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Abstract— Recently, there has been a growing interest in
biologically inspired biped locomotion control with Central
Pattern Generator (CPG). However, few experimental at-
tempts on real hardware 3D humanoid robots have yet been
made. Our goal in this paper is to present our achievement
of 3D biped locomotion using a neural oscillator applied
to a humanoid robot, QRIO. We employ reduced number
of neural oscillators as the CPG model, along with a task
space Cartesian coordinate system and utilizing entrainment
property to establish stable walking gait. We verify robustness
against lateral perturbation, through numerical simulation
of stepping motion in place along the lateral plane. We
then implemented it on the QRIO. It could successfully
cope with unknown 3mm bump by autonomously adjusting
its stepping period. Sagittal motion produced by a neural
oscillator is introduced, and then overlapped with the lateral
motion generator in realizing 3D biped locomotion on a QRIO
humanoid robot.

Index Terms— Neural Oscillator; Central Pattern Genera-
tor(CPG); Biped Locomotion; QRIO;

I. INTRODUCTION

This paper presents our experimental studies on a neural

oscillator for biped locomotion with a full-body humanoid

robot. In our previous work [1], we explored neural oscil-

lators as a Central Pattern Generator(CPG) which produces

inherent rhythmic patterns, for a planar biped robot. In [1],

we demonstrated that robust steady walking was achieved

with a physical planar biped robot using the proposed

method.

Our work is motivated by a growing interest in the

studies of biologically inspired locomotion control using

a neural oscillator as a CPG. Taga and his colleague

successfully applied a neural oscillator controller as a

CPG for an 8-link simulated planar biped model [2]. They

demonstrated that stable bipedal locomotion is achieved

with appropriate neural connections and biologically based

sensory feedback pathways—the walking pattern was not

explicitly pre-designed before execution, however it is

self-organized through mutual interaction of the nervous

system, musclo-skeletal system and environment. Kimura’s

quadruped robot demonstrated remarkable terrain adapt-

ability by combining mechanical compliance, state ma-

chine, sensory reflexes and neural oscillators [3]. Their

results suggest that there are possible ways to increase

robustness against unknown perturbations and to generate

Fig. 1. Entertainment Robot QRIO (SDR-4X II)

more natural energy efficient motions exploiting passive

dynamics by using the entrainment property of neural

oscillators.

However, many of previous work on biped locomotion

such as [2][4][5][6] were limited to simulation studies,

and to our knowledge, there has been only few experi-

mental application for a hardware three-dimensional (3D)

humanoid robot [7] largely due to hardware limitations,

difficulty in parameter tuning and large modelling error

between simulations and experiments.

Our goal in this research is to achieve 3D biped loco-

motion using a neural oscillator with a full-body humanoid

robot QRIO (SDR-4X II, see Fig. 1). To simplify the

oscillator connections and feedback pathways, we propose

an idea of allocating neural oscillators in a task space coor-

dinate system. The advantage of the proposed arrangement

is not only to significantly reduce the number of open

parameters in the neural oscillator compared to the case

where oscillators are allocated to each joint, but also to

make it much easier to design effective feedback pathways

to generate stable limit cycle.

This paper is organized as follows: In Section II, basic

properties of neural oscillators and their arrangement for

CPG are discussed. We design sensory feedback pathways

to the neural oscillators to maintain balance of the body

during locomotion motivated by biological observations.
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In Section III, we empirically verify the robustness of

the proposed architecture by numerical simulations and

hardware implementations. We demonstrate steady walking

motion, robustness against lateral perturbation and an aug-

mented example of biped locomotion in arbitrary directions

following an operator’s command. In Section IV, we will

present summary of our results and future work.

II. PROPOSED CONTROL ARCHITECTURE

A. Neural Oscillator Model

We use the neural oscillator model proposed by Mat-

suoka [8], which is widely used as a CPG in robotic

applications [3][9]:

τ1 u̇1 = c − u1 − β v1 − γ[u2]
+ −

∑
hj [gj ]

+ (1)

τ2 v̇1 = [u1]
+ − v1 (2)

τ1 u̇2 = c − u2 − β v2 − γ[u1]
+ −

∑
hj [gj ]

− (3)

τ2 v̇2 = [u2]
+ − v2 (4)

q = [u1]
+ − [u2]

+ (5)

[x]+
def
= max ( 0, x), [x]−

def
= min ( 0, x) (6)

where u1, u2, v1 and v2 are internal states, β and γ are

constants, gj is an input, and q is an output of the oscillator.

Time constants τ1 and τ2 characterize the output wave

shape and its frequency, and a tonic excitation c modulates

the output amplitude.

Previously, properties of the neural oscillator model

above such as the relationship between the parameters and

the oscillator output has been numerically explored in [9]

mainly addressing the issue of achieving stable oscillation

with external feedback signals. It is demonstrated that

phase difference between the periodic input signal gj and

the output q is tightly locked through entrainment if the

amplitude of gj is large enough and its frequency is close

to the oscillator’s natural frequency.

In addition to the entrainment property mentioned above,

our numerical studies suggest that it is possible to suppress
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Fig. 2. Basic property of a neural oscillator (top: entrainment property,
bottom: suppression of oscillation by a large constant input)

the oscillation when an extremely large input signal is

applied to the oscillator. Fig. 2 (top) illustrates an example

of the entrainment property of the oscillator with a periodic

input, and Fig. 2 (bottom) demonstrates that oscillation

can be stopped with a large constant input signal to the

oscillator. (See appendix for the parameters used in the

neural oscillator model.) In this paper, we will exploit

this additional property to maintain balance for stepping

motion in place by stopping oscillatory movement of the

legs with biologically motivated feedback pathways when

a large external perturbation is applied to the robot.

B. CPG Arrangement

In many of the previous applications of neural oscillators

based locomotion studies, an oscillator is allocated at each

joint and its output is used as a joint torque command to the

robot [2][6]. With this approach, it is demonstrated the de-

sired gait can be generated by coordinating the movement

of multiple oscillators in a self-organizing manner [2][6].

However, it is difficult to adjust the parameters of all the

oscillators and feedback pathways to achieve the desired

behavior with the increase of the number of degrees of

freedom of the robot.

In our initial work [1], we proposed a compass-like biped

arrangement of the CPG which provides an intuitive way

of understanding the motion of the robot. In practice, since

precise joint torque control is quite difficult to perform on

a hardware system, we employed position based control.

We demonstrated that robust steady walking was achieved

with a physical planar biped robot using the proposed CPG

arrangement.

In this paper, we extend our previous approach to a

3D robot model that has an increased number of degrees

of freedom. To simplify the problem, we propose a new

oscillator arrangement with respect to the position of the

tip of the leg in the Cartesian coordinate system, which is

reasonably considered as the task coordinates for walking.

We allocate only a small set of neural oscillators exploiting

symmetry of the walking pattern between the legs. Fig. 3

illustrates the proposed oscillator arrangement. We only

employ the total of two oscillators to control the leg move-

ment. One oscillator is allocated to control the position of

both legs pLz, pRz along the Z (vertical) direction in a

Fig. 3. Proposed control architecture using neural oscillators
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symmetrical manner with π rad phase difference:

pLz = z0 − Az qz (7)

pRz = z0 + Az qz (8)

where qz is the oscillator output for Z direction, z0 is an

offset and Az is the amplitude scaling factor. Similarly,

the other oscillator is allocated to control the position of

both legs pLx, pRx along the X (forward) direction in the

sagittal plane:
pLx = x0 − Ax qx (9)

pRx = x0 + Ax qx (10)

where qx is the oscillator output for X direction, x0 is an

offset and Ax is the amplitude scaling factor. Each joint

position of the leg is computed by using inverse kinematic

calculation.

This arrangement significantly reduces the total number

of open parameters in the neural oscillators and provides

an easy way to find effective feedback pathways to achieve

grobal entrainment because of the task space representa-

tion.

C. Feedback Pathways

In this section, we design sensory feedback pathways

to the neural oscillators to maintain balance of the body

during locomotion motivated by biological observations.

In biological systems, several reflexes were found in

order to generate recovery momentum according to the

inclination of the body by adjusting the leg length. For

example, a decerebrate cat stomps stronger when vertical

perturbation force applied to its plantar during extensor

muscle activation. This reflex is called an Extensor Re-

sponse [10]. It is generally known that vestibular sys-

tem measures body’s inclination and activates contralateral

muscles to keep upper body stabilized. This is one of

the basic posture control in human and called Vestibulo-

spinal Reflex. Effectiveness of these feedback pathways was

experimentally demonstrated with a hardware quadruped

robot [3] to maintain the balance of the body when walking

over unknown terrain. We incorporate these biologically

motivated pathways into the CPG with our hardware hu-

manoid robot to empirically investigate their effectiveness

in biped locomotion. To our knowledge, no previous ap-

plication of these ideas to a hardware biped robot can be

found in the literature. Extensor Response and Vestibulo-

spinal Reflex are formulated as follows:

1) Extensor Response:

gER = (FLz − FRz) / mg (11)

where FLz , FRz are left/right vertical reaction forces and

feedback signal gER is normalized by total body weight

mg.

2) Vestibulo-spinal Reflex:

gV SR = θroll (12)

A feedback pathway gV SR is introduced to extend leg

length according to the body roll inclination θroll.

These reflexes are incorporated into the neural oscillator

controlling the vertical leg movement.

Furthermore, we introduce a feedback pathway to the

oscillator controlling the horizontal leg movement, qx, in

the sagittal plane to achieve walking motion with the

desired phase difference against qz . As illustrated in Fig. 4,

when the robot is walking forward, the leg trajectory with

respect to the body coordinates in the sagittal plane can

be roughly approximated by the shape of an ellipsoid.

Suppose the output trajectories of the oscillators can be

approximated as pLx = Ax cos(ωt + αx) and pLz =
Az cos(ωt+αz), respectively. Then, to form the ellipsoidal

trajectory on the X-Z plane, pLx and pLz need to satisfy

the relationship pLx = Ax cosφ and pLz = Az sin φ, where

φ is the angle defined in Fig. 4. Thus, the desired phase

difference between qx and qz should be αx − αz = π/2.

Empirically, we found that qz and pelvis rolling angle

θroll are almost in phase. Roughly speaking, differentiation

of θroll has π/2 phase difference with respect to θroll

because differentiation of the sine wave is a cosine wave.

From this observation, we can derive a signal in phase with

qx using the pelvis rolling velocity signal θ̇roll, which can

be obtained from internal sensors of the robot.

3) Sagittal motion feedback:

gx = − θ̇roll (13)

III. EMPIRICAL VERIFICATION

In this section, we empirically verify the proposed ar-

chitecture using a dynamics simulator as well as a QRIO

humanoid robot.

A. Straight Walking

Figures 5–7 show the the simulation results of straight

walking. In Fig. 5, the time courses of qx, qz and their
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Fig. 6. Snapshots of straight steady walking (Ax = 0.030 m, Az = 0.005 m, V elocity = 0.12 m/s. Photos were captured every 0.1 sec. Yellow
markers indicate every 0.1 m distance.)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

Walking Velocity  m/s

time  sec.

c  = 2.43

c  = 7.29

c  = 9.72

Fig. 7. Velocity control of straight walking gait using step length
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feedback pathways are plotted. This result illustrates that

entrainment of the neural oscillator with the feedback

signals and the desired phase difference of π/2 between

qx and qz are achieved. Fig. 4 depicts the target leg

trajectory on the XZ plane for 3.0 sec starting from the

initial standing posture suggesting a quick convergence

to a periodic trajectory. Fig.7 shows the time course

of walking velocity. With the proposed method, on-line

modulation of average walking velocity is possible by

gradually changing c to vary the step length. We achieved

walking with different velocities in the range of 0.0-0.33

m/s in forward locomotion (see Fig. 7). We also achieved

backward walking by simply changing the sign of Ax.

We also implemented this steady walking control al-

gorithm on QRIO, and achieved successful walking (see

Fig. 6). We could modulate the walking velocity in the

range of 0.0-0.2 m/s with the step length variation.

B. Stepping Motion in place

In this section, we investigate robustness of a stepping

motion in place against lateral perturbation by setting

Ax=0. To obtain fundamental qualitative property, first we

numerically confirm that natural robustness of sinusoidal

stepping motion without feedback pathways according to

the stepping period as a baseline. Secondly, we present

the effectiveness of the proposed feedback pathways to

the neural oscillator. Finally, we demonstrate autonomous

adjustment of the stepping period using a hardware robot

walking over bumped surfaces.

1) Natural Robustness: Here we drive the vertical leg

movements by sinusoidal wave instead of a neural os-

cillator to investigate intrinsic stepping robustness. When

the stepping motion converged on a stable limit cycle,

constant perturbation force in the lateral positive direction

was applied at the center of pelvis for 0.1 sec. We mea-

sured maximum allowable force without falling over. We

regarded the perturbation force allowable when the robot

kept stepping for 15 sec after perturbation.

Fig. 8 illustrates the relationship between perturbation

phase and force normalized by the stepping period and

body weight respectively in numerical simulations. We

define phase zero when the left leg touches the ground.

Since stepping motion produces oscillatory change of an-

gular momentum around the body roll axis, maximum

perturbation force decreases when perturbation is applied

in the direction of angular momentum increase. Similar

tendency is observed in the case of T =0.5-0.6. However

as point (P) indicates, robustness rapidly decreases as the

period becomes longer. We observed that the robot fell

over very easily even with a small perturbation when the

frequency of the stepping pattern is near the (roughly

estimated) resonant frequency of the system. Presumably,

this is because oscillation of the body is quickly amplified

by resonance.

Fig. 8 suggests that shorter stepping period is desirable

when we only consider inherent robustness of stepping

motion. However, it draws heavier load for a hardware

especially in touch down phase and requires larger energy

consumption. Moreover, it is difficult to keep higher leg

clearance due to the joint velocity limitation. If we can

increase robustness near resonant frequency by using en-

trainment property of a neural oscillator, we can acquire

more robust and energy efficient stepping motion.

2) Robustness with proposed feedback pathways: We

compare the case where feedback pathways are introduced

and not introduced to a neural oscillator for stepping

motion in numerical simulations. Fig. 9 depicts a typical

examples of the time course of pelvis roll angle θroll where

perturbation is applied at the time of zero. While the robot

falls over without sensory feedback to the neural oscillator,

θroll with gER feedback (gray line) converges for a certain
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distant time. However, we cannot observe significant dif-

ference during the time 0.0-2.0 between the case where

gER is fed back and not fed back. Noticeably, at point

(Q) indicated in Fig. 9, qz decreases supporting leg length.

This motion decreases potential barrier preventing falling

from occurring. Therefore, we introduce significantly large

feedback gain for gV SR to suppress oscillation where θroll

is large. When oscillation is stopped, passive dynamics

play a role of recovery momentum generation. Fig. 9 (bold

line) shows the faster entrainment of (gER + gV SR) than

gER only. Fig. 10 shows stepping period modulation with

(gER + gV SR) feedback according to the body inclination.

We can see the period modulation due to the feedback.

Generally, it is difficult to entrain such a long period input

using fixed time constants τ1, τ2. Thus some approaches

adjust these parameters like phase lock loop manner to

enlarge a basin of attraction [11]. In this paper, we utilize

suppression of oscillation not to increase additional open

parameters.

We investigated robustness against perturbation as well

as the sinusoidal case. Entrainment property remarkably

improved robustness compared with the case without feed-

back (Fig. 11). Even if stepping frequency was close to

the resonant frequency, sensory feedback pathways still

maintained as much robust as shorter period stepping of

sinusoidal wave. This result suggests that a neural oscillator

with appropriate sensory feedback can generate robust and

energy efficient stepping motion.

Finally, we examined more realistic perturbation by per-

forming the stepping motion on uneven surfaces. When the

left leg was in swing phase, the ground height was altered

for the next step (Fig. 12). In the case of T =0.8 without

feedback, maximum allowable height were less than 2 mm
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Fig. 12. Robustness against bump disturbance (top: T =0.8 sec, Az=0.005
m. bottom: T =0.5 sec, Az=0.011 m).

in the all situation(a)-(d), showing quite fragile limit cycle.

On the contrary, (gER +gV SR) successfully increased it as

well as T = 0.5 sec condition, demonstrating effectiveness

of extensor response and vestibulo-spinal reflex.

3) Hardware Evaluation: We investigated the effective-

ness of feedback pathways to a neural oscillator at T =
0.8 sec using QRIO. Stepping motion without feedback

was compared with the case where the proposed feedback

pathways were introduced.

The robot could not continue a stepping motion on carpet

floor without feedback. An amplitude of pelvis oscillation

gradually increased and finally the robot fell over within
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Fig. 13. Lateral walking experiment on bumped surfaces
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about 20 steps.

In contrast, (gER + gV SR) feedback pathways demon-

strated a highly stable stepping motion which could cope

with 3 mm of (a), 7 mm of (c) height deviations, respec-

tively (see Fig. 12 in the middle row for the situations). Al-

though, these values were less than simulated values due to

sensing delay caused by integration of angular rate sensor

to obtain the body rolling angle θroll, (gER + gV SR) feed-

back pathways considerably improved robustness against

perturbation.

We also performed a walking experiment over unknown

terrain in the lateral direction with state-machine controller

(we will mention in the following section). The condition

of walking surface changed as it walked due to seesawing

or slipping because the sheets were not rigidly connected.

Nevertheless, a neural oscillator autonomously adjusted its

period in the wide range and successfully made the robot

walk (Fig. 13).

C. Walking under user command

We show an augmented example of above mentioned

framework to demonstrate enough capability to extend a

state-machine controller. We can design explicit trajectory

in the horizontal XY direction because the stepping motion

is generated by the vertical oscillatory movement. Since

basic stepping movement in the lateral plane is already

realized, walking motion will be possible if the legs are

moved with the appropriate timing. Here, we assume quasi-

static movements and only consider kinematic constraints

of the body and the stance leg. State-machine controllers

in the X direction are defined as follows:

Fig. 15. Manuvoring experiment using combination of CPG and state-
machine controller

• Stance Phase

p′Lx = ptd
Lx − (t − ttd) / (T/2) · xstride (14)

pLx = max ( p′Lx, − xstride/2) (15)

• Swing Phase

p′Lx = plo
Lx + (t − tlo) / (T/2) · xstride (16)

pLx = min ( p′Lx, xstride/2) (17)

where t, T, xstride represent time, period and commanded

walking stride, respectively. ptd
Lx, ttd, plo

Lx, tlo denote left

leg touch down position and its time, lift off position and

its time, respectively. We implemented the same controller

for the right leg control. Although there is no explicit

feedback which stabilizes movement in the sagittal plane, a

limit cycle is consequently established due to foot contact

trigger for state transitions. Walking velocity is controlled

by adjusting a step stride xstride as well as the case of

neural oscillator based controller. We can apply the same

controller in the Y direction to achieve a side walk. In this

case, a sideway stepping causes disturbance in the lateral

direction. However, entrainment property can handles it in

a certain amount of range (Fig. 13).

A circular walking is attained by combining the above-

mentioned X-Y direction stepping along with a particular

circular arc, modulating the left/right step length according

to the circular radius. The leg yaw rotation is also con-

trolled by the function of X-Y position.

In addition, gait initiation and termination are achieved

by altering neural oscillator amplitude modified by a tonic

parameter c in Eq. (1). If c gradually decreases, then a

stepping motion is terminated.

The above framework was implemented on the hardware

and a manuevouring experiment was demonstrated. The

robot could interactively follow directive given by an

operator (Fig. 15).

This result indicates entrainment property with appropri-

ate feedback pathways has enough capability for interactive

locomotion.
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IV. CONCLUSION

In this paper, we proposed a basic framework for biped

locomotion control of a 3D hardware biped robot using

a neural oscillator. A new CPG arrangement and biologi-

cally inspired feedback pathways to the neural oscillators

were introduced. We implemented the proposed method

in numerical simulations and the humanoid robot QRIO.

First, we demonstrated that straight walking with different

velocities was achieved by changing the tonic input to the

neural oscillators. Then, we investigated the robustness of

stepping motion in the lateral plane. The simulation and

experimental results suggest that the proposed feedback

pathways play contribute to robustness against external

perturbations and environmental changes. Finally, we pre-

sented an example of augmentation of the proposed frame-

work with a state-machine controller to achieve walking

under user command. We were able to maneuver QRIO

by changing the walking direction and velocity through

teleoperation.

As the results in this paper suggests, various walking

behavior can be generated with this simple approach. We

believe that this paper is the first to experimentally imple-

ment neural oscillators on a 3D hardware humanoid robot

achieving biped locomotion in the physical environment.

In this paper, we manually tuned the neural oscillator

parameters and used constant feedback coefficients empiri-

cally obtained through numerical simulations and hardware

implementation. We would like to address the issues of

optimizing these open parameters with a learning frame-

work. Our recent work address foot placement learning

[12] using reinforcement learning, energy efficient robust

walking using differential dynamic programming [13], and

learning an appropriate feedback controller to the CPG

with a policy gradient [14] for a simplified planar biped

robot. In the future, we are interested in extending these

approaches to high dimensional systems and experimental

implementation to a 3D hardware biped robot.
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APPENDIX

Common parameters for all neural oscillators. Initial

internal variables are set to encourage faster convergence.

They are captured at ( q = 0, q̇ > 0 ) where a stable

oscillation is established.

Description Symbol Value

Time constant τ1 0.1122 ·T
Time constant ratio τ1 / τ2 0.8

Mutual inhibition γ 2.0

Adaptation constant β 2.5

Tonic excitation c 2.43

Initial internal variable uinitial
1 0.488488

Initial internal variable vinitial
1 0.203274

Initial internal variable uinitial
2 0.389224

Initial internal variable vinitial
2 0.674099

Feedback coefficients:

Description Symbol Value

Extensor Response hEF 0.2

Vestibulo-spinal Reflex hV SR 4.0

Sagittal motion feedback hx 0.2

These symbols are abbreviated in figures to indicate

feedback signals.
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