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Abstract 

This paper discusses the challenges of learning to behave socially in the dynamic, noisy, situated and embodied mobile 
multi-robot domain. Using the methodology for synthesizing basis behaviors as a substrate for generating a large repertoire 
of higher-level group !Lnteractions, in this paper we describe how, given the substrate, greedy agents can learn social rules 
that benefit the group ',as a whole. We describe three sources of reinforcement and show their effectiveness in learning non- 
greedy social rules. We then demonstrate the learning approach on a group of four mobile robots learning to yield and share 
information in a foraging task. 

Keywords: Social learning; Group behavior; Reinforcement learning; Social rules; Credit assignment 

1. Introduct ion 

Our work focuses, on synthesizing complex group 
behaviors from simple social interactions between 
individuals [30,32]. "We introduced a methodology for 
selecting and designing a set of basis behaviors 2 that 
serves as a substrate for a large repertoire of higher- 
level interactions through the application of two gen- 
eral combination operators that allow for overlapping 
and switching behaviors. Basis behaviors, a direct 
extension of the behavior-based approach to control, 
are an effective repn~sentation level not only for hard- 
wired multi-agent control but also for learning. Our 
previous work, described in [31], has demonstrated 
how an adaptation of reinforcement learning can be 
applied to basis behaviors in order to have a group of 
mobile robots learn a complex foraging behavior in a 
group. 

! E-mail: maja@cs.brandeis.edu. 
2 Alternatively called basic behaviors. 

Although our approach was effective (the group of 
robots learned to forage within 15 min), the speed of 
learning declined with increased group sizes, as a re- 
sult of interference between the agents. In this paper 
we describe how such interference can be minimized 
through the use of social rules. We discuss the chal- 
lenges of developing social and altruistic behavior in 
systems of individually greedy agents facing the group 
credit assignment problem. To make social learning 
possible, we postulate three types of social reinforce- 
ment, and test their effectiveness in the foraging do- 
main. We demonstrate how a group of robots, initially 
equipped with a strategy for foraging, can learn the 
following social behaviors: yielding, proceeding, com- 
municating, and listening, which serve to effectively 
minimize interference and maximize the effectiveness 
of the group. 

The rest of this paper is organized as follows. 
Section 2 overviews some representative related work. 
Section 3 discusses interference and conflict, the key 
motivations for social rules, and proposes the concept 
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of prototypical states of social interactions that make 
learning social rules tractable. Section 4 discusses 
social learning and introduces and motivates the three 
forms of social reinforcement. Section 5 describes 
the experimental environment and the robot testbed. 
Section 6 gives the details of the learning task, the 
learning algorithm, the implementation of social re- 
inforcement, and the experimental design used for 
testing. Section 7 presents the results and Section 8 
discusses them. Finally, Section 9 describes continu- 
ing work and concludes the paper. 

2. Related work 

While there are many examples of applying learning 
techniques to simulated mobile robots, there have been 
comparatively few demonstrations of physical mobile 
robots learning in real time. This section reviews the 
work on learning physical mobile robots focusing on 
reinforcement learning (RL) approaches, and briefly 
overviews some related learning work on simulated 
agents. 

Kaelbling [19] used a simple mobile robot to val- 
idate several RL algorithms based on immediate and 
delayed reinforcement applied to learning obstacle 
avoidance. Maes and Brooks [26] applied a statistical 
RL technique using immediate reward and punish- 
ment in order to learn behavior selection for walking 
on a six-legged robot. The approach was appropri- 
ate given the reduced size of the learning space and 
the available immediate and accurate reinforcement 
derived from a contact sensor on the belly of the 
robot, and a wheel for estimating walking progress. 
More delayed reinforcement was used by Mahadevan 
and Connell [27] in a box-pushing task implemented 
on a mobile robot, in which subgoals were intro- 
duced to provide more immediate reward. Mahadevan 
and Conell [28] experimented with Q-learning using 
monolithic and partitioned goal functions for learning 
box-pushing, and found subgoals necessary. Lin [21] 
used RL on a simulated robot by breaking the navi- 
gation task into three behaviors in a similar fashion. 
The work was successfully transferred on a Hero plat- 
form. Asada et al. [1] demonstrated coordination of 
behaviors learned using vision-based reinforcement 
on a soccer-playing mobile robot shooting at a goal. 
Tan [47] explored RL in a situated multi-agent do- 

main utilizing communication to share learned infor- 
mation. Lin [22] studied RL in a group of simulated 
agents. 

Chapman and Kaelbing [6] addressed learning from 
delayed reinforcement in the video game domain. 
They and Mahadevan and Connell [27] demonstrated 
complementary approaches for input generalization. 
Chapman and Kaelbling [6] started with a single most 
general state and iteratively split it, while Mahadevan 
and Connell [27] started with a fully differentiated 
specific set of states, and consolidated them based on 
similarity statistics accumulated over time. 

Aside from traditional unsupervised RL methods 
described above, other techniques have also been 
explored. Pomerleau [41] used a supervised connec- 
tionist learning approach to train steering control in 
an autonomous vehicle based on generalizing visual 
snapshots of the road ahead. Thrun and Mitchell [48] 
demonstrated a connectionist approach to learning 
visual features with a camera mounted on a mobile 
robot. The features are not assigned by the designer 
but are instead selected by the network's intermediate 
representations and are thus well suited for the robot's 
navigation task. Millfin [37] implemented a connec- 
tionist RL scheme on a mobile robot learning navi- 
gation in office corridors based on dead-reckoning. 
The approach utilizes several methods for improving 
the learning rate, including a coarse codification, or 
generalization, of the sensory inputs, a hard-wired set 
of basic reflexes in situations of incorrect generaliza- 
tion, a modular network, and constrained search of 
the action space. 

Very few examples of multi-robot learning have 
been demonstrated so far. Matari6 [31 ] demonstrated 
learning higher-level group behaviors such as forag- 
ing by selecting among basis primitives, the work on 
which this paper is based. Parker [40] implemented a 
non-RL memory-based style of parameter-learning for 
adjusting activation thresholds used to perform task al- 
location in a multi-robot system. Tan [47] has applied 
traditional RL to a simulated multi-agent domain. Due 
to the simplicity of the simulated environment, the 
work has relied on an MDP model that was not ap- 
plicable to this domain. Furthermore, Tan [47] and 
other simulation works that use communication be- 
tween agents rely on the assumption that agents can 
correctly exchange learned information. This often 
does not hold true for physical systems whose noise 
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and uncertainty properties extend to the communica- 
tion channels. 

In these and most other domains in which RL has 
been applied, the learning agent attempts to acquire 
an effective policy for individual (greedy) payoff. In 
contrast, this paper addresses the problem of learning 
social rules that allow for optimizing global payoff, 
but may not "trickle down" to the individuals. This is 
a particularly challenging form of the credit assign- 
ment problem: not only is credit (reward) from the 
environment delayed, but in many cases of social be- 
havior, it is non-existent. Consequently, other sources 
of reward, such as social reinforcement, need to be 
introduced in order to make social rules learnable. 

The problem of credit assignment in a group has 
been addressed in game theory (for example see 
[2,12,20]) but it has largely been treated under the 
rational agent assumption. According to traditional 
definitions from game theory, economics, and dis- 
tributed artificial intelligence (DAI), rational agents 
are capable of correctly evaluating the utility of their 

. 

actions and strategies. Much work has been done in 
opponent modeling and strategy learning for two- 
agent systems [5,14,38,39,43] and some in the field 
of DAI on multi-agent Q-learning [16,44]. 

In situated multi-agent domains, due to incomplete 
or non-existent world models, inconsistent reinforce- 
ment, noise and uncertainty, the agents cannot be as- 
sumed to be rational. In general, systems treated by 
game theory are usually simpler and more cleanly con- 
strained than those found in biology and robotics. This 
paper focuses on studying what is required for learn- 
ing social behaviors in domains where the agents can- 
not be assumed to be rational. 

3. Interaction vs. interference 

3.1. Resource vs. goal competition 

Interference is an unavoidable aspect of multi-agent 
interaction and is one of the primary motivators for 
the formation of soci,'d rules. We define interference as 
any influence that opposes or blocks an agent's goal- 
driven behavior. In societies consisting of agents with 
similar goals, interference largely manifests itself as 
competition for shared resources. In diverse societies, 

where agents' goals differ, more complex conflicts can 
persist between agents, including deadlocks, oscilla- 
tions, and undoing of one another's work. Social struc- 
ture serves to minimize interference and maximize the 
efficiency of the group. 

Two functionally distinct types of interference are 
relevant to this work: interference caused by the 
multiplicity of agents, which we will call resource 
competition, and interference caused by goal-related 
conflict, which we will call goal competition. Re- 
source competition includes any interference result- 
ing from multiple agents competing for common 
resources such as space, food, and information. This 
type of interference causes the decline in performance 
in multi-agent systems as more agents are added. 
Goal competition includes any interference resulting 
from multiple agents having different and potentially 
conflicting goals. 

While resource competition is caused by physical 
coexistence, and can thus arise in any multi-agent 
system, goal competition is particularly acute in sys- 
tems with heterogeneous agents. Functionally differ- 
ent agents can create lasting interference and undo 
each other's work either out of an immediate need for 
resources or due to other goals such as, for instance, es- 
tablishing dominance. For example, a group of agents 
collecting food from the same source and taking it 
to the same home experience resource competition. 
However, two subgroups with different home locations 
competing over food can experience goal competition 
as well since the agents of one group could find an 
incentive for blocking the progress of the members of 
the other group, as well as for "stealing" the food from 
their home. 

Goal competition is studied primarily by the DAI 
community (e.g., [13]) whose approaches usually in- 
volve predicting other agents' goals and intentions, 
thus requiring agents to maintain models of each 
other's internal state (e.g., [18,36], and others men- 
tioned in the related work section). Such prediction 
abilities require sensory, representational, and com- 
munication capabilities and computational resources 
that typically scale poorly with increased group sizes. 
In contrast, our work deals with homogeneous soci- 
eties whose social rules are shared by all individuals. 
Consequently, only resource competition, and social 
rules aimed at minimizing it, are relevant and will be 
addressed. 
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3.2. Individual vs. group payof f  

Social rules that minimize interference among 
agents attempt to direct behavior away from individ- 
ual greediness and toward global efficiency. Greedy 
individualist strategies perform poorly in group situ- 
ations where inevitable resource competition, which 
grows with the size of the group, is incorrectly man- 
aged. 3 Not all group dynamics fall into this category. 
For example, some tasks allow for efficient greedy 
strategies in which agents specialize by task division 
(for example see demonstrations in [11]). In contrast, 
this paper focuses on tasks and solutions in which the 
agents cannot specialize, and instead must find means 
of optimizing their activity within the same task by 
developing social rules. 

In such situations, agents must give up individual 
optimality in favor of collective efficiency. At least in 
theory, it is in the interest of each of the individuals to 
obey social rules, since on the average their individual 
efficiency will be improved as well. However, since the 
connection between individual and collective benefit 
is not always direct, the problem of learning social 
rules is a difficult one. 

Outside game theory, this problem has been 
addressed in the field of Artificial Life. Genetic al- 
gorithms allow generations of agents with different 
social rules to be tried out, mutated, and recombined, 
in order to find the best fit [17,23-25,42]. The work 
presented in this paper is fundamentally different be- 
cause it addresses the problem of learning social rules 
by each of the individuals during their lifetime and 
within the context of a task, in this case foraging. It is 
aimed at loosely modeling higher animals rather than 
insects that are pre-programmed with the appropriate 
social strategies. 

ically, only a few group sizes (e.g., two, three, sev- 
eral, many) and prototypical relations among agents 
(e.g, one-to-one, one-to-few, and one-to-many 4 with 
the first two being the most prevalent), are relevant for 
any given type of interaction. 

The canonical form of social relation is the domi- 
nance hierarchy or pecking order, ubiquitous in animal 
societies, from hermit crabs and chickens to primates 
and people [7,8]. Some biological data support the hy- 
pothesis that the number of levels in dominance hier- 
archies is bounded and relatively stable across a large 
spectrum of species [8], possibly suggesting that only 
a small computational/cognitive overhead may be re- 
quired. Besides mating, the majority of animal/social 
interaction focuses on establishing and maintaining 
such pecking orders [9]. A direct evolutionary benefit 
resulting from them is hard to prove, but hierarchies 
certainly serve to ritualize and thus simplify social 
interactions. 

While dominance hierarchies are a prevalent social 
structure and simplify social interaction, in this work 
we focus on learning social rules that are not directly 
embedded in a dominance relation. We study rules 
that are social in that they are derived by the agent 
based on its interactions with others and their effects 
on its efficiency over time. This paper uses the group 
size classification above to prune the state space of 
social interactions, and focus on learning social rules 
that are applied in one-to-one and one-to-few interac- 
tion classes. In particular, we study learning yielding 
rules for one-to-one motion conflicts, and communi- 
cation rules for one-to-few interaction. We postulate 
that learning social rules for such interactions requires 
specific types of social reinforcement, as described in 
the following section. 

3.3. Prototypical states in social interaction 4. Social reinforcement 

In theory, the number of possible social states, i.e., 
states that involve interactions between two or more 
agents, grows with the size of the group, and the asso- 
ciated rules of social conduct could potentially grow 
at the same rate. In practice, however, social rules are 
largely independent of the exact group size. Specif- 

Social learning is the process of acquiring new be- 
havior patterns in a social context, by learning from 
conspecifics. Also called observational learning, it is 
ubiquitous in nature and the propensity for it appears 
to be innate [34,35]. Social learning includes learn- 
ing how to perform a behavior, through imitation, and 

3 The rate of growth is determined by the properties of the 4 Where "many" is bounded by the sensing and communication 
particular system, range. 
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when to perform it, through social facilitation. Imita- 
tion is defined as the ability to observe and repeat the 
behavior of another animal or agent while social fa- 
cilitation refers to the process of selectively express- 
ing a behavior which is already a part of the agent's 
repertoire. This work is in the latter category, since 
our agents learn social rules, i.e., when to engage in 
various built-in social behaviors. 

Social settings offer a plethora of information useful 
for social learning. Observed behavior of conspecifics 
can serve as negative as well as positive reinforcement. 
For example, animals quickly learn not to eat food 
that has had a poisonous effect on others, and to avoid 
those that have been dangerous to other members of 
the group [10,15,35] The so-called vicarious learning, 
or learning through observation of other agents' ex- 
periences, is a means of distributing trials so that one 
agent need not perform them all. As long as the expe- 
rience of an agent is "visible", it can serve as a source 
of vicarious learning trials and social reinforcement 
signals for others. 

Evidence from ethology guides us to propose three 
forms of reinforcement involved in social learning. 
The first type is the individual perception of progress 
relative to the current goal. This type of reinforcement 
is inherent in most adaptive agent-learning tasks, but 
its availability varies depending on the specific agent 
and environment. In most tasks, the agent can maintain 
some measure of progress that is critical for efficient 
learning [31 ]. 

The second type of reinforcement comes from ob- 
serving the behavior of conspecifics. Similar behavior 
in a peer is considered to be a source of positive rein- 
forcement. Although this in itself does not constitute 
a reliable reinforcement signal, coupled with a direct 
estimate of progress toward the agent's own goal, it 
can provide useful feedback. 

The third type of reinforcement is that received by 
conspecifics, also called vicarious reinforcement. In- 
terestingly, using this type of information does not re- 
quire the agent to model another agent's internal state. 
If the agents belong to a society with consistent social 
rules, any reward or punishment received by a conspe- 
cific will be received by the agent itself in a similar 
situation. Consequently, vicarious reinforcement can 
serve as an effective learning signal. 

We postulated that all three of the above described 
forms of reinforcement are necessary for learning so- 

cial rules in our domain, and possibly in other, qualita- 
tively similar learning scenarios. Individual reinforce- 
ment alone, while effective for learning specific tasks 
within a group (e.g., foraging [32]), is not sufficient for 
learning social rules because it, by definition, maxi- 
mizes individual benefit. In contrast, many social rules 
do not immediately and directly benefit the individual 
and, in most cases, have a delaying effect on individual 
reinforcement. Therefore, since a greedy agent maxi- 
mizes individual reward and social behaviors may not 
provide any, learning social rules appears to require a 
non-greedy approach. 

We introduce the impetus for non-greediness 
through the second and third types of social rein- 
forcement above, namely observing and repeating the 
actions of others, and receiving vicarious reinforce- 
ment. Observing other agents' behavior encourages 
the agent to explore, i.e., try behaviors that may not 
benefit it immediately. Repeating the behavior of 
others enforces multiple trials of what may be an 
otherwise rare social behavior, so it can receive more 
stable reinforcement. 

Using the three forms of reinforcement allows a 
fully distributed society to acquire globally optimiz- 
ing social rules from individual learning, i.e., with- 
out a central arbiter. The underlying assumptions are: 
(1) that the agents are able to estimate other agents' 
reinforcement, and (2) that their own reinforcement 
is positively correlated with that of their conspecifics. 
In short, what is good for one, is good for another, at 
least indirectly. This simple model allows for learning 
a variety of powerful social rules that minimize inter- 
ference and maximize group benefit in a homogeneous 
society. 

To test our ideas, we designed a collection of experi- 
ments on situated agents (mobile robots) learning four 
social rules: yielding, proceeding, communicating, and 
listening, in order to become more globally efficient 
at foraging. The rest of the paper describes the exper- 
iments, starting with the experimental environment. 

5. Experimental setup 

The experimental environment is designed for per- 
forming a variety of group behavior experiments. It 
has been used for verifying work on developing basis 
behaviors [32] and for demonstrating learning to 
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Fig. 1. Each robot consists of a differentially steerable wheeled 
base and a gripper that can grasp and lift objects. The robots' 
sensory capabilities include piezoelectric bump and gripper sen- 
sors, infrared sensors for collision detection, proprioceptive sen- 
sors of drive and gripper-motor current, voltage, and position, 
and a radio transmitter for communication, absolute position- 
ing, and data collection. 

forage [31]. The setup allows for implementing vari- 
ous interactions between robots capable of  communi- 
cating with each other, and sensing and manipulating 
objects. 

The experiments are conducted on a collection of 
up to four IS Robotics R2 mobile robots. The robots 
are fully autonomous with on-board power and sens- 
ing. Each robot consists of  a differentially-steerable 
wheeled base and a gripper that can grasp and lift 
objects. The robot 's sensory capabilities include a 
piezo-electric bump sensor strip around the base for 
detecting collisions, another strip inside each finger 
of  the gripper for detecting the grasping force, and a 
set of  infra-red (IR) sensors: two on the inside of the 
fingers for detecting graspable objects, and 10 more 
for obstacle avoidance: a set of  eight sensors around 
the top of the robot, and one more on each gripper 
tip (see Fig. 1). In addition to the described external 
sensors, the robots are also equipped with proprio- 
ceptive sensors supplying battery voltage and current 
information, sensors for drive motor current, and 
shaft encoders in the gripper motors for maintaining 
position and height information. 

Finally, the robots are equipped with radio 
transceivers, used for determining absolute position 
(for the purposes of  collecting data as well as for 
enabling the robots to find and return to the food 
cluster) and for inter-robot communication. Position 
information is obtained by triangulating the distance 

Fig. 2. The testing area for the learning experiments. The figure 
shows the typical initial condition of a learning trial, with all 
the robots starting out in the home region, and the food being 
initially clustered elsewhere in the workspace. 

computed from synchronized ultrasound pulses from 
two fixed base stations. Inter-robot communication 
consists of  locally broadcasting 6-byte messages at 
the rate of  1 Hz. The radios are particularly useful for 
transmitting any information that could not be reason- 
ably sensed with the available on-board sensors, such 
as the external state of  other robots (i.e., holding food, 
finding home, etc.), required for social learning. The 
robots are programmed in the Behavior Language, 
a parallel programming language based on the Sub- 
sumption Architecture [3,4]. Their control systems are 
collections of  parallel, concurrently active behaviors. 

We tested the learning approach on robots situated 
in a foraging task, having a common higher-level goal 
of  collecting food and taking it home during the "day" 
and sleeping at home at "night". Thus, the robots'  
world is a confined area which contains a fixed home 
region shared by all robots, and scaled so as to ac- 
commodate them, i.e., large enough for all of  them to 
"park" for the night (Fig. 2). Thus, the experimental 
environment is meant to loosely resemble a society 
that spends its days foraging (hunting and gathering) 
by making repeated trips to a resource-rich area, get- 
ting the food, and taking it home. At fixed periods 
(meant to resemble night time), the society gathers at 
home and rests. Foraging activities resume at the be- 
ginning of each day. 

Food, represented by small metal pucks, is initially 
clustered in a single location in the workspace (Fig. 2). 
This initial condition was chosen for two reasons. 
First, clustering provides an incentive for the agents 
to cooperate and exchange information in order to lo- 
cate the single food source. Second, clustering reduces 
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Condition Behavior 

Finding food Broadcast 
Receiving a message Store location 
Near a stopped agent Proceed 
Near a moving algent Store behavior 
Too near a stopl~d agen t  Proceed 
Too near a moving agent Yield 

Fig. 3. The condition-behavior pairings of the desired social 
policy. 

the overall duration of each experimental trial since it 
significantly diminishes the time spent searching for 
food. Finite resource,; such as battery power are con- 
served by designing the experiment so as to maximize 
the relevance of the robots' interactions without di- 
minishing the complexity of the learning task. For the 
same reason, the chosen workspace is small enough to 
induce frequent interaction and interference between 
the robots. 

6. Learning task and approach 

The learning task consisted of the agents acquiring 
social rules for yielding and proceeding when appro- 
priate, and communicating puck location and listening 
to received communication when appropriate. These 
social behaviors result from six social rules, i.e., six 
condition-behavior pairs (Fig. 3). Yielding consists of 
learning when to, on one hand, give way and, on the 
other, keep going, depending on the distance to the 
other agent and on whether it is stopped or moving. 
Sharing information consists of learning when to, on 
one side, broadcast position information and when to, 
on the other, receive and store it. 

Social rules are expressed within the robots' nat- 
ural habitat and the context of their usual routines, 
in this case foraging. Foraging was chosen because 
our previous work [29,30] provided the basis behavior 
repertoire to which social rules could easily be added. 
The built-in foraging behavior consists of a finite state 
controller which, in response to mutually-exclusive 
conditions, consisting of internal state, activates appro- 
priate basis behaviors from the robots' repertoire. The 
conditions include externally-triggered events, such as 

getting close to another robot or finding a puck, and 
internally-generated events, such as the onset of night 
time, indicated by the internal clock (since the robots 
had no external light sensors). Basis behaviors include 
avoidance, dispersion, searching for pucks, picking up 
pucks, homing, and sleeping. Our earlier work [31 ] has 
shown how foraging itself can be learned, through the 
use of shaped reinforcement in the form of multimodal 

reward functions that pooled asynchronous reinforce- 
ment from all available sources upon termination of a 
behavior, and progress estimators that provided some 
feedback during the execution of a behavior. The work 
described here demonstrates how group foraging can 
be made more efficient with social rules. 

Since in our system the agents were learning when 
to apply the social behaviors, their built-in behavioral 
repertoire included those social behaviors, along with 
others giving the robots basic safe navigation and puck 
manipulation functionalities. Adding social behavior 
to the system did not require adding new abilities to 
the robots, since they already contained the necessary 
actions for each: yielding consists of stopping and 
waiting, and proceeding consists of going on with the 
current behavior. The other two behaviors, communi- 
cating and listening, were an extension of the existing 
mechanisms for sending and receiving messages used 
by the robots to communicate their positions to each 
other. In the social case, in addition to sending and re- 
ceiving messages, the robots also stored the received 
messages and used their contents later, i.e., went to 
the received location in search of food. 

The social learning algorithm is activated whenever 
an agent finds itself: 

(i) near a large amount of food away from home; 
(ii) receiving an agent's message; 

(iii) within observing range of another stopped agent; 
(iv) within observing range of another moving agent; 
(v) within interference range of another stopped 

agent; 
(vi) within interference range of another moving 

agent. 
The first condition enables learning to communicate 

about sharable resources such as food. The last two 
conditions are based on two distance thresholds estab- 
lished a priori: Crobserv e and O'interfer e. In the foraging 
behavior, the presence of another agent within O'interfer e 
triggers avoidance. In the social learning algorithm, a 
social behavior is attempted as an alternative. 
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These conditions are specified by the designer in 
order to speed up the learning. They could be learned 
using one of the available statistical methods for state 
generalization (for example, [6,27]) but the process 
could take almost as long as the social learning and is 
likely to suffer from sensory errors. 

6.1. Learning algorithm 

The job of the learning algorithm was to correlate 
appropriate conditions for each of these behaviors in 
order to optimize the higher-level behavior, i.e., to 
maximize received reinforcement. The learning task 
could be idealized into a simple search in the space of 
possible strategies, with highest reward for the strate- 
gies that result in highest efficiency of foraging. How- 
ever, in the described domain, agents cannot simply 
"search" the condition-behavior space because they 
cannot directly and completely control events in the 
world. Their world is stochastic, noisy and uncertain, 
and is made more complex by the existence of other 
learning agents, whose existence and interactions con- 
stitute the relevant conditions for learning social rules. 

The system learns the value function A(c, b), ex- 
pressed as a matrix that associates values for each so- 
cial behavior b and condition c. Maintaining such a 
matrix is reasonable, since the number of social con- 
ditions (conditions involving the interaction of two or 
more agents) and social behaviors (in our case, four) 
is small. The values in the correlation matrix (inte- 
gers in our implementation), fluctuate over time based 
on the received reinforcement, but the learning algo- 
rithm eventually converges to a stable value function. 
At each point the value of A(c, b) is the sum of all 
past reinforcement R: 

T 
A(c, b) = Z R(t). 

t=l 

6.2. Implementing social reinforcement 

We used the following three types of social rein- 
forcement: 
(1) direct reinforcement; 
(2) observation of the behavior of other agents; 
(3) observation of reinforcement received by other 

agents. 

The implementation of direct reinforcement is 
straightforward. A progress monitoring behavior con- 
stantly compares the agent's current state with its im- 
mediate goal. Whenever it detects progress (whether 
in terms of reaching a subgoal, as in the case of finding 
food, or in terms of diminishing the distance toward 
the goal, as in the case of going home), it gives a 
small reward to the most recently active social behav- 
ior. 5 Analogously, whenever a regress from the goal 
is detected, a small punishment is delivered. Formally 

m if progress is made, 
D ( t ) =  n if regress is made, m > 0 ,  n < 0 .  

0 otherwise, 

This algorithm keeps the learning system from 
settling in local minima, since the system continu- 
ously adapts to the condition-action values with each 
received reinforcement. The algorithm relies on es- 
timating progress at least intermittently. If progress 
measurements are not available, and the reward func- 
tion is an impulse at the goal only, then the algorithm 
reduces to one-step temporal differencing [46], which 
has been proven to converge, however slowly. In 
our case intermittent reinforcement can be obtained, 
so learning is sped up. We used the same method 
to acquire the basic, greedy strategy for individual 
foraging [31]. 

The motivation for using progress estimators (also 
called internal critics), rather than delayed reinforce- 
ment, comes from the non-stationary, uncertainty, and 
inconsistency properties of the situated multi-robot 
domain. Progress estimators provide unbiased, princi- 
pled reinforcement which is not so delayed as to be- 
come useless in a dynamic environment (for details, 
see [31]). 

Observational reinforcement, i.e., reinforcement for 
repeating another agent's behavior, is delivered in a 
similar form: 

o 
O(t) = 0 

if observed behavior is repeated, 
otherwise, 

o > 0 .  

An agent receives positive reinforcement when it re- 
peats a behavior b most recently observed under con- 
dition c, next time it finds itself under condition c, 

5 Note that only social behaviors are reinforced, since only 
social rules are being learned. 



M.J. Matarid /Robotics and Autonomous Systems 20 (1997) 191-204 199 

unless it has already recently performed b. The last 
part of the rule prevents the agent from repeatedly at- 
tempting the same behavior. O(t) has a temporal com- 
ponent. It expires after a fixed time so that the agent, 
in effect, forgets what it last saw if it has not seen it 
recently. This feature eliminates some cyclic behavior 
patterns between multiple learning agents observing 
each other. 

Finally, vicarious reinforcement, i.e., reinforcement 
received based on that received by other agents, is 
delivered in the following form: 

/3 

V(t) = w 
0 

if vicarious positive reinforcement, 
if vicarious negative reinforcement, 
otherwise 

f o r v > 0 ,  w < 0 .  

Vicarious reinforcement delivers a form of"shared" 
reinforcement to all agents involved in a local social 
interaction. By spreading individual reward or punish- 
ment over multiple agents, it extends individual benefit 
beyond a single agerLt. As a consequence, the amount 
of reward received for social behaviors over time out- 
weighs that received for greedy strategies. 

The complete reinforcement function then, is the 
sum of the subset of social reinforcement being used in 
the given learning experiment. We tested the following 
reinforcement functions: 

(i) Ad(C, b) = ~ : 1  D(t), 

(ii) Ado(C, b) = Y f=l (aD( t )  + riO(t)), 
o t + r i =  1 and ot > ri, 

(iii) Adov(C, b) = ~tr=l (otD(t) + riO(t) + yV(t)) ,  
c~ + r i + y  = 1 andot >/3 andri > =  ),. 

We used a simple scheme in which direct progress is 
weighted the highest, while observation-induced expe- 
rience and vicarious reinforcement are weighted less. 

6.3. Experimental design 

In a typical learning experiment all the agents are 
endowed with identical basis behaviors and the social 
learning reinforcement function. They start out from 
home at the beginning of the day and go about their 
foraging task. The :social learning algorithm is acti- 
vated whenever an event occurs that makes one of the 
six social conditions true. At that point the current be- 
havior the agent is executing is terminated and appro- 

pilate social reinforcement is delivered. Then, a new 
behavior is selected using the following strategy: 

(i) choose a recently observed behavior, if available 
(3O%); 

(ii) choose an untried social behavior, if available 
(30%) otherwise; 

(iii) choose "the best" behavior (35%); 
(iv) choose a random behavior (5%). 

Note that after all social behaviors have been ex- 
plored, the exploration/exploitation ratio in the learner 
changes so that it performs "the best" behavior 65% 
of the time, randomly explores 5% of the time, and 
imitates the rest of the time. 

Given the confined physical work area, agent inter- 
actions generate a plethora of events enabling social 
conditions. Consequently, we can observe learning in 
real time over periods of minutes. 

7. Results 

As a control experiment, we tested the performance 
of a pre-programmed foraging behavior that contained 
the desired social rules, and compared it to base case 
foraging. Not surprisingly, groups using social rules 
consistently outperformed groups with only greedy in- 
dividual strategies, measured in terms of total time re- 
quired to pick up 80% of the pucks. Thus, we were 
convinced that the incentive for learning social rules 
did exist, and it was then a matter of finding out which 
reinforcement strategy makes it learnable in the given 
environment. 

The relative effectiveness of the three tested 
reinforcement functions Ad(c,b), Ado(C,b), and 
Adov (c, b) was evaluated based on the portion of the 
desired social policy the algorithms learned. Fig. 3 
shows the condition-behavior pairings of the desired 
social policy. 

The evaluation metrics used to compare the results 
of the different reinforcement were: 
(i) the percentage of the desired social strategy the 

agents managed to learn; 
(ii) the relative amount of time required to learn it. 

The duration of any learning run varies depending 
on the arrangement of the agents and the temporal 
distribution of their interactions. Consequently, exact 
time to convergence was not a valid evaluation metric 
in an event-driven situated environment of the kind 
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Reinforcement Performance 

Ad(c, b) Does not converge 
Ado(C, b) Does not converge 
Ado v (c, b) Converges 

Fig. 4. Comparative performance of different reinforcement 
functions. 

we are using. Relative average time, i.e., performance 
relative to the other alternatives, gives us a more useful 
metric of  the comparative effectiveness of  different 
algorithms. 

Fig. 4 shows the results in which convergence is de- 
fined as learning the complete desired social policy, as 
shown in Fig. 3. The results shown above are averaged 
over multiple trials and are qualitative because insuf- 
ficient trials were run to perform accurate statistical 
analysis. However, results from the performed trials 
were consistent in that the first two strategies never 
converged, and learned only a very small part of  the 
policy. The third strategy converged in over 90% of 
the trials. It required between 20 and 25 rain; in tri- 
als that were terminated early (e.g., due to low bat- 
tery power), the complete desired social policy was 
not learned. Trial duration was not an issue in case of  
the other two reinforcement strategies, as they did not 
improve after learning about 20% of the desired pol- 
icy (i.e., two rules), which typically took no more than 
10min. Trials were run up to 30min but the first two 
reinforcement strategies uniformly failed to converge 
regardless of  experiment duration. 

Duration of  learning was a direct effect of  using 
physical hardware to run the learning experiments, 
since the domain was ridden with unavoidable inter- 
mittent error and noise. For instance, agents did not 
always behave consistently due to their inability to ac- 
curately sense external state. Such unavoidable (and 
often externally undetectable) errors generated "unin- 
tentional deserters" in that robots experiencing sensor 
errors (and in some cases radio transmission delays in 
communication) failed to behave socially due to per- 
ceptual errors and noise. While these effects slowed 
down the learning, they did not disable it because the 
learning algorithm, based on continuous reinforcement 
summing, effectively averages out the consequences 
of  intermittent errors. 

Condition Behavior 

Near a stopped agent Proceed 
Too near a stopped agent Proceed 
Receiving a message Store location 
Near a moving agent Store behavior 
Too near a moving agent Yield 
Finding food Broadcast 

Fig. 5. The relative difficulty of learning each condition-action 
pair, measured in time to convergence, and shown in increasing 
order from top to bottom. 

We considered a rule to have been learned if: 
(i) it was correct, i.e., it was the desired mapping 

between the given condition and the associated 
behavior; 

(ii) it was stable, i.e., it did not oscillate or 
switch to another (incorrect) condition-behavior 
association. 

Fig. 5 shows the ordering of  the social rules in 
terms of  the learning difficulty, based on the average 
time required to learn a given rule per trial. This or- 
dering reflects the immediacy of  the reward associ- 
ated with each social behavior. The condition-behavior 
pairs that produce the most immediate reward, i.e., 
those that involved proceeding around a stopped agent, 
were learned the fastest. In the case of  the first two 
reinforcement schemes, they were also the only ones 
to be learned. 

The social rules involving proceeding when near 
and too near a stopped agent are relatively easy to 
learn since the reinforcement for making progress to- 
ward the individual goal location (a pile of  pucks or 
home) is immediate. The underlying obstacle avoid- 
ance behavior keeps the robots from colliding with 
the stopped robots, and the social rule simply rein- 
forces what may be considered to be a natural, basis, 
behavior. 

In contrast, learning to yield when near a moving 
agent is more difficult to learn since the payoff is 
much more delayed, and arrives vicariously, through 
another agent. The yielding agent must learn to per- 
form a behavior that involves a suboptimal use of  its 
individual resources, but benefits the group as a whole 
by minimizing collective interference. However, since 
the agent has no direct measure of  group interference, 
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it must wait for the indirect reward. Consequently, this 
social rule is the second hardest to learn. 

The social rule of sharing information about food 
was the hardest to le~u'n, since the agent sending the 
information had the least direct payoff. Consequently, 
multiple instances of observational reinforcement 
were needed to instilgate the exploration of the be- 
havior. After broadcasting food location, the agent 
often receives no immediate vicarious reinforcement 
because the other agent, who received the message, 
has not yet learned to store and use the information. 
Once the agent tries to store the information and use 
it (i.e., go to the tran:~mitted location and find food), 
it receives positive reinforcement, and passes it on to 
the agent who originally broadcast the information. 
This already indirecl: process is frequently further 
delayed since using the transmitted information can 
only be useful to a robot that is not already carrying 
a puck and is already going toward a known puck 
location. To conserve the transmitted information, 
the robots remember the latest received message; 
when a robot finishe:~ dropping off a puck, it looks 
up the stored communication message (if it has any) 
and proceeds to the specified location. The logic 
behind keeping just Ihe latest message is grounded 
in the intuition that it was the most likely to be ac- 
curate. Although the pucks are initially clustered, 
they quickly become displaced through manipulation, 
so the communicated puck locations can become 
outdated. 

Social rules dealing with communication, which 
requires the agent to store either the location or 
the observed behavior, are relatively easy to learn. 
They took slightly longer than the rules for proceed- 
ing because the feedback was somewhat delayed. 
Specifically, a proceeding agent receives positive 
feedback immediately, since it continues to get 
closer to its destination. An agent storing informa- 
tion will receive feedback when it successfully uses 
that information, which could happen almost im- 
mediately, or with some delay, but almost always 
faster than the indirect process involved in reward- 
ing broadcasting. The; difference lies in the fact that 
the reward for broadcasting must come from other 
agents, while the reward for storing/remembering is 
received directly when the information is used, i.e., 
when the agent finds the food or tries a successful 
behavior. 

8. Discussion 

This qualitative analysis of the results provides an 
intuitive explanation of the relative difficulty of the 
attempted social rules in terms of immediacy and di- 
rectness of reinforcement. However, more experiments 
with different tasks and domains are required to test 
the validity of this explanation. We expect that in more 
complex learning systems other factors, such as the 
relative importance and other semantic values of the 
reinforcement, may have an equally strong or stronger 
effect. 

The intermediate process required for learning to 
communicate could have been simplified if agents 
were learning from a teacher. However, we were 
interested in having social rules emerge in a ho- 
mogeneous group, so we only used imitation to the 
extent of mimicking observed behavior by a peer, 
not a selected expert or teacher. Our continuing 
work explores learning by imitation in this and other 
domains. 

The difficulty of learning yielding and broadcasting 
gives us a hint of the challenges involved in acquir- 
ing non-greedy social rules in situated domains. It is 
likely that learning particularly challenging altruistic 
rules whose payoff is only at the genetic level (e.g., 
predator signaling), indicates that those may them- 
selves be best acquired genetically. Data from biology 
seem to support this intuition, since animals do not 
appear to learn altruism toward their kin but do learn 
social dominance relations [34]. 

One frequently asked question is whether this work 
could not just as easily (or much more easily) have 
been done in simulation. We believe that simple simu- 
lations can serve as useful tools for preliminary testing 
of control and learning algorithms. However, for pre- 
dicting the effectiveness of such algorithms on physi- 
cal systems, it is necessary to model all the features of 
the physical systems that would impact the resulting 
behavior. Unfortunately, we do not know a priori what 
those features are, and we do know that the always 
relevant features that involve sensor and effector char- 
acteristics are very challenging to simulate accurately. 
Thus, we believe that it is important to validate the 
proposed learning approaches on systems that most 
closely model the target systems for which they are 
being postulated and developed. For our work, mobile 
robots are the best such model. 
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9. Summary and continuing work 

This work has focused on learning social rules in 
situated multi-agent domains. We have studied the dif- 
ficulty of learning behaviors which do not offer direct 
benefit to the agent and are in contradiction with its 
basic, greedy, survival instincts. We postulated three 
types of reinforcement that are useful and possibly 
necessary for learning such social rules. We then tested 
three reinforcement combinations by applying an al- 
ready effective situated learning algorithm to the so- 
cial learning problem and adding the proposed types 
of reinforcement to it. We demonstrated the algorithms 
by implementing them on a group of four autonomous 
mobile robots capable of communication and cooper- 
ation and given the task of learning yielding and shar- 
ing information. 

The results presented are only a glimpse at the wide 
variety of social rules that can be learned, and forms of 
social reinforcement that are worth exploring. In order 
to properly evaluate our theories, we continue to im- 
plement more in-depth experiments. We are interested 
in expanding this work in a number of directions. In 
particular, it would be interesting to consider varia- 
tions on the learning experiments, such as a gathering 
task with multiple food and home regions, in order to 
study what kinds of specializations emerge between 
agents and how these affect the resulting social rules. 
We would also like to test the given social reinforce- 
ment strategies on quite different types of tasks in or- 
der to see how general they are. Another area we are 
interested in exploring is learning to distinguish what 
aspects of the situation (state) are relevant, in the con- 
text of learning relevant group sizes and dominance 
hierarchies. If this turns out to be difficult to learn it 
will give us an idea of what types of biases may be 
genetically programmed. 

In addition to the foraging-based experiment, we 
have also worked with learning in the box-pushing 
domain, where two or more agents must learn to co- 
ordinate their actions in order to successfully achieve 
the task. Unlike foraging, which can be achieved with 
a single agent, the pushing experiments require tight 
cooperation and sharing of the agents' limited local 
sensory and effector resources [33]. At least one so- 
cial rule or convention, turn-taking, was involved in 
our experiments in learning cooperative box-pushing 
[45]. We are interested in exploring such tightly cou- 

pied cooperative tasks as a domain for studying social 
rules. 

The goal of the work presented has been to provide 
insights into how difficult certain types of social learn- 
ing may be and how we may go about successfully 
synthesizing them on situated embodied agents. 
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