

Let 0(t) be expressed as a cubic function satisfying the continuity of the angle and angular velocity at the 
time t = 0, t = To as follows: 

Then the maximum acceleration max (6) is written as 

By substituting (A22) into (A19), the following is obtained: 
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As shown above, the maximum torque Urnax is directly proportional to the stride S and inversely 
proportional to the square of the period T. 

APPENDIX D. FORMULATING THE ENERGY CONSUMPTION 
The consumed energy Ee is defined by (21 ). From this, we can say that Ee is proportional to the square of the 
torque and to the period. Here we assume that the consumed energy Ee defined by (21) can be divided into 
four terms as described in Section 6.2.1. We write this as follows: 

Each term can be represented by the speed V. and the period T through simple consideration of the 
dynamics as follows. 

(a) Energy to swing the legs forward. We assume that the inertia torque to swing a leg forward is directly 
proportional to the stride S and inversely proportional to the square of the period T throughout the 
motion. Then we obtain 

(b) Energy to swing the legs up. Like E,,i.,, we assume that the inertia torque to swing a leg up is 
inversely proportional to the square of the period T throughout the motion for a given swinging up height 
AH. Then we obtain 

(c) Energy to keep the supporting legs from falling down. As it is not necessary to accelerate or decelerate 
the body and supporting legs in the steady walk, the energy to compensate for gravity is dominant. We 
assume that the torque to support a leg is directly proportional to the stride S when the stride is small. Then 
we get 

(d) Energy to keep the body from falling down. We assume that the torque to support the body including 
swinging legs is constant in the two-leg supporting phase of pace. Then we obtain 

From (A24)-(A28) and (22) we obtain 

It is confirmed by calculation that the assumptions made here are valid and that the coefficients of (A29) 
are constant independently of the speed and the period T. The results are shown in Table Al. 

Table Al. 
Coefficients of (A29) obtained by dividing the value of P calculated from (21) and 
(22) into four terms (AH = 0.5 cm) 
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