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Abstract. A common problem in RoboCup is role allocation: given a
team of players and a set of roles, how should be roles be allocated to
players? Drawing on our previous work in multi-robot task allocation, we
formalize the problem of role allocation as an iterated form of optimal

assignment, which is a well-studied problem from operations research.
From this perspective, we analyze the allocation mechanisms of a number
of RoboCup teams, showing that most of them are greedy, and that many
are in fact equivalent, as instances of the canonical Greedy algorithm.
We explain how optimal, yet tractable, assignment algorithms could be
used instead, but leave as an open question the actual benefit in terms
of team performance of using such algorithms.

1 Introduction

Over the past decade, a significant shift of focus has occurred in the field of mo-
bile robotics as researchers have begun to investigate problems involving multi-
ple, rather than single, robots. From early work on loosely-coupled tasks such as
homogeneous foraging (e.g., [1]) to more recent work on team coordination for
robot soccer (e.g., [2]), the complexity of the multi-robot systems being studied
has increased. This complexity has two primary sources: larger team sizes and
greater heterogeneity of robots and tasks. As significant achievements have been
made along these axes, it is no longer sufficient to show, for example, a pair of
robots observing targets or a large group of robots flocking as examples of coor-
dinated robot behavior. Today we reasonably expect to see increasingly larger
robot teams engaged in concurrent and diverse tasks over extended periods of
time.

As a result of the growing focus on multi-robot systems, multi-robot coordi-
nation has received significant attention. In particular, multi-robot task allocation

? This paper is based in part on “A Framework for Studying Multi-Robot Task Alloca-
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(MRTA) has recently risen to prominence and become a key research topic in
its own right. As researchers design, build, and use cooperative multi-robot sys-
tems, they invariably encounter the fundamental question: “which robot should
execute which task?” in order to cooperatively achieve the global goal.

In the RoboCup domain, this problem is usually referred to as role allocation,
with the concept of a time-extended “role” replacing that of a transient “task”.
Regardless, the underlying problem remains the same, so we will use the terms
task and role interchangeably throughout the paper. As in most other multi-
robot systems, the question of how to assign roles in RoboCup is of significant
importance for most teams, as it forms the very core of their teamwork strategy3.
However, the methods demonstrated to date remain primarily ad hoc in nature,
and relatively little has been written about the general properties of the role
allocation problem. The field still lacks a prescription for how to design a role
allocation mechanism and there has been little attempt to analytically evaluate
or compare the proposed techniques. They have, of course, been extensively
evaluated empirically.

In this paper we attempt to fill this gap with a formal discussion of role
allocation in RoboCup. Our goal is to provide a framework in which to under-
stand the underlying problem, as well as existing solutions. solutions. We show
how role allocation can be cast as an iterated form of the long-studied Opti-
mal Assignment Problem (OAP) [4]. In this light, we find that many allocation
mechanisms are in fact algorithmically equivalent, as instances of the canonical
Greedy algorithm, and thus have known worst-case bounds on solution qual-
ity. We also explain how provably optimal allocation techniques could be used
instead, with a negligible increase in computational overhead. We leave as an
open question the actual performance benefit of choosing an optimal allocation
algorithm over a greedy one.

The rest of this paper is organized as follows. In the next section, we formalize
the problem of role allocation as it is encountered in RoboCup, and discuss
greedy and optimal algorithms for solving this problem. In Section 3, we provide
a number of examples from the RoboCup literature of teams performing role
allocation, and analyze their algorithms in the context of our formalization.
We conclude in Section 4 with a discussion of future directions for this kind of
analysis in multi-robot coordination problems.

2 The problem

When studying the problem of multi-robot role allocation we take inspiration
from operations research, a field that concerns itself with human organizations. In
particular we claim that role allocation can be reduced to an iterated form of the
Optimal Assignment Problem (OAP) [4], a well-known problem from operations
research. A recurring special case of particular interest in several fields of study,

3 Of course, not all teams use role-based strategies, nor do all role-based teams employ
explicit role assignment (an example of intentional cooperation [3]); we restrict our
attention in this paper to those teams that do both.



this problem can be formulated in many ways. Given our application domain, it is
fitting to describe the problem in terms of jobs and workers. There are n workers,
each looking for one job, and n available jobs, each requiring one worker. The
jobs can be of different priorities, meaning that it is more important to fill some
jobs than others. Each worker has a nonnegative skill rating estimating his/her
performance for each potential job (if a worker is incapable of undertaking a job,
then the worker is assigned a rating of zero for that job). The problem is to assign
workers to jobs in order to maximize the overall expected performance, taking
into account the priorities of the jobs and the skill ratings of the workers. This
problem was first formally studied in the context of assigning naval personnel to
jobs based on the results of aptitude tests [5].

Our multi-robot role allocation problem can be posed as an assignment prob-
lem in the following way: given n robots, n prioritized (i.e., weighted) single-robot
role, and estimates of how well each robot can be expected to play each role,
assign robots to roles so as maximize overall expected performance. However,
because the problem of role allocation is a dynamic decision problem that varies
in time with phenomena including environmental changes, we cannot be con-
tent with this static assignment problem. Thus we complete our reduction by
iteratively re-solving the static assignment problem over time.

Of course, the cost of running the assignment algorithm must be taken into
account. At one extreme, a costless algorithm can be executed arbitrarily quickly,
ensuring an efficient assignment over time. At the other extreme, an expensive
algorithm that can only be executed once will produce a static assignment that
is only initially efficient and will degrade over time. Finally there is the question
of how many roles are considered for (re)assignment at each iteration. In order
to create and maintain an efficient allocation, the assignment algorithm must
consider (and potentially reassign) every role in the system. Such an inclusive
approach can be computationally expensive and, indeed, some implemented ap-
proaches to role allocation use heuristics to determine a subset of roles that will
be considered in a particular iteration.

Together, the cost of the static algorithm, the frequency with which it is
executed, and the manner in which roles are considered for (re)assignment will
determine the overall computational and communication overhead of the system,
as well as the solution quality. Before continuing with a formal statement of the
role assignment problem as an instance of OAP, we first introduce the vital
concept of utility.

2.1 Utility

Utility is a unifying, if sometimes implicit concept in economics, game theory,
and operations research, as well as multi-robot coordination. The underlying idea
in all fields is that each individual can somehow internally estimate the value
(or the cost) of executing an action. It is variously called fitness, valuation,
and cost. Within multi-robot research, the formulation of utility can vary from
sophisticated planner-based methods [6] to simple sensor-based metrics [7]. In
the RoboCup domain, it is common to compute utility as the weighted some



of several factors, such as distance to a target position, distance from the ball,
whether the team is on offense or defense, etc. We posit that utility estimation
of this kind is carried out somewhere in every autonomous task or role allocation
system.

Regardless of the method used for calculation, the robots’ utility estimates
will be inexact for a number of reasons, including sensor noise, general uncer-
tainty, and environmental change. These unavoidable characteristics of the multi-
robot domain will necessarily limit the efficiency with which coordination can be
achieved. We treat this limit as exogenous, on the assumption that lower-level
robot control has already been made as reliable, robust, and precise as possible
and thus that we are incapable of improving it. We discuss “optimal” allocation
solutions in the sense that, under the assumption that all information available
to the system (with the concomitant noise, uncertainty, and inaccuracy) is con-
tained in the utility estimates, it is impossible to construct a solution with higher
overall utility; this notion of optimality is analogous to optimal scheduling [8].

It is important to note that utility is an extremely flexible measure of fitness,
into which arbitrary computation can be placed. The only constraint on utility
estimators is that they must each produce a single scalar value such that they
can be compared for the propose of ordering candidates for tasks. For example,
if the metric for a particular task is distance to a location and the involved
robots employ a probabilistic localization mechanism, then one reasonable utility
estimator would be to calculate the center of mass of the current probability
distribution. Other mechanisms, such as planning and learning, can likewise be
incorporated into utility estimation. No matter the domain, it is vital that all

relevant aspects of the state of the robots and their environment be included
in the utility calculation. Signals that are left out of this calculation but are
taken into consideration when evaluating overall system performance are what
economists refer to as externalities [9]; their effects can be detrimental, if not
catastrophic.

2.2 Formalism

We are now ready to state our role allocation problem as an instance of the
OAP. Formally, we are given:

– the set of n robots, denoted I1, . . . , In

– the set of n prioritized roles, denoted J1, . . . , Jn and their relative weights
w1, . . . , wn

– Uij , the nonnegative utility of robot Ii for role Jj , 1 ≤ i, j ≤ n

We assume:

– Each robot Ii is capable of executing at most one role at any given time.
– Each role Jj requires exactly one robot to execute it.

These assumptions, though somewhat restrictive, are necessary in order to reduce
role allocation to the classical OAP, which is given in terms of single-worker jobs



and single-job workers. It is worth noting that in most existing role allocation
work, especially in RoboCup, these same assumptions are made.

The problem is to find an optimal allocation of robots to roles. An allocation
is a set of robot-role pairs:

(i1, j1) . . . (in, jn)

Given our assumptions, for an allocation to be feasible the robots i1 . . . in and
the roles j1 . . . jn must be unique. The benefit (i.e., expected performance) of an
allocation is the weighted utility sum:

U =

n∑

m=1

Uimjm
wjm

We can now cast our problem as an integral linear program [4]: find n2

nonnegative integers αij that maximize

∑

i,j

αijUijwj (1)

subject to

∑

i

αij = 1, ∀j

∑

j

αij = 1, ∀i

(2)

The sum (1) is just the overall system utility, while (2) enforces the constraint
that we are working with single-robot roles and single-role robots (note that
since αij are integers they must all be either 0 or 1). Given an optimal solution
to this problem (i.e., a set of integers αij that maximizes (1) subject to (2)),
we construct an optimal role allocation by assigning robot i to role j only when
αij = 1.

By creating a linear program, we restrict the space of role allocation problems
that we can model in one way: the function to be maximized (1) must be linear.
Importantly, there is no such restriction on the manner in which the components
of that function are derived. That is, individual utilities can be computed in any
arbitrary way, but they must be combined linearly.

2.3 Solutions

If the robots’ utilities can be collected at one machine (or distributed to all
machines), then a centralized allocation mechanism can be employed. This is
often the case in RoboCup, where locally-computed utility values are generally
either unicast to a single player/coach or broadcast to all players (so that they
each have the same data). In the former case, one machine can execute the



allocation algorithm and inform the players of the results; in the latter, all players
can execute the allocation algorithm in parallel4.

Perhaps the most common role allocation technique is the following

1. Assemble the utility values into an n × n matrix.
2. Find the highest utility uij , assign robot i to role j, and cross out row i and

column j from the utility matrix.
3. Repeat step 2 until all roles have been assigned.

Intuitively, this technique is greedy, in that it always selects the next best choice.
In fact, this technique is an instance of the canonical Greedy algorithm, studied
in several areas of optimization [10]. Unfortunately, the OAP does not satisfy
the greedy choice property [11] and so the Greedy algorithm will not necessarily
produce an optimal solution 5. The worst-case performance of the Greedy algo-
rithm on the OAP is well-known: it is 2-competitive [13]. An algorithm is said
to be α-competitive if, for any input, it finds a solution that is no worse than
1

2
of the optimum. Thus for an assignment problem, the Greedy algorithm will

in the worst case produce a solution with utility that is 1

2
of that given by an

optimal solution.
In place of this greedy approach, it is possible to employ optimal solutions, a

great many of which can be found in the literature (for a representative list, see
[14]). The best-known approach is the Hungarian method [15], a linear program-
ming algorithm that exploits the special structure of the OAP. This algorithm
will find the optimal solution to a role allocation problem in O(n3) time. We
have demonstrated empirically [16] that the constant factor for the Hungarian
method is so small that this algorithm could easily be used for real time role
allocation in RoboCup teams, where n ≤ 11.

It is also possible to solve assignment problems in a completely distributed
fashion. An optimal distributed algorithm that is relevant to role allocation in
the RoboCup domain was derived by viewing the OAP as a “stable marriage”
problem [17]: given a group of n boys and a group of n girls, each with preferences
(i.e., utilities) over the members of the opposite sex, find a set of pairings such
that there exists no boy and girl pair that is not paired together but prefers each
other to their current mates. Gale and Shapley developed an intuitive algorithm
in which each boy proposes to his favorite available girl and each girl condition-
ally accepts her favorite proposer. This process is repeated in a series of stages
until, when the last girl has received a proposal, the “courtship” is declared to
be over and the result is an optimal solution to the problem of assigning boys
to girls so as to maximize total utility.

This distributed algorithm obviates the need to communicate the individuals’
utilities among the individuals and requires O(n2 − 2n + 2) stages, which may

4 Due to communication issues, different players may occasionally have different util-
ity information. Because reallocation is performed so frequently, the effects of such
inconsistency are usually transient and negligible.

5 Equivalently, the OAP is a maximization problem over a subset system, but is not
a matroid [12].



seem better than the O(n3) running time for centralized solutions. Unfortunately
for high-speed, real-world domains like RoboCup, each stage in the proposal
algorithm requires a synchronous exchange of messages between some or all of
the participants. Given the latency characteristics of real networks, especially
wireless networks in congested environments, the time required at each stage to
guarantee the receipt of all messages and maintain synchronization makes this
algorithm far too slow.

In practice, a team seeking optimal role allocation will be better off period-
ically broadcasting utility values to all players and having the players run the
same centralized assignment algorithm in parallel. Assuming that the robots are
linked with a wireless network and that a robot’s utility values for all roles can
be included in a single packet (this is almost certainly the case, as utilities are
scalars), the communication cost of informing n robots of each others’ utilities
is just n messages. This overhead is negligible, as is the ensuing computational
cost of executing even an optimal assignment algorithm.

3 Some examples

Inspired by the pioneering work of Stone and Veloso [2], many RoboCup teams
employ role-based coordination, in which the players can take on different roles
within the team. Although it is possible to statically assign roles once at the
beginning of the game, this strategy is brittle and unable to exploit unexpected
opportunities [18]. Thus most role-based teams employ some kind of dynamic
role allocation, in which the current allocation is reevaluated periodically, usually
on the order of 10Hz. Thus they are solving the iterated assignment problem,
though often without recognizing it as such (a notable exception is RoboLog
Koblenz [19], who identify the problem of assigning players to block opponents
as one of stable marriage, though it is not clear whether they actually use an
optimal algorithm to solve it). Furthermore, most teams use greedy algorithms,
despite the fact that tractable optimal algorithms exist.

For example, the assignment algorithm of ART99 consists of ordering the
roles in descending priority and then assigning each to the available robot with
the highest utility [20]. This algorithm is clearly an instance of the Greedy al-
gorithm, and thus is 2-competitive. As is the case with most teams, utilities in
ART99 are computed in a role-specific manner. The same approach, with utility
referred to as function Q, is used in [21]. Vail and Veloso also employ the Greedy
algorithm, with fixed priority roles [22]. Another team [23] describes a more
complex approach in which role allocation is carried out differently depending
on the game situation, such as who has the ball. We conjecture that their tech-
nique can be reduced to the Greedy algorithm by combining the different cases
and appropriately modifying the utility functions.

A common problem with dynamic role assignment is that small changes in
utility estimates can cause roles to be reassigned very frequently, often in an
oscillating fashion. Changing from one role to another is not a costless operation;
for example, a player may have to move from its current position to another



position on the field. If the team is constantly reassigning roles it will spend less
time actually playing and will tend not to perform well. The underlying problem
is that the cost of transitioning from one role to another is an externality: it
affects system performance but is not included in the utility computation. Thus
the solution is to explicitly consider the cost of role transition in the utility
computation, which will tend to induce a degree of hysteresis. Some teams, such
as RMIT United [24], do this by adding a fixed amount to the utility of a robot
retaining its current role

While the teams discussed so far employ centralized assignment algorithms,
distributed role-swapping approaches are also used. The winners of the F2000
league at RoboCup 2000, CS Freiburg [25], use a distributed role allocation
mechanism in which two players may exchange roles only if both “want” to, in
that they will both be moving to higher-utility roles for themselves. This algo-
rithm is similar to the marriage proposal algorithm discussed previously, but
is not optimal, a fact that can easily be shown by counterexample. This result
is not surprising because an optimal role-swapping algorithm, which considers
all feasible assignments, would be too slow in practice. A similar pairwise ex-
change mechanism is used by FC Portugal [26], who won the simulation league
at RoboCup 2000.

Unfortunately, without more detailed information about these role-exchange
algorithms (e.g., how often are exchanges attempted? how many are attempted?),
it is impossible to derive any performance bounds, other than to say that there
exist situations in which they will produce sub-optimal solutions. Furthermore,
we conjecture that little is saved in terms of communication or computation by
executing such a distributed allocation algorithm. Instead of pursuing pairwise
exchanges, the robots could periodically broadcast their utility values for all
roles, then each execute an optimal centralized assignment algorithm.

4 Discussion

In this paper we have presented a formal framework for studying the RoboCup
role allocation problem. We have shown how this problem can be understood
as an iterated Optimal Assignment Problem (OAP), and how many existing
team coordination strategies can be seen as assignment algorithms that are used
to solve this problem. We have also explained how tractable optimal assign-
ment algorithms developed in operations research can be immediately applied
to RoboCup role allocation problems, in place of the existing greedy and/or ad

hoc solutions.
A natural question arises: what will actually be gained by employing an op-

timal solution? Consider the analysis showing that the allocation mechanism
used by ART99, as an implementation of the canonical Greedy algorithm, is
2-competitive. This kind of competitive factor gives an algorithm’s worst-case

behavior, which may be quite different from its average-case behavior. In fact,
for many small assignment problems, the Greedy algorithm will find an optimal
or near-optimal solution. In this respect, the solution quality bounds established



for existing allocation architectures are rather loose. One way to tighten these
bounds is to add domain-specific information to the formalism. By capturing and
embedding models of how real RoboCup teams behave and evolve over time, it
should be possible to make more accurate predictions about algorithmic perfor-
mance. For example, while the classical theory of the OAP makes no assumptions
about the nature of the utility matrices that form the input, role allocation prob-
lems are likely to exhibit significant structure in their utility values. Far from
randomly generated, utility values generally follow one of a few common mod-
els, determined primarily by the kind of sensor data that are used in estimating
utility. If only “local” sensor information is used (e.g., can the robot currently
see the ball, and if so, how close is it?), then utility estimates tend to be strongly
bifurcated (e.g., a robot will have very high utility if it can see the ball, and zero
utility otherwise). On the other hand, if “global” sensor information is available
(e.g., how close is the robot to a goal position?), then utility estimates tend to
be smoother (e.g., utility will fall off smoothly in space away from the goal).
A promising avenue for future research would be to characterize this “utility
landscape” as it is encountered in RoboCup, and make predictions about, for
example, how well a greedy assignment algorithm should be expected to work,
as opposed to a more costly optimal assignment algorithm.

Another important issue concerns the way in which the role allocation prob-
lem is traditionally framed. Throughout this paper, we have considered the prob-
lem of assigning a single robot to a single role. In the context of our previously
developed taxonomy of such problems [16], we are studying an iterated instance
of ST-SR-IA (single-task robots, single-robot tasks, instantaneous assignment).
However, in some situations, such as when two or more defenders are needed to
block an attacker, the problem actually involves assigning multiple robots to a
single role or task. It is generally not the case that the utility of a collection of
robots for a given task will be equal to the sum of their individual utilities. Thus
the classical assignment formulation is only an approximation of the real prob-
lem, which is an instance of ST-MR-IA (same as ST-ST-IA, but with multi-robot
tasks). Unfortunately, problems of this kind, which involve coalition formation,
are rather difficult to solve. In the most general case, ST-MR-IA problems are
a form of set partitioning, which is strongly NP-hard [27]. As such, using the
single-robot task approximation is a parsimonious choice.

We have also assumed thus far that robots’ utilities are independent. That
is, a robot’s utility for a particular role does not depend on the other robots’
allocated roles. This assumption is rarely, if ever, true in multi-robot systems. In
general, a robot’s utility for a role can in fact be affected by the overall allocation
of roles to robots. This situation can arise any time that physical interference
contributes significantly to task performance [28]. Unfortunately, the state of
the art for capturing interrelated utilities of this kind is the Markov Decision
Process [29], which remain too difficult to solve quickly enough for domains like
RoboCup (especially if partial observability is considered).

Because it is well-defined and requires researchers to empirically compare
their proposed techniques, RoboCup is an excellent domain in which to study



role allocation. It is our hope that the formal perspective on the problem that we
have given in this paper will aid in the understanding of how and why existing
techniques work, as well as guide the design of new ones.
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