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Ela, JordiP, Radu and Carles, for their support and friendship.

My very special gratitude to the invaluable support of Josep Tomas, Lluis
Magi and Toni for technical aspects, to Isela and Sonia for administrative
affairs, and to Christine for revising my English. Thanks to all for attending
my requests in such a short time!

v



vi Acknowledgements

A general acknowledgement goes to all the undergraduate students who
have worked in the laboratory on our research projects. Among them I must
mention Ferran and OscarP who contributed directly to the development of
the underwater robot URIS.

I cannot forget the friends I met during my two stays in Newport and
Hawaii. I must thank Ioannis and Vivianne for their hospitality when I was in
Newport. Also, the people of the Mechatronics Research Centre for teaching
me how to prepare some cakes! From my stay in Hawaii, I must acknowledge
my good friend Alberto, who helped me to discover the most amazing places
on the island. Also, Ursula and Sergio for their great friendship. I’m sure
the success of that stay was in part because of you. Finally, my gratitude
to all the people of the Autonomous Systems Laboratory of the University of
Hawaii, for taking me in so kindly and for helping me with the experiments.
My special gratitude to Hyun Taek, Side, Scott, Kaikala, Giacomo, Mick,
Wesley and Song.

And last, but not least, my most especial gratitude is to my parents, to
all my family and friends for trusting in me and for their support during all
these years. Finally, the most important acknowledgement goes to Pepa for
her support and her patience. This thesis is especially dedicated to you.



Contents

List of Figures xi

List of Tables xvii

Glossary xix

1 Introduction 1
1.1 Previous Research Work . . . . . . . . . . . . . . . . . . . . . 2
1.2 Goal of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 Behavior-based Control Architectures 7
2.1 Behavioral-based versus Traditional AI . . . . . . . . . . . . . 7
2.2 Fundamentals of Behavior-based Robotics . . . . . . . . . . . 12

2.2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Behavior features . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Coordination . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Experimental task: control of an AUV . . . . . . . . . . . . . 18
2.4 Some Behavior-based approaches . . . . . . . . . . . . . . . . 21

2.4.1 Subsumption architecture . . . . . . . . . . . . . . . . 22
2.4.2 Action Selection Dynamics . . . . . . . . . . . . . . . . 28
2.4.3 Motor Schemas approach . . . . . . . . . . . . . . . . . 33
2.4.4 Process Description Language . . . . . . . . . . . . . . 39

2.5 Coordination Methodology Comparison . . . . . . . . . . . . . 44

3 Hybrid Coordination of Behaviors 47
3.1 The Behavior-based Control Layer . . . . . . . . . . . . . . . . 47
3.2 Hybrid Coordination of Behaviors . . . . . . . . . . . . . . . . 49
3.3 Coordination Methodology . . . . . . . . . . . . . . . . . . . . 50
3.4 Experimental task . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



viii Contents

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Reinforcement Learning 61
4.1 The Reinforcement Learning Problem . . . . . . . . . . . . . . 61
4.2 RL with Finite Markov Decision Processes . . . . . . . . . . . 65
4.3 Methodologies to solve the RLP . . . . . . . . . . . . . . . . . 69
4.4 Temporal Difference Algorithms . . . . . . . . . . . . . . . . . 71

4.4.1 Actor-Critic methods . . . . . . . . . . . . . . . . . . . 72
4.4.2 Q learning . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.3 Eligibility Traces . . . . . . . . . . . . . . . . . . . . . 75

4.5 Issues in RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Generalization methods . . . . . . . . . . . . . . . . . . . . . . 81

4.6.1 Decision trees . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.2 CMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.3 Memory-based methods . . . . . . . . . . . . . . . . . 85
4.6.4 Artificial Neural Networks . . . . . . . . . . . . . . . . 87

5 Semi-Online Neural-Q learning 91
5.1 Reinforcement Learning based behaviors . . . . . . . . . . . . 91
5.2 Q learning in robotics . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Generalization with Neural Networks . . . . . . . . . . . . . . 94

5.3.1 Neural Networks overview . . . . . . . . . . . . . . . . 95
5.3.2 Neural Q learning . . . . . . . . . . . . . . . . . . . . . 96
5.3.3 Back-propagation algorithm . . . . . . . . . . . . . . . 98

5.4 Semi-Online Learning . . . . . . . . . . . . . . . . . . . . . . . 101
5.5 Action Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Phases of the SONQL Algorithm . . . . . . . . . . . . . . . . 104
5.7 SONQL-based behaviors . . . . . . . . . . . . . . . . . . . . . 105
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 URIS’ Experimental Set-up 113
6.1 Robot Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.2 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Target Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.1 Image Segmentation . . . . . . . . . . . . . . . . . . . 119
6.2.2 Target Normalized Position . . . . . . . . . . . . . . . 121
6.2.3 Velocity Estimation . . . . . . . . . . . . . . . . . . . . 122

6.3 Localization System . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.1 Downward-Looking Camera Model . . . . . . . . . . . 124



Contents ix

6.3.2 Coded Pattern . . . . . . . . . . . . . . . . . . . . . . 125
6.3.3 Localization Procedure . . . . . . . . . . . . . . . . . . 128
6.3.4 Results and Accuracy of the System . . . . . . . . . . . 136

6.4 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.1 Distributed Object Oriented Framework . . . . . . . . 140
6.4.2 Architecture Description . . . . . . . . . . . . . . . . . 141

7 Experimental Results 147
7.1 Target-following task . . . . . . . . . . . . . . . . . . . . . . . 147

7.1.1 SONQL behavior . . . . . . . . . . . . . . . . . . . . . 151
7.1.2 Learning Results . . . . . . . . . . . . . . . . . . . . . 154
7.1.3 Task achievement . . . . . . . . . . . . . . . . . . . . . 160
7.1.4 Conclusions and Discussion . . . . . . . . . . . . . . . 162

7.2 SONQL in the ”Mountain-Car” task . . . . . . . . . . . . . . 164
7.2.1 The ”Mountain-Car” task definition . . . . . . . . . . . 165
7.2.2 Results with the Q learning algorithm . . . . . . . . . 166
7.2.3 Results with the SONQL algorithm . . . . . . . . . . . 168
7.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Conclusions 179
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.4 Research Framework . . . . . . . . . . . . . . . . . . . . . . . 184
8.5 Related Publications . . . . . . . . . . . . . . . . . . . . . . . 185

Bibliography 189





List of Figures

2.1 Phases of a deliberative control architecture. . . . . . . . . . . 8
2.2 Structure of a Behavior-based control architecture. . . . . . . 11
2.3 The hybrid control architecture structure. . . . . . . . . . . . 11
2.4 Structure of behavior-based CA. . . . . . . . . . . . . . . . . . 12
2.5 Coordination methodologies: a) competition b) cooperation. . 15
2.6 Simulated underwater environment in which the AUV must

reach three goal points. . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Response, VG, of the ”Go To” behavior. . . . . . . . . . . . . . 19
2.8 Response, VO, of the ”Obstacle Avoidance” behavior. . . . . . 19
2.9 Response, VT , of the ”Avoid Trapping” behavior. . . . . . . . 20
2.10 Overall control system used in the simulated task. . . . . . . . 21
2.11 Subsumption control architecture. . . . . . . . . . . . . . . . . 23
2.12 Augmented Finite State Machine (AFSM). . . . . . . . . . . . 24
2.13 AFSM network designed by Brooks for a mobile robot. . . . . 25
2.14 Task implementation with Subsumption architecture. . . . . . 25
2.15 Top view of the trajectory carried out by the AUV with Sub-

sumption architecture. . . . . . . . . . . . . . . . . . . . . . . 26
2.16 Vertical view of the trajectory carried out by the AUV with

Subsumption architecture. . . . . . . . . . . . . . . . . . . . . 27
2.17 Three-dimensional view of the trajectory carried out by the

AUV with Subsumption architecture. . . . . . . . . . . . . . . 27
2.18 Example of an Action Selection Dynamics network. . . . . . . 30
2.19 Task implementation with Action Selection Dynamics. . . . . 32
2.20 Top view of the trajectory carried out by the AUV with Action

Selection Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 33
2.21 Vertical view of the trajectory carried out by the AUV with

Action Selection Dynamics. . . . . . . . . . . . . . . . . . . . 34
2.22 Three-dimensional view of the trajectory carried out by the

AUV with Action Selection Dynamics. . . . . . . . . . . . . . 34
2.23 Example of a control architecture with Motor Schema approach. 36
2.24 Potential field generated with Motor Schema approach. . . . . 36

xi



xii List of Figures

2.25 Task implementation with Motor Schema approach. . . . . . . 37
2.26 Top view of the trajectory carried out by the AUV with Motor

Schema approach . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.27 Vertical view of the trajectory carried out by the AUV with

Motor Schema approach. . . . . . . . . . . . . . . . . . . . . . 38
2.28 Three-dimensional view of the trajectory carried out by the

AUV with Motor Schema approach. . . . . . . . . . . . . . . . 38
2.29 Example of a control architecture with Process Description

Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.30 Task implementation with Process Description Language. . . . 41
2.31 Top view of the trajectory carried out by the AUV with Pro-

cess Description Language . . . . . . . . . . . . . . . . . . . . 42
2.32 Vertical view of the trajectory carried out by the AUV with

Process Description Language. . . . . . . . . . . . . . . . . . . 43
2.33 Three-dimensional view of the trajectory carried out by the

AUV with Process Description Language. . . . . . . . . . . . . 43

3.1 General schema of the control system conceived to control an
autonomous robot. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Typical behavior of the robot according to the coordination
methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 The normalized robot control action vi and the behavior acti-
vation level ai constitute the behavior response ri. . . . . . . . 52

3.4 Hierarchical Hybrid Coordination Node. . . . . . . . . . . . . 53
3.5 Reduction factor applied to the activation level. . . . . . . . . 54
3.6 Response of the HHCN. . . . . . . . . . . . . . . . . . . . . . 55
3.7 Example of a reactive layer. . . . . . . . . . . . . . . . . . . . 55
3.8 Task implementation with the hybrid coordinator. . . . . . . . 57
3.9 Top view of the trajectory carried out by the AUV. . . . . . . 57
3.10 Vertical view of the trajectory carried out by the AUV. . . . . 57
3.11 Three-dimensional view of the trajectory carried out by the

AUV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.12 Response of the 3 behaviors and the one generated by the

hybrid coordinator. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Diagram of the learner/environment interaction. . . . . . . . . 63
4.2 Sequence of states, actions and rewards. . . . . . . . . . . . . 63
4.3 Typical phases of a Reinforcement Learning algorithm to solve

the RLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 General diagram of the Actor-Critic methods. . . . . . . . . . 73
4.5 Diagram of the Q learning algorithm. . . . . . . . . . . . . . . 76



List of Figures xiii

4.6 Approximating the value space with a Decision Tree. . . . . . 83
4.7 Approximating the value space with the CMAC function ap-

proximator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.8 Approximating the value space with a Memory-Based function

approximator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9 Approximating the state-value function with a Neural Network. 88
4.10 Implementation of the action-value function, Q(s, a) with a NN. 89

5.1 Diagram of an artificial neuron j located at layer l. . . . . . . 96
5.2 Graph of the multilayer NN which approximates the Q function. 97
5.3 Sigmoidal function used as the activation function of the hid-

den layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Representation of the learning sample database. . . . . . . . . 103
5.5 Phases of the Semi-Online Neural-Q learning algorithm. . . . . 106
5.6 Representation of the learning sample database. . . . . . . . . 108
5.7 Diagram of the SONQL algorithm acting as a behavior, re-

spect to the robot control system. . . . . . . . . . . . . . . . 109
5.8 Example of the behavior-based control layer with two SONQL-

based behaviors. . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.9 State {fx, fy, fz} and reward {rx, ry, rz} variables in a target

following behavior. . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 URIS’ experimental environment. . . . . . . . . . . . . . . . . 114
6.2 URIS’ AUV, a) picture b) schema. . . . . . . . . . . . . . . . 115
6.3 URIS in front of the artificial target. . . . . . . . . . . . . . . 119
6.4 Image segmentation, a) real image with the detected target b)

scheme used in the segmentation process. . . . . . . . . . . . . 120
6.5 Coordinates of the target in respect with URIS. . . . . . . . . 122
6.6 Normalized angular position and velocity of the target in Y axis.123
6.7 Camera projective geometry. . . . . . . . . . . . . . . . . . . . 125
6.8 Correction of the radial distorsion. . . . . . . . . . . . . . . . 126
6.9 Coded pattern which covers the bottom of the water tank. . . 127
6.10 Features of the coded pattern. . . . . . . . . . . . . . . . . . . 127
6.11 Detection of the pattern: a) acquired image, b) binarization,

c) detection of the position, size and color of the dots. . . . . . 129
6.12 Finding the dots neighborhood: a) main lines of the pattern,

b) extracted neighborhood. . . . . . . . . . . . . . . . . . . . . 131
6.13 Tracking of dots: a) field of view of images k and k − 1, b)

superposition of the dots detected in images k and k − 1. . . . 132
6.14 Estimated position and orientation of the robot in the water

tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xiv List of Figures

6.15 Position and velocity trajectory in 6 DOF. . . . . . . . . . . . 137

6.16 Three-dimensional trajectory measured by the localization sys-
tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.17 Histogram of the estimated position and orientation. . . . . . 139

6.18 Objects of the software architecture used in the experiments. . 142

6.19 Components of the control system architecture used in the
target following task. . . . . . . . . . . . . . . . . . . . . . . . 142

6.20 Performance of the surge and yaw velocity-based controllers. . 144

7.1 Implementation of the target following task with the proposed
behavior-based control layer. . . . . . . . . . . . . . . . . . . . 149

7.2 Schema of the ”wall avoidance” behavior. The control action
and the zones where the behavior is active are shown. . . . . . 150

7.3 Relative positions fx and fy and the reinforcement values rx

and ry, for the ”target following” behavior. . . . . . . . . . . . 153

7.4 Real-time learning evolution and behavior testing in the X DOF.155

7.5 State/action policy learnt for the X DOF. . . . . . . . . . . . 156

7.6 State value function, V (s), after the learning for the X DOF. . 157

7.7 Real-time learning evolution and behavior testing of the Yaw
DOF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.8 State/action policy learnt for the Yaw DOF. . . . . . . . . . . 158

7.9 State value function V (s), after the learning of the Yaw DOF. 159

7.10 Behavior convergence for different attempts. . . . . . . . . . . 159

7.11 Trajectory of URIS while following the target in the water
tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.12 Behavior responses in a 2D trajectory. . . . . . . . . . . . . . 161

7.13 Performance of the hybrid coordination system. . . . . . . . . 163

7.14 The ”mountain-car” task domain. . . . . . . . . . . . . . . . . 166

7.15 Effectiveness of the Q learning algorithm with respect to the
learning iterations. . . . . . . . . . . . . . . . . . . . . . . . . 167

7.16 State/action policy after several number of learning iterations
for the Q learning algorithm. . . . . . . . . . . . . . . . . . . . 168

7.17 State value function V (s) after different learning iterations for
the Q learning algorithm. . . . . . . . . . . . . . . . . . . . . 169

7.18 Effectiveness of the SONQL algorithm with respect to the
learning iterations. . . . . . . . . . . . . . . . . . . . . . . . . 170

7.19 Effectiveness of the SONQL algorithm with respect to the
number of NN updates. . . . . . . . . . . . . . . . . . . . . . . 171

7.20 State/action policy after different learning iterations for the
SONQL algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 172



List of Figures xv

7.21 State value function V (s) after several learning iterations for
the SONQL algorithm. . . . . . . . . . . . . . . . . . . . . . . 173

7.22 Two views of the state value function V (s) after 20000 learning
iterations with the SONQL algorithm. . . . . . . . . . . . . . 173

7.23 Effectiveness of the SONQL algorithm with respect to the
learning iterations without using the database. . . . . . . . . . 175

7.24 Effectiveness of the SONQL algorithm with respect to the
number of NN updates with different database sizes. . . . . . . 175

7.25 Effectiveness of the SONQL algorithm with respect to the
learning iterations with different database sizes. . . . . . . . . 176





List of Tables

2.1 Four relevant Behavior-based approaches. . . . . . . . . . . . . 21
2.2 Qualitative properties used in the evaluation of the control

architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Subsumption architecture features. . . . . . . . . . . . . . . . 28
2.4 ASD States to fulfill the task. . . . . . . . . . . . . . . . . . . 31
2.5 Precondition, add and delete lists for the 3 competences. . . . 32
2.6 Parameters of the ASD implementation found experimentally. 33
2.7 Action Selection Dynamics features. . . . . . . . . . . . . . . . 35
2.8 Motor Schema approach features. . . . . . . . . . . . . . . . . 39
2.9 Maximum values for the robot speed and behaviors. Found

experimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.10 Process Description Language features. . . . . . . . . . . . . . 44
2.11 Behavior-based architectures rankings. . . . . . . . . . . . . . 44
2.12 Properties according to the coordination methodology. . . . . 45

xvii





Glossary

AFSM Augmented Finite States Machines
AI Artificial Intelligence
ASD Action Selection Dynamics
AUV Autonomous Underwater Vehicle
BBCA Behavior-based Control Architectures
CMAC Cerebellar Model Articulation Controller
DOF Degree Of Freedom
DP Dynamic Programming
FMDP Finite MDP
FSM Finite State Machine
GA Genetic Algorithm
HHCN Hierachical Hybrid Coordination Node
HSL Hue Saturation Luminance
IDL Interface Definition Language
MC Monte Carlo
MDP Markov Decision Process
NQL Neural-Q learning
PDL Process Description Language
POMDP Partially Observable MDP
QL Q Learning
RDF Radial Basis Function
RGB Red Green Blue
RL Reinforcement Learning
RLP Reinforcement Learning Problem
ROV Remotely Operated Vehicle
SMDP Semi MDP
SONQL Semi-Online Neural-Q learning
TD Temporal Difference
UUV Unmanned Underwater Vehicle

xix





Chapter 1

Introduction

Technical advances in our society have demonstrated great achievements in
many diverse fields like transportation, communication, manufacturing and
computation. Machines help us in our daily activities, extending our natural
acting capabilities. Also, a diverse set of perception systems allow us to
extend our natural senses. However, there are few autonomous devices able
to integrate the two concepts: sensing and acting. Autonomous robots is
a research subject which gathers topics like sensing, actuation, powering,
communication, control theory and artificial intelligence. The goal residing
in the design of an autonomous robot is the development of a machine able
to fulfill a task in the real world. Tasks which are similar to those humans
commonly do without effort. An autonomous robot must be able to act in
the world by changing its state or by moving itself through it. It must also
be able to sense the state of the world, which requires the interpretation of
the sensor information. Finally, it must be able to decide what to do, how
to relate the state of the environment to its action possibilities in order to
achieve a predefined goal.

The state/action relation, which is trivial for human intelligence, repre-
sents a very difficult task for a computerized system, specially in unstructured
and unknown environments. To overcome this, two different problems have
to be dealt with. The first is the state interpretation problem, that is, the un-
derstanding of what the sensors perceive. The second is the action-decision
problem which consists of deciding the movements of the robot to accomplish
the mission. To solve the action-decision problem it is assumed that the state
has been correctly interpreted. The field of Artificial Intelligence is usually
applied to autonomous robots for solving both of these problems. However,
a feasible solution can be obtained in only a few set of cases.

This thesis is concerned with the field of autonomous robots and the
problem of action-decision. The thesis analyzes some Artificial Intelligence

1



2 Chapter 1. Introduction

techniques which can be successfully applied to the control of an autonomous
robot. In particular, the thesis is based on the topics of Behavior-based
Robotics and the Reinforcement Learning theory. The experimental plat-
form used in this research is an Autonomous Underwater Robot (AUV).
Throughout this chapter the main aspects which have conditioned this re-
search project will be overviewed. First, the research antecedents which were
found will be presented in the beginning of this thesis. Then, the goal of the
thesis will be pointed out. Finally, the chapter will finish with the outline of
this dissertation.

1.1 Previous Research Work

The research presented in this thesis has been fulfilled in the Computer Vi-
sion and Robotics research group of the University of Girona. This group
has been doing research in underwater robotics since 1992 (supported by
several programs of the Spanish commission MCYT). The main contribution
throughout the past years is the development of two Unmanned Underwater
Vehicles (UUV). The first prototype, called GARBI, was developed in col-
laboration with the Polytechnical University of Catalonia. This vehicle was
conceived as a Remotely Operated Vehicle (ROV). The second prototype,
URIS, was fully developed in the University of Girona and was designed as
an Autonomous Underwater Vehicle (AUV).

The design of an autonomous vehicle requires a solution for the action
decision problem, which was introduced at the beginning of this chapter. A
Control Architecture is the part of the robot control system in charge of mak-
ing decisions. An autonomous robot is designed to accomplish a particular
mission, and the control architecture must achieve this mission by generating
the proper actions. The control architecture is also known as the High-Level
Controller since it decides the movements to be followed by the robot. An-
other kind of controller, which is also present in any autonomous robot, is the
Low-Level Controller. This one will make the movements proposed by the
high-level controller and drive the required actuators. The main difference
between a ROV and an AUV resides in the control architecture. In a ROV,
the low-level controller will make the movements a human proposes by means
of a joystick for example. In an AUV, the control system needs the presence
of a control architecture or high-level controller to generate these actions.

The design of the autonomous robot URIS and previously, the adaptation
of GARBI from a ROV to an AUV, led to the development of a new control
architecture. The main feature of this architecture, called O2CA2, was the
break down of the whole robot control system into a set of objects. The
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parallel execution of these objects allowed a real-time execution of the control
system. In addition, some of these objects represented primitive behaviors
of the robot. The control architecture used these behaviors to propose the
best movement at any given moment.

The development of the O2CA2 control architecture led to the PhD. thesis
of Dr. Pere Ridao [Ridao, 2001]. The thesis presented in this document is a
continuation of the work started with the O2CA2 architecture. In this thesis,
the set of behaviors which constitute the action-decision methodology are
studied. The thesis investigates some implementation aspects which influence
the overall performance of the robot. To do this, the topic of Behavior-
based Robotics was surveyed. Also, the thesis explored the use of learning
algorithms to improve the efficiency of the behaviors. A learning theory,
called Reinforcement Learning, was also overviewed and applied. Finally,
the proposals of this thesis were tested with the underwater robot URIS.

1.2 Goal of the thesis

After the description of the research antecedents, the goal of this thesis is
stated. The general purpose is summarized as:

”The development of a robot control architecture for an AUV
able to achieve simple tasks and exhibit real-time learning capabil-
ities”

This goal was selected in order to continue the research line started with
the development of the O2CA2 control architecture. On the one hand, it had
the intention of exploiting this architecture by refining some performance
aspects. But on the other hand, it opened the new research field of robot
learning, which is one of the most active topics in robotics. The application
of learning algorithms in the control architecture was certainly the most
important purpose of this dissertation. Finally, the fundamental goal on
which this research project was based is the experimentation with real robots
in real-time computation. The basic premise was to demonstrate the research
advances with real experiments.

The general goal of the thesis can be divided into three more specific
points:

Behavior-based control layer. Design of a behavior-based control system
which will be contained in the overall control architecture with the
purpose of accomplishing simple tasks. A task is intended as one of
the phases in which a mission can be divided. It is assumed that the
sequential achievement of a set of tasks entails the achievement of the
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mission. The behavior-based control system must assure the safety of
the robot while demonstrating a high control performance.

Reinforcement Learning-based behaviors. Integration of a reinforcem-
ent learning algorithm in the control architecture. This learning theory
will be applied to the acquisition of the internal structure of a robot
behavior. The purpose of using Reinforcement Learning is to reduce
the required human work in the development of a new robot behavior.
Instead of implementing the action-decision rules, the designer need
only to define the goal of the behavior.

Experimentation with an AUV. Evaluation of the proposed control and
learning systems with real experiments using an Autonomous Under-
water Vehicle. The feasibility and limitations of these approaches must
be experimentally tested with the available systems and resources.

1.3 Outline of the thesis

The contents of this thesis can be divided into three parts. The first part
overviews the field of Behavior-based Robotics (Chapter 2) and proposes an
architecture (Chapter 3). The second part overviews the field of Reinforce-
ment Learning (Chapter 4) and proposes an algorithm for its application to
robotics (Chapter 5). Finally, the third part of the thesis shows the experi-
mental results by first describing the set-up (Chapter 6) and then the results
(Chapter 7). A brief description of each chapter is next presented.

Chapter 2 Behavior-based Control Architectures. This presents the field of
”Behavior-based Robotics” and overviews some classic architectures. A
simulated task is used to implement and compare these architectures.

Chapter 3 Hybrid Coordination of Behaviors. This proposes a control ar-
chitecture based on a behavior-based control layer. A Hybrid Coordina-
tion methodology is contained in this layer which attempts to guarantee
the robustness while providing a high trajectory performance.

Chapter 4 Reinforcement Learning. This presents the theory of Reinforce-
ment Learning and overviews the most important research issues among
which, the generalization problem is specifically treated for its strong
influence in robotics. Some methodologies to deal with this are pre-
sented.
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Chapter 5 Semi-Online Neural-Q learning. This proposes an algorithm to
learn robot behaviors using Reinforcement Learning. The generaliza-
tion problem is faced with a Neural Network and a database of the
most representative learning samples.

Chapter 6 URIS’ Experimental Set-up. This details the main features of
URIS AUV, and all the systems designed to perform the experiments
of the SONQL algorithm and the hybrid coordination methodology.

Chapter 7 Experimental Results. This shows the experimental results ob-
tained with URIS. The SONQL is tested with a ”target following”
behavior. The hybrid coordination system is applied to coordinate
this behavior with some manually implemented behaviors. Also, the
SONQL is tested with a Reinforcement Learning benchmark to demon-
strate its generalization capability.

Chapter 8 Conclusions. This concludes the thesis by summarizing the work
and points out the contributions and future work. It also comments
the research evolution and the publications accomplished during this
research project.





Chapter 2

Behavior-based Control
Architectures

This chapter overviews the field of Behavior-based Control Architectures
also known as Behavior-based Robotics [Arkin, 1998]. It first reviews the
history of control architectures for autonomous robots, starting with tra-
ditional methods of Artificial Intelligence. The most important facts are
revised up to the inception of the field of Behavior-based Robotics. The
chapter then describes the principles and main features to be found in a
behavior-based system. After this general introduction to the field, four rep-
resentative behavior-based architectures are described as they were originally
designed. The architectures are Subsumption, Action Selection Dynamics,
Motor Schema and Process Description Language. In addition to its descrip-
tion, the architectures are also tested with an experimental task, in which
an AUV must be controlled. Finally, using the obtained results the chapter
analyzes how the coordination methodology influences to the control perfor-
mance.

2.1 Behavioral-based Robotics versus

Traditional AI

The first attempt at building autonomous robots began around the mid-
twentieth century with the emergence of Artificial Intelligence. The approach
begun at that time is now referred to as ”Traditional AI”, ”Classical AI”,
”Deliberative approach” or ”Hierarchical approach”. Traditional AI relies on
a centralized world model for verifying sensory information and generating
actions in the world. The design of the control architecture is based on a
top-down philosophy. The robot control architecture is broken down into

7



8 Chapter 2. Behavior-based Control Architectures

P
er

ce
pt

io
n

M
od

el
lin

g

P
la

nn
in

g

T
as

k
ex

ec
ut

io
n

M
ot

or
 c

on
tr

ol

sensors actuators

Figure 2.1: Phases of a deliberative control architecture.

an orderly sequence of functional components [Brooks, 1991a] and the user
formulates explicit tasks and goals for the system. The sequence of phases
usually found in a deliberative control architecture are next described; see
also Figure 2.1.

1. Perception. In the first component, a sensor interpreter resolves noise
and conflicts in the sensory data. Perception algorithms are used to
find characteristics and objects within the environment.

2. Modelling. With the data obtained from perception, the world mod-
elling component builds a symbolic representation of the world. This
representation contains geometric details of all objects in the robot’s
world with their positions and orientations.

3. Planning. The planner then operates on these symbolic descriptions
of the world and produces a sequence of actions to achieve the goals
given by the users.

4. Task execution. This function controls the execution of the planned
tasks generating the set-points for each actuator.

5. Motor control. This control system is used to control the actuators
in accordance with the set-points.

The principal characteristics which all AI approaches have in common
are:

• Hierarchical structure. The main goals are divided into different
tasks, sub-tasks, etc, in a hierarchical manner. Higher levels in the
hierarchy provide sub-goals for lower subordinate levels. The tasks are
accomplished using a top-down methodology.

• Sequential processing. These processes are executed in serial form
starting with the sense activities, moving through the modelling and
planning, ending with the actuation.
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• Symbolic planner. The planner reasons, basing itself on a symbolic
world model. The world must be generated by linking the physical
perceptions to the corresponding symbols.

• Functionally compartmentalized. There is a clear subdivision of
the different tasks which must be carried out. Each component in the
control architecture will be in charge of only one of these functions.

In the 1970’s one of the earliest autonomous robots was built using a de-
liberative control architecture [Fikes and Nilsson, 1971][Nilsson, 1984]. This
robot was called Shakey and inhabited a set of specially prepared rooms. It
navigated from room to room, trying to satisfy a given goal. While experi-
menting with this robot, new difficulties were found. The planning algorithms
failed with non-trivial solutions, the integration of the world representations
was extremely difficult and finally the planning did not work as well as was
hoped. The algorithms were improved and better results were obtained.
However, the environment was adapted totally to the robot’s perceptive
requirements. Many other robotic systems have been built with the tra-
ditional AI approach [Albus, 1991, Huang, 1996, Lefebvre and Saridis, 1992,
Chatila and Laumond, 1985, Laird and Rosenbloom, 1990]. Nevertheless, tra-
ditional approaches still have problems when dealing with complex, non-
structured and changing environments. Only in structured and highly pre-
dictable environments have they proved to be suitable. The principal prob-
lems found in Traditional AI can be listed as:

• Computation. Traditional AI requires large amounts of data storage
and intense computation. For an autonomous mobile robot this can be
a serious problem.

• Real time processing. The real world has its own dynamics and,
for this reason, systems must react fast enough to perform their tasks.
Most often, traditional AI is not fast enough because the information
is processed centrally. Modelling and planning are long sequential pro-
cesses, and the longer they take, the more changed the world will be
when the robot decides to act. The agent needs simple, multiple and
parallel processes instead of only a few long sequential processes.

• Robustness and Generalization. Traditional AI usually lacks in
generalization capacity. If a novel situation arises, the system breaks
down or stops all together. Also, it does not take into consideration
problems of noise in the sensory data and actuators when giving its
symbolic representation.
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• The accurate world model. In order to plan correctly, the world
model must be very accurate. This requires high-precision sensors and
careful calibration, both of which are very difficult and expensive.

• The Frame problem. This problem arises when trying to maintain
a model of a continuously changing world. If the autonomous robot
inhabits a real world, the objects will move and the light will change.
In any event, the planner needs a model with which to plan.

• The Symbol-grounding problem. The world model uses sym-
bols, such as ”door”, ”corridor”, etc, which the planner can use. The
Symbol-grounding problem refers to how the symbols are related to real
world perceptions. The planner is closed in a symbolic world model
while the robot acts in the open real world.

In the middle of the 1980s, due to dissatisfaction with the performance of
robots in dealing with the real world, a number of scientists began rethinking
the general problem of organizing intelligence. Among the most important
opponents to the AI approach were Rodney Brooks [Brooks, 1986], Rosen-
schein and Kaelbling [Rosenschein and Kaelbling, 1986] and Agre and Chap-
man [Agre and Chapman, 1987]. They criticized the symbolic world which
Traditional AI used and wanted a more reactive approach with a strong rela-
tion between the perceived world and the actions. They implemented these
ideas using a network of simple computational elements, which connected
sensors to actuators in a distributed manner. There were no central models
of the world explicitly represented. The model of the world was the real one
as perceived by the sensors at each moment. Leading the new paradigm,
Brooks proposed the ”Subsumption Architecture” which was the first ap-
proach to the new field of ”Behavior-based Robotics”.

Instead of the top-down approach of Traditional AI, Behavior-based sys-
tems use a bottom-up philosophy like that in Reactive Robotics. Reac-
tive systems provide rapid real-time responses using a collection of pre-
programmed rules. Reactive systems are characterized by a strong response,
however, as they do not have any kind of internal states, they are unable
to use internal representations to deliberate or learn new behaviors. On the
other hand, Behavior-based systems can store states in a distributed repre-
sentation, allowing a certain degree of high-level deliberation.

The Behavior-based approach uses a set of simple parallel behaviors which
react to the perceived environment proposing the response the robot must
take in order to accomplish the behavior (see Figure 2.2). There are no prob-
lems with world modelling or real-time processing. Nevertheless, another
difficulty has to be solved; how to select the proper behaviors for robustness
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Figure 2.3: The hybrid control architecture structure.

and efficiency in accomplishing goals. New questions also appeared which
Traditional AI was not taking into consideration; how to adapt the archi-
tecture in order to improve its goal-achievement, and how to adapt it when
new situations appear. This powerful methodology demonstrated simplicity,
parallelism, perception-action mapping and real implementations.

Behavior-based Robotics has been widely used and investigated since
then. This new field has attracted researchers from many and divers dis-
ciplines such as biologists, neuroscientists, philosophers, linguists, psychol-
ogists and, of course, people working with computer science and artificial
intelligence, all of whom have found practical uses for this approach in their
various fields of endeavor. The field of Behavior-based Robotics has also been
referred to as the ”New AI” or, under a more appropriate denomination for
the fields mentioned above, ”Embodied Cognitive Science”.

Finally, some researchers have adopted a hybrid approach between Tradi-
tional AI and Behavior-based Robotics. Hybrid systems attempt a compro-
mise between bottom-up and top-down methodologies. Usually the control
architecture is structured in three layers: the deliberative layer, the control
execution layer and the functional reactive layer (see Figure 2.3). The delib-
erative layer transforms the mission into a set of tasks which perform a plan.
The reactive behavior-based system takes care of the real time issues re-
lated to the interactions with the environment. The control execution layer
interacts between the upper and lower layers, supervising the accomplish-
ment of the tasks. Hybrid architectures take advantage of the hierarchical
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planning aspects of Traditional AI and the reactive and real time aspects of
behavioral approaches. Hybrid architectures have been widely used. Some of
the best known are AuRA [Arkin, 1986], the Planner-Reactor Architecture
[Lyons, 1992] and Atlantis [Gat, 1991] used in the Sojourner Mars explorer.

2.2 Fundamentals of Behavior-based Robotics

Behavior-based Robotics is a methodology for designing autonomous agents
and robots. The behavior-based methodology is a bottom-up approach in-
spired by biology, in which several behaviors act in parallel achieving goals.
Behaviors are implemented as a control law mapping inputs to outputs.
They can also store states constituting a distributed representation system
[Mataric, 1999]. The basic structure consists of all behaviors taking inputs
from the robot’s sensors and sending outputs to the robot’s actuators, see
Figure 2.4. A coordinator is needed in order to send only one command at a
time to the motors.

The internal structure of a behavior can also be composed of different
modules interconnected by sensors, various other modules and finally, the
coordinator [Brooks, 1986]. However, behaviors must be completely indepen-
dent of each other. The global structure is a network of interacting behaviors
comprising low-level control and high-level deliberation abilities. The latter
is performed by the distributed representation which can contain states and,
consequently, change the behavior according to their information.

The parallel structure of simple behaviors allows a real-time response
with low computational cost. Autonomous robots using this methodology
can be built easily at low cost. Behavior-based robotics has demonstrated
its reliable performance in standard robotic activities such as navigation, ob-
stacle avoidance, terrain mapping, object manipulation, cooperation, learn-



2.2 Fundamentals of Behavior-based Robotics 13

ing maps and walking. For a more detailed review refer to [Arkin, 1998,
Pfeifer and Scheier, 1999].

2.2.1 Principles

There are a few basic principles which have been used by all researchers in
Behavior-based Robotics. These principles provide the keys to success of the
methodology.

• Parallelism. Behaviors are executed concurrently. Each one can run
on its own processor. Parallelism appears at all levels, from behavioral
design to software and hardware implementation. This characteristic
contributes to the speed of computation and consequently to the dy-
namics between the robot and the environment.

• Modularity. The system is organized into different modules (behav-
iors). The important fact is that each module must run independently.
This important principle contributes to the robustness of the system.
If, for example, one behavior fails due to the break down of a sen-
sor, the others will continue running and the robot will always be con-
trolled. Another important consequence of modularity is the possibility
of building the system incrementally. In the design phase, the priority
behaviors are first implemented and tested. Once they run correctly,
more behaviors can be added to the system.

• Situatedness/Embeddedness. The concept of ”Situatedness” means
that a robot is situated in and surrounded by the real world. For this
reason it must not operate using an abstract representation of reality,
it must use the real perceived world. ”Embeddednes” refers to the fact
that the robot exists as a physical entity in the real world. This implies
that the robot is subjected to physical forces, damages and, in general,
to any influence from the environment. This means that the robot
should not try to model these influences or plan with them. Instead it
should use this system-environment interaction to act and react with
the same dynamics as the world.

• Emergence. This is the most important principle of Behavior-based
Robotics. It is based on the principles explained above and attempts to
explain why the set of parallel and independent behaviors can arrive at
a composite behavior for the robot to accomplish the expected goals.
Emergence is the property which results from the interaction between
the robotic behavioral system and the environment. Due to emergence,
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the robot performs behaviors that were not pre-programmed. The in-
teraction of behavior with the environment generates new character-
istics in the robot’s behavior which were not pre-designed. Numerous
researchers have talked about emergence. Two examples are ”Intel-
ligence emerges from interaction of the components of the system”
[Brooks, 1991b] and ”Emergence is the appearance of novel properties
in whole systems” [Moravec, 1988].

2.2.2 Behavior features

A behavioral response is a functional mapping from the stimulus plane to
the motor plane. The motor plane usually has two parameters, the strength
(magnitude of the response) and the orientation (direction of the action).
According to Arkin [Arkin, 1998], a behavior can be expressed as (S, R, β)
where:

• S : Stimulus Domain. S is the domain of all perceivable stimuli.
Each behavior has its own stimulus domain.

• R: Range of Responses. For autonomous vehicles with six degrees of
freedom, the response r ∈ R of a behavior is a six-dimensional vector:
r = [x, y, z, φ, θ, ψ] composed of the three translation degrees of
freedom and the three rotational degrees of freedom. Each parameter is
composed of strength and orientation values. When there are different
responses ri, the final response is ri’= gi · ri , where gi is a gain which
specifies the strength of the behaviour relative to the others.

• β: Behavioral Mapping. The mapping function ”β” relates the
stimulus domain with the response range for each individual active
behavior: β(s)→r. Behavioral mappings β can be :

– Discrete: numerable sets of responses.

– Continuous : infinite space of potential reactions.

2.2.3 Coordination

When multiple behaviors are combined and coordinated, the emergent be-
havior appears. This is the product of the complexity between a robotic
system and the real world. The two primary coordination mechanisms are:

• Competitive methods. The output is the selection of a single be-
havior, see Figure 2.5a. The coordinator chooses only one behavior to
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Figure 2.5: Coordination methodologies: a) competition b) cooperation.

control the robot. Depending on different criteria the coordinator de-
termines which behavior is best for the control of the robot. Preferable
methods are suppression networks such as Subsumption architecture
[Brooks, 1986], action-selection [Maes, 1990] and voting-based coordi-
nation [Rosenblatt and Payton, 1989].

• Cooperative methods. The output is a combination function off all
the active behaviors, see Figure 2.5b. The coordinator applies a method
which takes all the behavioral responses and generates an output which
will control the robot. Behaviors which generate a stronger output will
impose a greater influence on the final behavior of the robot. Principal
methods are vector summation such as potential fields [Khatib, 1985],
and behavioral blending [Saffiotti et al., 1995].

Basic behavior-based structures use only a coordinator which operates
using all the behaviors to generate the robot’s response. However, there
are more complex systems with different groups of behaviors coordinated
by different coordinators. Each group generates an output and with these
intermediate outputs, the final robot’s response is generated through a fi-
nal coordinator. These recursive structures are used in high level delibera-
tion. By means of these structures a distributed representation can be made
and the robot can behave differently depending on internal states, achieving
multi-phase missions.

2.2.4 Adaptation

One of the fields associated with Behavior-based robotics is Adaptation. In-
telligence cannot be understood without adaptation. If a robot requires au-
tonomy and robustness it must adapt itself to the environment. The primary
reasons for autonomous adaptivity are:
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• The robot’s programmer does not know all the parameters of the behavior-
based system.

• The robot must be able to perform in different environments.

• The robot must be able to perform in changing environments.

And the properties which adaptive systems in robotics must contemplate
are [Kaelbling, 1999]:

• Tolerance to sensor noise.

• Adjustability. A robot must learn continuously while performing its
task in the environment.

• Suitability. Learning algorithms must be adequate for all kinds of en-
vironments.

• Strength. The adaptive system must posses the ability to influence the
control of the robot in a desired place in order to obtain the desired
data.

However, adaptation is a wide term. According to McFarland there are
various levels of adaptation in a behavior-based system [McFarland, 1991]:

• Sensory Adaptation. Sensors become more attuned to the environ-
ment and changing conditions of light, temperature, etc.

• Behavioral Adaptation. Individual behaviors are adjusted relative
to the others.

• Evolutionary Adaptation. This adaptation is done over a long pe-
riod of time inducing change in individuals of one species, in this case
robots. Descendants change their internal structure based on the suc-
cess or failure of their ancestors in the environment.

• Learning as Adaptation. The robot learns different behaviors or
different coordination methods which improve its performance.

Many parameters can be adapted in a behavior-based robotic system. At
the moment there are only a few examples of real robotic systems which
learn to behave and there is no established methodology to develop adaptive
behavior-based systems. The two approaches most commonly used are Rein-
forcement learning and Evolutionary techniques [Ziemke, 1998, Arkin, 1998,
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Dorigo and Colombetti, 1998, Pfeifer and Scheier, 1999]. Both have interest-
ing characteristics but also disadvantages like convergence time or the diffi-
culties in finding a reinforcement or fitness function respectively. In many
cases they are implemented over control architectures based on neural net-
works. Using the adaptive methodologies, the weights of the network are
modified until an optimal response is obtained. The two approaches have
demonstrated the feasibility of the theories in real robots in all levels of
adaptation. The basic ideas of the two methodologies are described next.

• Reinforcement learning
Reinforcement learning (RL) is a class of learning algorithm where a
scalar evaluation (reward) of the performance of the algorithm is avail-
able from the interaction with the environment. The goal of a RL
algorithm is to maximize the expected reward by adjusting some value
functions. This adjustment determines the control policy that is being
applied. The evaluation is generated by a reinforcement function which
is located in the environment. Chapter 4 gives a detailed description
of Reinforcement Learning and its application to robotics. Main refer-
ences about RL are [Kaelbling et al., 1996, Sutton and Barto, 1998].

• Evolutionary Robotics
Evolutionary learning techniques are inspired by the mechanisms of
natural selection. The principal method used is Genetic Algorithms
(GAs). Evolutionary algorithms typically start from a randomly ini-
tialized population of individuals/genotypes encoded as strings of bits
or real numbers. Each individual encodes the control system of a robot
and is evaluated in the environment. From the evaluation, a score (fit-
ness) is assigned which measures the ability to perform a desired task.
Individuals obtaining higher fitness values are allowed to reproduce by
generating copies of their genotypes with the addition of changes intro-
duced by various genetic operators (mutation, crossover, duplication,
etc.). By repeating this process over several generations, the fitness val-
ues of the population increase. Evolutionary robotics has shown good
results in real robots. Usually they are used over neural networks mod-
ifying the weights of the nodes. Evolutionary algorithms have demon-
strated more reliable solutions than reinforcement learning when the
reinforcement frequency is low. However, evolutionary approaches also
have problems due to the longer time necessary to converge into a rea-
sonable solution. For a complete introduction to Evolutionary Robotics
refer to [Nolfi, 1998, Harvey et al., 1997].
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Figure 2.6: Simulated underwater environment in which the AUV must reach
three goal points. The dimensions, in meters, of the environment can also be
seen.

2.3 Experimental task: control of an AUV

In order to test some behavior-based control architectures, an experimental
task was designed. The task consisted of achieving three ”goal-points”, one
after the other, avoiding obstacles and avoiding becoming trapped. The
starting point of the task and the three goal points can be seen in Figure 2.6.

A behavior-based control architecture with three behaviors was designed
to fulfill the proposed task. All the architectures were implemented with these
behaviors changing implementation aspects but maintaining their structure.
These behaviors use different inputs but generate an established output. The
output was a three-dimensional vector representing the speed the vehicle
should follow. The vector vi = (vi,x, vi,z, vi,yaw) is composed of two linear
velocities (vi,x with respect to the X axis and vi,z with respect to the Z axis)
and an angular velocity (vi,yaw respect Z axis). The three behaviors are next
described:

”Go to” behavior. The purpose of this behavior is to drive the vehicle
towards the goal point. It proposes a speed vector with a constant
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module. The direction of the vector is the one which joins the position
of the vehicle with the goal point, see Figure 2.7. The input of the
vector is the position and orientation of the vehicle. The goal points
are stored by the behavior and changed when the robot gets close.

Obstacle avoidance behavior. This behavior is used to keep the robot
from crashing into obstacles. The inputs of the behavior are various
sonar measures. The vehicle is simulated with seven sonar transducers:
three at the front, one on each side, one at the back and another on
the bottom. Each sonar direction has a maximum range. If one of
the distances is less than this range, the behavior will generate an
opposite response. The behavior computes all distances and creates a
3D speed vector which indicates the direction the robot must take to
avoid obstacles detected by the transducers, see Figure 2.8.

”Avoid trapping” behavior. The avoid trapping [Balch and Arkin, 1993]
behavior is used to depart from situations in which the robot becomes
trapped. The input of the behavior is the position of the robot which
is used to save a local map of the recent path of the vehicle. The map
is centered on the robot’s position and has a finite number of cells.
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Figure 2.9: Response, VT , of the ”Avoid Trapping” behavior.

Each cell contains the number of times the robot has visited the cell.
If the sum of all the values is higher than a threshold, the behavior
becomes active and a speed vector is generated. The direction of the
vector will be the one opposed to the gravity center of the local map.
The module will be proportional to the sum of the cell values. The
cells are incremented by a configurable sample time and saturated on
a maximum value. However, if cells are not visited, the values are
decreased allowing going back to a visited zone.

This behavior becomes active in two specific situations. The first is
when the vehicle is trapped in front of obstacles. In this case the
behavior will take control of the vehicle and drive it away to another
zone. The second situation is when the vehicle is navigating very slowly
due to the interaction of the other behaviors. In this case the cells will
increase in value rapidly and the behavior will become active driving
the vehicle away from the path, see Figure 2.9.

These behaviors were implemented with each tested architecture consti-
tuting the control architecture. In addition to the control architecture, other
modules were required such as low-level controllers, a accurate dynamics
model of the AUV and a graphical interface with an underwater environ-
ment, see Figure 2.10. All these components were implemented through a
simulated environment. It is specially relevant the identification of the dy-
namics model of the underwater robot, which was previously performed with
real experiments. The simulation of the experimental task was considered to
be enough to evaluate the different aspects of the control architectures. It is
important to note that typical problems of real robots (position estimation,
noise in signals, faults in sonar distances, etc.) were not simulated. The non-
consideration of these aspects breaks several principles of Behavior-based
Robotics. However, these simulations intend only to test the performance
of the control architectures not the principles. We assume that if the archi-
tectures were implemented in a real robot, the features of Behavior-based
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Figure 2.10: Overall control system used in the simulated task.
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Table 2.1: Four relevant Behavior-based approaches.

Robotics would assure robustness when faced with these problems.

2.4 Some Behavior-based approaches

Many proposals have appeared since the field of Behavior-based Robotics be-
gan in 1986 with Subsumption architecture. From among them, four architec-
tures have been chosen which represent the main principles of Behavior-based
Robotics. These architectures were pioneers in the field and their feasibility
was demonstrated with real robots by their designers. The architectures and
their basic characteristics can be seen in Table 2.1.

In the next subsections, each architecture is first described as it was orig-
inally designed and then tested with the experimental task described in the
previous section. For each architecture, a discussion of the main advantages
and disadvantages is given according to some qualitative properties. Refer
to Table 2.2 for the list and description of these properties.
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Property Description

Performance Quality of the trajectory generated by the vehicle. A con-
trol architecture with a good performance will have an opti-
mized and smooth trajectory without big jumps on the vehi-
cle’s heading.

Modularity Property of being able to add new behaviors without having
to modify (gains or parameters) the current ones.

Robustness Property of being able to preserve the integrity of the vehicle
and the fulfilment of the task when some small changes in the
parameters or in the environment occur.

Development time Time needed to implement the control architecture, from the
design until the programming phase.

Tuning time Time needed to find the parameters which maximize the per-
formance.

Simplicity Simplicity of the methodology, including the design and pro-
gramming phases.

Table 2.2: Qualitative properties used in the evaluation of the control archi-
tectures.

2.4.1 Subsumption architecture

Description

The Subsumption architecture was designed by Rodney Brooks in the 1980s
at the Massachusetts Institute of Technology. His work opened the field of
Behavior-based Robotics. To overcome the problems encountered in Tra-
ditional AI when designing real robotic systems, Brooks proposed a com-
pletely different methodology. He questioned the centralized symbolic world
model and proposed a decentralized set of simple modules which reacted
more rapidly to environmental changes. To accomplish this, he presented
the Subsumption architecture in 1986 with the paper ”A Robust Layered
Control System for a Mobile Robot” [Brooks, 1986]. Later on, he modified
a few aspects of the architecture as a result of suggestions from J.H. Con-
nell. The final modifications on the Subsumption architecture can be found
in [Brooks, 1989, Connell, 1990]. Subsumption Architecture has been widely
applied to all kinds of robots since then. Some further modifications have also
been proposed. However, in this report, the original Subsumption approach
will be described.

Subsumption Architecture is a method of reducing a robot’s control archi-
tecture into a set of task-achievement behaviors or competences represented
as separate layers. Individual layers work on individual goals concurrently
and asynchronically. All the layers have direct access to the sensory informa-
tion. Layers are organized hierarchically allowing higher layers to inhibit or
suppress signals from lower layers. Suppression eliminates the control signal
from the lower layer and substitutes it with the one proceeding from the
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Figure 2.11: Subsumption control architecture. Coordination through sup-
pression and inhibition nodes.

higher layer. When the output of the higher layer is not active, the suppres-
sion node does not affect the lower layer signal. On the other hand, only
inhibition eliminates the signal from the lower layer without substitution.
Through these mechanisms, higher-level layers can subsume lower-levels. The
hierarchy of layers with the suppression and inhibition nodes constitute the
competitive coordination method, see Figure 2.11.

All layers are constantly observing the sensory information. When the
output of a layer becomes active, it suppresses or inhibits the outputs of the
layers below, taking control of the vehicle. The layer has internal states and
timers which allow it to generate an action which depends on the current
state and input. Also, the timers allow the robot to maintain the activity for
a period of time after the activation conditions finish.

This architecture can be built incrementally, adding layers at different
phases. For example, the basic layers, such as ”go to behavior” or ”avoid
obstacles behavior”, can be implemented and tested in the first phase. Once
they work properly, new layers can be added without the necessity of re-
designing previous ones.

The layers of the subsumption architecture were originally designed as a
set of different modules called Augmented Finite States Machines (AFSM).
Each AFSM is composed of a Finite State Machine (FSM) connected to a
set of registers and a set of timers or alarm clocks, see Figure 2.12. Registers
store information from inside FSM as well as from the outside sensors and
other AFSM. Timers enable state changes after a certain period of time while
finite state machines change their internal state depending on the current
state and inputs. An input message or the expiration of a timer can change
the state of the machine. Inputs from the AFSM can be suppressed by other
machines and outputs can be inhibited. AFSM behave like a single FSM but
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Finite
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Figure 2.12: Augmented Finite State Machine (AFSM).

with the added characteristics of registers and timers.

Using a set of augmented finite state machines a layer can be imple-
mented to act like a behavior. A layer is constructed as a network of AFSM
joined by wires with suppression and inhibition nodes. Figure 2.13 shows the
AFSM network designed by Brooks for a mobile robot with the layers ”avoid
objects”, ”wander” and ”explore”, [Brooks, 1986]. As the figure shows, de-
signing the network so as to accomplish a desired behavior is not exactly
clear. For this reason, Brooks developed a programming language, the Be-
havioral Language [Brooks, 1990], which generates the AFSM network using
a single rule set for each behavior. The high-level language is compiled to
the intermediate AFSM representation and then further compiled to run on
a range of processors.

One of the principles of the Subsumption architecture is independence
from the layers. The implementation methodology, as stated above, consists
of building the layers incrementally once the previous layers have been tested.
Nevertheless, in Figure 2.13 there are some wires which go from one layer
to another breaking the independence. This fact was shown by Connell
[Connell, 1990] who proposed a total independence of the layers until the
coordination phase. This assures the possibility of implementing the layers
incrementally without redesigning the previous ones. This is also useful in
order to map each layer into a different processor in the robot. Connell and
other researchers have also proposed other formalism instead of AFSM to
implement the layers. Usually, computer programs are used for simplicity
in programming rules without the use of FSM. AFSM must be considered
as the formalism Brooks chose, for its simplicity and rapid processing, to
implement the Subsumption architecture, not as part of it.
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Figure 2.13: AFSM network designed by Brooks for a mobile robot.
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Figure 2.14: Task implementation with Subsumption architecture.

Implementation

Subsumption Architecture was implemented to accomplish the experimental
task described in Section 2.3. The three behaviors were implemented in three
different functions which use sensory information as inputs and, as outputs,
the 3-dimensional velocity the vehicle should follow. Also, two suppression
nodes were used to coordinate behaviors. AFSM was not used due to the
simplicity of the functions. However, as mentioned before, the implementa-
tion method is not the most important fact in the subsumption architecture.
The three behaviors were implemented as shown in Figure 2.14.

The hierarchy of behaviors was constructed as follows: at the top, the
”Obstacle avoidance” behavior, followed by the ”Avoid trapping” and ”Go
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Figure 2.15: Top view of the trajectory carried out by the AUV with Sub-
sumption architecture.

to” behaviors. This hierarchy primarily assures that the vehicle stays away
from obstacles. As the task never requires proximity to obstacles, the ”Ob-
stacle avoidance” in the top level assures the safety of the vehicle. At the
second level, the ”Avoid trapping” behavior takes control over the ”Go to”
behavior if the vehicle becomes trapped. As in AFSM, a timer was used
to maintain activity in the behaviors for a short time after the activation
conditions were finished.

Some graphical results of the Subsumption approach can be seen in the
next three figures. Figure 2.15 shows a top view of the simulation and Fig-
ure 2.16 shows a vertical view. Finally Figure 2.17 shows a three-dimensional
representation of the simulation.

Given the results, it can be said that the principal advantages of the Sub-
sumption approach are robustness, modularity and easy tuning of the be-
haviors. Behaviors can be tuned individually and, once they work properly,
can be mixed. The design of the hierarchy is very easy once the priorities of
the behaviors are known (a difficult task when working with a large architec-
ture). This architecture is very modular, every behavior can be implemented
with a different processor with the responses coordinated as a final step. A
sequential algorithm is not necessary as all behaviors are completely inde-
pendent. The principal disadvantage is the non-optimal trajectories, due to
the competitive coordination method, with a lot of jumps in the vehicle’s
heading when the active behavior changes. Table 2.3 summarizes the prin-
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Figure 2.16: Vertical view of the trajectory carried out by the AUV with
Subsumption architecture. The set-point graph is the depth of the goal to
be achieved. The vehicle graph is the depth of the vehicle during the whole
simulation. And the sea floor graph is the depth of the sea floor directly
under the vehicle.

Figure 2.17: Three-dimensional view of the trajectory carried out by the
AUV with Subsumption architecture.
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SUBSUMPTION ARCHITECTURE

Developer Rodney Brooks, Massachusetts Institute of Technology
References [Brooks, 1986, Brooks, 1989, Connell, 1990]
Behavioral encoding Discrete
Coordination method Competitive, arbitration via inhibition and suppression
Programming method AFSM, Behavioral Language or behavioral libraries
Advantages Modularity, Robustness and Tuning time
Disadvantages Development time and performance

Table 2.3: Subsumption architecture features.

cipal characteristics of Subsumption Architecture. For a description of the
advantage/disadvantage terms refer to Table 2.2.

2.4.2 Action Selection Dynamics

Description

Action Selection Dynamics (ASD) is an architectural approach which uses
a dynamic mechanism for behavior (or action) selection. Pattie Maes from
the AI-Lab at MIT developed it toward the end of the 1980s. Principal
references are [Maes, 1989, Maes, 1990, Maes, 1991]. Behaviors have associ-
ated activation levels which are used to arbitrate competitively the activity
which will take control of the robot. Other approaches for action selection
have been proposed [Tyrell, 1993], however, ASD is the most well known and
most commonly specified.

Action Selection Dynamics uses a network of nodes to implement the
control architecture. Each node represents a behavior. The nodes are called
competence modules. A network of modules is used to determine which com-
petence module will be active and, therefore, control the robot. The coordi-
nation method is competitive, only one module can be active at any moment.
To activate the competence modules some binary states are used. Each com-
petence module has three lists of states which define its interaction within
the network. The first list is the precondition list and contains all the states
which should be true so that the module becomes executable. The second
list is the add list and contains all the states which are expected to be true
after the activation of the module. Finally, the third list is the delete list and
contains the states which are expected to become false after the execution of
the module.

The states are external perceptions of the environment gathered by the
sensors. Usually some kind of processing will be necessary to transform the
analogue outputs of the sensors to a binary state. For example, for the state
”No Obstacle”, all the values provided by the sonar have to be processed
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to determine if there are nearby obstacles. The states can also be internal
assumptions or motivations of the robot. The state ”Way-point-Reached”
could be one example. The states are also used to determine the goals and
protected goals of the robot. The goals would be the states which are desired
to be true. The protected goals are the goals already achieved and therefore
retained. The task of the robot is defined by the assignment of the goals to
some states.

Once all the states and competence modules are defined, the decision
network can be built. Different links appear between the nodes based on the
precondition, add and delete lists: ·

• Successor link: For each state which appears in the add list of module
A and in the precondition list of module B, a successor link joins A with
B.

• Predecessor link: A predecessor link joints B with A if there is a
successor link between A and B.

• Conflicter link: For each state which appears in the delete list of
module B and in the precondition list of module A, a conflicter link
joins A with B.

In Figure 2.18 successor links can be seen as solid line arrows and con-
flicter links as solid lines with a big dot instead of an arrow. Note that
predecessor links are inverted successor links.

Activation of competence modules occurs depending on the quantity of
energy they are given. The energy is spread in two phases. In the first phase
three different mechanisms are used:

1. Activation by the states : if at least one state in the precondition list is
true, activation energy is transferred to the competence module.

2. Activation by the goals : if at least one state in the add list belongs to a
goal state, activation energy is transferred to the competence module.

3. Activation by the protected goals : if at least one state in the delete list
belongs to a protected goal state, activation energy is removed from
the competence module.

The spread of energy in phase one is shown in Figure 2.18 with dotted
lines. On the other hand, phase two spreads energy from competence mod-
ules. Three mechanisms are also used:
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Figure 2.18: Example of an Action Selection Dynamics network.

1. Activation of Successors : Executable modules spread a fraction of their
own energy to successors which aren’t executable if the state of the link
is false. The goal is to increase activation of modules which become
executable after the execution of the predecessor module.

2. Activation of Predecessor : Non-executable modules spread a fraction
of their own energy to the predecessor if the state of the link is false.
The goal is to spread energy to the modules so that, through their
execution, the successor module becomes executable.

3. Inhibition of Conflicters : Competence modules decrease the energy
of conflicter modules if the state of the link is true. The goal is to
decrease the energy of the conflicters which, by becoming active, make
the preconditions of the module false.

In each cycle the competence modules increase or decrease their energy
until a global maximum and minimum level are reached. The activated
module has to fulfil three conditions:

1. It has to be executable (all preconditions have to be true).

2. Its level of energy has to surpass a threshold.

3. Its level of energy has to be higher than that of the modules accom-
plishing conditions 1 and 2.
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State Description

WAY-POINT There is a way-point to go
NO WAY-POINT There is not any way-point
OBSTACLE There is a nearby obstacle
NO OBSTACLE There is not any nearby obstacle
TRAPPED The vehicle cannot depart from the same zone
NO TRAPPED The vehicle is moving through different zones

Table 2.4: ASD States to fulfill the task.

When a module becomes active, its level of energy is re-initialized to 0. If
none of the modules fulfil condition 2, the threshold is decreased. Several pa-
rameters are used for the thresholds and the amount of energy to be spread.
Also, normalization rules assure that all modules have the same opportuni-
ties to become active. Note that the energy of the modules is accumulated
incrementally, then the sample time becomes very important because it de-
termines the velocity of the accumulation. For a mathematical notation of
this algorithm refer to [Maes, 1989].

The intuitive idea of Action Selection Dynamics is that by using the
network and the spreading of energy, after some time, the active module is
the best action to take for the current situation and current goals. Although
Action Selection Dynamics is complex and difficult to design, it has been
successfully tested in real robotic systems.

Implementation

Action Selection Dynamics Architecture was used to accomplish the exper-
imental task described in Section 2.3. In the implementation of the ASD
network, the three behaviors represent three competence modules. Each be-
havior was implemented in a function. The coordination module which con-
tains the ASD network was also implemented in another function following
the mathematical notations found in [Maes, 1989]. Each module used differ-
ent binary states in its lists. In Table 2.4 all the states are shown. Note that
from the six states, three are the negation of the other three. This is to sim-
plify the ASD algorithm. The goal of the robot is the state ”No Way Point”.
When this state is true the robot has passed through all the way-points and
therefore the task is complete. After the state description, the preconditions
list, add list and delete list were defined, see Table 2.5.

Following the lists of each competence module the network can be imple-
mented, see Figure 2.19. Note that the design phase for the ASD architecture
consists of specifying the states and the lists. After this, the entire network
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Go To STATES:
PRECONDITION LIST WAY-POINT NO OBSTACLE NO TRAPPED
ADD LIST NO WAY POINT OBSTACLE TRAPPED
DELETE LIST WAY-POINT
Obstacle Avoidance STATES:
PRECONDITION LIST OBSTACLE
ADD LIST NO OBSTACLE
DELETE LIST OBSTACLE
Avoid Trapping STATES:
PRECONDITION LIST WAY-POINT NO OBSTACLE TRAPPED
ADD LIST NO TRAPPED OBSTACLE
DELETE LIST TRAPPED

Table 2.5: Precondition, add and delete lists for the 3 competences.
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Figure 2.19: Task implementation with Action Selection Dynamics.

can be generated automatically and only some parameters must be tuned.

The ASD network spreads energy from the states, the goal and between
the competence modules. The competence module, which is executable and
has more energy than the others and the threshold, will activate and control
the robot until the next iteration. The parameters of the decision network
that have been used can be seen in Table 2.6. The spreading of energy
between the modules is determined by the relationship between the different
parameters.

Some graphical results of the ASD approach can be seen in the next three
figures. Figure 2.20 shows a top view of the simulation and Figure 2.21 shows
a vertical view. Finally, Figure 2.22 shows a three-dimensional representation
of the simulation. As can be seen, the trajectory obtained with Action Selec-
tion Dynamics is quite optimal. The principal advantages of this method are
robustness of the architecture and automatic coordination, once the network
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Parameter Description Value

π Maximum level of energy per module 40 units
φ Amount of energy spread by a state 10 units
γ Amount of energy spread by a goal 20 units
δ Amount of energy spread by a protected goal 0 units
θ Threshold to becoming active 15 units
Ts Sample time 1 second

Table 2.6: Parameters of the ASD implementation found experimentally.

Figure 2.20: Top view of the trajectory carried out by the AUV with Action
Selection Dynamics.

has been generated. However, the design and implementation phases are very
complex and difficult. Table 2.7 summarizes the principal characteristics of
Action Selection Dynamics. For a description of the advantage/disadvantage
terms refer to Table 2.2.

2.4.3 Motor Schemas approach

Description

Schema-based theories appeared in the eighteenth century as a philosoph-
ical model for the explanation of behavior. Schemas were defined as the
mechanism of understanding sensory perception in the process of storing
knowledge. Later on, at the beginning of the twentieth century, the schema
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Figure 2.21: Vertical view of the trajectory carried out by the AUV with
Action Selection Dynamics. The depths of the goal-point, the vehicle and
the sea floor are shown.

Figure 2.22: Three-dimensional view of the trajectory carried out by the
AUV with Action Selection Dynamics.
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ACTION SELECTION DYNAMICS

Developer Pattie Maes, Massachusetts Institute of Technology
References [Maes, 1989, Maes, 1990, Maes, 1991]
Behavioral choice and design Experimentally
Coordination method Competitive, arbitration via levels of activation
Programming method Mathematical algorithms
Advantages Modularity and Robustness
Disadvantages Development time and No Simplicity

Table 2.7: Action Selection Dynamics features.

theory was adapted in psychology and neuroscience as a mechanism for ex-
pressing models of memory and learning. Finally in 1981, Michael Arbib
adapted the schema theory for a robotic system [Arbib, 1981]. He built a
simple schema-based model inspired by the behavior of the frog to control
robots. Since then, schema-based methodologies have been widely used in
robotics. The principal proposal is Motor Schemas developed by Ronald
Arkin at Georgia Institute of Technology, Atlanta. Arkin proposed Motor
Schemas [Arkin, 1987] as a new methodology of Behavior-based Robotics.

From a robotic point of view ”a motor schema is the basic unit of be-
havior from which complex actions can be constructed; it consists of the
knowledge of how to act or perceive as well as the computational process by
which it is enacted” [Arkin, 1993]. Each schema operates as a concurrent,
asynchronous process initiating a behavioral intention. Motor schemas react
proportionally to sensory information perceived from the environment. All
schemas are always active producing outputs to accomplish their behavior.
The output of a motor schema is an action vector which defines the way
the robot should move. The vector is produced using the potential fields
method [Khatib, 1985]. However, instead of producing an entire field, only
the robot’s instantaneous reaction to the environment is produced, allowing
a simple and rapid computation.

The coordination method is cooperative and consists of vector summation
of all motor schema output vectors and normalization. A single vector is
obtained determining the instantaneous desired velocity for the robot. Each
behavior contributes to the emergent global behavior of the system. The
relative contribution of each schema is determined by a gain factor. Safety
or dominant behaviors must have higher gain values. Normalization assures
that the final vector is within the limits of the particular robot’s velocities.
Figure 2.23 shows the structure of motor schema architecture.

Implementation of each behavior can be done with parameterized behav-
ioral libraries in which behaviors like ”move ahead”, ”move-to-goal”, ”avoid-
static-obstacle”, ”escape” or ”avoid-past” can be found. Schemas have inter-
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Figure 2.23: Example of a control architecture with Motor Schema approach.

Figure 2.24: Potential field generated with Motor Schema approach.

nal parameters depending on the behavior and an external parameter, the
gain value. Each schema can be executed into a different processor. Never-
theless, the outputs must have the same format in order to be summed by the
coordinator. For two-dimensional vehicle control refer to [Arkin, 1989] and
for three-dimensional control to [Arkin, 1992]. For a set of positions, each
behavior generates a potential field which indicates the directions to be fol-
lowed by the robot in order to accomplish the behavior. The merging of the
behaviors in different robot positions, provides a global potential field, see
Figure 2.24, which gives an intuitive view of the motor schema architecture
performance.

Implementation

Motor Schema Architecture was applied to accomplish the experimental task
described in Section 2.3. Each behavior was implemented in a different func-
tion. A simple coordination module was used to sum the signals and nor-
malize the output. The structure of the control architecture can be seen in
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Figure 2.25: Task implementation with Motor Schema approach.

Figure 2.26: Top view of the trajectory carried out by the AUV with Motor
Schema approach.

Figure 2.25. After tuning the system, ”Obstacle avoidance” behavior had the
highest gain value, followed by ”Avoid trapping” and ”Go to” behaviors. As
in Subsumption architecture, higher priority was given to the safety behavior
”Obstacle avoidance”, followed by ”Avoid trapping” to take control over ”Go
to” when necessary.

Some graphical results of the Motor Schema approach can be seen in the
next three figures. Figure 2.26 shows a top view of the simulation and Fig-
ure 2.27 shows a vertical view. Finally, Figure 2.28 shows a three-dimensional
representation of the simulation.

After reviewing the results, it can be said that the principal advantages
are simplicity and easy implementation, as well as optimized trajectories.
The architecture can be implemented in different processors because the al-
gorithm is fully parallel. However, difficulties appeared in tuning the gain
values. The values are very sensitive and have to be tuned together. When
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Figure 2.27: Vertical view of the trajectory carried out by the AUV with
Motor Schema approach. The depths of the goal-point, the vehicle and the
sea floor are shown.

Figure 2.28: Three-dimensional view of the trajectory carried out by the
AUV with Motor Schema approach.
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MOTOR SCHEMA APPROACH

Developer Ronald Arkin, Georgia Institute of Technology
References [Arkin, 1987, Arkin, 1989, Arkin, 1992]
Behavioral encoding Continuous using potential fields
Coordination method Cooperative via vector summation and normalization
Programming method Parameterized behavioral libraries
Advantages Development time and simplicity
Disadvantages Tuning time, robustness and modularity

Table 2.8: Motor Schema approach features.

new behaviors are added, re-tuning is necessary because the sum of the re-
sponses of some behaviors can cancel the effect of others, such as ”Obstacle
avoidance”. For this reason, robustness and modularity are very low. Ta-
ble 2.8 summarizes the principal characteristics of Motor Schema approach.
For a description of the advantage/disadvantage terms refer to Table 2.2.

2.4.4 Process Description Language

Description

Process Description Language (PDL) was introduced in 1992 by Luc Steels
from the VUB Artificial Intelligence Laboratory, Belgium. PDL [Steels, 1992,
Steels, 1993] is intended as a tool to implement process networks in real
robots. PDL is a language which allows the description and interaction of
different process constituting a cooperative dynamic architecture.

PDL architecture is organized with different active behavior systems, see
Figure 2.29. Each one is intended as an external behavior of the robot like
”explore”, ”go towards target” or ”obstacle avoidance”. Each behavior also
contains many active processes operating in parallel. Processes represent
simple movements which the behavior will use to reach its goal. Processes
take information from sensors and generate a control action if needed. The
control action is related to the set-points which must reach several actuators
of the robot. A process output is an increment value which will be added to or
subtracted from some set-points of the actuators. This means, for example,
that the process ”turn right if the left bumpers are touched” will add a
value to the left motor set-point speed and subtract it from the right, if the
necessary conditions are true (in this case, touching the left bumpers). The
contribution of all the processes will be added to the current set-points and
then a normalization will assure a bounded output. This simple methodology
constitutes the cooperative coordination method.

Process description language proposes the language used to implement
such processes. The functions are very simple allowing high speed processing.
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Figure 2.29: Example of a control architecture with Process Description
Language.

For example, the process ”turn right if the left bumpers are touched” would
be implemented as:

void turn right(void)
{

if(bumper mapping[3]>0{
add value(left speed, 1);
add value(right speed, -1);}

}

The relative contribution of each process is determined by the value added
to or subtracted from the set-points. Processes with large values will exert a
greater influence on the robot. The ultimate direction taken by the robot will
depend on which process influences the overall behavior in the strongest way.
It must be noted that these values are added each time step. For this reason it
is very important that the ranges of these values be related to the sample time
in which the architecture is working. It is possible that with small values and
a big sample time, the architecture might not be able to control the robot.
The dynamics of the architecture must be faster than the dynamics of the
robot. This is due to the fact that PDL works by manipulating derivatives
of the set-points implying a fast control loop to assure the system’s stability.
It’s important to remember that although PDL is structured in simple and
fast processes, the dynamics will always have to be faster than that of the
robot or vehicle to be controlled.
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Figure 2.30: Task implementation with Process Description Language.

The overall execution algorithm is defined by the following recursive pro-
cedure:

1. All quantities are frozen (sensory information and set-points).

2. All processes are executed and their relative contribution are added or
subtracted.

3. The set-points are changed based on the overall contribution of the
processes.

4. The set-points are sent to the actuator controllers.

5. The latest sensory quantities are read in.

Implementation

Process Description Language Architecture was used to accomplish the ex-
perimental task described in Section 2.3. Each behavior was implemented in
a different function. The low level processes of each behavior were assembled
and the behavior only generated a response. The response is a vector which
changed the current velocity of the vehicle in the direction desired by the
behavior. The coordinator is a simple module which sums the current veloc-
ity with those generated by the behaviors. The final vector was normalized.
Figure 2.30 shows the structure of this architecture.

The module of the vectors is used to give priority to some behaviors over
others. In this case, the maximum speed of the robot and the modules of
the behaviors can be seen in Table 2.9. If the response of the coordinator
exceeded the maximum speed value, the response was saturated. This means
that when the ”Obstacle avoidance” behavior became active, it affected the
overall behavior in the strongest way. And the ”Avoid trapping” only dom-
inated the ”Go to” behavior to depart from possible entrapment situations.
All these values are closely related to the sample time of the control archi-
tecture. PDL is a methodology which works with derivatives of the speed, in
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Vector Maximum Magnitude
[m/s]

Robot speed 0.5
”Obstacle avoidance” 0.15
”Avoid trapping” 0.04
”Go to” 0.03

Table 2.9: Maximum values for the robot speed and behaviors. Found ex-
perimentally.

Figure 2.31: Top view of the trajectory carried out by the AUV with Process
Description Language.

this case. This means that the dynamics of PDL should be faster than the
dynamics of the robot. Experiments with PDL were initially carried out with
the same sample time as with the other evaluated architectures. However,
the control architecture was not fast enough and the final sample time had
to be considerably reduced.

Some graphical results of Process Description Language approach can be
seen in the next three figures. Figure 2.31 shows a top view of the simulation
and Figure 2.32 shows a vertical view. Finally, Figure 2.33 shows a three-
dimensional representation of the simulation.

After reviewing the simulated results it can be said that PDL provides
an easy tool to implement a control architecture. Advantages are simplic-
ity and optimized trajectories when the architecture is tuned. However, as
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Figure 2.32: Vertical view of the trajectory carried out by the AUV with
Process Description Language. The depths of the goal-point, the vehicle and
the sea floor are shown.

Figure 2.33: Three-dimensional view of the trajectory carried out by the
AUV with Process Description Language.
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PROCESS DESCRIPTION LANGUAGE

Developer Luc Steels, VUB Artificial Intelligence Laboratory
References [Steels, 1992, Steels, 1993]
Behavioral encoding Continuous
Coordination method Cooperative via values integration and normalization
Programming method Process Description Language
Advantages Development time and simplicity
Disadvantages Small sample time, Tuning time, Robustness and Modularity

Table 2.10: Process Description Language features.

Property\Architecture: 1st 2nd 3rd 4th

Performance SCHE. PDL ASD SUBS.
Modularity SUBS. ASD PDL SCHE.
Robustness SUBS. ASD PDL SCHE.
Development time SCHE. PDL SUBS. ASD
Tuning time SUBS. ASD PDL SCHE.
Simplicity SCHE. PDL SUBS. ASD.

Table 2.11: Behavior-based architectures rankings.

the coordinator method is cooperative, the tuning was very difficult. When
new behaviors are added, re-tuning is necessary. Also there is the problem
of the sample time, which must be faster than with the other approaches.
Moreover, since the final velocity vector is obtained incrementally, the archi-
tecture acts sequentially and has a low modularity. Table 2.10 summarizes
the principal characteristics of the Process Description Language approach.
For a description of the advantage/disadvantage terms refer to Table 2.2.

2.5 Coordination Methodology Comparison

Once the four behavior-based architectures had been implemented and tested
some conclusions were drawn. It should be noted that the architectures were
implemented for a simple but representative task. However, this task was
felt to be sufficient to discover the attractiveness and deficiencies of each
architecture. As commented above, each architecture exhibited its own ad-
vantages and disadvantages and for this reason each would be well suited
for a particular application. For each evaluated property, a ranking of archi-
tectures has been established, see Table 2.11. In this table, the architecture
listed first is the one which best fits the corresponding property.

Looking at the rankings table, it can be seen that properties can be
grouped in accordance with the coordination method, as summarizes Ta-
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COMPETITIVE METHODS COOPERATIVE METHODS
Subsumption and ASD Motor Schema and PDL

Advantages Disadvantages Advantages Disadvantages

Modularity Performance Performance Modularity
Robustness Development Time Development Time Robustness
Tuning time No Simplicity Simplicity Tuning Time

Table 2.12: Properties according to the coordination methodology.

ble 2.12. Competitive methods (Subsumption and ASD) have robustness,
modularity and easy tuning. This is due to the fact that they only have one
active behavior at any given moment. Therefore, robustness is preferable
because in dangerous situations only a safety behavior will act and the dan-
ger is avoided. Modularity should also be considered an important property
of competitive methodologies because more behaviors can be added without
influencing the old ones. Only the coordinator will have to be adapted to the
new input. For this reason the tuning time is very short. Behaviors are tuned
independently and once they work properly they never have to be re-tuned.

However, competitive methods have disadvantages as well, mainly in the
coordinator design. In order to choose only one active behavior, a complex
method must be used (ASD) or a clear understanding of the hierarchy of
behaviors is necessary (Subsumption). Once this is done, the final tune-
up is very easy. For this reason the development time is usually long and
the coordinator can become very complex. Another negative property is slow
performance due to the non-instant merging of behaviors. Big changes in the
vehicle’s heading occur when more than one behavior is acting consecutively.

As competitive approaches, the two methodologies studied, Subsumption
and Action Selection Dynamics, possess all these properties. However, they
have quite different philosophies. Subsumption is more a low-level approach.
The hierarchy of behaviors has to be known and then the network has to be
designed. Subsumption offers a series of tools, the suppression and inhibition
nodes, to build the network. For this reason, the implementation will be sim-
ple, but perhaps the design will be quite difficult. On the other hand, Action
Selection Dynamics is a high level approach to building an architecture. All
the competence modules are completely described and the design consists of
filling in all the module lists. Once all the behaviors are perfectly described,
the network will automatically choose the best behavior. In ASD the design
will be easier but the implementation is more difficult.

In contrast to competitive approaches, methods with a cooperative coor-
dinator have other properties like simplicity, performance and development
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time, see Table 2.12. Due to the fact that all behaviors are active, the re-
sponse will always be a merging of these behaviors. This means that the
trajectory described by the robot will be smoother than that described by a
competitive method. For this reason performance will be a common property.

Another property is simplicity. The coordinator will be very simple, be-
cause the final output is usually a kind of sum of all the behaviors multiplied
by the gain factors. In relation to simplicity, the development time will be
small. However, this simplicity causes great difficulties in tuning the priority
gains as the values are very sensitive and critical. In extreme situations, non-
safe behaviors can cancel the safe ones. Unfortunately, the modularity will
be very bad as a result, because each new behavior will cause the re-tuning
of all the priority gains.

The differences between the two cooperative approaches studied, Motor
Schema and Process Description Language, are in the level of abstraction and
in the coordinator. In Motor Schema, behaviors are implemented individually
with the behavioral library. It’s more a high-level design. However, in PDL
behaviors are implemented as low-level processes which change the set-points
of the actuators a little. Implementation will be simple but the design will
be more complex. Nevertheless, the principal difference between the two
approaches is found in the coordinator. In Motor schema, the output is
obtained every time step from the outputs of the behaviors. On the other
hand, in PDL the output is an integration of all the outputs generated before.
This implies that a small sample time is needed to assure the stability of the
system, which can be problematic if there is a lot of computation to do.

Concluding this comparison, it can be said that, depending on the ex-
igencies of the robot to be controlled, one method can prove to be more
appropriate than another. Once the architecture has been implemented, a
cooperative method can be more suitable if better performance is necessary.
Or a competitive method if robustness is the basic premise. The control ar-
chitecture could also depend on hardware availability, sensorial system and
compatibility with adaptive algorithms.



Chapter 3

Hybrid Coordination of
Behaviors

Following the analysis of Behavior-based control architectures in Chapter 2,
this chapter contains the first research contribution of this thesis. This ap-
proach consists of a hybrid behavior coordination system which is able to act
competitively and cooperatively. The purpose of this approach is to benefit
from the advantages of both methodologies. The chapter first introduces the
behavior-based control layer in which the hybrid coordinator is expected to
act. Then, the hybrid coordination methodology is detailed. Finally, the
approach is tested with the experimental task presented in Chapter 2. Real
results of the hybrid coordinator with the underwater robot URIS are found
in Chapter 7, and the experimental set-up which has been specifically devel-
oped is detailed in Chapter 6.

3.1 The Behavior-based Control Layer

The control architecture, or high-level controller, proposed in this thesis, is a
hybrid control architecture. As explained in Chapter 2, the main advantages
of hybrid architectures are reactive and fast responses due to a behavior-based
layer, and mission planning due to a deliberative layer. In this case, the de-
liberative layer has the goal of breaking down the mission to be accomplished
into a set of tasks. The behavior-based layer has the goal of carrying out each
one of these tasks and is compounded of a set of behaviors and a coordina-
tor. The deliberative layer acts over the behavior-based layer by configuring
the particular set of behaviors and the priorities existing among them. It
activates the best behavior configuration for the current task. To decide if
the task is being accomplished properly, it supervises what the robot is per-

47
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Figure 3.1: General schema of the control system conceived to control an au-
tonomous robot. This thesis has been centered in the design of the behavior-
based layer.

ceiving and also the actions that the behavior-based layer is proposing. The
behavior-based layer acts over the low-level controller generating the actions
to be followed. These actions depend directly on the current perception of
the robot since behaviors are very reactive. Finally, the low-level controller
acts over the actuators to accomplish these robot actions. The whole control
system of the robot just described is depicted in Figure 3.1.

This thesis has centered only on the behavior-based layer. This layer
has been designed using the principles which behavior-based control archi-
tectures propose. Therefore, the layer is compounded of a set of behaviors
and a coordinator. The most distinctive aspect of the layer is the coordi-
nation methodology. In Chapter 2, the coordinators have been classified as
competitive or cooperative. In competitive methodologies, only one behav-
ior controlls the robot at each time step. And in cooperative methodologies,
the merging of all active behaviors constitutes the action to be performed.
As has been demonstrated with robot simulations, the main advantages and
disadvantages of behavior-based architectures can be grouped according to
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the coordination methodology. The coordination methodology proposed in
this thesis, is a hybrid coordination methodology, between competition and
cooperation, which tries to benefit from the advantages of both.

Another distinctive aspect can be found in the proposed behavior-based
layer. Due to the difficulty of manually tuning or designing each behavior,
some learning capabilities have been included in the behaviors. As will be
presented in Chapter 4, Reinforcement Learning is a suitable technique to
online learning when no information about the environment is available. This
technique has been used to learn the internal state/action mapping which
a reactive behavior contains. The proposed approach will be detailed in
Chapter 5.

The next sections describe the general structure of the behavior-based
layer and the hybrid coordination method.

3.2 Hybrid Coordination of Behaviors

Competition methods choose only one behavior at each time-step to con-
trol the robot. In such methods, the priorities among the behaviors have
to be established so that the highest priority behavior becomes activated
and will control the robot. When this kind of coordinator is applied in a
navigation task, it is usual to obtain a very robust system, although the
performance of the trajectory is sometimes clearly non-optimal. The robust-
ness feature is strongly related to competitive coordinators, since the highest
priority behavior will always control the robot. This property is illustrated
in Figure 3.2, in which the competitive coordinator chooses the ”Obstacle
avoidance” behavior to prevent a collision with the obstacle. However, the
same coordinator causes a very bad trajectory because two behaviors, the
”Obstacle Avoidance” and the ”Go To”, are consecutively taking the control
of the robot.

Cooperative methods offer other advantages. Usually these coordinators
are very simple and the obtained trajectory can be optimal. The term optimal
is here understood as a smooth, short and safe trajectory. The reason is that
not only one behavior action is taken by the coordinator, but a merging
of all behavior responses. Although high priority behaviors influence the
trajectory to a large degree, the control actions of the non-priority behaviors
also have an influence on the final trajectory. If the parameters required by
the coordinator are properly given, the trajectory can be optimal. However,
a small variation in these parameters, or a small change in the environment,
can generate a wrong control action. These properties are also illustrated
in Figure 3.2. It can be seen how the cooperative coordinator generates an
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action against the obstacle in the ”robustness” column. The cause of this
wrong action is due a higher collision action, as a result of the addition of
two behaviors, with respect to the ”Obstacle Avoidance” action.

After having analyzed the advantages and disadvantages of the coordina-
tion methodology in the preceding paragraphs and in Section 2.5, the neces-
sity of a hybrid methodology is fully justified. The main goal of this approach
is to take advantage of both approaches. A competitive coordinator assures
a good robustness as well as modularity and a short tuning time. On the
other hand, a cooperative coordinator merges the knowledge of all the active
behaviors, which, in normal situations, implies a rapid accomplishment of
the task.

The hybrid coordinator proposed in this thesis is able to operate as both a
competitive and a cooperative method. As will be described, the coordination
is done through a hierarchy among all the behaviors and an activation level.
If higher priority behaviors are fully activated, the coordinator will act as
competitive. On the other hand, if higher priority behaviors are partially
activated, a merged control action will be generated. These two different
behaviors are illustrated in Figure 3.2.

It is necessary to note that the hybrid coordination system has been
designed to improve competitive and cooperative methodologies, but will not
effect other general problems found in behavior-based systems. A behavior-
based control system does not assure the stability of the system. There is no
methodology, to the author’s best knowledge, to prevent unstable situations
which may appear from behavior interactions. Moreover, it is assumed that
any modification to assure this stability will go against the advantages of
behavior-based robotics. The solution adopted in this thesis assumes that
the deliberative layer will detect these unstable situations and actuate over
the behavior-based layer.

The next section details the structure and equations of the proposed hy-
brid coordinator. Later on, the same experimental task used to evaluate the
behavior-based control architectures in Chapter 2 is used again to evaluate
the hybrid coordinator.

3.3 Coordination Methodology

The proposed hybrid coordination system was designed to coordinate a set
of independent behaviors in a behavior-based control architecture or control
layer. The methodology allows the coordination of a large number of behav-
iors without the need of a complex designing phase or tuning phase. The
addition of a new behavior only implies the assignment of its priority with
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Figure 3.2: Typical behavior of the robot according to the coordination
methodology. Competitive coordinators have good robustness when faced
with critical situations but can have non-optimized trajectories. Coopera-
tive coordinators have optimized trajectories but can fail in some situations
evidencing poor robustness. Finally, a hybrid coordinator behaves coopera-
tively to achieve optimized trajectories but also competitively when critical
situations occur.
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Figure 3.3: The normalized robot control action vi and the behavior activa-
tion level ai constitute the behavior response ri.

reference to other behaviors. The hybrid coordinator uses this priority and a
behavior activation level to calculate the resultant control action. Therefore,
the response ri of each behavior is composed of the activation level ai and the
desired robot control action vi, as illustrated in Figure 3.3. The activation
level indicates the degree to which the behavior wants to control the robot.
This degree is expressed by a numerical value from 0 to 1.

The robot control action is the movement to be followed by the robot.
There is a different movement for each degree of freedom (DOF). By move-
ment, we mean the velocity the robot will achieve for a particular DOF. In
the case of the underwater robot URIS, which has 3 controllable DOFs, the
control action is a vector with three components. This vector is normalized
and its magnitude cannot be greater than 1. Therefore, the units of the
vector vi do not correspond to any real units. After the coordination phase,
this normalized vector will be re-escalated to the velocities of the vehicle.

The hybrid coordinator uses the behavior responses to compose a final
control action. This process is executed at each sample time of the high-level
controller. The coordination system is composed of a set of nodes ni. Each
node has two inputs and generates a response which also has an activation
level and a control action. The response of a node cannot be discerned from
one of a behavior. By using these nodes, the whole coordination process is
accomplished. After connecting all the behavior and node responses with
other nodes, a final response will be generated to control the robot.

Each node has a dominant and a non-dominant input. The response
connected to the dominant input will have a higher priority than the one
connected to the non-dominant. When the dominant behavior is completely
activated, ad = 1, the response of the node will be equal to the dominant
behavior. Therefore, in this case, the coordination node will behave compet-
itively. However, if the dominant behavior is partially activated, 0 <ad < 1,
the two responses will be combined. The idea is that non-dominant behav-
iors can modify the responses of dominant behaviors slightly when these are
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Figure 3.4: Hierarchical Hybrid Coordination Node. The equations used to
calculate the response of the node are shown.

not completely activated. In this case, the node will behave cooperatively.
Finally, if the dominant behavior is not activated, ad = 0, the response
of the node will be equal to the non-dominant behavior. These nodes are
called Hierarchical Hybrid Coordination Nodes (HHCN) as its coordination
methodology changes depending on the activation level of the behaviors and
the hierarchy between them.

Figure 3.4 shows the equations used to calculate the response of an
HHCN. The activation level will be the sum of the activation levels of the
input responses, in which the non-dominant activation level has been multi-
plied by a reduction factor. This factor, (1−ad)

k, depends on the activation
of the dominant behavior and on the value of the integer parameter k. If
k = 1, the activation level will linearly decrease as ad increases. If more dras-
tic reduction is desired, the value of k can be set at 2,3,4,... Figure 3.5 shows
how the reduction factor changes depending on k. This parameter does not
have to be tuned for each node. The same value, for example a quadratic
reduction k = 2, can be applied to all the coordination nodes. Finally, if the
new activation level is larger than 1, the level is saturated to 1.

The control action is calculated in the same way as the activation level.
Vector vi will be the sum of vd and vnd, applying the corresponding propor-
tional factors. Therefore, each component of vd will be taken in the propor-
tion of the activation level, ad with respect to ai. And, each component of
vnd will be taken in the proportion of the reduced activation level, and with
respect to ai. If the module of vi is larger than 1, the vector will be resized
to a magnitude equal to 1.

An example of the use of the hierarchical hybrid coordination node is seen
in Figure 3.6. In this figure, two different situations are depicted. In the first
situation, the node acts cooperatively generating an action which mainly fol-
lows the dominant response, but it is also affected by the non-dominant
response. In the second situation, the dominant behavior is completely acti-
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Figure 3.5: Reduction factor applied to the activation level of the non-
dominant behavior depending on the activation of the dominant and the
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vated and the node acts competitively.

As commented on above, the hybrid coordinator is composed of a set of
HHCNs which connect each pair of behaviors or nodes until a final response
is generated. In order to build up this network of nodes, it is necessary to
set up the hierarchy among the behaviors. This hierarchy will depend on
the task to be performed. Once the priorities have been set, usually by the
mission designer, the hybrid coordinator will be ready to use. Figure 3.7
shows an example of a set of three nodes which coordinate four behaviors.

The advantage of the hybrid coordination system is that the coordinator
has good modularity, see Table 2.2. Each time a new behavior is added, the
priority of the new behavior with respect to the others is the only aspect
which has to be chosen. The tuning time is also a very good property since
after implementing a new behavior, only the k parameter has to be changed.
Therefore, these advantages, together with the advantage of robustness from
competition and optimized trajectories from cooperation, point out the suit-
ability of the proposed hybrid coordinator. The next section shows an ex-
ample in which the hybrid coordinator has been used in a simulated task. In
Chapter 7, real results of the hybrid coordinator with the underwater robot
URIS are presented.

3.4 Experimental task

The hybrid coordinator has been tested with the same experimental task used
in Chapter 2 and described in Section 2.3. The task consisted of reaching a
collection of way-points avoiding obstacles and entrapment. A total number
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Figure 3.6: Response of the HHCN. Only two-dimensional actions are rep-
resented for a better understanding. The node acts cooperatively a), when
the dominant behavior is not fully activated. In case the dominant behavior
is completely activated, a competitive action is generated b).
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Figure 3.7: Example of a reactive layer with four behaviors and the hybrid
coordinator. The priority among the behaviors depends on the input con-
nections of the HHCNs.
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of three behaviors were used. The first behavior, ”Go to”, is in charge of
driving the vehicle toward the way-points. The second behavior, ”Obstacle
avoidance”, has the goal of maintaining the vehicle away from obstacles. The
third behavior, ”Avoid trapping”, is used to depart from zones in which the
vehicle could be trapped.

The three behaviors were implemented in three different functions. The
response of each behavior was composed by the control action and the ac-
tivation level. As far as the activation level is concerned, each behavior
generated a value corresponding to the farness in the achievement of the be-
havior goal. Therefore, the ”Obstacle avoidance” behavior was completely
activated when an obstacle was very close. At certain distance from the ob-
stacles, the behavior started to become less activated until activation was
0. These distances or thresholds had to be tuned according to a minimum
security distance, and to the vehicle’s dynamics. It is important to note that
the behavior can be activated by an obstacle detected in only one DOF. This
means that even if there are not obstacles in the other DOFs, the behavior
will become activated, slowing down the velocity in all the DOFs. Similarly,
the ”Avoid trapping” behavior will be activated according to the recent path
of the vehicle. If the robot has been located in the same zone for a long time,
the behavior will be completely activated. In the event the vehicle starts
travelling, the activation will decrease. Therefore, in this case, the behavior
will also require a tuning phase. Finally, the ”Go to” behavior will always be
completely activated since the task consists of achieving a set of positions.

The three behavior responses were connected to the coordination module
using two HHCNs. The hierarchy of behaviors was as follows: at the top,
the ”Obstacle avoidance” behavior was followed by the ”Avoid trapping”
and ”Go to” behaviors. This hierarchy primarily assures that the vehicle
stays away from obstacles. As the task never requires proximity to obstacles,
the ”Obstacle avoidance” with the highest priority, assures the safety of the
vehicle. At a second level, the ”Avoid trapping” behavior takes control over
the ”Go to” behavior if the vehicle becomes trapped. Finally, the ”Go to”
behavior has the lowest priority and guides the robot to the target point.
A quadratic reduction factor, k = 2, was used. The three behaviors were
implemented as shown in Figure 3.8.

Some results with the Hybrid Coordination Methodology can be seen in
the next three figures. Figure 3.9 shows a top view of the simulation and Fig-
ure 3.10 shows a vertical view. Finally, Figure 3.11 shows a three-dimensional
representation of the simulation. In these figures, it can be observed how the
hybrid coordination system was able to fulfill the simulated task. The per-
formance of the hybrid coordination nodes can be seen in Figure 3.12. In this
figure, the responses of the three behaviors and the response of the coordi-
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Figure 3.8: Task implementation with the hybrid coordinator.

Figure 3.9: Top view of the trajectory carried out by the AUV.
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Figure 3.10: Vertical view of the trajectory carried out by the AUV.
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Figure 3.11: Three-dimensional view of the trajectory carried out by the
AUV.

nator (from the final HHCN) can be seen during the first 90 seconds. When
the activation of the coordinator coincides with the activation of one behav-
ior, the coordinator is acting competitively or only one behavior is activated.
On the other hand, if the activation of the coordinator has an intermedi-
ate value, the coordinator is acting cooperatively. In the same figure, the
control actions of the three DOFs of the robot can be observed. The final
control actions, generated by the coordinator, are generated cooperatively or
competitively depending on the activation levels.

The results obtained in this simulated experiment with the hybrid co-
ordinator fulfilled the desired goals. The coordinator demonstrated it could
react cooperatively and competitively, achieving an optimized trajectory and
maintain a good robustness. Therefore, the two advantages of competitive
and cooperative coordinators have been mixed in this new hybrid coordina-
tion system. As a consequence, the methodology is also very modular, and
the tuning time consists of the independent tuning of each behavior. This
experimental task has shown the effectiveness of the hybrid coordinator in
simulation.

3.5 Discussion

The hybrid coordination approach was designed to face some disadvantages
which were experimentally found in other approaches. As described, the
coordinator can act cooperatively and competitively depending on the ac-
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tivation levels. There are no parameters to tune and the hierarchy among
the behaviors is the only knowledge that a designer must introduce. Evi-
dently, if a good performance is desired, the designer’s work will not be the
implementation of the coordinator but in the tuning of each independent
behavior. Hence, the advantage of this simple coordinator is that the robust-
ness is always guaranteed and that a good performance is also feasible with
the condition that behaviors are properly implemented.

In the reasoning of the hybrid coordinator, a set of advantages have been
mentioned, such as robustness, optimal trajectories, simplicity and modu-
larity. All these features have been qualitatively analyzed in relation with
the architectures treated in Chapter 2. Due to the difficulty in numerically
measuring the evaluated features, it has not been possible to obtain quanti-
tative results. The effectiveness of the hybrid coordination system can also
be verified in real systems. As will be discussed in Chapter 7, the approach
demonstrated its advantages in a real task with the autonomous underwater
robot URIS.

Finally, to the author’s best knowledge, there are no other proposals
using a hybrid behavior coordinator. It could be said that any cooperative
coordinator can also act competitively, for example, if only one behavior is
activated. However, the drastic methodology in which the hybrid coordinator
acts, depending on the activation of the highest priority behaviors, is not
present in any other approach. This feature is considered to be an important
factor in controlling an autonomous robot.



Chapter 4

Reinforcement Learning

Reinforcement Learning (RL) is learning by interaction with the environment
in order to accomplish a goal. This chapter overviews the field of RL and its
application to robotics. The chapter first describes the problem addressed by
RL from a general point of view. Then it introduces Finite Markov Decision
Processes (FMDP) as a tool to express the RL problem (RLP). In order to
solve the RLP, three methodologies are presented, among which Temporal
Difference (TD) is the most suitable in a robotics domain. The chapter
follows with the description of two representative TD algorithms; the Actor-
Critic algorithm and the Q learning algorithm. After the presentation of
the field of Reinforcement Learning, several research issues are presented.
Among them the generalization problem, which highly affects robotics, is
emphasized. The most common approaches to confront this problem and its
application to robotics tasks are overviewed. Most part of this chapter is an
overview of RL theory. For a deeper understanding of this field, refer to the
book ”Reinforcement Learning. An introduction”, written by Sutton and
Barto [Sutton and Barto, 1998].

4.1 The Reinforcement Learning Problem

Reinforcement Learning (RL) is an approach to learning by trial and error
in order to achieve a goal. Basic to the learning process is the interaction
between the RL algorithm and an environment. An RL algorithm does not
use a set of examples which show the desired input/output response, as do
supervised learning techniques. Instead, a reward given by the environment
is required. This reward evaluates the current state of the environment. The
Reinforcement Learning Problem (RLP) consists of maximizing the sum of
future rewards. The goal to be accomplished by RL is encoded in the received
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reward. To solve the problem, an RL algorithm acts over the environment
in order to yield maximum rewards. Any algorithm able to solve the RLP is
considered an RL algorithm.

Several elements appear in all RLPs. The first is the RL algorithm or
the learner. The learner interacts with an environment. The environment
comprises everything outside the learner. The learner can usually observe the
state of the environment and interacts with it by generating an action. The
environment reacts to the action with a new state and a reward. The reward
is a scalar value generated by the reinforcement function which evaluates the
current state and/or the last executed action according to the RLP. This
learner/environment interaction can be represented in a discrete time base
as in the diagram shown in Figure 4.1. In each time iteration t, the learner
observes the state st and receives the reward rt. Following the rules of the
RL algorithm, the learner generates an action at. The environment reacts
to the action changing to state st+1 and generates a new reward rt+1. Both
will be taken during the next iteration. The state space {S} can contain
different variables (n-dimensional) and the action space {A} different actions
(m-dimensional). The time notation used for the states, rewards and actions
is interpreted as: being at state st and applying action at, the environment
reacts with a reward rt+1 and a new state st+1. A sequence of states, actions
and rewards is shown in Figure 4.1, in which the states are represented as
circles, the actions as lines and the rewards as dots. The most important
features of the learner and environment are enumerated hereafter:

Learner :

• Performs the learning and decides the actions.

• Input: the state st and reward rt (numerical value).

• Output: an action at.

• Goal: to maximize the amount of rewards
∑

∞

i=t+1 ri.

Environment :

• Everything outside the learner.

• It reacts to actions with a new state.

• Contains the Reinforcement Function which generates the rewards.
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Figure 4.1: Diagram of the learner/environment interaction.

;. . . < ;>=
? ;�@BA < ; CED ;FCBD=

? ; C%G < ;FC%G ; C%G=
? ;FC%H < ;FCIH . . .;FC%H=

Figure 4.2: Sequence of states, actions and rewards.

The learner interacts with the environment in order to find the action
which maximizes the sum of future rewards. The action to be applied will
always depend on the current state. Therefore, the learner needs a map-
ping function which relates each state with an action. Two processes are
commonly used to find the best actions: exploration and exploitation. Ex-
ploration means that the learner will have to select the actions which have not
yet been used for a particular state. On the other hand, in order to solve the
RLP, the best known actions must be exploited. The compromise between
exploration and exploitation is a common feature in RL. It is important to
note that the final goal of RL is to maximize the sum of future rewards. The
best state/action mapping can propose actions which do not maximize im-
mediate rewards, but actions which maximize the long term sum of rewards.
The effect of an action can also be delayed in terms of the received reward.
An action can be the best one to solve the RLP, but high rewards may not
come until after some iterations.

The main keys of Reinforcement Learning which have been related are:

• Learning through rewards, not through examples.

• Trial-Error search to find the best state/action mapping.

• Exploration/exploitation dilemma.

• Delayed rewards, the effect of the actions is not immediately rewarded.

Before finalizing this brief introduction to Reinforcement Learning, the
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basic RL functions will be described. These functions constitute the defini-
tion of the RLP, and the tools needed to find the solution.

Policy Function. A policy function indicates the action to be taken at each
moment. A policy is a mapping between the states and the actions
and is contained in the learner. When this mapping is stochastic, the
policy is usually represented with the π(s, a) function, which contains
the probability of choosing action a from state s. When a policy solves
the RLP; that is, the action related to each state maximizes the sum
of future rewards, it is said that the policy is optimal π∗. A policy can
be random, in which case the action will be chosen randomly. A greedy
policy contains the best mapping known by the learner; that is, the
actions supposed to best solve the RLP. A greedy action is an action
taken from a greedy policy. Finally, a ε− greedy policy selects random
actions with ε probability and greedy actions with (1− ε) probability.

Reinforcement Function. The reinforcement function is located in the en-
vironment and indicates the goal to be accomplished by the learner. A
reinforcement function r(s, a) is a deterministic function which relates
a state and/or an action to a single numerical value or reward. The
learner uses the reward to learn the optimal policy. The reinforcement
function gives an immediate evaluation of the learner, which is not the
criterion to be improved in Reinforcement Learning.

Value Function. The value function contains the expected sum of future
rewards following a particular policy. This function is used and modi-
fied by the learner to learn the optimal policy. There are two kinds of
value functions. The State-Value function V π(s) contains the expected
sum of future rewards from state s followed by the policy π. The
Action-Value function Qπ(s, a) contains the expected sum of future re-
wards from state s, applying the action a, and following afterwards the
policy π. The action-value function Qπ(s, a) will be equal to the state-
value function V π(s) for all the actions which are greedy with respect to
π. Unlike the reinforcement function, the value functions give the long
term evaluation of the learner following a particular policy. These func-
tions directly show the performance of the learner in solving the RLP.
When following the optimal policy π∗, the value functions V ∗(s) and
Q∗(s, a) show the maximum sum of expected rewards, and therefore
the functions are also optimal. In the same way, if the learner achieves
the optimal value functions, the optimal policy can be extracted from
it.
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Dynamics Function. This function is located in the environment and is
usually not known. A dynamics function is usually a stochastic function
which generates the future state of the environment from its previous
state and the applied action. Although this function is not known, the
state transitions caused by the dynamics are contained in the value
functions.

A RL algorithm uses these functions to solve the RLP. The learning pro-
cess is performed over one of the value functions, the state or the action value
functions. The algorithm proposes a learning update rule to modify the value
function and also proposes a policy to be followed by the learner-environment
interaction. If the RL algorithm converges after some iterations, the value
function has changed to the optimal value function from which the optimal
policy can be extracted. The solution of the RLP is accomplished by follow-
ing the state-action mapping contained in this optimal policy π∗. Figure 4.3
shows a diagram of the phases found in a RL algorithm to solve the RLP.

4.2 RL with Finite Markov Decision

Processes

Reinforcement Learning theory is usually based on Finite Markov Decision
Processes (FMDP). The use of FMDP allows a mathematical formulation of
the RLP, therefore, the suitability of RL algorithms can be mathematically
demonstrated. In order to express an RLP with FMDP, the environment has
to accomplish the Markov Property. An environment which accomplishes the
Markov property shows in its state all the relevant information to predict
the next state. This means that in order to predict the next state of the
environment, the knowledge of the past states and actions are not necessary
if the present state and action is known. At the same time, the future reward
does not depend on past states and actions. Therefore, in a Markovian state
the prediction of the next state and reward is accomplished by knowing
only the present state and action. Equation 4.1 formally defines the Markov
property equalling the probability of predicting the next state and reward
with and without knowing the past states, actions and rewards.

Pr{st+1 = s′, rt+1 = r′|st, at, rt, st−1, at−1, ..., s0, a0} =

Pr{st+1 = s′, rt+1 = r′|st, at} (4.1)

If the environment accomplishes the Markov property it is considered a
Markov Decision Process (MDP). Moreover, if the state and action spaces
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Figure 4.3: Typical phases of a Reinforcement Learning algorithm to solve
the RLP. The learner interacts with the environment, updating the value
function according to the RL algorithm. When the algorithm converges,
the optimal value function has been found from which the optimal policy is
extracted. The optimal policy solves the RLP, proposing the actions which
maximize the sum of future rewards.
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are finite, the environment is considered a Finite MDP (FMDP). Having
discrete state and action spaces, the stochastic dynamics of the environment
can be expressed by a transition probability function P a

ss′ . This function
contains the probability of reaching the state s′ if the current state is s and
action a is executed. Equation 4.2 formally defines this function. Also, the
reinforcement function can be expressed as a deterministic function Ra

ss′ . In
this case, the function contains the expected reward received when being at
s, a is applied and s′ is reached, see Equation 4.3

P a
ss′ = Pr{st+1 = s′|st = s, at = a} (4.2)

Ra
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (4.3)

P a
ss′ and Ra

ss′ specify the dynamics of the environment. One of the
learner’s functions, the value function, is highly related with this dynamic.
For a particular learner policy π, the value function (V π or Qπ) can be ex-
pressed in terms of P a

ss′ and Ra
ss′ , and as will be shown, the optimal value

function (V ∗ or Q∗) can also be determined. Once this function is obtained,
the optimal policy π∗ can be extracted from it. Before getting to these ex-
pressions, a new function has to be defined.

As has been stated, the goal of RL is to maximize the sum of future
rewards. A new function Rt is used in the FMDP framework to express this
sum, as Equation 4.4 shows. This sum finishes at time T , when the task
which RL is trying to solve finishes. The tasks having a finite number of
steps are called episodic tasks. However, RL is also suitable for solving tasks
which do not finish at a certain number of time steps. For example, in a
robotics task, the learner may be continually activated. In this case, the
tasks are called continuing tasks and can run to infinite. To avoid an infinite
sum of rewards, the goal of RL is reformulated to the maximization of the
discounted sum of future rewards. The future rewards are corrected by a
discount factor γ as expressed in Equation 4.5.

Rt = rt+1 + rt+2 + rt+3 + ...+ rT (4.4)

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞
∑

k=0

γkrt+k+1 (4.5)

Setting the discount factor between a range of 0 ≤ γ ≤ 1, the infinite
sum of rewards does not achieve infinite values and therefore the RLP can
be solved. In addition, the discount factor allows the selection of the number
of future rewards to be maximized. For γ = 0 only the immediate reward is
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maximized. For γ = 1 the maximization will take into account the infinite
sum of rewards. Finally, for 0 < γ < 1 only a reduced set of future rewards
will be maximized.

The two value functions, V π and Qπ, can be expressed in terms of the
expected future reward Rt. In the case of the state-value function, the value
of a state s under a policy π, denoted V π(s), is the expected discounted sum of
rewards when starting in s and following π thereafter. For the action-value
function, the value of taking action a in state s under policy π, denoted
Qπ(s, a), is the expected discounted sum of rewards when starting in s, the
action a is applied, and following π thereafter. Equations 4.6 and 4.7 formally
define these two functions.

V π(s) = Eπ{Rt|st = s} = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s

}

(4.6)

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s, at = a

}

(4.7)

The last two equations define the value functions obtained when follow-
ing a particular policy π. To solve the RLP, the optimal policy π∗ which
maximizes the discounted sum of future rewards has to be found. As the
value functions indicate the expected sum of future reward for each state
or state/action pair, an optimal value function will contain the maximum
values. Therefore, from all the policies π, the one having a value function
(V π or Qπ) with maximum values in all the states or state/action pairs will
be an optimal policy π∗. It is possible to have several policies (π∗

1, π
∗

2, ...)
which accomplish this requirement, but only one optimal value function can
be found (V ∗ or Q∗). Equations 4.8 and 4.9 reflect this statement.

V ∗(s) = max
π

V π(s) (4.8)

Q∗(s, a) = max
π

Qπ(s, a) (4.9)

In order to find these optimal value functions, the Bellman equation
[Bellman, 1957] is applied. This equation relates the value of a particular
state or state/action pair with the value of the next state or state/action
pair. To relate the two environment states, the dynamics of the FMDP (P a

ss′

and Ra
ss′) is used. The Bellman optimality equations for the state and action

value functions are found in Equations 4.10 and 4.11.

V ∗(s) = max
a

∑

s′

P a
ss′ [Ra

ss′ + γV ∗(s′)] (4.10)
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Q∗(s, a) =
∑

s′

P a
ss′ [Ra

ss′ + γmax
a′

Q∗(s′, a′)] (4.11)

The Bellman optimality equations offer a solution to the RLP by finding
the optimal value functions V ∗ and Q∗. If the dynamics of the environment
is known, a system of equations with N equations and N unknowns can be
written using Equation 4.10, being N the number of states. This nonlinear
system can be solved getting the V ∗ function. Similarly, the Q∗ function can
be found.

Once V ∗ is known, the optimal policy can be easily extracted. For each
state s, any action a which causes the environment to achieve a state s′ with
maximum state value with respect to the other achievable states can be con-
sidered as an optimal action. The set of all the states with its corresponding
optimal actions constitutes an optimal policy π∗. It is important to note
that to find each optimal action, it is only necessary to compare the state
value of the next achievable states. This is due to the fact that the state-
value function V ∗ already contains the expected discounted sum of rewards
for these states. In the case where the Q∗ is known, the extraction of the
optimal policy π∗ is even easier. For each state s, the optimal action will be
the action a which has a maximum Q∗(s, a) value, see Equation 4.12.

π∗(s) = arg max
a∈A(s)

Q∗(s, a) (4.12)

This section has formulated the Reinforcement Learning problem using
Finite Markov Decision Processes. It has also pointed out how to find the
solution of the RLP when the dynamics of the environment is known. The
next section will show how to find a solution to the RLP when the dynamics
is not known, which is the most common case.

4.3 Methodologies to solve the RLP

There are several methodologies to solve the Reinforcement Learning Prob-
lem formulated as an FMDP. This section summarizes the main features
of three methodologies: Dynamic Programming, Monte-Carlo Methods and
Temporal Difference learning. The main purpose is to show the advantages
and limitations in solving the RLP.

Dynamic Programming. This methodology is able to compute the opti-
mal policy π∗ by using the dynamics of the FMDP (P a

ss′ and Ra
ss′).

Dynamic Programming (DP) algorithms act iteratively to solve the
Bellman optimality equations. DP algorithms are able to learn online,
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that is, while the learner is interacting with the environment. At each
iteration, they update the value of the current state based on the values
of all possible successor states. The knowledge of the dynamics is used
to predict the probability of the next state to occur. As the learning is
performed online, the learner is able to learn the optimal policy while
it is interacting with the environment. The general update equation
for the state-value function is shown in Equation 4.13.

Vk+1(s)←
∑

a

π(s, a)
∑

s′

P a
ss′ [Ra

ss′ + γVk(s
′)] (4.13)

In this equation, the state-value function at iteration k + 1 is updated
with the state-value function at iteration k. Instead of using the real
value V π(s′), which is not known, an estimate of it is used Vk(s

′).
This feature, called bootstrapping, allows the algorithm to learn online.
DP algorithms compute the value functions for a given policy. Once
this value function is obtained, they improve the policy based on it.
Iteratively, DP algorithms are able to find the optimal policy which
solves the RLP.

Monte-Carlo Methods. Monte-Carlo (MC) methods are also able to solve
the RLP. MC algorithms do not need the dynamics of the environment.
Instead, they use the experience with the environment to learn the value
functions. Another important feature of MC methods is that they do
not learn online. MC algorithms interact with the environment follow-
ing a particular policy π. When the episode finishes, they update the
value of all the visited states based on the received rewards. Repeating
the learning in several episodes, the value function for a particular pol-
icy is found. Equation 4.14 shows the general update rule to estimate
the state-value function. It can be observed that the current prediction
of the state-value V π

k (s) is modified according to the received sum of
rewards Rt. There is also a learning rate α which averages the values
obtained in different episodes.

V π
k+1(st)← V π

k (st) + α[Rt − V
π
k (st)] (4.14)

After the evaluation of a policy, MC methods improve this policy based
on the learnt value function. By repeating the evaluation and improving
phases, an optimal policy can be achieved.

MC methods are not suitable for continuing tasks as they can not
update the value functions until a terminal state is found. The fact
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that they learn using the real sum of received rewards does not obli-
gate the algorithms to bootstrap, unlike DP algorithms. However, MC
algorithms can not learn online and, therefore, they are not suitable
for most problems which RL tries to solve. The main advantage of
Monte-Carlo methods respecting Dynamic Programming is the use of
the environment experience instead of its dynamics.

Temporal Difference learning. Temporal Difference learning (TD) is an-
other methodology to solve the RLP. The main advantages of the pre-
vious methods are found in TD algorithms. First of all, TD learning
is able to learn online as DP. It uses bootstrapping to estimate the un-
known value functions. As a consequence, it can be applied in continu-
ing tasks. The second advantage is that it does not need the dynamics
of the environment, as do MC methods. Instead, it uses the experi-
ence with the environment. The general update rule for the state-value
function can be seen in Equation 4.15. Similarly to MC methods, the
updating of the state value V π

k+1(st) is accomplished by comparing its
current value with the discounted sum of future rewards. However, in
TD algorithms this sum is estimated with the immediate reward rt+1

plus the discounted value of the next state. This bootstrapping allows
the learning to be online. Also, the update rule does not require the
dynamics transition probabilities, which allow TD algorithms to learn
in an unknown environment.

V π
k+1(st)← V π

k (st) + α[rt+1 + γV π
k (st+1)− V

π
k (st)] (4.15)

TD algorithms are suitable for solving the RLP when the dynamics is
not known and when the learning has to be performed online, as in
most robotics tasks.

From the three described methodologies, Temporal Difference learning
is the one which best fits the features of the most common Reinforcement
Learning problems. TD algorithms are the most used algorithms in RL. The
next section describes some of the most popular and classic algorithms.

4.4 Temporal Difference Algorithms

The previous section presented Temporal Difference methods as the most
suitable methodology to solve the Reinforcement Learning Problem. The
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main advantages of this technique are the fact that the learning can be per-
formed online, and the non-necessity of a dynamics model of the environ-
ment. This section shows the learning process of TD algorithms by describ-
ing two well-known techniques. The first one is the actor-critic algorithm
which learns an optimal policy by using the state-value function. The second
technique is the popular Q learning algorithm which uses the action-value
function in the learning process. These two algorithms are good examples of
the performance of TD algorithms, although other algorithms can be found.
Finally, this section reviews the concept of Eligibility Traces which is used
to link Temporal Difference methods with Monte-Carlo methods. Eligibility
Traces modify basic TD algorithms accelerating the learning process in most
cases.

A very important feature of RL algorithms is the policy they must follow
in order to guarantee the convergence. There are algorithms which to ensure
the learning of the optimal policy, have to follow a particular policy. That is,
at each time step, the action to be executed by the learner is determined by
a fixed rule. If the learner does not follow this action, the algorithm cannot
converge the RLP solution. These algorithms are called on-policy algorithms.
On the other hand, there are algorithms which do not impose a particular
policy to ensure the convergence. Instead, these algorithms usually need to
visit all the states and actions regularly. The second kind of algorithm is
called an off-policy algorithm. It is usually desirable to use an off-policy
algorithm in a real system, since the actions can be externally modified by a
supervisor without interrupting the learning process. From the two analyzed
algorithms, the actor-critic is an on-policy algorithm and the Q learning is
an off-policy algorithm.

4.4.1 Actor-Critic methods

Actor-Critic [Witten, 1977] is not a particular TD algorithm, but a method-
ology to solve the RLP. Actor-Critic methods have two distinctive parts, the
actor and the critic. There are algorithms which implement only one of the
parts and, therefore, they have to be combined with other algorithms. The
actor part contains the policy which will be followed. It observes the state
of the environment and generates an action according to this policy. On the
other hand, the critic observes the evolution of the states and criticizes the
actions made by the actor. The critic contains a value function which tries
to learn according to the actor policy. Figure 4.4 shows the general diagram
of an Actor-Critic method.

In Actor-Critic methods, the critic typically uses the state-value function
V π(s). This function contains the value of being in one state s when following
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Figure 4.4: General diagram of the Actor-Critic methods.

a particular policy π. Since this policy cannot be extracted from V π(s)
without knowing the dynamics of the environment, the Actor-Critic schema
is used. Hence, the actor is initialized to a policy which relates all the states
with an action, and the critic learns the state-value function of this policy.
According to the values of the visited states, the critic calculates the value
difference or TD error, and informs the actor. Finally, the actor modifies
its policy according to this value difference. If the value of two consecutive
states increases, the probability of taking the applied action increases. On
the contrary, if the value decreases, the probability of taking that action
decreases. Actor-critic methods refine the initial policy until the optimal
state-value function V ∗(s) and an optimal policy π∗ are found.

A common property of Actor-Critic methods is the fact that the learning
is always on-policy. The action to be followed is the one indicated by the
actor policy. The critic will always learn the state-value function for this
policy. A policy πt(s, a) is defined as a set of probabilities between all the
states and all the actions:

πt(s, a) = Pr{at = a|st = s} (4.16)

According to the TD error, these probabilities will be decreased or in-
creased. The critic estimates the state-values using the basic TD update rule
shown in Equation 4.15. Finally, a general Actor-Critic algorithm can be
found in Algorithm 1. As can be seen, in addition to the learning rate α and
the discount factor γ, a new parameter β is used to determine the change of
π(st, at).
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Algorithm 1: General Actor-Critic algorithm
1. Initialize V (s) arbitrarily, for all s ∈ S

2. Repeat until π is optimal:
(a) st ← the current state
(b) at ← action given by πt for st

(c) Take action at, observe reward rt+1 and the next state st+1

Critic update:
(d) δt = rt+1 + γV (st+1)− V (st)
(e) V (st)← V (st) + αδt

Actor update:
(f) π(st, at)← π(st, at) + βδt

4.4.2 Q learning

The Q learning algorithm [Watkins and Dayan, 1992] is another Temporal
Difference algorithm. As distinguished from Actor-Critic methods, Q learning
uses the action-value function Qπ to find an optimal policy π∗. The Qπ(s, a)
function has an advantage with respect to the state-value function V π. Once
the optimal function Q∗ has been learnt, the extraction of an optimal policy
π∗ can be directly performed without the requirement of the environment
dynamics or the use of an actor. The optimal policy will be composed of a
mapping relating each state s with any action a which maximizes the Q∗(s, a)
function.

Another important feature of Q learning is the off-policy learning capa-
bility. That is, in order to learn the optimal function Q∗, any policy can be
followed. The only condition is that all the state/action pairs must be regu-
larly visited and updated. This feature, together with the simplicity of the
algorithm, makes Q learning very attractive for a lot of applications. In real
systems, as in robotics, there are many situations in which not all the actions
can be executed. For example, to mantain the safety of a robot, an action
cannot be applied if there is any risk of colliding with an obstacle. There-
fore, if a supervisor module modifies the actions proposed by the Q learning
algorithm, the algorithm will still converge to the optimal policy.

The Q learning algorithm can be shown in Algorithm 2. As can be seen,
the policy applied is the ε − greedy policy, although any other policy could
have been used as well. Recovering the definition of the action-value func-
tion, the Q∗(s, a) value is the discounted sum of future rewards when action
a is executed from state s, and the optimal policy π∗ is followed afterwards.
To estimate this sum, Q learning uses the received reward rt+1 plus the dis-
counted maximum value of the future state st+1.

The first step of the algorithm is to initialize the values of the Q function
for all the states s and actions a randomly . After that, the algorithm starts
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interacting with the environment in order to learn the Q∗ function. In each
iteration, the update function needs an initial state st, the executed action
at, the new state st+1 which has been achieved, and the received reward
rt+1. The algorithm updates the value of Q(st, at), comparing its current
value with the sum of rt+1 and the discounted maximum Q value in st+1.
The error is reduced with a learning rate and added to Q(st, at). When the
algorithm has converged to the optimal Q∗ function, the learning process can
be stopped. The parameters of the algorithm are the discount factor γ, the
learning rate α and the ε parameter for the random actions.

Algorithm 2: Q learning algorithm
1. Initialize Q(s, a) arbitrarily
2. Repeat until Q is optimal:

(a) st ← the current state
(b) choose action amax that maximizes Q(st, a) over all a

(c) at ← (ε−greedy) action, carry out action amax in the world with probability
(1− ε), otherwise apply a random action (exploration)
(d) Observe the reward rt+1 and the new state st+1

(e) Q(st, at)← Q(st, at) + α[rt+1 + γ ·maxamax
Q(st+1, amax)−Q(st, at)]

Another representation of Q learning can be seen in Figure 4.5. At each
iteration, the algorithm perceives the state from the environment and receives
the reward. After updating the Q value, the algorithm generates the action
to be undertaken. The Q function is represented as a table with a different
state in each row and a different action in each column. The state space
can contain different variables (n-dimensional) with different values which
are finally encoded as p different states. The same occurs with the actions,
different actions (m-dimensional) are encoded to a final set of q actions. As
can be observed, the algorithm has to store the past state st and the past
action at.

4.4.3 Eligibility Traces

The concept of Eligibility Traces is used to link Temporal Difference meth-
ods with Monte-Carlo methods. As described in Section 4.3, Monte-Carlo
methods do not require the dynamics of the environment and wait until
the discounted sum of future rewards, Rt, has been received. Similarly, TD
methods do not need the dynamics of the environment and estimate Rt using
rt+1 + γV π

k (st+1). This feature, called bootstrapping, allows TD algorithms
to learn online. A TD algorithm which uses eligibility traces estimates Rt

using the set of future rewards {rt+1, rt+2, ..., rt+n} and the estimated value
of state st+n, as shown in next equation:
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Figure 4.5: Diagram of the Q learning algorithm.

Rn
t = rt+1 + γrt+2 + γ2rt+3 + ...+ γn−1rt+n + γnV π

k (st+n) (4.17)

Therefore, for n = 1, a TD algorithm with eligibility traces is equivalent
to the basic TD algorithm which is called one-step TD method. For n =∞,
the algorithm will be equivalent to a Monte-Carlo algorithm, in which case,
the sum of rewards will be stopped at the end of the episode, since Monte-
Carlo methods cannot be applied to continuing tasks.

The basic idea of eligibility traces consists of using more rewards than
the immediate one to estimate the value function. However, the implemen-
tation of a TD algorithm with Equation 4.17 would imply the learning offline,
since the equation cannot be computed until rt+n is obtained. To avoid this
disadvantage, the eligibility trace function, et, is introduced. This function
contains, for each state or state/action pair, the number of visits which have
recently been done. Therefore, analyzing the et function, the states which
have recently been visited, can be found. For example, for the state-value
function, V (s), the eligibility trace et(s) is defined as:

et(s) =

{

γ λ et−1(s) if s 6= st;
γ λ et−1(s) + 1 if s = st;

(4.18)

The eligibility trace of state s will increase by 1 each time the state is
visited, otherwise it will slowly decrease. To control the rate of decrease, a
new parameter, λ, is introduced. The range of this parameter is 0 ≤ λ ≤ 1.
For λ = 0, a pure one-step TD algorithm will be obtained, and for λ = 1, the
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algorithm will be equivalent to a Monte-Carlo method, in which the eligibility
trace will only decrease due to the discount factor. Intermediate values will
affect only a set of future time-steps, which is usually the desired effect.

After defining the eligibility trace function, et, the update rule for V π(s),
considering eligibility traces, must be redefined. The update rule for the
one-step TD method was presented in Equation 4.15. In that case, only the
value of the current state was updated at each iteration, whereas when using
an eligibility trace function, all the states which have recently been visited
will be updated. This process is accomplished in two different phases. In
the first phase, the one-step error δ is computed and the visits of the current
state are increased by 1. Equations 4.19 and 4.20 show these two operations.

δ = rt+1 + γV (st+1)− V (st) (4.19)

e(st)← e(st) + 1 (4.20)

After the first phase, the state-values of all the states are updated and
the eligibility traces are decreased. Therefore, for each state s, these two
equations are applied:

V (s)← V (s) + α δ e(s) (4.21)

e(s)← γ λ e(s) (4.22)

The methodology just described for estimating the state-value function
V π(s) under eligibility traces, is called the TD(λ) algorithm [Sutton, 1988] .
Similarly, an eligibility trace function for each state/action pair, e(s, a), can
be applied to estimate the action-value function Qπ(s, a).

The use of eligibility traces has several advantages and disadvantages.
The main disadvantage is that the computational cost is much higher than
the one-step TD algorithms, as all the states or state/action pairs have to be
updated at each time-step. However, the main advantage of using eligibility
traces is faster learning, particularly when rewards are delayed. When a
RLP has a reinforcement function which, for example, only gives non-zero
values when the goal is achieved, it is said that rewards are delayed. In these
systems, the non-zero rewards will only be given at some states. Using one-
step TD algorithms, the propagation of these values to preceding states will
take several iterations. Eligibility traces accelerate the propagation of these
values, achieving an optimal policy in fewer iterations. A second advantage
of eligibility traces resides in their ability to learn in partially non-Markov
states. The main reason for this feature is the fact that the learning is not
completely based on bootstrapping, but also on the observation of a set of
future rewards.
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Eligibility traces can be applied in almost all one-step TD algorithms. The
Q learning algorithm was modified to the Q(λ) algorithm [Watkins, 1989,
Peng and Williams, 1994], and also Actor-Critic methods were implemented
using eligibility traces [Barto et al., 1983, Sutton, 1984]. Eligibility traces
is not a research topic, but an important aspect to be considered in RL.
Although the theory of eligibility traces has been sufficiently developed, there
are not many applications using it in real systems.

4.5 Issues in RL

After the description of the Reinforcement Learning Problem and its solution
using two classic Temporal Difference algorithms, this section presents some
advanced issues. These new aspects reflect the main research topics currently
being studied by the RL community. The purpose of this section is to describe
the basic concepts needed to understand each topic. The next section will
focus on one of them; the generalization problem, which is the research topic
treated in this thesis.

The Generalization Problem. As described in Section 4.2, Reinforcement
Learning is usually formulated using Finite Markov Decision Processes
(FMDP). This formulation implies a discrete representation of the state
and action spaces. However, in some tasks the states and/or the ac-
tions are continuous variables. A first solution can be to maintain the
same RL algorithms and to discretize the continuous variables. If a
coarse discretization is applied, the number of states and actions will
not be too high and the algorithms will be able to learn. However, in
many applications the discretization must be fine in order to assure a
good performance. In these cases, the number of states will grow ex-
ponentially, making the use of RL impractical. The reason is the high
number of iterations necessary to update all the states or state/action
pairs until an optimal policy is obtained. This problem is known as the
curse of dimensionality. To make RL feasible, generalization must be
applied among the state and actions. To solve the generalization prob-
lem, RL algorithms modify the classical algorithms replacing the dis-
crete spaces with a function approximator. The generalization problem
is a very common problem in robotics and in control tasks in general.
However, there are plenty of successful approaches in which function
approximation techniques have been applied. Section 4.6 overviews the
basic techniques and their application to robotics.

Non-Markov Environments. When RL is applied to real systems, it is
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common to have difficulties in observing the state. As explained in
Section 4.2, the Markov property implies the observability of the com-
plete state of the environment. Real systems are observed with sensors
which always have noise. Also, it is sometimes not possible to mea-
sure some magnitudes, in which case the state is hidden. If this cor-
rupted data is used as the state of the environment, TD algorithms
cannot assure the learning of an optimal policy. This kind of en-
vironment is called a Partially Observable Markov Decision Process
(POMDP). A solution to POMDP is to learn a model of the environ-
ment which includes the non-observed states. This model estimates
the Markov states using the past estimated states, the last action
and the corrupted observation of the environment. The model gives
a probability for each state to be effectively the current state, and a
specific RL algorithm uses this information to solve the RLP. Some
approaches can be found which use this state-estimator methodology
[Cassandra et al., 1994, Whitehead and Lin, 1995]. However, for large
state spaces, this method becomes computationally unfeasible and al-
ternative solutions have been proposed [Singh et al., 1994a]. POMDP
is an active research topic in RL with a high relevance to robotics,
although few real examples can be found. In [Bakker et al., 2002] a
simulated application with a mobile robot is presented.

Other kind of non-Markovian environments to be found in RL are Semi-
Markov Decision Processes (SMDP). The difference between FMDP
and SMDP resides in the amount of time which passes between the
algorithm iterations. In FMDP, a constant time-step is assumed be-
tween two sequential iterations. However, in SMDP the amount of time
between two iterations is a random variable. In the simplest case, this
amount of time is a multiple of an underlying time-step. SMDP are
usually used in hierarchical RL, which will be described below. For
more detailed information on SMDP, refer to [Sutton et al., 1999].

Policy Methods. This chapter has described RL algorithms as any algo-
rithm able to solve the RLP. After formally defining an RLP with
FMDP, Temporal Difference methods have been presented as the most
suitable methods to solve the problem. The technique consists of es-
timating an optimal value function (state or action function) and ex-
tracting an optimal policy from it. There is another technique to solve
the RLP. Instead of first searching the optimal value function, the opti-
mal policy is directly searched. RL algorithms using this technique are
called Policy methods. Policy methods use a policy function π(s, a, θ),
which gives, for each state s and each action a, a probability value.
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This function is implemented with a function approximator which has
a set of parameters θ. Policy methods use a function ρ to evaluate the
performance of the current policy. According to the policy gradient
with respect to ρ function, the parameters of the policy are updated. A
first policy algorithm was the REINFORCE algorithm [Williams, 1992].
Recently, several works have demonstrated the convergence of policy
methods in optimal policies [Jaakkola et al., 1995, Sutton et al., 2000,
Baxter and Barlett, 2000]. There are some advantages of policy meth-
ods with respect to value-algorithms. Policy methods already use a
function approximator to implement the policy function, which solves
the generalization problem. They also face POMDP environments sat-
isfactorily, since the observation of a corrupted state damages the value
function to a greater degree than the policy function. The main dis-
advantage of policy methods is the increase of the convergence time
with respect to value methods. There are some successful applications
of policy methods in robotics. In [Bagnell and Schneider, 2001] an au-
tonomous helicopter was controlled and in [Rosenstein and Barto, 2001]
a simulated robotic arm learnt to lift a weight.

Hierarchical Learning. Hierarchical RL appeared as a result of the gen-
eralization problem. Instead of solving the problem with a function
approximator, hierarchical learning is based on temporal abstractions.
The basic assumption is to break down the whole task into subtasks.
Each subtask has its own subgoal and can be solved using a policy.
While a subtask is being executed, another subtask can be called, as
if it was an action. The higher subtask will wait until the finaliza-
tion of the lower subtask and then it will continue learning as if only
one iteration had happened. For this reason, hierarchical methods use
SMDP, in which the elapsed time between two sequential iterations
can change. Different task-division architectures can be found in hi-
erarchical learning [Sutton et al., 1999, Parr, 1998, Dietterich, 2000].
A common feature in these algorithms is that the breaking down of
the whole task in subtasks must be known, and the algorithm learns
the policy of each subtask. This fact restricts the use of these al-
gorithms in problems where task-division is clear, as for example, in
problems which can be divided in sequential phases. However, in con-
trol problems, where this division is not clear, these algorithms cannot
be used. Hierarchical learning is also an active research topic with a
high applicability in robotics and in large generalization problems. In
[Takahashi and Asada, 2000] hierarchical learning was applied to ac-
quire a vision-guided robot behavior, in [Kawano and Ura, 2002] the
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application was the motion planning of an autonomous underwater
vehicle, and in [Ryan and Reid, 2000] the problem was to control an
aircraft in a flight simulator. Finally, hierarchical learning for POMDP
in a robot navigation task was treated in [Theocharous, 2002]. A recent
review of hierarchical RL can be found in [Barto and Mahadevan, 2003].

4.6 Generalization methods

This section overviews the main methodologies used to solve the generaliza-
tion problem. As defined above, the generalization problem appears when
the environment has continuous states and/or actions. In order to adapt
these continuous variables to the finite TD algorithms, the first solution is
to discretize the continuous spaces to finite spaces. However, if a fine dis-
cretization must be applied, the high number of states or state/action pairs
makes RL impractical for real applications. This section shows the most
common function approximation techniques combined with RL algorithms
to deal with the generalization problem.

The reason why there are several techniques to solve the generaliza-
tion problem is because any one of them offers a perfect solution. Some
techniques have a higher generalization capability while others are compu-
tationally faster. However, the most important feature is their capability
to converge into an optimal policy. Convergence proofs have only been ob-
tained for algorithms which use a linear function approximator [Sutton, 1988,
Dayan, 1992, Tsitsiklis and Roy, 1997, Singh et al., 1994b], that is, a func-
tion which is linear with respect to a set of parameters. In addition, in
order to maintain the stability, the learning must be done on-policy. This
means that the Q learning algorithm, for example, cannot profit from this
convergence proof [Precup et al., 2001]. TD algorithms estimate the value
function based on the immediate rewards and on the same value function
(bootstrapping feature). When using a function approximator with TD al-
gorithms, the value function will always be an approximation of the discrete
function. It has been verified that off-policy learning algorithms with linear
function approximators can cause divergence. Some classical examples of this
divergence can be found in [Baird, 1995, Tsitsiklis and Roy, 1996]. Several
methods were developed to deal with this divergence problem; for example,
residual algorithms [Baird, 1995], averagers [Gordon, 1999] and interpolative
representations [Tsitsiklis and Roy, 1996]. These methods use special update
rules and/or function approximators to ensure the convergence. However,
their use is very limited in practice since their convergence is much slower
and they have a lower generalization capability.
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Despite convergence proofs, there are many successful examples including
linear and non-linear approximators with on-policy and off-policy algorithms.
Some references are [Lin, 1992, Zhang and Dietterich, 1995, Sutton, 1996]
[Crites and Barto, 1996]. The most important breakthrough was the use
of a Neural Network to learn the game of backgammon [Tesauro, 1992]. Us-
ing this non-linear function approximator the algorithm was able to play at
the same level as the best human players in the world. These successful ap-
plications have motivated the use of a diverse set of function approximation
techniques for real systems. Although it is not intended as a survey, the most
common methodologies and their use in robotics will be next described.

4.6.1 Decision trees

One of the most intuitive approaches to solving the generalization problem
is to discretize the state or state/action space with a different resolution.
This variable resolution substantially reduces the number of finite states or
state/action pairs. Decision trees allow the space to be divided with vary-
ing levels of resolution. Usually, only the state space is represented. In a
decision tree, see Figure 4.6, the root of the tree represents the entire space.
Each branch of the tree divides the space in two space zones. After several
branches a terminal space zone is found which is called the leaf. The leaves
contain the values of the approximated function for the space zone they rep-
resent. RL algorithms use their update rules to modify the value of the leaf
containing the evaluated state st or state/action pair (st, at), depending if the
approximated function is the state-value function, V (s), or the action-value
function, Q(s, a), respectively.

Algorithms using decision trees refine the space resolution by splitting the
leaves. This refinement is not performed in the whole space but only in the
zones where a higher resolution is required. There are some criteria which
determine this refinement. If two adjacent leaves propose different greedy
actions, the leaves are split. If the values (state-value or action-value) of two
adjacent leaves are substantially different, even if the greedy action is the
same, the leaves are also split.

Several proposals using decision trees to solve the generalization problem
can be found. The G-Learning algorithm [Chapman and Kaelbling, 1991]
uses a decision tree to represent the Q function over a discrete space. That
is, the state is compounded of a set of binary variables. According to the bi-
nary values, a leaf is reached. This leaf contains the values for a discrete set of
actions which represent the Q values. Also, the leaf contains the set of state
variables which have not been used to achieve the leaf. If more refinement is
required, the leaf will be split according to one of the non-used binary vari-
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Figure 4.6: Approximating the value space with a Decision Tree.

ables. Another approach, the Continuous U-tree [Uther and Veloso, 1998],
applies ideas similar to G-learning but with a continuous representation of
the state. This approach was applied to a simulated robot. The Variable
Resolution Dynamic Programming [Moore, 1991] is another successful ap-
proach to generalization with decision trees. However, its main drawback is
the requirement of the environment model.

Other approaches use a multigrid which is a set of layers with different
resolutions. Each layer has a uniform resolution for the entire state-space.
Top layers use a coarse resolution and low layers a fine resolution. Multigrid
algorithms update the values for all the layers. Evidently, the percentage
of updated cells in low layers will be less than in top layers. Therefore,
multigrid algorithms will decide at which layer the confidence of the value
function is higher and will use this value in the RL update rule. An example
of a multigrid algorithm can be found in [Vollbrecht, 1999]. The drawback of
most multigrid methods is the assumption that the model of the environment
is known, while this cannot be assumed in a robotics domain.

Decision trees highly improve the generalization problem with respect to
classical RL algorithms which use a uniform discretization. In addition, the
convergence of the algorithms is sometimes proved and the generalization
capability has been shown to be very high [Munos and Moore, 2002]. How-
ever, the learning convergence has not demonstrated to be fast enough for
its application in real systems where the convergence time must be short.
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Figure 4.7: Approximating the value space with the CMAC function approx-
imator.

Most of the recent proposals show their results only in simulated tasks
[Reynolds, 2002, Munos and Moore, 2002]. Moreover, decision trees always
use a finite set of actions and, therefore, the generalization is only carried out
in the state space. Finally, in order to select the greedy actions, the whole
set of actions must be tested, which slows the learning process when several
continuous actions are present.

4.6.2 CMAC

One of the most popular techniques to generalize in RL is the Cerebellar
Model Articulation Controller or CMAC [Albus, 1971, Albus, 1981]. CMAC
is a simple linear function approximator based on a set of features or tiles. A
tile is a representation of a small zone of the whole value space (state space or
state/action space). Each tile i has a weight, wi, associated with it. Tiles can
be superimposed, that is, a position in the space can be comprised of different
tiles. All tiles comprising the current input value are considered to be active
tiles. CMAC uses a very simple procedure, the value of an input state or
state/action pair will be the sum of all wi belonging to an active tile. RL
algorithms use their update rules to modify the weights, wi, which influenced
the evaluation of the state-value function, V (s), or the action-value function,
Q(s, a).

Usually, tiles in CMAC are uniformly distributed, which makes the com-
putation of the algorithm faster. In this case, tiles are associated to tilings.
Each tiling comprises the whole space and has a uniform set of tiles, see Fig-
ure 4.7. Tiles from the same tiling are not superimposed, which means that
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only one tile is active in each tiling. Therefore, the number of active tiles
will be equal to the number of tilings. The evaluation of the action-value
function with CMAC can be performed with the next equation:

Q(s, a) =
∑

i,j

wi,jF (s, a, i, j) (4.23)

in which, wij is the weight of tile j from tiling i, and F (s, a, i, j) is a binary
activation function. This function is equal to 1 if tile j from tiling i is
activated for state s and action a, otherwise it is equal to 0. Similarly, the
state-value function V (s) can be represented with CMAC.

The generalization capability of CMAC depends on the number of tilings
and the number of tiles within each tiling. The higher the number of tiles
the better the resolution and the higher the number of tilings the better
the generalization. Since CMAC is a linear approximation function, its con-
vergence can be guaranteed when an on-policy algorithm is used, as stated
in Section 4.6. However, many examples of both on-policy [Sutton, 1996,
Santamaria et al., 1998] and also off-policy methods [Saito and Fukuda, 1994,
Watkins, 1989] demonstrate the feasibility of CMAC. In most of these exam-
ples, CMAC approximates the action-value function Q(s, a). The disadvan-
tages of CMAC are similar to those of decision trees. Although a high gen-
eralization capability has been proved, the convergence time is still too long
to be applied in real systems. Also, the search of the greedy action requires
an exhaustive search and is not scalable when several continuous actions are
present. This makes CMAC difficult to apply in robotics.

A similar CMAC technique is the use of Radial Basis Functions (RBF)
[Powell, 1987, Poggio and Girosi, 1990]. The idea is to substitute the bi-
nary activation function of each tile by a continuous function between 0
and 1. Radial Basis functions usually have a Gaussian response and are de-
fined by their center position and width. A network of RBFs distributed
over the value space constitutes a linear function approximator. A more
interesting use of RBFs is achieved when the center positions and widths
can be changed according to the learning process. In this case, the method
is nonlinear and is able to generalize with more precision than CMAC, as
stated in [Kretchmar and Anderson, 1997]. The main disadvantage of RBFs
is its higher computational cost. However, some applications using RBFs in
robotics can be found [Santos, 1999, Kondo and Ito, 2002]

4.6.3 Memory-based methods

Another methodology to approximate the value functions is the use of Memory-
based methods, also called Instance-based methods. In a memory-based func-
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Figure 4.8: Approximating the value space with a Memory-Based function
approximator.

tion approximator, each element of the memory represents a visited state or
state/action pair, which is also called a case. Elements contain the value of
the approximated function for the cases they represent. The memory is ini-
tialized with zero elements and is dynamically filled according to the visited
cases. To obtain the value for a particular case, which is not contained in
the memory, a set of neighbor cases are used. There are different techniques
to approximate this new value. The simplest technique is to use the value
of the nearest neighbor case. A more elaborate technique is to average the
values of the cases which are ”close”, called the neighbor cases. This average
is done according to the inverse of the distance between the new case and
the neighbor case. This means that the closest cases will affect more than
the ones farther away. This technique is called weighted average. Finally,
another technique is to fit a surface using all neighbor cases. Once the sur-
face is computed, the value for the new case is calculated. This technique is
called locally weighted regression.

Memory-based algorithms use some parameters or thresholds to define
how the memory is filled and how the approximation of new cases is per-
formed. The density parameter defines the maximum number of cases which
can be stored in the memory, see Figure 4.8. Every time a new case is pre-
sented, it will be stored if the euclidian distance to its nearest neighbor is
larger than the density threshold. A small density threshold produces a func-
tion approximator with high resolution but with large amounts of cases in
memory. The smoothing threshold defines the set of neighbors to be used to
approximate the value of a new case. When using a weighted average or a
locally weighted regression technique, cases will be considered as neighbors
if the distance to the new case is smaller than the smoothing threshold. A
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large smoothing threshold with respect to the density threshold, produces a
high number of neighbor cases which can slow down the approximation of
new cases. These two parameters determine the performance of memory-
based approximators. In addition, several weighting functions, regression
approaches, distance functions, and other aspects have to be taken into ac-
count. For a complete survey on memory-based function approximators refer
to [Atkenson et al., 1997].

RL algorithms use their update rules to modify the values of the neigh-
bor cases which influenced in the approximation of the state-value function,
V (s), or the action-value function, Q(s, a). Most of the approaches use the
action-value function. The convergence of memory-based approaches is not
guaranteed, although the generalization capability is very high. The main
disadvantage of memory-based approaches is the high computation required.
Each time a new estimation of the value function is required, the whole ap-
proximation process, with all the neighbor cases must first be performed.
Memory-based methods are also called lazy learning, since all the compu-
tation is not performed until a query has to be answered. In addition, as
it happened with the previous methodologies, in order to find a greedy ac-
tion, a finite set of actions must be evaluated, which again, implies an extra
computational cost. Despite these inconveniences, Memory-based function
approximation has been widely applied in RL. Some examples of its per-
formance on simulated tasks can be found in [Peng, 1995, McCallum, 1995,
Ormoneit and Sen, 2002]. Also, some approaches have demonstrated its ap-
plication on real robots [Smart, 2002, Millan et al., 2002]. Finally, the higher
suitability of a memory-based function approximator compared with CMAC
is stated in [Santamaria et al., 1998].

4.6.4 Artificial Neural Networks

The last described function approximators are Artificial Neural Networks
(NN). An NN is a parameterized function which can approximate the value-
function or the action-function. NN are basically compounded of a set of
neurons which become activated depending on some inputs values. The
activation level of a neuron generates an output according to an activation
function. Neuron outputs can be used as the inputs of other neurons. By
combining a set of neurons, and using some non-linear activation functions,
an NN is able to approximate any non-linear function. The overall NN also
has a set of inputs and a set of outputs. The inputs are connected to the first
layer of neurons and the outputs of the NN correspond to the outputs of the
last layer of neurons. A formal definition of NN can be found in Section 5.3,
and for an overview of NN refer to [Haykin, 1999].
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Figure 4.9: a) Approximating the state-value function with a Neural Net-
work. The state is composed of n variables. b) Implementation of the actor
function with a NN. The action is composed of m variables.

NN can be used to approximate the state-value function or the action-
value function. In the case of the state-value function, V (s), the network has
as inputs the number of continuous variables which compose the state and
as output the value of the state. In Figure 4.9a, the general implementation
of V (s) is shown. As described in Section 4.4.1, RL algorithms which work
with the value-function (the critic) usually require an actor containing the
optimal policy. According to the error committed by the critic, the policy
is updated. An NN can also be used to implement the actor. In this case,
the input of the NN is also the state, and the outputs are the number of
continuous variables which compose the action, Figure 4.9b.

One of the most important successes of Reinforcement Learning was
achieved by Tesauro, who used an NN to learn the state-value of the backgam-
mon game [Tesauro, 1992]. In this case, the actor was not implemented with
an NN since the rules of the game, which relate a state/action pair with
the next state, were known. The greedy action was extracted analyzing the
values of the next achievable states. The implementation of the actor-critic
method with an NN in a robotics application can be found in [Lin, 1993], and
also in [Gachet et al., 1994]. In the latter case, a similar actor-critic schema
was used to coordinate a set of robot behaviors.

A second use of NN is the approximation of the action-value function,
Q(s, a). One of the first implementations consisted of approximating only
the state space and using one NN for each discrete action [Lin, 1993]. The
inputs of the NN were the variables composing the state, and the output
was the Q value for the current state and for the action which the NN rep-
resented. This implementation, known as the QCON architecture, was also
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Figure 4.10: Implementation of the action-value function, Q(s, a) with a
NN. In (a) the QCON architecture is shown, and in (b) the direct Q learning
architecture is shown.

compacted in one NN which had as many outputs as the number of discrete
actions, see Figure 4.10a. The reason why the Q function was not directly
implemented was to reduce the space in which the NN had to generalize and,
therefore, to simplify the approximation. However, approaches using a di-
rect approximation of the Q function with an NN can also be found. In this
case, the inputs of the NN are the continuous variables of the state and the
action vectors, and the output is the Q(s, a) value, see Figure 4.10b. This
NN implementation combined with the Q learning algorithm is also known
as direct Q learning [Baird, 1995]. An application of this in a robotics task
can be found in [Hagen and Krose, 2000].

Despite the implementation aspects, an NN requires a learning algorithm
to adapt the approximated outputs to the desired ones. This adaptation
or learning is accomplished by modifying some weights which multiply the
inputs of each neuron. The update rules of RL algorithms are used to find the
error of the NN. After that, an NN learning algorithm distributes this error
to all the neurons and modifies the NN weights. The most popular algorithm
is the back-propagation algorithm, refer to Section 5.3.3. The combination
of a multi-layer NN and back-propagation results in a fast and powerful
algorithm which allows the approximation of any non-linear function. Other
NN schemas and learning algorithms can also be used. In [Touzet, 1997]
a neural implementation with a Self-Organizing Map for robotics tasks is
proposed. Moreover, a network of Radial Basis Functions is also considered
as an NN, which was briefly touched on in the previous section.

The convergence of an RL algorithm using a multi-layer Neural Net-
work cannot be guaranteed due to its non-linear approximation capability,
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refer to Section 4.6. In addition, multi-layer NN suffer from an important
problem which is known as the interference problem [Weaver et al., 1998,
Atkenson et al., 1997]. This problem is caused by the impossibility of gener-
alizing in a local zone of the entire space. The previously analyzed method-
ologies, decision trees, CMAC and memory-based approaches update only
the values of the active leaves, tiles or cases. These methods work locally.
However, when an NN learning algorithm updates the weights to change the
value of one state, the modification affects the entire space. It is said that,
”interference occurs when learning in one area of the input space causes un-
learning in another area” [Weaver et al., 1998]. In practice, a first solution
to avoid interference is to use the NN in a local area. This is the solution pro-
posed in the QCON architecture described above. Also, different NN schema
can be used. Radial Basis Functions and Self-Organizing Maps are local
NN, however, they have a smaller generalization capability than multi-layer
NN. A second solution is to learn from a well-distributed data set, which
assures the generalization over the entire space. This solution was adopted
by Tesauro in the backgammon application. However, in a robotics task, this
uniform data distribution cannot be obtained since the updated space area
depends on the robot trajectory.

Finally, NN suffer also from the computational cost of finding the greedy
actions. As happened with the three analyzed methodologies, the search of
a greedy action implies the evaluation of a set of discrete actions. In an NN,
this process requires less computation than memory-based approaches, but
more than in decision trees and CMAC. There is an approach called Wire
Fitting [Baird and Klopf, 1993] which allows a fast search of greedy actions.
An implementation of Wire Fitting and NN was proposed in [Gaskett, 2002]
to be used in robotics.

Neural Networks is one of the most used methodologies to approximate
the value functions in robotics [Gross et al., 1998, Hagen and Krose, 2000,
Maire, 2000, Gaskett, 2002, Buck et al., 2002]. In order to deal with the
interference problem, RL algorithms use NN locally, or uniformly update
the space. NN [Zhang and Dietterich, 1995, Bertsekas and Tsitsiklis, 1996,
Tesauro, 1992] has demonstrated a higher generalization capability than the
other methodologies. The approach presented in this thesis also uses an NN
to generalize the Q function. The Neural Q learning algorithm is comple-
mented with a database which contains a representative set of samples to
avoid the interference problem. The next chapter describes the proposed RL
algorithm.



Chapter 5

Semi-Online Neural-Q learning

This chapter contains the main research contribution of this thesis. It pro-
poses the Semi-Online Neural-Q learning algorithm (SONQL), an RL algo-
rithm designed to learn with continuous states and actions. The purpose
of the SONQL algorithm is to learn the state/action mapping of a reac-
tive robot behavior. The chapter concentrates on theoretically analyzing the
points taken into account in the design of this approach. The main features
of the algorithm are the use of a Neural Network and a database of learning
samples which stabilize and accelerate the learning process. The implemen-
tation of the algorithm in a reactive behavior is described. Results of the
SONQL algorithm will be shown in Chapter 7.

5.1 Reinforcement Learning based behaviors

Reinforcement Learning (RL) is a very suitable technique to learn in unknown
environments. Unlike supervised learning methods, RL does not need any
database of examples. Instead, it learns from interaction with the environ-
ment and according to a scalar value. As has been described in Chapter 4,
this scalar value or reward, evaluates the environment state and the last
taken action with reference to a given task. The final goal of RL is to find
an optimal state/action mapping which maximizes the sum of future rewards
whatever the initial state is. The learning of this optimal mapping or policy
is also known as the Reinforcement Learning Problem (RLP).

The features of RL make this learning theory useful for robotics. There
are parts of a robot control system which cannot be implemented without
experiments. For example, when implementing a reactive robot behavior, the
main strategies can be designed without any real test. However, for the final
tuning of the behavior, there will always be parameters which have to be

91



92 Chapter 5. Semi-Online Neural-Q learning

set with real experiments. A dynamics model of the robot and environment
could avoid this phase, but it is usually difficult to achieve this model with
reliability. RL offers the possibility of learning the behavior in real-time
and avoid the tuning of the behaviors with experiments. RL automatically
interacts with the environment and finds the best mapping for the proposed
task, which in this example would be the robot behavior. The only necessary
information which has to be set is the reinforcement function which gives the
rewards according to the current state and the past action. It can be said
that by using RL the robot designer reduces the effort required to implement
the whole behavior, to the effort of designing the reinforcement function.
This is a great improvement since the reinforcement function is much simpler
and does not contain any dynamics. There is another advantage in that an
RL algorithm can be continuously learning and, therefore, the state/action
mapping will always correspond to the current environment. This is an
important feature in changing environments.

RL theory is usually based on Finite Markov Decision Processes (FMDP).
The dynamics of the environment is formulated as a FMDP and the RL al-
gorithms use the properties of these systems to find a solution to the RLP.
Temporal Difference (TD) techniques are able to solve the RLP incrementally
and without knowing the transition probabilities between the states of the
FMDP. In a robotics context, this means that the dynamics existing between
the robot and the environment do not have to be known. As far as incremen-
tal learning is concerned, TD techniques are able to learn each time a new
state is achieved. This property allows the learning to be performed online,
which in a real system context, like a robot, can be translated to a real-time
execution of the learning process. The term ”online” is here understood as
the property of learning with the data that is currently extracted from the
environment and not with historical data.

Of all TD techniques, the best known and most used technique is the
Q learning algorithm proposed by Watkins in 1992 [Watkins and Dayan, 1992].
The advantages of this algorithm are its simplicity and the fact that it is an
off-policy method. For these reasons, which will be detailed in the next sec-
tion, Q learning has been applied to a huge number of applications. The RL
algorithm proposed in this dissertation was also based on Q learning.

The main problem of RL when applied to a real system is the generaliza-
tion problem, treated in Section 4.5. In a real system, the variables (states
or actions) are usually continuous. However, RL theory is based on FMDP,
which uses discrete variables. Classic RL algorithms must be modified to al-
low continuous states or actions, see Section 4.6. Another important problem
of RL when applied to real systems is the correct observation of the environ-
ment state. In a robotic system, it is usual to measure signals with noise or
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delays. If these signals are related to the state of the environment the learn-
ing process will be damaged. In these cases, it would be better to consider
the environment as a Partially Observable MDP, refer also to Section 4.5.

The approach presented in this thesis attempts to solve only the gener-
alization problem. As commented on above, the approach is based on the
Q learning algorithm and includes a Neural Network (NN) to generalize. NNs
are able to approximate very complex value functions, but they are affected
by the interference problem, as described in Section 4.6.4. To overcome this
problem, the presented approach uses a database of learning samples which
contains a representative set of visited states/action pairs which stabilizes
and also accelerates the learning process. The approach has been named
Semi-Online Neural-Q learning (SONQL). The next subsections will detail
each part of the SONQL algorithm and the phases to be found on its execu-
tion.

The combination of Reinforcement Learning with a behavior-based sys-
tem has already been used in many approaches. In some cases, the RL algo-
rithm was used to adapt the coordination system [Maes and Brooks, 1990,
Gachet et al., 1994, Kalmar et al., 1997, Martinson et al., 2002]. Moreover,
some researches have used RL to learn the internal structure of the behav-
iors [Ryan and Pendrith, 1998, Mahadevan and Connell, 1992, Touzet, 1997,
Takahashi and Asada, 2000, Shackleton and Gini, 1997] by mapping the per-
ceived states to control actions. The work presented by Mahadevan demon-
strated that the breaking down of the robot control policy in a set of behav-
iors simplified and increased the learning speed. In this thesis, the SONQL
algorithm was designed to learn the internal mapping of a reactive behavior.
As stated in Chapter 3, the coordinator must be simple and robust. These
features cannot be achieved with an RL algorithm since, if the data becomes
corrupted, the optimal policy can be unlearnt. Instead, RL can satisfactorily
learn a behavior mapping, which simplifies the implementation and tuning
of the algorithm. The chapter concludes with the implementation of the
SONQL algorithm in a reactive robot behavior.

5.2 Q learning in robotics

The theoretical aspects of the Q learning [Watkins and Dayan, 1992] algo-
rithm have been presented in Section 4.4.2. This section analyzes the ap-
plication of the algorithm in a real system such as a robot. Q learning is
a Temporal Difference algorithm and, like all TD algorithms, the dynamics
of the environment do not have to be known. Another important feature of
TD algorithms is that the learning process can be performed online. How-
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ever, the main advantage of Q learning with respect to other TD algorithms
is that it is an off-policy algorithm, which means that in order to converge
to an optimal state/action mapping, any policy can be followed. The only
condition is that all state/action pairs must be regularly visited.

The policy in an RL algorithm, indicates the action which has to be
executed depending on the current state. A greedy policy chooses the best
action according to the current state/action mapping; that is, the action
which will maximize the sum of future rewards. A random policy generates
an aleatory action independently of the state. An ε-greedy policy chooses
the greedy action with probability (1 − ε), otherwise it generates a random
action. The importance of the policy relapses in the explotation/exploration
dilemma.

Q learning can theoretically use any policy to converge to the optimal
state/action mapping. The most common policy is the ε-greedy policy which
uses random actions to explore and greedy actions to exploit. The off-policy
feature is a very important feature in a robotic domain, since, on occasion,
the actions proposed by the learning algorithm can not be carried out. For
example, if the algorithm proposes an action which would cause a collision,
another behavior with a higher priority will prevent it with the generation
of another action. In this case, Q learning will continue learning using the
action which has actually been executed.

Q learning uses the action-value function, Q, in its algorithm. TheQ(s, a)
function contains the discounted sum of future rewards which will be obtained
from the current state s, executing action a and following the greedy policy
afterwards. The advantage of using the action-value function resides in the
facility of extracting the greedy action from it. For the current state s, the
greedy action amax will be the one which maximizes the Q(s, a) values over
all the actions a. Consequently, when the Q learning algorithm converges to
the optimal action-value function Q∗, the optimal action will be extracted in
the same way. The simplicity of Q learning is another important advantage
in its implementation on a complex system such as a robot.

5.3 Generalization with Neural Networks

When working with continuous states and actions, as is costumary in robotics,
the continuous values have to be discretized in a finite set of values. If an
accurate control is desired, a small resolution will be used and, therefore, the
number of discrete states will be very large. Consequently, the Q function
table will also become very large and the Q-learning algorithm will require
a long learning time to update all the Q values. This fact makes the im-
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plementation of the algorithm in a real-time control architecture impractical
and is known as the generalization problem. There are several techniques to
combat this problem, as overviewed in Section 4.6.

In this thesis, a Neural Network (NN) has been used to solve the gen-
eralization problem. The main reason for using an NN was for its excellent
ability to approximate any nonlinear function, in comparison with the other
function approximators. Also, an NN is easy to compute and the required
number of parameters or values is very small. The strategy consists of us-
ing the same Q learning algorithm, but with an NN which approximates the
tabular Q function. The number of parameters required by the NN does not
depend on the resolution desired for the continuous states and actions. It
will depend only on the complexity of the Q function to be approximated. As
stated in Section 4.6.4, when generalizing with an NN, the interference prob-
lem destabilizes the learning process. This problem was taken into account
in the SONQL algorithm and will be treated in Section 5.4.

5.3.1 Neural Networks overview

A Neural Network is a function able to approximate a mathematical function
which has a set of inputs and outputs. The input and output variables are
real numbers and the approximated functions can be non-linear, according to
the features of the NN. Artificial Neural-Networks were inspired by the real
neurons found in the human brain, although a simpler model of them is used.
The basic theory of NN was widely studied during 1980s and there still are
many active research topics. For an overview of NN, refer to [Haykin, 1999].

One model frequently used in the implementation of an artificial neuron is
depicted in Figure 5.1. A neuron j located in layer l, has a set of inputs {yl−1

1 ,
yl−1

2 , ..., yl−1
p } and one output yl

j. The value of this output depends on these
inputs, on a set of weights {wl

j1, w
l
j2, ..., wl

jp} and on an activation function

ϕ(l). In the first computation, the induced local field vl
j of the neuron j, is

calculated by adding the products of each input yl−1
i by its corresponding

weight wl
ji. An extra input yl−1

0 is added to vl
j. This input is called the bias

term and has a constant value equal to 1. By adjusting the weight wl
j0, the

neuron can be activated even if the inputs are equal to 0. The local field vl
j is

then used to calculate the output of the neuron yl
j = ϕ(l)(vl

j). The activation
function has a very important role in learning efficiency and capability.

As mentioned above, neurons are grouped in different layers. The first
layer uses as neuron inputs {y0

0, y
0
1, ..., y0

in} the input variables of the NN.
This set of inputs is also called the input layer, although it is not a layer of
neurons. The second and consecutive layers use as neuron inputs the neuron
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Figure 5.1: Diagram of an artificial neuron j located at layer l.

outputs of the preceding layer. Finally, the last layer of the NN is the output
layer, in which each neuron generates an output of the network. All the
neuron layers preceding the output layer are also called the hidden layers,
since the neuron output values are not seen from the outside nor are they
significant. The learning process in an NN consists of adapting the weights of
the network until the output is equal to a desired response. An NN algorithm
has the goal of indicating the procedure to modify the values of these weights.

Different network architectures can be found according to the connec-
tions among the neurons. Feed-forward networks have the same structure
as described previously. Neuron inputs always proceed from a preceding
layer, and signals are always transmitted forward ending at the output layer.
Other kinds of architectures are recurrent networks. In this case, a feedback
loop connects neuron outputs to the inputs of neurons located in a preced-
ing layer. It is also possible to connect the output of one neuron to its own
input, in which case it would be a self-feedback. Recurrent networks have a
higher learning capability and performance, although they show a nonlinear
dynamical behavior. Besides the signal transmission, NNs are also classified
according to the number of layers. Single-layer networks have only one layer
of neurons, the output layer, and are very suitable for pattern classification.
On the other hand, multilayer networks have usually one or two hidden layers
plus the output layer. Multilayer networks are able to learn complex tasks
by progressively extracting more meaningful features from the NN inputs.

5.3.2 Neural Q learning

In order to approximate the Q function, a feed-forward multilayer neural
network has been used. This architecture allows the approximation of any
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Figure 5.2: Graph of the multilayer NN which approximates the Q function.
In this case, two hidden layers are used. The input layer is composed of the
states and the actions. The output layer has only one neuron which contains
the Q value for the current input values.

nonlinear function assuming that the number of layers and neuron, and the
activation functions are appropriated. The input variables of the NN are the
environment states and the actions, which have n and m dimensions respec-
tively. The output of the network has only one dimension and corresponds to
the Q value for the current states and actions. The number of hidden layers
will depend on the complexity of the Q function. Figure 5.2 shows a schema
of the network.

The use of Neural Networks in the Q learning algorithm is known as
Neural-Q learning (NQL). There are several approaches in which NN can be
applied, as commented on Section 4.6.4. In particular, the approximation
of the Q function using a feed-forward NN is known as direct Q learning
[Baird, 1995]. This is the most straight-forward approach since the whole
function is approximated in only one NN. This implementation is affected
by the interference problem, which will be treated in the next section. The
technique used to learn the Q function is the back-propagation algorithm.
This algorithm uses the error between the output neuron and the desired
response to adapt the weights of the network.

To compute the desired response of the NN, the update equation of
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Q learning algorithm is used. As detailed in the previous section, the Q

value for a given state and action is equal to Equation 5.1. This means that
the desired response of the NN has to be equal to Equation 5.1 and the
committed error will be used to update the weights of the network.

Q(st, at) = rt+1 + γ ·maxamax
Q(st+1, amax) (5.1)

As can be seen, the computation of Equation 5.1 requires the use of the
same NN to calculate Q(st+1, amax). In order to find the action amax, which
maximizes the Q value for state st+1, a simple strategy is used. The action
space is discretized in a set of actions according to the smallest resolution
distinguished in the environment . For each action, the Q value is computed
and the maximum Q value is used. If the SONQL algorithm is applied in
a task in which there is only one continuous action, the computational cost
associated with the searching of amax does not represent a problem. However,
if more continuous actions are present, the required time can increase appre-
ciably and the feasibility of the algorithm decreases. As will be described
in Section 5.7, the SONQL algorithm is used to learn a reactive behavior
which can have multiple continuous states and one continuous action for
each DOF of the robot. The behavior uses one SONQL algorithm for each
DOF and therefore, the computational cost of searching the amax action will
not represent any problem.

It is very important to note that two different learning processes are
simultaneously in execution and with direct interaction. First of all, the
Q learning algorithm updates the Q values in order to converge to the opti-
mal Q function. On the other hand, the NN algorithm updates its weights
to approximate the Q values. While the Q function is not optimal, both pro-
cesses are updating the weights of the network to fulfill its learning purposes.
It is clear that the stability and convergence of the NQL algorithm can be
seriously affected by this dual learning. The next section will focus on this
issue.

Finally, Equation 5.1 shows that the necessary variables to update the
Neural-Q function are the initial state st, the taken action at, the received
reward rt+1 and the new state st+1. These four variables (the states and
actions can be multidimensional) constitute a learning sample. This term
will be used in the following subsections.

5.3.3 Back-propagation algorithm

The learning algorithm applied to the NQL is the popular back-propagation
algorithm, refer to [Haykin, 1999]. This algorithm has two important phases.
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In the forward phase, an input vector is applied to the input layer and its
effect is propagated through the network layer by layer. At the output layer,
the error of the network is computed. In the backward phase, the error is
used in an error-correction rule to update the weights of the network starting
in the output layer and ending in the first hidden layer. Therefore, the error
is propagated backwards.

The correction rule used to update a weight w
(l)
ji is based on different

aspects. A first term is the local gradient δ
(l)
j which is influenced by the

propagated error and the derivative of the activation function. The derivative
is calculated for the induced local field v

(l)
j computed in the forward phase.

The derivative represents a sensitivity factor which determines the direction
of search in the weight space. The second term is the output signal y

(l−1)
i

transmitted through the weight. The final term is the learning rate α which
determines the learning speed. If a small rate is used, the convergence of the
NN to the desired function will require many iterations. However, if the rate
is too large, the network may become unstable and may not converge. For a
more detailed comprehension of back-propagation refer to Algorithm 3. The
algorithm has been adapted to the NQL network and uses as input a learning
sample k.

The activation function determines the capability of learning nonlinear
functions and guarantees the stability of the learning process. The activation
function that in the hidden layers is a sigmoidal function, in particular the
hyperbolic tangent function. This function is antisymmetric and accelerates
the learning process. The equation of this function can be seen in Algorithm 3
and Figure 5.3 shows its graph. The reason why sigmoidal functions are
generally used in neural networks is for its derivative. The maximum of
a sigmoidal derivative is reached when the local field is equal to 0. Since
the weight change depends on this derivative, its maximum change will be
performed when the function signals are in their midrange. According to
[Rumelhart et al., 1986] this feature contributes to stability. The activation
function of the output neuron is a linear function. This permits the Q

function to reach any real value, since sigmoidal functions become saturated
to a maximum or minimum value.

A final aspect taken into account is the weight initialization. This opera-
tion is done randomly but the range of values of this random function is very
important. For a fast convergence, it is preferred that the activation function
operate in the non-saturated medium zone of its graph, see Figure 5.3. To
operate in this range, the number of inputs of each neuron and the maximum
and minimum values of these inputs has to be known. Therefore, according
to these parameters, the maximum and minimum values in which a weight
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Algorithm 3: Back-propagation algorithm adapted to NQL.

1. Initialize the weights w
(l)
ji randomly

2. For each learning sample k, composed by:
{st(k), at(k), st+1(k), rt+1(k)}

Repeat:
(I) Forward computation

For each neuron j of each layer l, compute:
a) the induced local field

v
(l)
j (k) =

nn(l−1)
∑

i=0

w
(l)
ji y

(l−1)
i (k)

where, nn(l − 1) is the number of neurons of layer l − 1

b) the output signal y
(l)
j (k)

y
(l)
j (k) = ϕ(l)(v

(l)
j (k))

where, ϕ(l)(x) is the activation function of layer l, and corresponds to,
- hyperbolic tangent in hidden layers: ϕ(x) = 1.7159tanh(0.6667x)
- linear function in the output layer: ϕ(x) = x

(II) Error computation
a) the output of the NQL is found in the last layer L :

NQL(st(k), at(k)) = y
(L)
1 (k)

b) the desired NQL response d(k) is:
d(k) = rt+1(k) + γ ·maxamax

NQL(st+1(k), amax)
c) and the error is:

e(k) = d(k)−NQL(st(k), at(k))
(III) Backward computation

a) compute the local gradient of the output neuron:

δ
(L)
1 (k) = e(k)ϕ′

L(v
(L)
1 (k))

where, ϕ′

L is the derivative of ϕ and it is equal to 1 (as ϕ(x) = x)
b) For the rest of the neurons, starting from the last hidden layer,
compute the local gradient:

δ
(l)
j (k) = ϕ′

l<L(v
(l)
j (k))

∑

i

δ
(l+1)
i (k)w

(l+1)
ij

where, ϕ′

l<L is equal to: ϕ(x)′ = 1.1439(1− tanh2(0.6667x))
c) For all the weights of the NQL, update its value according to:

w
(l)
ji = w

(l)
ji + αδ

(l)
j (k)y

(l−1)
i (k)
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Figure 5.3: Sigmoidal function used as the activation function of the hid-
den layers. In particular, the function is antisymmetric with the form of a
hyperbolic tangent.

can be initialized is calculated. The weight initialization implies that the
maximum and minimum values of the input network signals must be known.
As these signals are the state and action, which depend on the problem to be
solved by reinforcement learning, a normalization, from -1 to 1, must be ap-
plied beforehand. Using this normalization, the weight initialization process
will not change if the NQL algorithm is applied in different problems.

5.4 Semi-Online Learning

The previous section presented the Neural-Q learning approach, also known
as direct Q-learning. This approach has already been analyzed [Baird, 1995],
and demonstrated as being unstable in simple tasks. Therefore, the conver-
gence of Neural-Q learning is not guaranteed and will depend on the appli-
cation. This instability has also been verified in a well-known generalization
problem, refer to Section 7.2. As will be described, the algorithm was not
able to converge in a considerable percentage of the experiments.

The problem Neural Networks have when used to generalize with an RL
algorithm is known as the interference problem, see Section 4.6.4. Interfer-
ence in NN occurs when learning in one zone of the input space causes loss
of learning in other zones. It is specially prevalent in online applications
where the learning process is done according to the states and actions vis-
ited rather than with some optimal representation of all the training data
[Weaver et al., 1998]. The cause of this problem is that two learning pro-
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cesses are actuating at the same time and each process is based on the other.
Q learning uses the NN to update the Q values and the NN computes the er-
ror of the network according to Q learning the algorithm. This dual learning
makes the NQL algorithm very unstable, as has been shown. An important
problem is that each time the NN updates the weights, the whole function
approximated by the network is slightly modified. If the NQL algorithm
updates the network using learning samples, which are all located in the
same state/action zone, the non-updated state/action space will be also be
affected. The result is the state/action zones which have been visited and
learnt are no longer remembered. If the NQL algorithm is updating dif-
ferent state/action zones but with no homogeneity, the interaction between
Q learning and the NN can cause instability.

The solution to the interference problem is the use of a Network which
acts locally and assures that learning in one zone does not affect other zones.
Approaches with Radial Basis Functions have been proposed to this end
[Weaver et al., 1998], however, this implies abandoning the high generaliza-
tion capability of a multilayer NN with back-propagation. The solution used
in this thesis proposes the use of a database of learning samples. This so-
lution was suggested in [Pyeatt and Howe, 1998], although to the author’s
best knowledge, there are no proposals which use it. The main goal of the
database is to include a representative set of visited learning samples, which
is repeatedly used to update the NQL algorithm. The immediate advantage
of the database, is the stability of the learning process and its convergence
even in difficult problems. Due to the representative set of learning sam-
ples, the Q function is regularly updated with samples of the whole visited
state/action space, which is one of the conditions of the original Q learning
algorithm. A consequence of the database is the acceleration of the learn-
ing. This second advantage is most important when using the algorithm in
a real system. The updating of the NQL is done with all the samples of the
database and, therefore, the convergence is achieved with less iterations.

It is important to note that the learning samples contained in the database
are samples which have already been visited. Also the current sample is al-
ways included in the database. The use of the database changes the concept
of online learning which Q learning has. In this case, the algorithm can
be considered as semi-online, since the learning process is based on current
as well as past samples. For this reason the proposed reinforcement learn-
ing algorithm has been named Semi-Online Neural-Q learning algorithm
(SONQL).

Each learning sample, as defined before, is composed of the initial state
st, the action at, the new state st+1 and the reward rt+1. During the learning
evolution, the learning samples are added to the database. Each new sam-
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Figure 5.4: Representation of the learning sample database. The state and
action have only one dimension. The replacement rule for all the old samples
is also shown.

ple replaces older samples previously introduced. The replacement is based
on the geometrical distance between vectors (st, at, rt+1) of the new and old
samples. If this distance is less than a density parameter t for any old sam-
ple, the sample is removed from the database. The size of the database is,
therefore, controlled by this parameter which has to be set by the designer.
Once the algorithm has explored the reachable state/action space, a homoge-
neous, and therefore, representative set of learning sample is contained in the
database. Figure 5.4 shows a representation of the learning samples database
in a simple case in which the state and action are only one-dimensional.

The selection of st, at and rt+1 to determine if an old learning sample
has to be removed has several reasons. The use of only st and at, and not
st+1 is due to the assumption that the dynamic of the environment is highly
deterministic. Therefore, it is assumed that if two samples have the same st

and at values, but different st+1, it means that the environment may have
changed. It is preferable then to remove the old sample and retain the new
sample which should be more representative of the environment. Since the
application of the SONQL algorithm is for robot learning, it is assumed that
the stochastic transition which may occur is not significative. Finally, the
use of rt+1 is only to acquire more samples in the space zones in which the
reward changes. If st and at of the old and new samples are very close but
the reward is different, it is important to retain both samples. This will allow
to the algorithm to concentrate on these samples and learn the cause which
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make the reward different.

After including the database of learning samples, the difference between
a NQL iteration and a SONQL iteration must be distinguished. In each iter-
ation of the SONQL algorithm there will be as many NQL iterations as the
number of samples. Moreover, the number of SONQL iterations is equiva-
lent to the number of interactions with the environment. This justifies the
learning acceleration, since for each environment interaction, the SONQL al-
gorithm updates the NQL function several times. Finally, the improvements
caused by the database have not been theoretically demonstrated, although
this section has attempted to justify them. Only empirical results, see Chap-
ter 7, validate the proposal.

5.5 Action Selection

After updating the Q function with the learning samples, the SONQL al-
gorithm must propose an action. As the algorithm is based on Q learning,
which is an off-policy algorithm, any policy can be followed. In practice, the
policy followed is the ε− greedy policy, which was described in Section 5.2.
With probability (1 − ε), the action will be the one which maximizes the
Q function in the current state st+1. Otherwise, an aleatory action is gen-
erated. Due to the continuous action space in the Neural-Q function, the
maximization is accomplished by evaluating a finite set of actions. The ac-
tion space is discretized with the smallest resolution that the environment
is able to detect. In the case of a robot, the actions would be discretized
in a finite set of velocity values considered to have enough resolution for the
desired robot performance. As commented in Section 5.3.2, if more than one
action is present, the search of the optimal action can require a lot of com-
putation. In that case, the search of the greedy action is necessary to obtain
the Q(s, amax) value. The search of the greedy action is one of the drawbacks
of continuous functions, as pointed out in [Baird and Klopf, 1993]. However,
the SONQL algorithm was designed to learn only one DOF of the robot
and, therefore, this problem is avoided in the results presented in this thesis.
Section 5.7 details the application of the SONQL algorithm.

5.6 Phases of the SONQL Algorithm

In this section, the Semi-Online Neural-Q learning algorithm is broken down
in a set of phases. This break down allows a clearer comprehension of the
algorithm. Each phase is used to fulfill a simple task of the algorithm. The
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algorithm is structured sequentially starting with the observation of the envi-
ronment state and finishing with the proposal of a new action. The SONQL
algorithm is divided into four different phases which are graphically shown
in Figure 5.5.

Phase 1. LS Assembly. In the first phase, the current Learning Sample
(LS) is assembled. The LS is composed of the state of the system st,
the action at taken from this state, the new state st+1 reached after
executing the action, and the reward rt+1 received in the new state.
The action will usually be the one generated in the fourth phase of this
algorithm. However, in some applications an external system can mod-
ify the executed action. For instance, in the control architecture pro-
posed in Section 3.2, the action proposed by a higher priority behavior
can be selected instead of the one proposed by the SONQL algorithm.
Therefore, the real executed action must be observed. The last term
to complete the learning sample is the reward rt+1. Although in the
original RL problem the reward is perceived from the environment, in
this approach it has been included as a part of the algorithm. However,
it is computed according to a preprogrammed function which usually
uses the state st+1. This function has to be set by the programmer,
and will determine the goal to be achieved.

Phase 2. Database Update. In the second phase, the database is up-
dated with the new learning sample. As has been commented on, old
samples similar to the new one will be removed. Therefore, all the
samples contained in the database will be compared with the new one.

Phase 3. NQL Update. The third phase consists of updating the weights
of the NN according to Algorithm 3. For each sample of the database,
an iteration of the NQL algorithm with the back-propagation algorithm
is performed.

Phase 4. Action Selection. The fourth and final phase consists of propos-
ing a new action at+1. The policy followed is the ε− greedy, which was
described in Section 5.5.

5.7 SONQL-based behaviors

After having analyzed the SONQL algorithm, this section shows the appli-
cation for which it was designed. The goal of the SONQL algorithm is to
learn the state/action mapping of a reactive behavior, as introduced in Sec-
tion 3.1. An example of a reactive behavior is the target following behavior.
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5.7 SONQL-based behaviors 107

In this case, the goal of the behavior is to generate the control actions which,
according to the position of the target, make the robot follow the target.
In this kind of application, the states and actions are usually continuous,
which causes the generalization problem. The use of the SONQL algorithm
permits the learning of the state/action mapping solving the generalization
problem. The SONQL algorithm makes Reinforcement Learning feasible for
this application.

The implementation of the reactive behavior with the SONQL algorithm
implies the accomplishment of an important condition. The behavior has to
generate a control action at the frequency of the high-level controller. This
means that the SONQL algorithm cannot stop the periodic execution of the
robot control system. To guarantee this constraint, the SONQL algorithm
is implemented with two different execution threads. The control thread has
a high priority and is executed at the frequency of the high-level controller.
This thread computes phases 1, 2 and 4 of the SONQL algorithm, that is
the ”LS assembly”, the ”database update” and the ”action selection”. These
phases do not require a great deal of computation and are used to memorize
the new learning sample and to generate a new control action. The second
thread is the learning thread, which contains phase 3 and requires more
computation. This thread has a lower priority and will be executed during
all the available time until all the samples of the database have been updated.
Therefore, the available computational resources will be used to update the
NQL function. Figure 5.6 shows the SOQNL algorithm arranged with these
two threads.

As in all Reinforcement Learning problems, the application of the SONQL
algorithm in a behavior implies the identification of the environment. Every-
thing external to the algorithm having an influence over the observed state
is considered as the environment. The observed state will depend on the
current state and the executed control action. This action is generated by
the hybrid coordinator which can or cannot use the action proposed by the
SONQL algorithm. For this reason, and taking advantage of the off-policy
feature of Q learning, this final action is feedback to the SONQL algorithm,
see Figure 5.7. Once the final action has been generated, the low-level con-
troller will actuate over the robot which will move accordingly. These sys-
tems are considered as the environment of the RL problem. Also, included in
the environment, a perception module will be responsible for observing the
environment state which will, in turn, be sent to the SONQL algorithm.

It is very important to note that the Q learning theory is based on the
assumption that the environment can be modelled with a FMDP. The most
important constraint of this assumption is that the state contains a com-
plete observation of the environment. Therefore, the state must contain all
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Figure 5.7: Diagram of the SONQL algorithm acting as a behavior, respect
to the robot control system.

the variables needed to predict the new state without using past information.
An easy mistake when applying RL to a real system is to not provide the com-
plete state, which breaks the theoretical assumptions and makes the learning
impossible. It is also very common to not observe the state correctly and
this also impedes the learning. The importance of the correct observation
of the Markovian state is one of the biggest problems of RL together with
the generalization problem. This issue will be covered in the experimental
results shown in Chapter 7.

As has been described, the implementation of the reactive behaviors can
be accomplished using the SONQL algorithm, which contains the state/action
mapping. However, a behavior response, as defined is Section 3.2, is also com-
posed by an activation level. The SONQL algorithm does not include this
activation level, and has to be manually implemented. For example, in the
case of the target following behavior, the activation level will be ai = 1 if the
target is detected, otherwise it will be ai = 0. Therefore, the implementa-
tion of a SONQL-based behavior requires the definition of the reinforcement
function and the activation level function.

Another implementation aspect is the uncoupling of the degrees of free-
dom (DOF) of the robot. For each DOF of the robot, an independent
SONQL algorithm is used. This greatly improves the real-time execution
of the SONQL algorithm. The searching of the amax action is accomplished
by discretizing the action space. If more than one action is present, the num-
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ber of combinations will be very high and the algorithm will need a number
of computations to find the greedy action. It must be noted that, this greedy
action has to be found in the fourth phase of the algorithm and for each learn-
ing sample learnt in phase two. The use of more than one action with the
SONQL algorithm is an important problem to ensure the real-time execution
of the algorithm. The adopted solution consists of having a different SONQL
for each DOF with each one is independently learnt. This could be a disad-
vantage. However, the simultaneous learning of two DOFs in practice would
make the correct observation of the Markovian state very difficult, as will be
shown in Section 7.1. This means that the limitation of the SONQL algo-
rithm with multiple actions is not a basic necessity in most robotics tasks.
Figure 5.8 shows an example of the behavior-based control layer in which
there are two SONQL-based behaviors and two manually tuned behaviors.
Two different learning algorithms have been used for each SONQL behavior.

As already commented on, the state has to contain all the necessary vari-
ables to predict the new state. It is very important to simplify the state
information as much as possible. For example, the target following behavior
will need the position of the target with respect to the robot. If the target is
detected through a video camera, it is necessary to reduce the pixel informa-
tion to a simple value. For each DOF, this value is calculated according to the
position of the target in the image or the size of the target. Figure 5.9 shows
how the target position has been translated in three variables {fx, fy, fz}.

Finally, the reinforcement function must be designed in order to point
out the goal of the behavior. Although any reward value can be assigned to
a state, only a finite set of values are used in the SONQL-based behaviors:
{−1, 0, 1}. Figure 5.9 shows the reinforcement functions {rx, ry, rz} for each
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DOF. The simplicity of the function reduces the necessary knowledge of the
designer to implement a new behavior. Section 7 demonstrates the facility
and feasibility of this reinforcement function definition.

5.8 Discussion

The proposed SONQL algorithm has been demonstrated to be a feasible
approach to learn each DOF of a robot behavior. The experimental results
will be analyzed in Chapter 7. However, it is important to summarize the
theoretical aspects in which this approach is based. The SONQL is based on
Q learning and uses a Neural Network and a database of learning samples
to solve the generalization problem. The use of Q learning is because its
learning procedure is off-policy. Another feature is that it uses the action-
value function, Q, from which the optimal policy is easy to extract. The
reason a Neural Network was used is for its high generalization capability.
However, these two components, Q learning and NN, contradict some of
the convergence proofs explained in Section 4.6. First, the convergence of
linear approximators combined with off-policy methods is not guaranteed.
Indeed, there are counterexamples which show the divergence. In addition,



112 Chapter 5. Semi-Online Neural-Q learning

NN is a non-linear function approximator for which the convergence is also
not guaranteed. The large number of successful examples which have been
demonstrated in practice are the only reasons to justify the selection of these
techniques.

Besides convergence proofs, Neural Networks suffer from the interference
problem when they are used as function approximators with RL algorithms
as explained in Section 4.6.4. To solve this problem, the SONQL algorithm
uses the database of learning samples. The goal of this database is to ac-
quire a representative set of samples,which continually update the NN. The
homogeneity which the database provides is able to solve the interference
problem. In addition, this database accelerates the learning process since
several updates can be performed at each environment iteration.

The main drawback of the SONQL algorithm is the searching of greedy
actions. As has been described in Section 5.5, greedy actions are found by
discretizing the action space. From a control point of view, this is not a
problem if the discretization is fine enough. However, the necessary compu-
tation increases if several continuous actions are present. This problem does
not appear in the implementation of the SONQL algorithm in a reactive be-
havior. For each DOF of the robot, an independent SONQL algorithm is
used. Since the main goal of this approach was to design an RL algorithm
able to learn robot behaviors, this drawback was not considered, although it
represents one of the future works of this dissertation.

Finally, the use of the SONQL in a behavior requires the definition of
a set of parameters: the NN configuration (number of layers and neurons),
the learning rate α, the discount factor γ, the exploration probability ε, the
database density parameter t, the reinforcement function ri(s) and the acti-
vation level function ai. Also, the goal to be accomplished by the behavior
has to be analyzed, assuring that the state is completely observed. A first
conclusion of the SONQL-based behaviors could induce a very complex tech-
nique for solving a much simpler problem. However, it has to be noted that
most of these parameters will depend on the robot’s dynamics and, there-
fore, they will be equal for other behaviors. These invariant parameters are:
the NN configuration (number of layers and neurons), the learning rate, the
discount factor, the exploration probability and the database density param-
eter. Consequently, the implementation of a new behavior will require only
the design of the reinforcement function, the activation level function and
the analysis of the behavior task. These two functions, as has been shown,
are very simple and intuitive.



Chapter 6

URIS’ Experimental Set-up

The experimental set-up designed to work with the Autonomous Underwa-
ter Vehicle URIS is compounded of a water tank, two sensory systems, a
distributed software application and the robot itself. The overall set-up is
shown in Figure 6.1. The correct operation of all these systems in real-time
computation allows the experimentation and, therefore, the evaluation of the
proposed SONQL behaviors and hybrid coordination system. The purpose
of this chapter is to report the characteristics of these systems and their in-
teractions. First, the main features of the robot are given. These include the
design principles, the actuators and the on board sensors. The two sensory
systems, specially designed for these experiments, are then presented. The
first of these systems is the target detection and tracking system. The second
is the localization system which is used to estimate the three-dimensional po-
sition, orientation and velocity of the vehicle inside the water tank. Finally,
the software architecture, based on distributed objects, is described.

6.1 Robot Overview

Underwater Robotic Intelligent System is the meaning of the acronym URIS.
This Unmanned Underwater Vehicle (UUV) is the result of a project started
in 2000 at the University of Girona. The main purpose of this project was
to develop a small-sized underwater robot with which to easily experiment
in different research areas like control architectures, dynamics modelling and
underwater computer vision. Another goal of the project was to develop an
Autonomous Underwater Vehicle (AUV) with the required systems, hardware
and software as the word autonomous implies. Other principles are flexibility
in the tasks to be accomplished and generalization in the developed systems.

113
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Figure 6.1: URIS’ experimental environment.

6.1.1 Design

The design of this vehicle was clearly influenced by its predecessor Garbi UUV
[Amat et al., 1996], although some mechanical features were redesigned. The
shape of the vehicle is compounded of a spherical hull surrounded by various
external elements (the thrusters and camera sensors). The hull is made of
stainless steel with a diameter of 350mm, designed to withstand pressures
of 3 atmospheres (30 meters depth). On the outside of the sphere there
are two video cameras (forward and down looking) and 4 thrusters (2 in X

direction and 2 in Z direction). All these components were designed to be
water-proof, with all electrical connections made with protected cables and
hermetic systems. Figure 6.2 shows a picture of URIS and its body fixed
coordinate frame. Referred to this frame, the 6 degrees of freedom (DOFs)
in which a UUV can be moved are: surge, sway and heave for the motions in
X, Y and Z directions respectively; and roll, pitch and yaw for the rotations
about X, Y and Z axes respectively.

URIS weighs 30 Kg., which is approximately equal to the mass of the
water displaced and, therefore, the buoyancy of the vehicle is almost neutral.
Its gravity center is in the Z axis, at some distance from below the geometrical
center. The reason for this is the distribution of the weight inside the sphere.
The heavier components are placed at the bottom. This difference between
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Figure 6.2: URIS’ AUV, a) picture b) schema.

the two centers entails a stability in both pitch and roll DOFs. The further
down the gravity center is, the higher the torque which has to be applied
in the X or Y axes to incline the robot a certain value in roll or pitch,
respectively.

The movement of the robot is accomplished by its 4 thrusters. Two of
them, labelled X1 and X2 in Figure 6.2b, exert a force in X axis and a torque
in Z axis. The resultant force of both trusters is responsible for the surge
movement of the vehicle, and the resultant torque is responsible for the yaw
movement. Analogously, the other two thrusters, Z1 and Z2, exert a force
in Z axis and a torque in Y axis. The resultant force is responsible for the
heave movement of the vehicle, and the resultant torque is responsible for
the pitch movement. In this case, the pitch movement is limited to only a
few degrees around the stable position, since the gravity and buoyancy forces
cause a high stabilization torque compared to that of the thruster. Therefore,
only 4 DOFs can be actuated leaving the sway and roll movements without
control. Like the pitch DOF, the roll DOF is stabilized by the gravity and
buoyancy forces. The sway movement is neither controlled nor stabilized by
any force, which makes it sensitive to perturbations like water currents or
the force exerted by the umbilical cable. Hence, URIS is a nonholonomic
vehicle.

The inside of the hull was arranged to contain all the necessary equip-
ment for an autonomous system. First of all, the lower part of the sphere
contains various battery packages conceived to power the vehicle for a period
of one hour. A second level, above the batteries, contains the drivers of the 4
thrusters. Some electronic boards, mainly sensor interfaces, are also included
in this level. In the third level, all the hardware components and electrical
connections among all systems is found. The hardware architecture is com-
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pounded of two embedded computers. One computer is mainly in charge of
the control of the robot and the other is used for image processing and other
special sensors. The communication between computers is done through
an ethernet network and the communication between these computers and
sensors/actuators is done through other interfaces: serial lines, analog and
digital inputs and outputs, and video frame grabbers. All these devices, ex-
cept the thruster drivers, are powered by a DC-DC converter which supplies
different voltages. The thruster drivers are directly powered by some battery
packages specifically used for that purpose.

Besides the systems located in the robot, URIS’ experimental set-up is
also compounded of external systems, making some kind of connection in-
dispensable. For this purpose, an underwater umbilical cable is used. Three
different types of signals are sent through this cable. First, two power signals
are sent to the robot to supply the power for the thrusters and the power for
all the electronics independently. The second type of signal is an ethernet
connection, connecting the on-board and off board computers. Finally, two
video signals from the two on board cameras are also transmitted. Different
reasons justify the use of this umbilical cable. First, the use of external bat-
teries increases the operation time of the robot up to the whole journey. The
second reason is to help in the understanding of the experiments, allowing a
real-time supervision of them through data and video monitoring. The third
reason is to allow the computation of a part of the software architecture out
board, such as the target tracking (Section 6.2) and the localization system
(Section 6.3). The first and second reasons are aids in the development of any
new experiment. The third reason allows us to confront some technological
problems using external hardware and computational resources.

6.1.2 Actuators

As commented on above, URIS has four actuators to move the vehicle in four
DOFs. Each actuator or thruster is equipped with a DC motor, encapsulated
in a waterproof hull and connected, through a gear, to an external propeller.
Around the propeller, a cylinder is used to improve the efficiency of the water
jet. The power of each thruster is 20 Watts carrying out a maximum thrust
of 10 Newtons at 1500 rpms. The control of the DC motor is accomplished
by a servoamplifier unit. This unit measures the motor speed with a tacho-
dynamo and executes the speed control according to an external set-point.
The unit also monitors the values of the motor speed and electric current.
Communication between the onboard computer and each motor control unit
is done through analog signals.
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6.1.3 Sensors

The sensory system is one of the most important parts in an autonomous
robot. The correct detection of the environment and the knowledge of the
robot state, are very important factors in deciding how to act. URIS has a
diverse set of sensors. Some of them are used to measure the state of the robot
and others to detect the environment. Hereafter the main characteristics and
utility of each sensor are commented upon.

• Water Leakage Detection. In order to detect any water leakage,
there are several sensors which use the electric conductivity of the water
to detect its presence. These sensors are located inside each thruster
case as well as inside the lower part of the hull. Any presence of water
is immediately sited before valuable systems can be damaged. The
interface of the sensors is through digital signals.

• Thruster monitors. As commented on in Section 6.1.2, each thruster
is controlled by a control unit which monitors the thruster’s rotational
speed and its electric current. These two analog measures can be used
to detect faults. For instance, if the current is much higher or much
lower than in normal conditions, it may mean that the helix has been
blocked or has been lost. In addition, knowledge of the thruster speeds
can be used to calculate the thrust and, using the dynamics model of
the vehicle , to estimate the acceleration, velocity and position of the
vehicle. Obviously, the inaccuracies of the model, the external pertur-
bations and drift of the estimations would entail to a rough prediction,
but combining it with another navigation sensor, a more realistic esti-
mation can be obtained.

• Inertial Navigation System. An inertial unit (model MT9 from
Xsens) is also placed inside the robot. This small unit contains a 3D
accelerometer, a 3D rate-of-turn sensor and a 3D earth-magnetic field
sensor. The main use of this sensor is to provide accurate real-time ori-
entation data taken from the rate-of-turn sensor. The accelerometers
and the earth-magnetic field sensors provide an absolute orientation
reference and are used to completely eliminate the drift from the inte-
gration of rate-of-turn data. From this sensor then, the roll, pitch and
yaw angles can be obtained. The interface with the sensor is through
the serial line.

• Pressure sensor. This sensor measures the state of the robot. In
this case, the pressure detected by the sensor provides an accurate
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measurement of the depth of the robot. Due to the electromagnetic
noise, the sensor signal needs hardware and software filtering and also
data calibration.

• Forward and Downward looking video cameras. Unlike previ-
ous sensors, the video cameras provide detection of the environment.
URIS has two water-proof cameras outside the hull. One of them is
a color camera looking along the positive X axis, see Figure 6.2. The
use of this camera is to detect targets, as will be shown in Section 6.2.
Another use is for teleoperation tasks. The second camera is a black-
and-white camera looking along the positive Z axis. The main utility of
this camera is the estimation of the position and velocity of the vehicle.
For this purpose, two different approaches have been considered. In the
first approach, the motion estimation is performed from images of the
real underwater bottom using visual mosaicking techniques. This lo-
calization system is one of the research lines of the underwater robotics
group [Garcia et al., 2001]. The second approach was inspired by the
first and was developed to work specifically in the URIS experimental
set-up. It is a localization system for structured environments based
on an external coded pattern. For further information on both systems
refer to Section 6.3.

• Sonar transducer. This sensor is used to detect the environment.
The sonar transducer (Smart sensor from AIRMAR) calculates the dis-
tance to the nearest object located in the sonar beam. The transducer
is placed outside the hull looking in the direction in which objects have
to be detected. A typical application is to point the beam at the bot-
tom to detect the altitude of the vehicle. The interface of this sensor
is through a serial line.

The sensors used in the experiments presented in this dissertation are
the water leakage sensors and the two video cameras. The following sections
detail the computer vision systems which were developed to extract useful
information from the camera images. The forward looking camera was used
to detect a moving target in the environment, and the downward looking
camera to estimate the state (position and velocity) of the robot inside the
water tank.

6.2 Target Tracking

One of the sensory systems developed for the experimental set-up of URIS
is the target detection and tracking system. This vision-based application
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Figure 6.3: URIS in front of the artificial target.

has the goal of detecting an artificial target by means of the forward looking
camera. This camera provides a large underwater field of view (about 57o

in width by 43o in height). This system was designed to provide the control
architecture with a measurement of the position of an object to be tracked
autonomously. Since the goal of this dissertation is to test control and learn-
ing systems, a very simple target was used. The shape selected for the target
was a sphere because it has the same shape from whatever angle it is viewed.
The color of the target was red to contrast with the blue color of the water
tank. These simplifications allowed us to use simple and fast computer vision
algorithms to achieve real-time (12.5 Hz) performance. Figure 6.3 shows a
picture of the target being observed by URIS.

The procedure of detecting and tracking the target is based on image
segmentation. Using this simple approach, the relative position between the
target and the robot is found. Also, the detection of the target in subsequent
images is used to estimate its relative velocity. The following subsections
detail the image segmentation algorithm, the coordinate frame in which the
position is expressed and the velocity estimation.

6.2.1 Image Segmentation

The detection of the target is accomplished by color segmentation. This
technique is very common in computer vision and consists of classifying each
pixel of the image according to its color attributes. The pixels which satisfy
the characteristics of the target are classified as part of it. In order to express
the color of an object, the HSL (Hue, Saturation and Luminance) color space
is usually preferred over the standard RGB (Red, Green and Blue). Within
the HSL color space, the hue and saturation values, which are extracted from
the RGB values, define a particular color. Therefore, the color of an object is
defined by a range of values in hue and saturation, and the segmented image
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Figure 6.4: Image segmentation, a) real image with the detected target b)
scheme used in the segmentation process.

is the one containing the pixels within the hue and saturation ranges.
In this application, the segmentation is carried out in two phases. The

first phase consists of finding just a portion of the target within the whole
searched image. It is important to ignore pixels which, due to noise or re-
flections, have a similar color to the target. Therefore, restrictive hue and
saturation ranges are applied. The consequence is an image in which only the
most saturated portions of the target appear. After the first segmentation,
two histograms of the segmented pixels in the horizontal and in the vertical
axes of the searched image are calculated. From the two histograms, the
maximum values are found. These two coordinates constitute the starting
point which is considered to belong to the target. In Figure 6.4, the seg-
mentation process in a real image and a scheme of the image, in which the
histograms are represented, is shown.

After the computation of the starting point, the second segmentation
is carried out. In this case, the segmentation is less severe than the first.
What that means is, besides the pixels belonging to the target, other pixels
of the image can also be segmented. This segmentation is used to find the
portions of the target not detected by the previous one. Using the second
segmentation, a region growing process is applied. The growing process is
begun at the starting point and will expand the target area until no more
segmented pixels are connected between them. At this point, the target
has been completely detected, see Figure 6.4a. The position of the target is
considered to be the center of the rectangle which contains the target. The
size of the target is calculated according to the mean value of the two sides
of the rectangle.

The effect of the first segmentation guarantees the correct location of
the target even in the presence of noise. On the other hand, the second
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segmentation guarantees the correct segmentation of portions of the target
which may be affected by shadows which reduce the saturation of the color.
Finally, instead of searching for the target in the whole image, a smaller
window is used, see Figure 6.4b. This window is centered on the position
found in the previous image. In case the target is not found inside the
window, the whole image is explored.

6.2.2 Target Normalized Position

Once the target has been detected, its relative position with respect to the
robot has to be expressed. The coordinate frame which has been used for the
camera has the same orientation as the URIS coordinate frame, but is located
in the focal point of the camera, see Figure 6.5. Therefore, the transformation
between the two frames can be modelled as a pure translation.

The X coordinate of the target is related to the target size detected by
the segmentation algorithm. A normalized value between -1 and 1 is linearly
assigned to the range comprised between a maximum and minimum target
size respectively. It is important to note that this measure is linear with
respect to the size, but non-linear with respect to the distance between the
robot and the target measured in X axis. In Figure 6.5 the fx variable is
used to represent the X coordinate of the target.

Similarly, the Y and Z coordinates of the target are related to the hori-
zontal and vertical positions of the target in the image, respectively. However,
in this case, the values represented by the fy and fz variables do not measure
a distance, but an angle. The fy variable measures the angle from the center
of the image to the target around the Z axis. The fz variable measures the
angle from the center of the image to the target around the Y axis. In this
case, the angles are also normalized from -1 to 1 as it can be seen in the
Figure 6.5.

As has been described, the coordinates of the target are directly extracted
from the position and size found in the segmentation process. This means
that the calibration of the camera has not been taken into account. Therefore,
the non-linear distortions of the camera will affect the detected position.
Moreover, the measures of the fx variable are non-linear with the distance
to the target in X axis. These non-linear effects have consciously not been
corrected to increase the complexity with which the SONQL-based behavior
will have to deal.
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Figure 6.5: Coordinates of the target in respect with URIS.

6.2.3 Velocity Estimation

In order to properly follow the target, the measure of its relative posi-
tion is not enough. An estimation of its relative velocity is also neces-
sary. To calculate this velocity, the fx, fy and fz variables are differenti-
ated from the sequence of images. In particular, a first order Savitzky-Golay
[Savitzky and Golay, 1964] filter, with a first order derivative included, is ap-
plied to these signals. The result of this operation is the estimation of dfx

dt
, dfy

dt

and dfz

dt
. Due to the filtering process, a small delay is added to these signals

with respect to the ideal derivatives. However, these delays do not drastically
affect the performance of the experiments, as will be shown in Chapter 7.
Figure 6.6 shows the movement of the target in Y axis. The target was first
moved to the right and then twice to the left. The estimated velocity is also
shown.

6.3 Localization System

Localization is the estimation of the vehicle’s position and orientation with
respect to a global coordinate frame. A localization system is needed when
tasks involving positioning have to be carried out. Moreover, an estima-
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Figure 6.6: Normalized angular position and velocity of the target in Y axis.

tion of the vehicle’s velocity is usually required by the low-level controller.
The localization of an underwater vehicle is a big challenge. The detec-
tion of the vehicle’s speed with respect to the water is very inaccurate and
not reliable due to water currents. Electromagnetic waves are strongly at-
tenuated when travelling through water, which also dismisses the use of a
GPS. Main techniques used for underwater vehicle localization are inertial
navigation systems, and acoustic and optical sensors. Among these tech-
niques, visual mosaics have greatly advanced over the last few years offer-
ing, besides position, a map of the environment [Negahdaripour et al., 1999,
Gracias and Santos-Victor, 2000]. The general idea of visual mosaicking is to
estimate the movement of the vehicle by recognizing the movement of some
features on the ocean floor. An onboard downward-looking camera is used
to perceive these features. Main advantages of mosaicking with respect to
inertial and acoustic sensors are lower cost and smaller sensor size. Another
advantage is that the environment does not require any preparation, in con-
trast with some technologies which use a network of acoustic transponders
distributed in the environment. However, position estimation based on mo-
saics can only be used when the vehicle is performing tasks near the ocean
floor and requires reasonable visibility in the working area. There are also
unresolved problems like motion estimation in presence of shading effects,
presence of ”marine snow” or non-uniform illumination. Moreover, as the
mosaic evolves, a systematic bias is introduced in the motion estimated by
the mosaicking algorithm, producing a drift in the localization of the robot
[Garcia et al., 2002].
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In the experimental set-up used for URIS’ AUV, a vision-based localiza-
tion system was developed. The system was inspired by visual mosaicking
techniques [Garcia et al., 2001]. However, simplifications were made in order
to have a more accurate and drift free system. Instead of looking at the
unstructured ocean floor of a real environment, a coded pattern was used.
This pattern has the same size as the water tank and was placed on its bot-
tom. The pattern contains landmarks which can be easily tracked and, by
detecting its global position, the localization of the vehicle is accomplished.

The localization system provides an estimation of the three-dimensional
position and orientation of URIS referred to in the tank coordinate frame.
In addition, an estimation of the vehicle’s velocities, including surge, sway,
heave, roll, pitch and yaw, is computed. The algorithm is executed in real-
time (12.5 Hz) and is entirely integrated in the controllers of the vehicle.

In the next subsections, detailed information about the localization sys-
tem is given. First, the projective model of the downward-looking camera
is detailed. Then, the design and main features of the coded pattern are
described. After describing the main components of the system, the different
phases found in the localization algorithm are sequentially explained. Fi-
nally, some of the results and experiments concerning the accuracy of the
system are presented.

6.3.1 Downward-Looking Camera Model

The camera used by the localization system is an analog B/W camera. It pro-
vides a large underwater field of view (about 57o in width by 43o in height).
We have considered a pinhole camera model, in which a first order radial dis-
tortion has been considered. This model is based on the projective geometry
and relates a three-dimensional position in the space with a two-dimensional
position in the image plane, see Figure 6.7. The equations of the model are
the following:
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where, (CX,C Y,C Z) are the coordinates of a point in the space with respect
to the camera coordinate frame {C} and (Ixp ,Iyp) are the coordinates, mea-
sured in pixels, of this point projected in the image plane. And, as to intrinsic
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Figure 6.7: Camera projective geometry.

parameters of the camera, (Iu0,
Iv0) are the coordinates of the center of the

image, (ku,kv) are the scaling factors, f is the focal distance and k1 is the
first order term of the radial distortion. Finally, r is the distance, in length
units, between the projection of the point and the center of the image.

The calibration of the intrinsic parameters of the camera was done off-line
using several representative images. In each of these images, a set of points
were detected and its correspondent global position was found. Applying the
Levenberg-Marquardt optimization algorithm [Gill et al., 1981], which is an
iterative non-linear fitting method, the intrinsic parameters were estimated.
Using these parameters, the radial distortion can be corrected, as can be seen
in Figure 6.8. It can be appreciated how radial distortion is smaller for the
pixels which are closer to the center of the image (Iu0,

Iv0).

6.3.2 Coded Pattern

The shape of the tank is a cylinder 4.5 meters in diameter and 1.2 meters
in height. This environment allows the perfect movement of the vehicle
along the horizontal plane and a restricted vertical movement of only 30
centimeters.

The main goal of the pattern is to provide a set of known global positions
to estimate, by solving the projective geometry, the position and orientation
of the underwater robot. The pattern is based on grey level colors and only
round shapes appear on it to simplify the landmark detection, see Figure 6.9.
Each one of these rounds or dots will become a global position used in the
position estimation. Only three colors appear on the pattern, white as back-
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Figure 6.8: Acquired image in which the center of the dots has been marked
with a round. After correcting the radial distortion the center of the dots
has changed to the one marked with a cross.

ground, and grey or black in the dots. Again, the reduction of the color space
was done to simplify the dot detection and to improve the robustness. The
dots have been distributed throughout the pattern following the X and Y

directions. All lines parallel to the X and Y axis are called the main lines
of the pattern, see Figure 6.10. This term will be useful in the description of
the algorithm used for localization, refer to Section 6.3.3.

The pattern contains some global marks which encode a unique global
position. These marks are recognized by the absence of a dot surrounded by
8 dots, see Figures 6.9 and 6.10a. From the 8 dots surrounding the missing
dot, 3 are used to find the orientation of the pattern and 5 to encode the
global position. The 3 dots marking the orientation appear in all the global
marks in the same position and with the same colors. In Figure 6.10a, these
3 dots are marked with the letter ”o”. In Figure 6.10b it can be seen how,
depending on the position of these 3 dots, the direction of the X and Y axis
can be detected.

The global position is encoded in the binary color (grey or black) of the
5 remaining dots. Figure 6.10a shows the position of these 5 dots and the
methodology in which the global position is encoded. The maximum num-
ber of positions is 32. These global marks have been uniformly distributed
throughout the pattern. A total number of 37 global marks have been used,
repeating 5 codes in opposite positions on the pattern. The zones of the
pattern that do not contain a global mark, have been filled with alternately
black and grey dots, which help the tracking algorithm, as will be explained
in Section 6.3.3.
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In order to decide the distance between two neighboring dots, several as-
pects were taken into account. A short distance would represent a higher
number of dots appearing in the image and, therefore, a more accurate esti-
mation of the vehicle’s position. But, if a lot of dots appeared in the image
while the vehicle was moving fast, dot tracking would be very hard or even
impossible. On the other hand, a long distance between two neighboring
dots would produce the opposite effect. Therefore, an intermediate distance
was chosen for this particular application. The aspects which influenced the
decision were the velocities and oscillations of the vehicle, the camera’s field
of view and the range of depths in which the vehicle can navigate. The dis-
tance between each neighboring dot finally chosen was 10 cm. The range of
distances between the center of the robot and the pattern, used in the design
are from 50 cm to 80 cm and the minimum number of dots which must be
seen is 6, as will be described in the next subsection.

6.3.3 Localization Procedure

The vision-based localization algorithm was designed to work at 12.5 frames
per second, half of the video frequency. Each iteration requires a set of
sequential tasks starting from image acquisition to velocity estimation. The
next subsections describe the phases which constitute the whole procedure.

Pattern Detection

The first phase of the localization algorithm consists of detecting the dots
in the pattern. To accomplish this phase, a binarization is first applied to
the acquired image, see Figure 6.11a and 6.11b. Due to the non-uniform
sensitivity of the camera in its field of view, a correction of the pixel grey
level values is performed before binarization. This correction is based on the
illumination-reflectance model [Gonzalez and Woods, 1992] and provides a
robust binarization of the pattern also under non-uniform lighting conditions.

Once the image is binarized, the algorithm finds the objects in the image.
This task is accomplished by an algorithm which scans the entire image and
for each pixel that has white color, it applies a region growing process. This
process expands the region until the boundaries of the objects are found.
Some features of the object, like the surface, the center, the boundaries and
the aspect ratio, are calculated. Finally, the color of the pixels belonging to
the object is changed to black and the scanning process is continued until
no more white pixels are found. Some of the objects which do not fulfill a
minimum and maximum surface, or do not have a correct aspect ratio, are



6.3 Localization System 129

a)

b) c)

Figure 6.11: Detection of the pattern: a) acquired image, b) binarization, c)
detection of the position, size and color of the dots.



130 Chapter 6. URIS’ Experimental Set-up

dismissed. The other objects are considered to be one of the dots in the
pattern.

Finally, for each detected dot and using the original image, the algorithm
classifies its grey level, labelling them in three groups: grey, black or unknown.
In the case of the label being unknown, the dot will be partially used in
following phases, as Section 6.3.3 details. Figure 6.11c shows the original
image with some marks on the detected dots. The rectangle containing each
dot shows its boundaries. The color of the small point centered in each dot
indicates the color which has been detected. If the color is white, the dot has
been classified as black, if the color is dark grey the dot is grey, and if the
color is light grey the dot is unknown. In the image shown in Figure 6.11c,
only black and grey dots were found.

Dots Neighborhood

The next phase in the localization system consists of finding the neighbor-
hood relation among the detected dots. The goal is to know which dot is
next to which other dot. This will allow the calculation of the global position
of all of them, starting from the position of only one. The next phase will
consider how to find this initial position.

The first step in this phase is to compensate the radial distortion which
affects the position of the detected dots in the image plane. Figure 6.8 has
already shown the effect of the correction of the radial distortion. Another
representation of the same image is shown in Figure 6.12a. In this Figure, the
dots before the distortion compensation are marked in black and after the
compensation in grey. The new position of the dots in the image is based on
the ideal projective geometry. This means that lines in the real world appear
as lines in the image. Using this property, and also by looking at relative
distances and angles, the two main lines of the pattern are found. These
two lines can also be seen in the figure. The two main lines of the pattern
indicate the directions of the X and Y axis, although the correspondence
between each main line and each axis it is not known. To detect the main
lines, at least 6 dots must appear in the image.

The next step consists of finding the neighborhood of each dot. The
algorithm starts from a central dot and goes over the others according to
the direction of the main lines. To assign the neighborhood of all the dots,
a recursive algorithm was developed which also uses distances and angles
between dots. After assigning all the dots, a network joining all neighboring
dots can be drawn (see Figure 6.12b).
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a) b)

Figure 6.12: Finding the dots neighborhood: a) main lines of the pattern, b)
extracted neighborhood.

Dots Global Position

Once the neighborhood of all the dots has been found, the global position of
these points is required. Two methodologies are used to identify the global
position of a subset of them. After these initial positions are known, the
neighborhood network is used to calculate the position of all of these points.

The first methodology is used when a global mark is detected, see Fig-
ure 6.12b. The conditions for using a global mark are that a missing dot
surrounded by 8 dots appears on the network and the color of these 8 dots
is recognizable. In this case, the algorithm checks first the three orientation
dots to find how the pattern is oriented. As showed in Figure 6.10b, the
algorithm has to check how the pattern is oriented and, therefore, what are
the directions of the X and Y axis. From the four possible orientations,
only one matches the three colors. After that, the algorithm checks the five
dots which encode a memorized global position, refer also to Figure 6.10a.
Once the orientation and position of the global mark has been recognized,
the algorithm calculates the position of all the detected dots.

The second methodology is used when no global marks appear on the
image, or when there are dots of the global mark which have the color la-
bel unknown. It consists of tracking the dots from one image to the next.
The dots which appear in a very small zone in two consecutive images are
considered to be the same and, therefore, the global position of the dot is
transferred. Refer to Figure 6.13 to see a graphical explanation of the track-
ing process. The high speed of the localization system, compared with the
slow dynamics of the underwater vehicle, assures the tracking performance.
The algorithm distinguishes between grey and black dots, improving the ro-
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Image k
Image k-1

Image k Image k-1

a) b)

Figure 6.13: Tracking of dots: a) field of view of images k and k − 1, b)
superposition of the dots detected in images k and k−1. Dots with the same
color which appear very close in two sequential images are considered to be
the same dot.

bustness of the tracking. Moreover, since different dots are tracked at the
same time, the transferred positions of these dots are compared, using the
dot neighborhood, preventing possible mistakes.

Position and Orientation Estimation

Once the global positions of all the detected dots are known, the localization
of the robot can be carried out. Equation 6.4 contains the homogeneous
matrix which relates the position of one point (CXi,

C Yi,
C Zi) with respect

to the camera coordinate frame {C}, with the position of the same point
with respect to the water tank coordinate frame {T}. The parameters of
this matrix are the position (TXC ,

T YC ,
T ZC) and the rotation matrix of

the camera with respect to {T}. The nine parameters of the orientation
depend only on the values of roll (φ), pitch (θ) and yaw (ψ) angles. For
abbreviation, the cosine and sinus operations have been substituted with
”c” and ”s” respectively.
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For each dot i, the position (TXi,
T Yi,

T Zi) is known, as well as the ratios:

CXi

CZi

= Vix and
CYi

CZi

= Viy (6.5)

which are extracted from Equations 6.1 and 6.2, and have been named Vix and
Viy. The estimation of the state of the robot is accomplished in two phases.
In the first phase, TZC , roll (φ) and pitch (θ) are estimated using the non-
linear fitting method proposed by Levenberg-Marquardt [Gill et al., 1981].
This recursive method estimates the parameters which best fit in a non-linear
equation from which a set of samples are known.

Given two dots i and j, the square of their distance is the same when com-
puted with respect to {C} or to {T}, see Equation 6.6. From this equation,
CXi and CYi can be substituted applying Equation 6.5. After the substi-
tution, Equation 6.7 is obtained, in which Dij is the square of the distance
between the two dots and is calculated with the right part of Equation 6.6.

( CXi −
CXj)

2 + ( CYi −
CYj)

2 + ( CZi −
CZj)

2 =

( TXi −
TXj)

2 + ( TYi −
TYj)

2 + ( TZi −
TZj)

2 (6.6)

(( CZiVix −
CZjVjx)

2 + ( CZiViy −
CZjVjy)

2 + ( CZi −
CZj)

2 = Dij (6.7)

By rearranging the terms of Equation 6.7, Equation 6.8 can be written.
This equation is the one to be optimized by the Levenberg-Marquardt algo-
rithm. The unknowns of the equation are CZi and CZj. These values can
be calculated using Equations 6.9 and 6.10, which have been extracted from
Equation 6.4. The unknowns of Equations 6.9 and 6.10 are TZC , roll (φ) and
pitch (θ). Therefore, from each pair of detected dots, one Equation 6.8 can
be written depending only on the three unknowns TZC , roll (φ) and pitch
(θ). The algorithm finds the values for these three unknowns which best
fit with a certain number of equations. In order to compute a solution, the
minimum number of equations must be the number of unknowns. Therefore,
three equations, from three different dots, are required in order to have an
estimation. Evidently, the higher the number of dots, the more accurate the
estimations are.

CZ2
i (V 2

ix + V 2
iy + 1) + CZ2

j (V 2
jx + V 2

jy + 1)

−2 CZi
CZj(VixVjx + ViyVjy + 1) = Dij (6.8)
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CZi =
TZi −

TZC

−sθVix + cθsφViy + cθcφ
(6.9)

CZj =
TZj −

TZC

−sθVjx + cθsφVjy + cθcφ
(6.10)

The second phase consists of estimating the TXC and TYC positions and
the yaw (ψ) angle. In this case, a linear least square technique is applied.
This technique uses a set of linear equations to estimate a set of unknowns.
The general form of the linear system can be seen in Equation 6.11. The
y(t) term is a vector which contains the independent terms of the linear
equation. The H(x(t), t) matrix contains the known values which multiply
the unknown parameters contained in θ. The solution of the linear system
can be easily computed applying Equation 6.12.

y(t) = H(x(t), t)θ (6.11)

θ = (HTH)−1HTy (6.12)

The equations which contain the three unknowns (TXC , TYC and ψ) are
included in Equation 6.4, and can be rewritten as Equations 6.13 and 6.14.
Both equations can be applied to each dot i. The equations are non linear due
to the cosine(cψ) and sinus(sψ) of the yaw angle. However, instead of consid-
ering the yaw as one unknown, each operation (cψ and sψ) has been treated
as an independent unknown. Equations 6.13 and 6.14 can be rewritten to
Equations 6.15 and 6.16, which have the same structure as Equation 6.11.
The number of files n of the terms y(t) and H(x(t), t) is the double of the
number of detected dots, since for each dot there are two available equations.
To solve the linear system, Equation 6.12 is applied obtaining the four un-
knowns, cψ, sψ,T XC and TYC . The yaw (ψ) angle is calculated applying the
atan2 operation.

TXi = (cψcθ) CXi +

(−sψcφ+ cψsθsφ) CYi + (6.13)

(sψsφ+ cψsθcφ) CZi + TXC

TYi = (sψcθ) CXi +

(cψcφ+ sψsθsφ) CYi + (6.14)

(−cψsφ+ sψsθcφ) CZi + TYC
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H =

























cθ CX1 + (sθsφ) CY1 + (sθcφ) CZ1 −cφ CY1 + sφ CZ1 1 0
cφ CY1 − sφ CZ1 cθ CX1 + (sθsφ) CY1 + (sθcφ) CZ1 0 1

... ... ... ...

... ... ... ...

cθ CXi + (sθsφ) CYi + (sθcφ) CZi −cφ CYi + sφ CZi 1 0
cφ CYi − sφ CZi cθ CXi + (sθsφ) CYi + (sθcφ) CZi 0 1

... ... ... ...

... ... ... ...

cθ CXn + (sθsφ) CYn + (sθcφ) CZn −cφ CYn + sφ CZn 1 0
cφ CYn − sφ CZn cθ CXn + (sθsφ) CYn + (sθcφ) CZj 0 1

























(6.16)
Once the three-dimensional position and orientation of the camera has

been found, a simple translation is applied to find the position of the center
of the robot. Figure 6.14 shows a representation of the robot position in the
water tank. Also, the detected dots are marked on the pattern.

Filtering and Velocity Estimation

In the estimation of the position and the orientation, there is an inherent
error. The main sources of this error are the simplifications, the quality of the
systems and the uncertainty of some physical parameters. Refer to the next
section for more detailed information about the accuracy of the system. Due
to this error, small uncertainties about the vehicle position and orientation
exist and cause some oscillations even if the robot is static. To eliminate these
oscillations, a first order Savitzky-Golay [Savitzky and Golay, 1964] filter has
been applied. This online filter uses a set of past non-filtered values to
estimate the current filtered position or orientation.

Finally, the velocity of the robot with respect to the onboard coordi-
nate frame {R} is also estimated. A first order Savitzky-Golay filter with a
first order derivative included is applied to the position and orientation val-
ues. This filter is also applied online and uses a window of past non-filtered
samples. The output of the filtering process is directly the filtered velocity.
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Figure 6.14: Estimated position and orientation of the robot in the water
tank. The triangle indicates the X, Y and Yaw state of the robot. Roll
and Pitch angles are indicated by two vertical lines at the top left and right
corners respectively. Finally, the dots seen by the robot are also drawn.

After calculating the velocities with the Savitzky-Golay filter, a transforma-
tion from {T} to {R} coordinate frames is applied. Therefore, the position
and orientation are referred to the water tank coordinate frame {T}, while
the velocities are referred to the onboard coordinate frame {R}.

As usual when filtering a signal, an inherent delay will be added to the
velocity or position. However, it has been verified that this small delay
does not affect the low-level controller of the vehicle, as will be shown in
Section 6.4.2. Figure 6.15 shows the estimated three-dimensional position
and orientation with and without filtering, and also the velocities for the
same trajectory.

6.3.4 Results and Accuracy of the System

The localization system offers a very accurate estimation of the position,
orientation and velocity. The system is fully integrated on the vehicle’s con-
troller, providing measures at a frequency of 12.5 times per second. Because
of the high accuracy of the system, other measures like the heading from
a compass sensor or the depth from a pressure sensor are not needed. In
addition, the localization system can be used to calibrate sensors, to validate
other localization systems or to identify the dynamics of the vehicle. An
example of a trajectory measured by the localization system can be seen in
Figure 6.16.
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Figure 6.15: The left column shows the position and orientation before and
after filtering during a trajectory. The right column shows the velocity for
the 6 DOFs with respect to the on board coordinate frame {R}.
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Figure 6.16: Three-dimensional trajectory measured by the localization sys-
tem. Three views are shown.

In order to determine the accuracy of the system, the errors affecting the
estimations have been studied. Main sources of error are the imperfections of
the pattern, the simplification on the camera model, the intrinsic parameters
of the camera, the accuracy in detecting the centers of the dots and the error
of least-square and Levenberg-Marquardt algorithms on its estimations. It
has been assumed that the localization system behaves as an aleatory process
in which the mean of the estimates coincides with the real position of the
robot. It is important to note that the system estimates the position knowing
the global position of the dots seen by the camera. In normal conditions, the
tracking of dots and the detection of global marks never fails, which means
that there is no drift in the estimates. By normal conditions we mean, when
the water and bottom of the pool are clean, and there is indirect light from
the sun.

To find out the standard deviation of the estimates, the robot was placed
in 5 different locations. In each location, the robot was completely static and
a set of 2000 samples was taken. By normalizing the mean of each set to
zero and grouping all the samples, a histogram can be plotted, see Fig. 6.17.
From this data set, the standard deviation was calculated obtaining these
values: 0.006[m] in X and Y, 0.003[m] in Z, 0.2[◦] in roll, 0.5[◦] in pitch and
0.2[◦] in yaw.

The accuracy of the velocity estimations is also very high. These mea-
surements are used by the low level controller of the vehicle which controls
the surge, heave, pitch and yaw velocities.
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Figure 6.17: Histogram of the estimated position and orientation.



140 Chapter 6. URIS’ Experimental Set-up

The only drawback of the system is the pattern detection when direct
light from the sun causes shadows to appear in the image. In this case, the
algorithm fails in detecting the dots. Any software improvement to make a
more robust system in presence of shadows would increase the computational
time and the time cycle of the algorithm would be too slow. However, the
algorithm is able to detect these situations and the vehicle is stopped.

6.4 Software Architecture

In this section, the software architecture used to control URIS AUV is de-
tailed. As will be described, a software framework was developed as a tool
to easily implement the architecture needed to carry out a mission. After
the description of this framework, the particular architecture used in the
experiments of this thesis is detailed.

6.4.1 Distributed Object Oriented Framework

When working with physical systems such as an underwater robot, a real-time
Operating System (OS) is usually required. The main advantage is better
control of the CPU work. In a real-time OS, the scheduling of the processes
to be executed by the CPU is done according to preemptive priorities. More
priority processes will be first executed and will also advance processes which
are already in execution. Using a correct priority policy it is possible to
guarantee the frequency in which the control architecture has to be executed,
which is very important to assure the controllability of the robot.

A software framework, based on a real-time operating system was spe-
cially designed for URIS AUV. In particular, QNX OS was used. This frame-
work is intended to assist the architecture designers to build the software
architecture required to carry out a particular mission with URIS AUV. The
framework proposes the use of a set of distributed objects which represent
the architecture. Each object represents a component of the robot (sensors
or actuators), or a component of the control system (low-level or high-level
controllers). An Interface Definition Language (IDL) is used to define the
services which the object supports. From the information contained in the
IDL, the object skeleton is automatically generated. Each object has usually
two threads of execution. One of them, the periodic thread, is executed at
a fixed sample time and is used to perform internal calculations. The other
thread, the requests thread, is used to answer requests from clients.

The priority of each object thread is set independently and, depending
on that, the objects will be executed. If a sample time is not accomplished,
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a notification is produced. These notifications are used to redesign the ar-
chitecture in order to accomplish the desired times.

The software framework allows the execution of the objects in different
computers without any additional work for the architecture designer. A
server name is used in order to find the location of all the objects. Evidently,
objects that are referred to as physical devices, such as sensors or actuators,
have to be executed in the computer which has the interfaces for them.
Communication between objects is performed in different ways depending
on whether they are executed sharing the same logical space and if they
are executed in the same computer. However, these variations are hidden
by the framework, which only shows a single communication system to the
architecture designer.

Although this software framework was developed to work under a real-
time operating system, the execution of objects under other conventional OS
is also supported. The main reason for that is the lack of software drivers of
some devices for the QNX OS.

6.4.2 Architecture Description

The software architecture used in the experiments presented in this thesis
can be represented as a set of components or objects which interact among
them. The objects which appear in the architecture can be grouped in three
categories: actuators, sensors and controllers. A scheme of all the objects,
with the connections between them, can be seen in Figure 6.18. The ac-
tuators’ category contains the four actuators objects. The sensor category
contains the water detection, target tracking and localization objects and, the
controllers category contains the low-level, high-level and the two SONQL be-
haviors. It is important to remark on the difference between low and high
level controllers. The low-level controller is in charge of directly actuating
on the actuators of the robot to follow the movement set-points which the
high-level controller generates. On the other hand, the high-level controller
is responsible for the mission accomplishment and generates the set-points
which the low-level controller has to reach.

All these objects are mainly executed in the on board embedded com-
puter, but two external computers have also been used. The on board com-
puter contains the actuators, controllers and sensory objects. As can be
seen, not all the sensors presented in Section 6.1.3 have been used. One
of the external computers, which has been called the vision computer, con-
tains the two vision-based sensory systems, which are the target tracking
(Section 6.2) and the localization system (Section 6.3). The other external
computer, which has been called the supervision computer, is only used as
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a client of the previous objects. Its main goal is to control the operation of
the objects and to monitor them. It is also used to send commands for robot
teleoperation.

Another representation of the same architecture can be seen in Fig-
ure 6.19. In this case, the objects or components are seen from the point of
view of the control system. In this representation, the sensing components,
high-level controller, low-level controller and actuators are more clearly dif-
ferentiated.

Hereafter, a more detailed description of each object is given. First, the
objects belonging to the onboard embedded computer are reviewed. This
computer is responsible for the control of the robot and runs the QNX real-
time operating system.

• Actuators. The four thrusters of the robot are controlled through
these four objects. These objects have only one thread for the requests
from the clients. There is no internal calculation to perform. The
services which these objects accept are used to modify the set-point
velocity of the motor, enable/disable the thruster, and to read the real
velocity and electric current of the motor.

• Water Leakage Detection. This object is used to measure the five
water leakage sensors contained in the vehicle. The object has only
one thread to attend to the requests from the clients. The only service
which this object supports is to give the state of the five water sensors.

• Low-Level Controller. This object is in charge of the computation
of the low-level controller of the vehicle. Its goal is to send control
actions to the actuators to follow the set-points given by the high-level
controller. Unlike the previous objects, a periodic thread is used to
regularly recalculate and send these control actions. In particular, a
sample time of 0.1 seconds is used. The DOFs to be controlled are four:
surge, heave, pitch and yaw. The control system implemented for each
DOF is a simple PID controller. The state which is controlled is the
velocity of each DOF. The feedback measure of this velocity is obtained
from the localization object. The four PID controllers are executed in
parallel at each iteration and the control actions are superposed and
sent to the actuators. In Figure 6.20 the performance of the surge and
yaw controllers is shown.

The low-level controller offers different services. The most important
service is to receive the set-points. Three set-points are requested:
the surge, the heave and the yaw velocities. The pitch velocity is not
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Figure 6.20: Performance of the surge and yaw velocity-based controllers.

requested as it is always considered to be zero. Other services are also
available which are mainly used for the tuning of the controllers. By
calling these services, the parameters of the controllers can be modified
online, and internal variables can be checked. There is also a general
service to enable/disable the controller.

• High-Level Controller. This object is the one which contains the
behavior-based control architecture and, therefore, the part which is
evaluated in this thesis. It contains the set of behaviors and the hybrid
coordination system which has been designed to accomplish a particular
task.

Each behavior requests information from other objects, such as the
target tracking object or the localization object, in order to generate
its response. After the behaviors have been executed, the coordinator
computes the final response and sends it to the low-level controller.

As with the low-level controller, a periodic thread is used, but in this
case with a sample time of 0.3 seconds. The services offered by this
object allow us to enable/disable the controller and each behavior. An-
other service is in charge of receiving the response which a teleoperation



6.4 Software Architecture 145

behavior will have. Using this service, an external user can command
the robot.

• SONQL-based Behaviors. Although the behaviors are executed in
the high-level controller, two auxiliary objects are used to implement
the SONQL-based behaviors. Each one is used to learn a different DOF
of the behavior. These objects contain the learning algorithm proposed
in this thesis. The structure of the algorithm is divided in two threads.
The periodic thread is in charge of updating the NN weights with the
learning samples database, refer to section 5.7. The rest of the SONQL
algorithm is executed every time a request is received.

Each time the high-level controller has to calculate the response of a
SONQL-based behavior, it sends to one of the SONQL-based behav-
iors the current and past states of the environment and the last taken
action. For example, in the case of the X DOF of a target following be-
havior, it sends the current and past positions and velocities in X axis
of the target, and the last taken action in surge. The SONQL-based be-
havior receives the states and action through the requests thread. This
thread has a higher priority than the periodic thread and, therefore,
the execution of the last one is stopped. Using the received state, the
reinforcement is calculated completing a new learning sample. This
sample is added to the learning sample database. Finally, an action
is calculated and is returned to the high-level controller. The requests
thread is finished, and the periodic thread starts again to update the
NN weights but with the recently added learning sample.

The services which these objects offer are basically to receive new learn-
ing samples and to configure all the parameters of the SONQL algo-
rithm. It is also possible to reset the NN weights and all the variables.

The objects which will next be reviewed belong to the vision computer.
This computer is one of the external computers and is run by the Windows
operating system. The reason why a non real-time operating system has
been used is because the frame grabbers, which are used to acquire images,
do not provide software drivers for QNX OS. This computer was not located
inside the robot because, at the time of the experiments, the embedded vision
computer was not available.

• Target Detection and Tracking. This object implements the vision
algorithm to detect and track an artificial target located in the water
tank, as has been described in Section 6.2. The algorithm is executed
in the periodic thread. In this case, the sample time of the thread is 0.08
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seconds (12.5 Hz), which is double the sample time in which a video
camera acquires a complete image. This means that the algorithm is
applied once every images. The requests thread is used to send the last
calculated position and velocity of the target.

• Localization. Similar to the previous object, the localization object
implements the algorithm which estimates the position, orientation and
velocity of the robot inside the water tank, refer to Section 6.3. The
localization algorithm is also executed in the periodic thread at a sample
time of 0.08 seconds. The requests thread is used to send the last
calculated position and velocity of the robot.

The last components of the software architecture are the object clients
which are contained in the supervision computer. The main uses of these
clients are to control and monitor the architecture.

• Architecture Control. This component is used to enable and dis-
able some of the objects of the architecture. Concretely, these objects
are those belonging to the actuator and controller categories, refer to
Figure 6.18.

• Teleoperation. As has been commented above, the high-level con-
troller contains a teleoperation behavior which is commanded from the
exterior. The teleoperation component then has the goal of getting
the control command from a human and sending it to the high-level
controller. This human-machine interface is accomplished by a joystick.

• Monitoring. Finally a monitoring component is in charge of consult-
ing the state of all the objects through their services. This component
will aid in the comprehension of the experiments.



Chapter 7

Experimental Results

This chapter presents the experimental results of this thesis. The chapter
is organized in two parts. The first part describes the application of the
behavior-based control layer to fulfill a robot task. This task consisted of
following a target with the underwater robot URIS using the experimental
set-up described in Chapter 6. The main goal of these experiments was to
test the feasibility of the hybrid coordination system as well as the SONQL
based behaviors. To accomplish this, a set of behaviors were designed, from
which one was learnt with the SONQL algorithm while the other behaviors
were manually implemented. A detailed description of the whole control
system will be given and the results presented. The results will first focus on
the SONQL algorithm, showing the learning of the X DOF, the Yaw DOF
and some tests concerning the convergence of the algorithm. The hybrid
coordination system will then be tested with the manual and learnt behaviors.
The second part of this chapter shows the results of the SONQL algorithm in
an RL benchmark. In this case, the task was used to test the generalization
capability of the algorithm. The problem is called the ”mountain-car” task
and was executed in simulation. The suitability of the SONQL algorithm for
solving the generalization problem will be stated.

7.1 Target-following task

The task consisted of following a target with the underwater robot URIS.
Three basic aspects were considered. The first was to avoid obstacles in
order to ensure the safety of the vehicle. In this case, the wall of the pool
was the only obstacle. The second aspect was to ensure the presence of the
target within the camera’s field of view. The third aspect was to follow the
target at a certain distance. Each one of these aspects was translated to a
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robot behavior, hence, the behaviors were: the ”wall avoidance” behavior,
the ”target recovery” behavior and the ”target following” behavior. It is
important to note the simplicity which behavior-based controllers offer. It is
much simpler to design each behavior independently rather than developing
a single control strategy to handle all of the considerations.

An additional behavior was included, the ”teleoperation” behavior, which
allowed the robot to move according to the commands given by a human.
This behavior did not influence the outcome of the target following task, but
was used to test the performance of the system, for example, by moving the
vehicle away from the target.

Due to the shallow water in the tank in which the experiments were per-
formed, only the motions on the horizontal plane were considered. Therefore,
to accomplish the target following task, only the surge and yaw control ac-
tions were generated by the behaviors. The other two controllable DOFs
(heave and pitch) were not used. In the case of the heave movement, the
low-level controller maintained the robot at an intermediate depth. Regard-
ing the pitch orientation, a zero degree set-point (normal position) was used.

Following the behavior-based control layer proposed in Chapter 3, each
behavior bi generated a response ri, which was composed of an activation
level ai and a control action vi. Since the heave movement was not present,
the control action vector was vi = (vi,x, 0, vi,yaw). The range used for the
actions was vi,j = [−1, 1], corresponding to the maximum backward and
forward velocity set-points in surge and yaw.

After defining the behaviors present in this task, the next step was to
set their priorities. To determine these priorities, the importance of each
behavior goal was ranked. This is the hierarchy used:

1. ”Wall Avoidance” behavior. This was the highest priority behavior
in order to ensure the safety of the robot even if the task was not
accomplished.

2. ”Teleoperation” behavior. This was given a higher priority than the
next two behaviors in order to be able to drive the robot away from
the target when desired.

3. ”Target Recovery” behavior. This was given a higher priority than the
target following behavior so as to be able to find the target when it was
not detected.

4. ”Target Following” behavior. This was the lowest priority behavior
since it should only control the robot when the other behavior goals
had been accomplished.
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Figure 7.1: Implementation of the target following task with the proposed
behavior-based control layer.

The establishment of the priorities allowed the composition of the behavior-
based control layer. Figure 7.1 shows the implementation of the four behav-
iors using three hybrid coordination nodes. Finally, the last step was the
definition of the internal state/action mapping and the activation level func-
tion for each behavior. The ”target following” behavior was implemented
with the SONQL algorithm. Its implementation and learning results will be
described in the next section. As far as the other behaviors go, the main
features were:

”Wall Avoidance” behavior This behavior was manually implemented.
It used the absolute position of the robot as input, see Figure 7.1. The
robot position was used to calculate the minimum distance to the cir-
cular wall of the water tank called dw, see Figure 7.2. The behavior
response rw was computed according to this distance. The idea was
to activate the behavior linearly with close proximity to the wall. To
accomplish this, two threshold distances were set, tw,min and tw,max,
where tw,min < tw,max. If dw > tw,max, this meant the robot was too
far from the wall and the behavior was not active (aw = 0). On the
other hand, when dw < tw,min, the robot was too close to the wall.
Therefore, the activation was set at aw = 1 and the coordinator actu-
ated competitively in order to restore the safety of the robot. Finally,
if tw,min < dw < tw,max, this meant the robot was close to the wall
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Figure 7.2: Schema of the ”wall avoidance” behavior. The control action and
the zones where the behavior is active are shown.

but not in a dangerous position and the activation was linearly cal-
culated between 0 and 1. The control action vw was only calculated
when the activation was larger than 0. In that case, in order to drive
the robot away from the wall, the control action was set to point to-
wards the center of the circumference. According to the vehicle’s yaw
angle, this two-dimensional control action was split in the surge and
yaw movements. The implementation of the ”wall avoidance” behavior
was designed experimentally with the thresholds and other parameters
also obtained experimentally.

”Teleoperation” behavior The ”teleoperation behavior” had to reflect
the commands given by a joystick module. The teleoperation response
rt was composed of the activation level at and the control action vector
vi. The activation level of this behavior was 1 when the joystick was
activated to send commands, otherwise it was set to 0. Moreover, the
control actions were taken directly from the joystick. The surge move-
ment vj,x corresponded to the forward/backward joystick command and
the yaw movement vj,yaw corresponded to the left/right command.

”Target Recovery” behavior This behavior was also manually implemented
but was much simpler than the ”wall avoidance” behavior. The input
of this behavior was the target position in respect to the robot, see Fig-
ure 7.1. This behavior was active ar = 1 only when the target was not
detected. In that case, it generated a constant rotational movement
vr,yaw = ±0.8 which spun the robot in the direction in which the target
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had last been detected.

To conclude, the hybrid coordinator was implemented with a quadratic
parameter k = 2. This parameter assured the prevalence of higher priority
behaviors, and was also experimentally set.

7.1.1 SONQL behavior

The ”target following” behavior was learnt using two SONQL algorithms,
one for each DOF. The goal of this algorithm was to learn the state/action
mapping of this behavior. This mapping determined the movements the
robot had to perform in order to locate itself at a certain distance from the
target and pointing directly at it. In order to generate the robot response rf ,
the activation level was af = 1 whenever the target was detected and af = 0
otherwise. Moreover, the control action vf was generated by the SONQL
algorithms. In particular, the SONQL algorithm of the X DOF generated
the vf,x control action and the algorithm of the Yaw DOF generated the
vf,yaw. The next paragraphs will describe the state variables, the reinforce-
ment function and the parameters of the SONQL algorithm used in each
DOF.

Environment State

A reinforcement learning algorithm requires the observation of the complete
environment state. If this observation is not complete or the signals are
too corrupted with noise or delays, the convergence will not be possible.
The state of the environment must therefore contain all the required mea-
surements relating the target to the robot. The first measurement was the
relative position between the target and the robot: fx in X DOF and fy in
Y aw DOF. The procedure to compute these continuous values was described
in Section 6.2. A second necessary measurement was the relative velocity
between the target and the robot. For instance, let’s consider the case when
the target is in front of the robot but there is a relative angular velocity
between them. If the algorithm decides to execute the action vf,yaw = 0,
in the next step, the target will not be directly in front of the robot. On
the contrary, if the relative velocity between them is zero and the executed
action is again zero, in the next step, the target will still be located in front
of the robot. Hence, we have two situations in which the target was located
in the same place and the executed action was also the same, yet the system
was brought to a different state. Since the environment is considered to be
deterministic, this pointed out that the relative velocity was also required to
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differentiate both states. These measurement were: fvx for the X DOF and
fvy for the Y aw DOF.

Finally, if the target and the robot are both rotating at a velocity which
makes the relative position and relative velocity equal to zero, a new mea-
surement would be required to differentiate this state from the state in which
everything is stopped and the target is directly in front of the robot. In this
case, the absolute velocity of the robot or the absolute velocity of the tar-
get would also be required. This new measurement would be necessary to
learn the behavior in case the target was moving. However, this case was not
tested due to the complexity it would have represented in the exploration of
a three-dimensional space. Instead, the behavior was learnt using a static
target.

Besides the number of variables which composed the environment state,
the quality of these variables was also very important. The target tracking
system was designed to accurately estimate the relative positions and veloc-
ities. Indeed, the estimation of the relative velocity was especially difficult,
as in the filtering process in which a delay was unavoidably added to the
signal. Initially, this delay did not allow the system to learn, since the esti-
mated velocities did not match the real movement. The filtering had to be
accurately improved in order to remove part of this delay. Finally, it must be
remembered that the state variables have been extracted from a vision-based
system in which the non-linear distortions were not corrected. Moreover, the
fx measure is non-linear with respect to the relative distance to the target.
All these non-linear effects, which were consciously not corrected, should not
pose a problem for the learning algorithm since a Markovian environment
does not imply linearity.

In summary, the state for the X DOF of the SONQL algorithm was
composed of fx and fvx; and the YAW DOF of the SONQL algorithm was
composed of fy and fvy. Figure 7.1 shows these measurements as inputs
for the ”target following” behavior and Figure 7.3 shows a two-dimensional
representation of the fx and fy axes.

Reinforcement Function

The reinforcement function is the only information a designer must introduce
in order to determine the goal of the behavior. The reinforcement function
must be a deterministic function which relates the state and action spaces to
a reward value. In the case of the ”target following” behavior, the reinforce-
ment function took only the target position as input. Therefore, according
to these variables, fx in the X DOF and fy in the Yaw DOF, a reward value
was given. Only three reward values were used: -1, 0 and 1, simplifying the
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Figure 7.3: Relative positions fx and fy and the reinforcement values rx and
ry, for the ”target following” behavior.

implementation of this function. Figure 7.3 shows the reward values accord-
ing to the target relative position. Basically, in order to maintain the target
in front of the robot, the positive rewards r = 1 were given when the position
of the target was around fy = 0 and at a certain distance from the robot
in X axis, around fx = −0.25. The other reward values were progressively
given if the target was farther. The rx variable was used for the X DOF and
the ry variable for the Yaw DOF. As can be observed, the reward functions
change the values at some thresholds, which were found experimentally.

SONQL parameters

After defining the states, actions and reinforcement function, the final step to
learn the ”target following” behavior with the SONQL algorithm consisted
of setting the parameters of the algorithm. The same parameter values were
used for both DOFs. The values of the parameter and some considerations
are described, as follows:

NN configuration. The Neural Network had 3 continuous variables as in-
puts: {fx, fvx, vf,x} for the X DOF and {fy, fvy, vf,yaw} for the Yaw
DOF. The output was the estimated Q(s, a) value. Only one hidden
layer was used with 6 neurons. This configuration was found experi-
mentally and used for both DOFs. Different configurations were also
tested, although this one provided the best compromise between gen-
eralization capability and convergence time. The more neurons, the
higher the generalization capability, but also, the higher number of
learning iterations needed to converge.
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Learning rate α. A diverse set of values were tested. The final learning
rate was set to α = 0.1, which demonstrated a fast and stable learning
process.

Discount factor γ. The discount factor was set to γ = 0.9. Since the
learning of a robot behavior is a continuous task without a final state,
a discount factor smaller than 1 was required. In the case of using
γ = 1.0, the Q function values would increase or decrease, depending
on the state/action zone, until they reach −∞ or ∞. This value was
chosen experimentally without exploring many values.

Exploration probability ε. The learning was performed with a ε−greedy
policy. The exploration probability was ε = 0.3. A smaller exploration
probability increased the time required to converge, and a higher prob-
ability caused the robot to act too randomly. The value was also set
experimentally.

Database Density Parameter t. The density parameter was set to t =
0.5. However, this parameter does not provide intuitive information
about the number of learning samples. It indicates the minimum dis-
tance between two learning samples. This distance is calculated ac-
cording to the vectors (s, a, r) of each sample, which, in this case was
a four-dimensional vector since the state has two dimensions. In prac-
tice, the number of learning samples resulted in being less than 30,
although it depended on the state/action space exploration. Several
parameters were tested, concluding that with a larger value (less sam-
ples) the convergence was not always achieved due to the interference
problem. Similar results were obtained for both DOFs.

7.1.2 Learning Results

An exhaustive set of experiments were carried out in order to test the SONQL
algorithm. In these experiments, optimal parameters were found and a fast
and effective learning of the robot behavior was achieved.

X DOF

The experiments in the X DOF were carried out by placing the target in front
of the robot and starting the learning algorithm. The target was placed next
to the wall of the water tank and the robot was placed in front of it at the
center of the circular tank. This positioning gave the robot the maximum
space in which to explore the state. In addition, as the target was placed
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Figure 7.4: Real-time learning evolution and behavior testing in the X DOF.
In the same experiment, the behavior was first learnt and then tested. In the
learning phase, the state/action space exploration can be appreciated. The
testing consisted of moving the robot away from the target first, and then
allowing the behavior to reach it again. The evolution of the states, actions
and rewards is shown.

close to the wall of the tank, the vehicle was stopped by the ”wall avoidance”
behavior when it came too close to the wall, preventing a collision with the
target.

The learning of the X DOF took about 110 seconds, which represents
about 370 learning iterations (sample time = 0.3 seconds). Figure 7.4 shows
a typical real-time learning evolution. It can be seen how the robot explored
the state in the learning phase. Immediately after the learning phase the
behavior was tested by applying, with the ”teleoperation” behavior, an action
which moved the vehicle away from the target. It can be seen how the target
was again reached and the maximum rewards achieved.

The policy learnt after this learning can be seen in Figure 7.5. The
optimal action vf,x according to the state {fx, fvx} can be appreciated. For
example for fx = 1 and fvx = 0, which means that the target is at the
farthest distance and the velocity is zero, the optimal action is vf,x = 1, that
is, ”go forward”. This is a trivial case, however, but the policy also shows
situations in which intermediate action values are given.
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Figure 7.5: State/action policy learnt for the X DOF.

The Q-function learnt in one of the experiments can also be seen. Fig-
ure 7.6 shows the maximum Q value for each state s = (fx, fvx) which is also
the state value V (s). It can be appreciated that the maximum values are
in the target positions (fx) where the reinforcement function was maximum.
However, according to the velocity variable, fvx, the value of zones with the
same position fx change. This is due to the prediction provided by the state
value function. If the target is located at the position where the reward is
maximum but the velocity causes it to move away, the value of this state
is lower than the states in which the future rewards will also be maximum.
Finally, it must be noted that the function approximated by the NN is not
only the one shown in this figure. Another dimension, corresponding to the
continuous action vf,x, is also contained in the function. This demonstrates
the high function approximation capability of NN.

YAW DOF

Similar experiments were performed for the Yaw DOF. The target was lo-
cated in front of the robot when the SONQL was started. During the ex-
ploration of the space, the robot frequently lost the target but the ”target
recovery” behavior became active and the target was detected again.

The learning of the Yaw DOF took about 60 seconds, which represents
about 200 learning iterations (sample time = 0.3 seconds). The learning of
this DOF was faster than the learning of the X DOF since the state/action
space to be explored was smaller. Figure 7.7 shows a typical real-time learn-
ing evolution. As happened with the X DOF, learning and testing phases
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were consecutively performed. During the testing phase, the ”teleoperation”
behavior was used to interfere with the ”target following”, causing the robot
to loose the target. It can be seen how the target was always reached again
and the maximum rewards were achieved.

The policy and state value functions for the Yaw DOF can be seen in
Figure 7.8 and Figure 7.9 respectively. The policy relates the optimal action
vf,yaw according to the environment state {fy, fvy}. As far as the state value
function V (s) is concerned, it can be clearly appreciated how the maximum
values are in the target positions near the center (fy = 0).

Convergence Test

The SONQL algorithm demonstrated that it converges to the optimal policy
in a relatively small time, as commented above. The only condition to assure
the convergence was to guarantee the reliability of the observed state. This
means that perturbations like the influence of the umbilical cable had to
be avoided. Figure 7.10 shows six consecutive learning attempts of the Yaw
DOF. This figure also shows that the averaged reward increased, demonstrat-
ing that the behavior was being learnt. It can be seen that the algorithm
started exploring the state in order to find the maximum reward. Once the
whole state had been explored, the algorithm exploited the learnt Q function
and obtained the maximum reward.
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Figure 7.7: Real-time learning evolution and behavior testing of the Yaw
DOF. In the same experiment, the behavior was learnt first and then tested.
The testing consisted of moving the robot away from the target with the ”tele-
operation” behavior and allowing the ”target following” behavior to reach it
again. The evolution of the states, rewards and actions is shown.

Figure 7.8: State/action policy learnt for the Yaw DOF.



7.1 Target-following task 159

V(s)

fvy fy

Figure 7.9: State value function V (s), after the learning of the Yaw DOF.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

individual trials
average of the 6 trials

exploration exploitation

iterations

42 [s]
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Figure 7.11: Trajectory of URIS while following the target in the water tank.

7.1.3 Task achievement

This section shows the performance of the behavior-based control layer in
two situations. The first situation shows the accomplishment of the target
following task, see Figure 7.11. In this figure, it can be seen how the robot
followed the target at a certain distance. The target was moved manually
around the water tank and, therefore, the robot trajectory was also a circum-
ference. Note that the position of the target is approximate since there is no
system to measure it. The behavior responses for this experiment are shown
in Figure 7.12. It can be seen that at the beginning of the trajectory the
target was not detected since the ”target recovery” behavior was active. This
behavior generated a constant yaw movement until the target was detected
(see the Yaw DOF graph). Then, the ”target following” behavior became
active and generated several surge and yaw movements generating the circu-
lar trajectory (see X and Yaw graphs). Finally, the target was moved very
fast, causing the activation of the ”target recovery” behavior again.

The second situation of interest is the coordination of the ”wall avoidance”
and ”target following” behaviors, see Figure 7.13. In this case, the target was
used to push the robot backwards to the wall of the tank. The signals in this
figure show how the ”wall avoidance” behavior became active and stopped the
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Figure 7.12: Activation levels and control actions for the ”wall avoidance”,
”target recovery” and ”target following” behaviors. The response of the
coordinator is also shown. These signals correspond to the trajectory shown
in Figure 7.11.
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control action of the ”target following” behavior. The coordinated response
in the surge movement (see the X DOF graph) was nearly zero, although
the ”target following” behavior was generating a backward movement. The
result was that the vehicle stopped between the target and the wall of the
tank, thus producing the desired effect of the hybrid coordinator.

7.1.4 Conclusions and Discussion

After the presentation of the real experiments with URIS, some conclusions
can be extracted:

• The behavior-based control layer and, in particular, the hybrid coordi-
nator system is a suitable methodology to solve a robot task. The task
must be previously analyzed and a set of behaviors with their priorities
must be designed. The proposal is simple and actuates with robust-
ness and good performance. The parameter k, used by the coordinator
nodes, is not a parameter to tune and does not greatly affect the fi-
nal performance. It simply determines the degree to which dominant
behaviors will subsume the non-dominant ones.

• The design and implementation of some behaviors is sometimes very
simple, like the ”target recovery” behavior. However, other behaviors,
like the ”target following” behavior, require a deeper analysis. For this
kind of behavior it is interesting to use the SONQL algorithm.

• The SONQL algorithm simplifies the designing of robot behaviors. The
definition of the reinforcement function and the analysis of the observed
state are the most important tasks. The parameters of the algorithm
can first be taken from other behaviors and then refined if necessary.
The SONQL will learn the optimal mapping between the state and the
action, whatever the relation is.

• Another advantage of the SONQL algorithm is that it is an off-policy
algorithm. This feature allows the interaction of the other behaviors
while performing the learning. This is especially important in behav-
ioral architectures where more than one behavior is simultaneously en-
abled.

• An RL learning algorithm should not be considered as a classic con-
troller. The problem solved by RL is the maximization of the sum of
future rewards. Therefore, an optimal mapping is the one which solves
this problem. The optimal control action, according to control theory,
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can only be achieved if the terms defining this optimality are considered
in the design of the reinforcement function.

• One of the most important drawbacks is the accuracy required in the
observation of the environment state. If the state is not fully observed,
or has noise or delays, the learning cannot be accomplished. When
selecting the components of the state, it is important to choose the
variables which can be measured with more accuracy. Also, the mea-
surement of the state will depend on the sample time of the algorithm.
If the sample time is very small (fast execution), the state measure-
ment must have a higher precision. The use of eligibility traces (see
Section 4.4.3) could probably minimize this problem. Algorithms using
eligibility traces update the values of a set of past states and this causes
an average effect less sensitive to the poor accuracy of the state mea-
surement. However, the implementation of eligibility in dealing with
the generalization problem is much more complicated.

• Finally, an implementation issue concerning the action used in the
learning process must be commented on. In the RL update rule, action
at is the one proposed at time t and contributes to the achievement of
state st+1. Surprisingly, when this action was used, the learning had
many problems in converging. After analyzing the state transitions
and the executed actions, it was found that there was a more logical
state transition when considering action at−1 for the change from st to
st+1. By applying action at−1, the learning became much more stable
due to the fast execution of the SONQL algorithm. As commented in
Section 6.4.2, the high level controller is executed every 0.3 seconds,
while the low-level controller id executed at 0.1 seconds. The low-level
controller did not have enough time to achieve the set-points, and the
actions were not effective until the next iteration. Again, this problem
could also be solved with eligibility traces.

7.2 SONQL in the ”Mountain-Car” task

This section presents the application of the SONQL algorithm to the ”moun-
tain-car” benchmark. This problem is widely accepted by the RL research
community as a convenient benchmark to test the convergence and gener-
alization capabilities of an RL algorithm. Although the convergence of the
SONQL algorithm cannot be formally probed, it is assumed that if it is able
to converge on this complex task, it will also be able to converge in sim-
pler tasks, such as the reactive robot behavior at hand. The ”mountain-car”
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benchmark is not a continuous task like a robot behavior, but an episodic
task. Moreover, contrary to a robot behavior, the environment is completely
observable without or noise. Hence, this task is highly suitable to test the
generalization capability of the SONQL only.

This section first describes the ”mountain-car” task. Then, in order to
have a performance baseline, the Q learning algorithm is applied to the prob-
lem. After showing the performance of the Q learning, the SONQL algorithm
is applied. The results of the algorithm using different configurations will be
analyzed. Finally, a comparison of the SONQL performance with respect to
other RL algorithms is done.

7.2.1 The ”Mountain-Car” task definition

The ”mountain-car” task [Moore, 1991, Singh and Sutton, 1996] was designed
to evaluate the generalization capability of RL algorithms. In this problem,
a car has to reach the top of a hill. However, the car is not powerful enough
to drive straight to the goal. Instead, it must first reverse up the oppo-
site slope in order to accelerate, acquiring enough momentum to reach the
goal. The states of the environment are two continuous variables, the po-
sition p and the velocity v of the car. The bounds of these variables are
−1.2 ≤ p ≤ 0.5; and −0.07 ≤ v ≤ 0.07. Action a is a discrete variable
with three values {−1, 0,+1}, which correspond to reverse thrust, no thrust
and forward thrust respectively. The mountain geography is described by
the equation: altitude = sin(3p). Figure 7.14 shows the ”mountain-car”
scenario. The dynamics of the environment, which determines the state evo-
lution, is defined by these two equations:

vt+1 = bound[vt + 0.001 at − 0.0025 cos(3 pt)] (7.1)

pt+1 = bound[pt + vt+1] (7.2)

in which the bound operation maintains each variable within its allowed
range. If pt+1 is smaller than its lower bound, then vt+1 is reset to zero. On
the other hand, if pt+1 achieves its higher bound, the episode finishes since
the task is accomplished. The reward is -1 everywhere except at the top of
the hill, where it is 1. New episodes start at random positions and velocities
and run until the goal has been reached or a maximum of 200 iterations have
elapsed. The optimal state/action mapping to solve the ”mountain-car” task
is not trivial since, depending on the position and the velocity, a forward or
reverse action must be applied.
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Figure 7.14: The ”mountain-car” task domain.

7.2.2 Results with the Q learning algorithm

To provide a performance baseline, the classic Q learning algorithm was ap-
plied. The state space was finely discretized, using 180 states for the position
and 150 for the velocity. The action space contained only three values, -1, 0
and 1. Therefore, the size of the Q table was 81000 positions. The exploration
strategy was an ε−greedy policy with ε set at 30%. The discount factor was
γ = 0.95 and the learning rate α = 0.5, which were found experimentally.
The Q table was randomly generated at the beginning of each experiment.
In each experiment, a learning phase and an evaluation phase were repeat-
edly executed. In the learning phase, a certain number of iterations were
executed, starting new episodes when it was necessary.

In the evaluation phase, 500 episodes were executed. The policy followed
in this phase was the greedy policy, since only exploitation was desired. In
order to numerically quantify the effectiveness of the learning, the average
time spent in each episode is used. This time is measured as the number of
iterations needed by the current policy to achieve the goal. After running
100 experiments with Q learning, the average episode length in number of
iterations once the optimal policy had been learnt was 50 iterations with 1.3
standard deviation. The number of learning iterations to learn this optimal
policy was approximately 107. Figure 7.15 shows the effectiveness evolution
of the Q learning algorithm after different learning iterations.

It is interesting to compare this mark with other state/action policies.
If a forward action (a = 1) is always applied, the average episode length is
86. If a random action is used, the average is 110, see Figure 7.15. These
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Figure 7.15: Effectiveness of the Q learning algorithm with respect to the
learning iterations. During the first iterations the efficiency was very low,
requiring many iterations to reach the goal. The graph was obtained by av-
eraging 100 trials. In each trial, the effectiveness was calculated by averaging
the number of iterations to goal in 500 episodes. After converging, the effec-
tiveness was maximum, requiring only 50 iterations to accomplish the goal.
The 95% confidence intervals are also shown. Finally, the effectiveness levels
of random and forward policies can be observed.

averages depend highly on the fact that the maximum number of iterations
in an episode is 200, since in many episodes these policies do not fulfill the
goal.

The optimal policy learnt by Q learning is shown in Figure 7.16. This
mapping relates the state of the environment (car position and velocity) with
the discrete actions, a = {−1, 0, 1}. In this figure four different mappings
are presented which correspond to the same trial but at different learning
iterations. It can be observed how the optimal policy becomes more defined
as a function of the learning iterations. It is important to note the non-linear
relation between the mapping and the optimal action. The disadvantage of
a discrete state space is that each state/action pair must be updated several
times until a homogeneous policy is obtained. This causes a high number of
learning iterations.
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Figure 7.16: State/action policy after several number of learning iterations
for the Q learning algorithm. The actions are represented in different colors:
white for forward thrust, gray for no-thrust, and black for reverse thrust.

Similar to the experiments with the URIS robot, the Q function can
also be represented. In Figure 7.17, the maximum Q(s, a) value for each
state value is represented which is also the V (s) function. For a clearer
visualization, the V (s) axis has been inverted. Hence, the states with a higher
state-value are the ones which correspond to the lower parts of the three-
dimensional surface. It can be observed how the shape of the state-value
function evolves according to the learning iterations. Also, it is interesting
to compare the evolution of the V (s) function with respect to the evolution
of the optimal policy. The V (s) function evolves much faster to its definitive
shape, while the policy is learnt slowly.

7.2.3 Results with the SONQL algorithm

The SONQL was also applied to the ”mountain-car” task. Since the state
space had been finely discretized with the Q learning algorithm, it was as-
sumed that with only three actions, the minimum number of iterations to
fulfill the goal is 50. The SONQL algorithm cannot improve this mark as
it is based on the Q learning algorithm. However, it is expected that it can
reduce the number of iterations required to learn the optimal policy.
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the Q learning algorithm.

An extensive number of experiments were executed with the SONQL
algorithm in order to find the best configuration. The NN had three layers
with 15 neurons in the two hidden layers. Only three actions were used, as
with the Q learning experiments. The optimal learning rate and discount
factor were α = 0.0001 and γ = 0.95. And the ε parameter was set at
30%. Note the difference between the optimal learning rate of the SONQL
algorithm and the Q learning algorithm. The Q learning has a higher rate
but only one value of the discrete function is updated. On the other hand,
the SONQL algorithm has a much smaller learning rate but each NN update
affects the whole continuous space. The density parameter of the database
was set to t = 0.09, which entailed approximately 470 learning samples at
the end of each trial.

As with the Q learning algorithm, each trial had a learning phase and an
evaluation phase. In the evaluation phase 500 episodes were tested. For each
experiment with a SONQL configuration, a total number of 100 trials were
run. The average episode length in number of iterations for the parameters
detailed above was 53 with 2.1 standard deviation. The number of learning
iterations were only 20000, approximately. This result demonstrates that
the SONQL algorithm is able to converge much faster than the Q learning
algorithm (from 107 to 20000 learning iterations), although it is not able to



170 Chapter 7. Experimental Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

40

50

60

70

80

90

100

110

120

130

140

150

Learning Iterations 

mean

95% confidence interval

random action

forward action

Ite
ra

tio
ns

 to
 G

oa
l

52

53

54

Figure 7.18: Effectiveness of the SONQL algorithm with respect to the learn-
ing iterations. The graph is the average of 100 trials. The 95% confidence
intervals are also shown.

learn exactly the same optimal policy. The policy learnt by the Q learning
algorithm was able to solve the ”mountain-car” task in 50 iterations, while
the SONQL required 53 iterations. This difference is very small and, there-
fore, the feasibility of the SONQL algorithm in solving the generalization is
affirmed. The convergence of the algorithm also proved to be very high and
in all the experiments the optimal policy was learnt.

Figure 7.18 shows the performance evolution with respect to the num-
ber of learning iterations. After 20000 learning iterations, the number of
iterations required to accomplish the goal are 53. It is also observed how
the SONQL algorithm maintains effectiveness until the end of the experi-
ment without diverging. Figure 7.19 shows another representation of the
same experiment. In this case, the graph is drawn with respect to the total
number of NN updates, considering each sample of the database as a learn-
ing iteration. The number of iterations is higher than before since, for each
SONQL iteration, all the samples of the database are learnt. However, the
number of NN updates are also significantly fewer than with the Q learning
algorithm, which is also represented. The total number of NN updates was
approximately 8 · 106 iterations.

The optimal policy learnt by the SONQL algorithm is shown in Fig-



7.2 SONQL in the ”Mountain-Car” task 171

0 1 2 3 4 5 6 7 8

x 10
6

40

50

60

70

80

90

100

110

120

130

140

150

Learning Iterations 

random action

forward action

Ite
ra

tio
ns

 to
 G

oa
l

Q_learning
SONQL

Figure 7.19: Effectiveness of the SONQL algorithm with respect to the num-
ber of NN updates.

ure 7.20. As previously done with the Q learning algorithm, four different
mappings are presented, which correspond to different learning iterations. It
can be observed how the optimal policy becomes more defined as the learn-
ing is performed. It is interesting to compare the policies learnt by the two
algorithms, see Figure 7.16 and Figure 7.20. In the policy learnt by the
SONQL, the optimal actions are more clearly defined, although both have
similar shapes. The state zones of the Q learning policy which are less de-
fined, indicate that they were not visited enough and, consequently, a higher
divergence between the Q learning and SONQL policies can be found.

The Q function at different learning iterations is represented in Fig-
ure 7.21. As in previous representations, the maximum value for each state
is shown, which is the state-value function V (s). It can be observed how the
shape of the function evolves according to the learning iterations. The V (s)
axis has been inverted for a clearer visualization. It is interesting to compare
the shape of the V (s) function learnt by the SONQL algorithm with the
one of the Q learning algorithm, see Figure 7.17. The function learnt by the
SONQL is much smoother, although the shape is similar. The ranges of the
two functions are not exactly the same. The maximum and minimum values
of the SONQL function are higher, which is caused by the interference of the
NN when updating the samples. However, the values of different actions at
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Figure 7.20: State/action policy after different learning iterations for the
SONQL algorithm. The actions are represented in different colors: white for
forward thrust, gray for no-thrust, and black for reverse thrust.

the same states maintain the same relation which finally defines the policy.
The V (s) function learnt by the SONQL algorithm after 20000 iterations is
shown in Figure 7.22. In this figure two different views of the approximated
state-value function can be observed.

The influence of the database was analyzed using the same SONQL con-
figuration and changing the database size. Instead of referring to the density
parameter t, the number of samples stored in the database will be used. The
total number of NN updates was fixed at 8 ·106 iterations approximately, and
in each experiment 100 trials were simulated. The first experiment consisted
of learning with only the current learning sample, that is, without using the
database. Figure 7.23 shows the obtained result. It can be appreciated that
the algorithm is not able to learn an optimal mapping. The effectiveness
occurs in 110 iterations, which is the same effectiveness as with a random
policy. The confidence interval is very large, since each of the 100 trials had a
very different result. The first conclusion is that, although the NN is able to
approximate the optimal Q-function, the interference problem does not allow
the stability of the learning process. The database is therefore necessary to
ensure the convergence.

Three more experiments were executed in which the number of learn-
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ing samples were 280, 150 and 85 samples. In Figure 7.24, the effective-
ness of these experiments, together with the previous ones, are shown. The
graphs represent the number of NN updates. It can be observed that all
the SONQL algorithms finished at the same number of iterations (8 · 106).
The convergence time is not drastically different, although the experiments
with a smaller database converged sooner. However, the experiments with a
larger database obtained a better effectiveness. The averages of the ”D=470”,
”D=280”, ”D=150” and ”D=85” experiments are 53, 54, 56 and 58 respec-
tively. Figure 7.25 shows the same graphs but with respect to the number
of learning iterations of the SONQL algorithm. The number of iterations is
smaller since the number of NN updates is equal and the database is larger. A
second conclusion can be extracted from these results; with a larger database,
a better learning is achieved. A large database implies a large set of learning
samples uniformly distributed throughout the visited space. This represen-
tative set of samples improves the learning capacity of the direct Q learning.
Finally, besides the improvement of the effectiveness, a larger database also
implies a higher computation of the SONQL algorithm for the same number
of iterations, which must be taken into account in a real-time application.

The results obtained in this section empirically demonstrate the benefit
of using the SONQL algorithm, and especially the learning samples database,
for solving the generalization problem.

7.2.4 Discussion

The comparison between the SONQL algorithm and the Q learning algorithm
must only be considered as an evaluation of the SONQL policy with respect
to the optimal one, which was supposed to be the one learnt by Q learning.
The Q learning exhibited a long convergence time since it was affected by
the generalization problem. It is interesting to compare the performance
of the SONQL algorithm with respect to other RL algorithms that have
also dealt with the ”moutain-car” task. The results of some of them are
next commented. These algorithms have been classified according to the
generalization methodology.

Decision Trees A decision tree used to generalize the Q learning algorithm
was proposed by Vollbrecht [Vollbrecht, 1999]. The effectiveness of this
algorithm was 58 iterations to goal, and the convergence time was 20000
learning episodes. The number of learning iterations was not detailed.
Another interesting work can be found in [Munos and Moore, 2002]. In
this work, a detailed study of the value function and policy function
was presented, although the effectiveness was not mentioned.
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ing iterations. The performance of the database is shown with five different
sizes (D=1,85,150,280 and 470).

CMAC The use of the CMAC function approximator in the ”mountain-
car” task is also common. The most known application was done
by Sutton [Sutton, 1996], who centered his work in the value func-
tion. He also analyzed the use of eligibility traces. CMAC was im-
plemented with 10 tilings, having 9x9 tiles each. However, the effec-
tiveness was not mentioned. Another implementation can be found in
[Kretchmar and Anderson, 1997], in which they applied a CMAC func-
tion with 11 tilings and 3x3 tiles. The effectiveness was 68 iterations
to goal and the convergence time was 1500 episodes. In the same work,
the use of a radial basis function approximator was also reported. The
results showed a better effectiveness with the same convergence time,
the number of iterations to goal was 56.

Memory-based In [Smart, 2002], a memory-based method using locally
weighted regression was evaluated with the ”mountain-car” task. The
effectiveness of the algorithm was 70 iterations to goal and the conver-
gence time was not clearly stated.

Neural Networks To the authors best knowledge there are no successful
examples that apply Neural Networks to the ”mountain-car” task. In
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[Boyan and Moore, 1995], the divergence of Neural Networks in this
problem was stated using a 2 layer network with 80 hidden neurons and
using back-propagation updating. This result is the same obtained with
the SONQL algorithm when the database was not used. Therefore, the
SONQL algorithm, making use of the database, can be considered as
one successful case in which a NN was able to solve the generalization
problem proposed in the ”mountain-car” task.

The results of these algorithms does not improve the mark obtained with
the SONQL algorithm. Any of them was able to reach an effectiveness of
53 iterations to goal. As far as the number of learning iterations, it was
not clearly stated in these works and, therefore, it cannot be directly com-
pared. However, from the comments about this feature, it is extracted that
the SONQL algorithm requires less iterations to converge. They talk about
the number of episodes to learn, which even if it is multiplied by the final
effectiveness, gives a higher number of iterations. Another important aspect
is the computational cost. Although it cannot be quantitatively compared,
the SONQL algorithm may require more computation than these algorithms,
due to the high number of learning samples to update at each SONQL it-
eration. Therefore, the conclusion of this comparison is, the SONQL has
a higher generalization capability and a short convergence time, but these
features must be balanced with respect to the available computational power
and real-time requirements.

Finally, after presenting the results of the SONQL algorithm in the ”moun-
tain-car” benchmark, it can be concluded that:

• The SONQL algorithm was able to solve the generalization problem
found in the ”mountain-car” task. The generalization capability of the
NN allowed the approximation of the Q-function. The database of
learning samples was also a requirement to guarantee the convergence
in 100% of the cases.

• The number of learning samples clearly influenced the performance of
the SONQL algorithm. The higher the number of samples, the higher
the performance. However, a high number of samples also implies a
high computational cost, which must be taken into account in a real-
time application.

• The effectiveness of the SONQL algorithm was not as good as the
effectiveness of the Q learning algorithm. However, a drastic reduction
of the number of iterations needed to converge was demonstrated by the
SONQL algorithm. Even the number of NN updates was significantly
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smaller than the number of iterations needed for the convergence of the
Q learning algorithm.

• The results of the SONQL algorithm with respect to other RL algo-
rithms has shown a higher effectiveness and a smaller convergence time.

• It has been demonstrated that the SONQL algorithm is a suitable ap-
proach for reinforcement learning problems in which a generalization
and fast learning are required.



Chapter 8

Conclusions

This chapter concludes the work presented throughout this dissertation. It
first summarizes the thesis by reviewing the contents described in each chap-
ter. It then points out the research contributions extracted from the propos-
als and the experiments. In addition, all aspects which have not been accom-
plished as well as some interesting future research issues are commented on
in the future work section. Then, the research framework in which this thesis
was achieved is described. Finally, the publications related to this work are
listed.

8.1 Summary

In order to develop an autonomous robot, a control architecture must be in-
cluded in the robot control system. The control architecture has the goal of
accomplishing a mission which can be divided into a set of sequential tasks.
Chapter 2 presented Behavior-based control architectures as a methodology
to implement this kind of controllers. Its high interaction with the envi-
ronment, as well as its fast execution and reactivity, are the keys to its
success in controlling autonomous robots. This chapter also compared some
classic approaches by testing their performance in a simulated task with an
Autonomous Underwater Vehicle. The main attention was given to the co-
ordination methodology. Competitive coordinators assured the robustness
of the controller, whereas cooperative coordinators determined the perfor-
mance of the final robot trajectory. Chapter 3 proposed the structure of a
control architecture for an autonomous robot. Two main layers are found in
this schema; the deliberative layer which divides the robot mission into a set
of tasks, and the behavior-based layer which is in charge of accomplishing
these tasks. This chapter and the thesis centered only on the behavior-based
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layer. A behavior coordination approach was proposed. The main feature
is its hybrid coordination of behaviors, between competitive and cooperative
approaches. The approach was tested with the simulated task as well.

The second part of the thesis centered on the implementation of the robot
behaviors. It proposed the use of a learning algorithm to learn the internal
mapping between the environment state and the robot actions. Chapter 4
presented Reinforcement Learning as a suitable learning theory for robot
learning. Its online applicability and the non-requirement of any previous
information about the environment are the most important advantages. In
addition, the Q learning algorithm was presented, which is specially ade-
quate for its capability in off-policy learning. The most important drawback
is the generalization problem. Reinforcement Learning algorithms are based
on discrete representations of the state and action spaces. When these al-
gorithms are applied to continuous variables, as most robotics applications
require, the discretization of the variables causes an enormous number of
states and a long learning time. The generalization makes the application of
Reinforcement Learning in robotics impractical. However, several techniques
were presented which attempt to solve this problem. Chapter 5 proposed a
Reinforcement Learning algorithm designed to be applied to robotics. The
goal of the SONQL algorithm is to learn robot behaviors. It is based on
the Q learning algorithm and solves the generalization problem by using a
Neural Network and a database of the most representative learning samples.

The thesis has shown some experiments with the Autonomous Under-
water Vehicle URIS. Chapter 6 detailed the experimental set-up specifically
designed for these experiments. A description of the vehicle was done first,
followed by the presentation of two sensory systems. The target detection
and tracking system was in charge of detecting an artificial target by using
computer vision. Its purpose was to provide the detection of the environ-
ment state for the SONQL algorithm. The second sensorial system was the
localization system, which also uses computer vision to estimate the position
and velocity of the vehicle. The system was responsible for the fine control-
lability of the robot. Finally, Chapter 7 showed some results of the SONQL
algorithm. The feasibility of the approach was demonstrated by learning a
target following behavior in real-time computation. The hybrid coordina-
tion system demonstrated to be a suitable methodology, by coordinating the
SONQL-based behavior and other manually implemented behaviors. The
SONQL algorithm was also tested in a simulated benchmark. This task
demonstrated empirically the feasibility of this algorithm in a complex gen-
eralization problem.
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8.2 Contributions

This thesis has accomplished the proposed goal which is the development of
a robot control architecture for an AUV able to achieve simple tasks and
exhibit real-time learning capabilities. In the development of this goal, some
research contributions were achieved. Hereafter these contributions are listed:

Online learning of robot behaviors . The most important contribution
has been the online learning of robot behaviors. The use of Reinforce-
ment Learning in robotics is very common nowadays. However, there
are not many approaches which perform an online learning. It is, there-
fore, an important contribution to demonstrate the feasibility of the
SONQL in a real-time task, specially in a complex domain such as un-
derwater robotics. The algorithm proved able to learn the state/action
mapping of one DOF in less than 400 iterations, which was less than
two minutes. Although the best parameters were used and the exper-
iments were designed in detail, these results point out the important
role learning algorithms will have in future robotics applications.

SONQL as a continuous state RL algorithm . The second contribu-
tion is also related to the SONQL algorithm. This algorithm demon-
strated a high generalization capability in the ”mountain-car” bench-
mark. The combination of the Neural Network and the learning sam-
ples database resulted in an algorithm able to face the generalization
problem. The Neural Network offered a high function approximation
capability, and the database guaranteed its stability by avoiding the
interference problem. To the best of the author’s knowledge, similar
approaches have not been found in the literature and, therefore, the
SONQL represents a contribution in the Reinforcement Learning field.
However, it must be noted that, although the action space is contin-
uous in the Neural Network, the search of greedy actions requires a
discretization of this space. Therefore, the SONQL must be considered
only as an algorithm to solve the generalization problem in the state
space.

Methodologies for Generalizing . The generalization problem in Rein-
forcement Learning was treated in detail. The most important method-
ologies currently being applied were described. This study was not
considered as an exhaustive survey but a general overview of the most
used techniques.

Development of a behavior-based control system . Another contri-
bution was the development of the behavior-based control layer, and in
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particular, the hybrid coordination methodology. The main features of
the coordination system are its simplicity and robustness which assure
the safety of the vehicle. In addition, the cooperation between behav-
iors improves the final robot trajectory. The behavior-based control
layer demonstrated as being an efficient tool in the implementation of
a set of behaviors and the obtained results were highly satisfactorily.

Behavior-based control architectures . Four classic Behavior-based con-
trol architectures were presented, tested and compared. These archi-
tectures represent the most important principles in this field. There-
fore, this study offers an exemplified introduction to Behavior-based
Robotics. The testing of the architectures in a simulated environment
also led to the identification of the dynamics model of GARBI and
URIS underwater robots.

Development of a localization system . A localization system for un-
derwater robots in structured environments was proposed. The system
is able to estimate the position and orientation in three degrees of free-
dom and also the velocity. The localization is based on a coded pattern
and a computer vision system. The high accuracy of the estimations
and the real-time execution of the algorithm are the main features. The
localization system has been one of the most important factors for the
success of the presented experiments.

8.3 Future Work

The development of a research project always provokes the discovery of new
problems as well as new interesting research topics. Future work of the sort
contained in this thesis has elements of both kinds. Five different points
were considered to be the most logical lines to continue this research. The
order in which they are presented corresponds to its hypothetic chronological
execution, and also to its specification level.

Exploration/Exploitation policy . The policy which was followed while
the SONQL was learning is the ε−greedy policy. The advantage of this
is the exploration of new state/action pairs which could have a higher
Q value. The effectiveness of random actions in exploring is, at the
same time, a problem when working with real systems. Random ac-
tions cause very abrupt changes of the robot’s movement, which puts at
risk the safety and controllability of the robot. A future improvement
could be the design of a exploration/exploitation policy which is more
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appropriate for robotics. This policy could make use of the learning
sample database which already contains the non-explored space. How-
ever, the convergence of the algorithm and its necessary time should
be studied and compared with the ε− greedy policy.

Further SONQL testing . The experimental results have shown the learn-
ing of the ”target tracking” behavior. This behavior was chosen for the
ease in detecting an artificial target with a computer vision system. It
would be interesting to add a new state dimension to allow the learning
of moving targets. It would also be interesting to test the feasibility of
the SONQL with other behaviors. A ”trajectory following” behavior,
for instance, has a difficult solution for non-holonomic vehicles. The
solution adopted by the SONQL algorithm would certainly be interest-
ing. Another important test would be the execution of the algorithms
in a natural environment, which usually has much more perturbations,
and would also allow the learning of the heave DOF.

Action space generalization . As was treated throughout this disserta-
tion, the SONQL algorithm cannot work effectively if several continu-
ous actions are present. In the learning of the robot behaviors, only one
continuous action was used since each DOF was independently learnt.
However, the extension of the algorithm to more than one continuous
action cannot be easily accomplished. The main reason for that resides
in the difficulty in finding the maximum value of the Q learning func-
tion when it is implemented with a Neural Network. This problem,
which is also found in other generalization techniques, also constitutes
a future work.

Other RL issues . Besides the generalization problem, the correct ob-
servation of the Markovian state is also a very important point in
robotics. Partially Observable Markov Decision Processes were pre-
sented in Chapter 4 to deal with environments in which the state is
corrupted. The use of a POMDP algorithm should be considered in
future research since the difficulty in having a correct observation is
very high. Also the use of eligibility traces has been pointed in the
experimental results for their higher suitability in Non-Markovian envi-
ronments. In addition, some other research issues about Reinforcement
Learning were pointed out. Policy methods and hierarchical learning
are two interesting topics which have recently received a lot of attention
and are very suitable to robotics.

Deliberative layer This thesis has concentrated on the behavior-based layer
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of a complete control architecture only. It is logical to note as a fu-
ture work the development of the upper layer, which is the deliberative
layer. This layer would allow the execution of real missions instead of
simple tasks. The deliberative layer would configure a set of behaviors
by setting the priorities among them to execute a particular task. After
the fulfillment of this task, a new one would be started. This would be
repeated until the mission was completed. However, in order to test
the deliberative layer, an assorted set of sensors and behaviors must
first be fully working. This future work also involves a new research
line since behavior-based robotics is not a suitable approach for mission
planning.

8.4 Research Framework

The results and conclusions presented in this thesis are based on a set of
experiments. During the period in which this thesis was completed, several
robot platforms were used. This section summarizes the research facilities
and evolution of this thesis. The most relevant research publications will be
referred and can be checked in the next section.

The first experiments consisted of testing some Behavior-based Robotics
control architectures. At that time, the robot GARBI was available for tele-
operation tasks but it was still not ready to test a control architecture. As has
been described throughout this dissertation, in order to perform a test with a
control architecture, the subordinate components, such as sensors, actuators
and the low-level controller, must be properly working. Therefore, the exper-
imentation was performed with a simulated dynamics model of GARBI and
a simulated underwater environment. This led to the identification of the
dynamics model of this vehicle [CAMS’01a]. Moreover, further work on dy-
namics identification was conducted since then [IIA’01,MED’02,GCUV’03b].
This realistic model allowed the execution of a simulated task and the com-
parison of different control architectures [MCMC’00,QAR’00]. This work
was carried out during a research stage at the University of Wales College,
Newport, under the supervision of Prof. Geoff Roberts. Also, the hybrid co-
ordinator methodology [IROS’01a,IIA’00] was designed using this simulator.

The second part of this thesis discussed the use of a Reinforcement Learn-
ing algorithm to learn the internal structure of a behavior. The first steps in
this field were carried out with simulation and published in [IROS’01a]. At
that time, as a result of a research stay at the University of Hawaii, under
the supervision of Prof. Junku Yuh, the learning algorithms were applied to
two different robots. The first one was a commercial mobile robot (Magellan
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Pro mobile robot). The advantages of using this platform first, instead of
an AUV, were certainly great. The ease in controlling the vehicle and the
environment allowed the execution of a high number of experiments [IIA’03].
The utility of these experiments was the detection of the interference prob-
lem in the Neural Network. This problem was solved by designing a first
version of the SONQL algorithm which was tested with a second robot. In
this case, an underwater robot called ODIN, developed in the University of
Hawaii. The experiments with ODIN [IFAC’02,OCEANS’01] demonstrated
the feasibility of Reinforcement Learning with an autonomous underwater
robot.

The experiments were then improved and reproduced with the underwater
robot URIS [IROS’02], which are the experiments presented in this thesis.
In this case, several sensory systems were specifically developed. Among
them, the accurate localization system permitted a fine control of the robot
[ICRA’03a,GCUV’03a]. The experiments with URIS are the most complete,
although they could not have been achieved without the previous experience.
Finally, the generalization capability of the SONQL with the ”mountain-car”
task was evidently performed in simulation [IROS’03].
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