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Abstract. A new principle of sensorimotor control of 
legged locomotion in an unpredictable environment is 
proposed on the basis of neurophysiological knowledge 
and a theory of nonlinear dynamics. Stable and flexible 
locomotion is realized as a global limit cycle generated 
by a global entrainment between the rhythmic activities 
of a nervous system composed of coupled neural oscil- 
lators and the rhythmic movements of a musculo-skele- 
tal system including interaction with its environment. 
Coordinated movements are generated not by slaving 
to an explicit representation of the precise trajectories 
of the movement of each part but by dynamic interac- 
tions among the nervous system, the musculo-skeletal 
system and the environment. The performance of a 
bipedal model based on the above principle was investi- 
gated by computer simulation. Walking movements 
stable to mechanical perturbations and to environmen- 
tal changes were obtained. Moreover, the model gener- 
ated not only the walking movement but also the 
running movement by changing a single parameter 
nonspecific to the movement. The transitions between 
the gait patterns occurred with hysteresis. 

1 Introduction 

Biological systems are characterized by their behavioral 
patterns with complexity of large degrees of freedom 
that will be stably and flexibly generated depending on 
the state of the environment. One of the fascinating 
examples is found in locomotion. Elucidation of loco- 
motor behavior gives us an important clue as to how 
the motor pattern is generated through the interplay of 
motor and sensory systems. On the other hand, the 
general picture of motor control is that of the con- 
trolled body faithfully responding to the commands of 
the nervous system in a master-slave manner. Since the 
real environment is generally more complex than can be 
explicitly represented, a flexible mechanism of the con- 
trol is necessary to generate the coordinated motor 
patterns in real time in an indefinite environment. 

Neurophysiological studies have revealed that a hi- 

erarchical structure is present in locomotor systems. 
Shik et al. (1966) demonstrated that decerebrate cats 
could be made to walk on a treadmill by steady electri- 
cal stimulation to the midbrain region. Moreover, the 
animals adopt different gaits depending on the stimula- 
tion strength and the speed of the treadmill. This shows 
that a complex type of behavior can be controlled by a 
simple type of top-down signal, while it is not deter- 
mined uniquely by the signal but is influenced by func- 
tional and environmental constraints. 

Furthermore, rhythmic motor patterns are coordi- 
nated by neural circuits referred to as central pattern 
generators (Grillner 1975, 1985; Selverston 1985 for 
review). This has inspired theoretical studies of motor 
pattern generation in isolated neural networks in the 
absence of sensory feedback (Miller and Scott 1977; 
Friesen and Stent 1977; Kawahara and Mori 1982; 
Matsuoka 1985, 1987; Kleinfeld and Sompolinsky 1988; 
Yuasa and Ito 1990). On the other hand, neurophysio- 
logical studies of insect locomotion suggest that sensory 
feedback is involved in patterning motor activity and 
that it is more than the modulation of the centrally 
generated pattern (B/issler 1986; Pearson 1987). How 
sensory feedback interacts with the central pattern gen- 
erator to adapt to the environment is still an open 
question. 

Spatio-temporal patterns in nonequilibrium open 
systems emerge spontaneously from the cooperation 
among the system's components in a so-called self-orga- 
nized fashion (Nicolis and Prigogine 1977; Haken 
1983). The slaving principle proposed by Haken (1983) 
has been successfully applied to explain motor coordi- 
nation at the macroscopic level of observation under 
fixed constraints (Kelso 1984; Haken et al. 1985; 
Sch6ner and Kelso 1988). However we must go one 
step further to clarify the mechanism of how the macro- 
scopic order of motor patterns is relevantly generated 
from the interactions of microscopic elements such as 
neural, musculo-skeletal, and sensory systems under 
variable constraints of the environment. 

The purpose of this paper is to present the principle 
of such adaptive control of locomotor systems, where 
neural, musculo-skeletal, and sensory systems behave 
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cooperatively to adapt immediately to unpredictable 
changes of environments. For this purpose, we will 
focus our study on the control of legged locomotion. 

In a system of legged locomotion, not only a ner- 
vous system controlling locomotion but also a musculo- 
skeletal system controlled by the nervous system has 
oscillatory dynamics. The latter is naturally validated 
by the effects of gravity and inertia. In the case of a 
biped, models of passive walking in the absence of 
torque have been studied (Mochon and McMahon 
1980; McGeer 1989). Since both the nervous system 
and the musculo-skeletal system have their own nonlin- 
ear dynamics, the appropriate interaction between them 
would be necessary to generate stable and flexible 
movements. Anderson and Grillner (1983) demon- 
strated that imposed rhythmic movements of the legs of 
spinal cats can entrain central rhythms over a wide 
range of frequency. This will be a crucial cue for the 
mechanism of flexible sensorimotor control. 

An important point in the present study is the 
recursive dynamics that occurs between a nervous sys- 
tem and a musculo-skeletal system during locomotion 
in an environment. A mutual entrainment between 
them is focused on as the principle of flexible control of 
the locomotion. As the entrainment is spontaneously 
established through the interaction with its environ- 
ment, we may hypothesize that the principle is responsi- 
ble for the global stability of the movement in real time 
in its environment, where conditions are unpredictable. 

In the present paper, the principle is applied to a 
model of bipedal locomotion in which a nervous system 
composed of coupled neural oscillators works as an 
autonomous controller. Through computer simulations, 
we shall demonstrate that locomotion is stably realized 
under variable conditions and that a gradual change in 
speed of locomotion induces a drastic transition of the 
gait pattern. 

2 Outline of the model 

2. I The structure of  the model 

The information flows in our model of bipedal locomo- 
tion are indicated by arrows in Fig. 1. The bipedal 
musculo-skeletal system, which is composed of inter- 
connected rigid links, is represented by Newton-Euler 
equations, where the environment is modeled as a reac- 
tion force from the ground to the legs with or without 
mechanical perturbation. The locomotor movement re- 
suits from torques acting at each joint. These torques 
are generated according to signals of the neural rhythm 
generator, which is constructed by extending a hypo- 
thetical model of the neural network of the spinal cord 
proposed by Grillner (1981) for quadrupedal locomo- 
tion. The neural rhythm generator consists of coupled 
neural oscillators, each of which controls movement of 
a leg joint. Our network is represented by differential 
equations. The feedback pathway from the bipedal 
musculo-skeletal system to the neural rhythm generator 
is modeled on the basis of a simple type of reflex in 
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Fig. 1. The general model for control of the locomotor system 

vertebrates. The higher center is represented by a single 
parameter which sets the level of activity of the neural 
rhythm generator in a nonspecific manner. The higher 
center may be compared to the brain stem activating 
the spinal cord (Shik et al. 1966; Mori 1987). 

2.2 The strategy of control 

Our strategy of control is as follows: 
(a) The mutual entrainment among the neural os- 

cillators is responsible for the flexible coordination 
among rhythmic movements of the joints of the legs. 
Some aspects of timing are established by sensory feed- 
back. 

(b) Not only the neural rhythm generator but also 
the musculo-skeletal system has oscillatory dynamics 
owing to reaction forces from the ground and to inertial 
forces. What is responsible for the dynamic stability of 
the whole system is a mutual entrainment between the 
neural rhythm generator and the musculo-skeletal sys- 
tem. Since the entrainment has a global characteristic of 
being spontaneously established through interaction 
with the environment, we call it global entrainment. This 
means that the interaction with the environment takes 
part in the generation of a stable limit cycle called a 
global limit cycle. If the whole system can generate the 
global limit cycle by global entrainment, the movements 
will become stable against mechanical perturbations 
within the range of the orbital stability of the global 
limit cycle. Furthermore, the stability against environ- 
mental changes will be obtained within the structural 
stability of the global limit cycle. 

(c) If the locomotor movements are structurally 
stable, hierarchical control will become possible by a 
single parameter of the higher center. In such cases, the 
speed of locomotion is expected to be controlled by 
changing the value of the parameter. Furthermore, if 



the system acquires a qualitatively different stable state 
by changing its speed, the nonspecific control of the 
motor pattern will become possible. Transitions of gait 
patterns are expected to be realized as a bifurcation 
between different types of global limit cycles of the 
whole system. 

3 The model of bipedal locomotion 

3.1 Musculo-skeletal system 

The bipedal musculo-skeletal system is constructed by 
an interconnected chain of rigid links, as shown in Fig. 
2. The model is confined to move in the sagittal plane. 
A leg is composed of a thigh and shank, and has three 
joints: at the hip, knee, and ankle. The mass of the 
remainder of the body is given by a point mass at the 
hip joint. The feet are omitted because their low inertial 
properties render their influence minimal in the swing 
phase and they do not enter into the dynamics in the 
stance phase during which they are planted firmly on 
the ground. Some bipedal models similar to this have 
been studied (Beuter et al. 1986; Pandy and Berme 
1988). Torques acting at the joints are assumed to be 
induced by the output of the neural rhythm generator. 
The torque at the ankle joint is assumed to be generated 
only when the ankle makes contact with the ground. To 
avoid mechanical coupling between the legs, one leg is 
detached from the other at the hip. Nonlinear friction 
forces are assumed in the hip and knee joints, and 
elastic forces in the knee. The former are the pathway 
of energy dissipation and the latter restricts the bending 
of the knee. 

The ground is modeled as a two-dimensional spring 
and damper. Each time the ankle touches the ground, 
the rest position of the spring is reset to the point at 
which the ankle first touches (Raibert 1984). To simu- 
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Fig. 2. Musculo-skeletal system. A dynamic model of a bipedal 
musculo-skeletal system is shown. Link2, 3 represents the thigh and 
link4, 5 represents the shank. Linkl represents the remainder of the 
body which is given as a point mass 
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late locomotion not only on flat ground but also on a 
slope, a two-dimensional model of the terrain is de- 
scribed by a function which determines the profile of 
the ground in the sagittal plane. 

The equations of motion for the musculo-skeletal 
system are derived by means of the Newton-Euler 
method. The general form of the equations may be 
written as 

= P(x)F + Q(x, i ,  T,(y), F~(x, i ) ) ,  (1) 

where x is a (14 x 1) vector of the inertial positions of 
5 links and the inertial angles of 4 links; P is a ( 14 x 8) 
matrix; F is a (8 x 1) vector of constraint forces; Q is a 
(14 x 1) vector; Tr is a (6 x 1) vector of torques; Fg is a 
(4 x 1) vector of forces on the ankle which depend on 
the state of the terrain; and y is a (12 x 1) vector of the 
output of the neural rhythm generator to be explained 
in the next section. The details of (1) are presented in 
the Appendix. 

The equations of kinematic constraints are also 
shown in the Appendix. To obtain the constraint forces, 
we differentiate the equations of kinematic constraints 
twice with respect to time. They can be written in a 
general form: 

C(x)~ = D(x, , ) ,  (2) 

where C is a (8 x 14) matrix and D is a (8 • 1) vector. 
The derivation of (2) is also given in the Appendix. 

By substituting (1) into (2), we get 

F = [C(x)P(x)]-'[D(x, s 

- C(x)Q(x, ~, T,(y), V,(x, ~))1. (3) 

Substitution of (3) into (1) gives the required accel- 
erations by 

= P(x)[C(x)P(x)]-'[D(x, i )  

- C(x)Q(x, ~r T,(y), Fg(x, ~))1 

+ Q(x, ~, T,(y), Fg(x, ~r (4) 

We are able to obtain the motion of the bipedal 
musculo-skeletal system, provided that the output of 
the neural rhythm generator y is given. 

3.2.1 Neural oscillator model. Before we consider the 
neural rhythm generator for bipedal locomotion, it 
would be instructive to discuss a neural oscillator 
model used as the element of the neural rhythm gen- 
erator. One of the simplest neural network models 
which generate oscillatory activity consists of two 
tonically excited neurons, with the adaptation or self- 
inhibition effect, linked reciprocally via inhibitory 
connections. This model was originally proposed by 
Brown (1914) to account for the alternating activa- 
tion of flexor and extensor muscles of a cat's limbs 
during walking. The model can be mathematically 
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represented by the following differential equations 
(Matsuoka 1985, 1987): 

~ = - u ~  - wy2  - flv~ + Uo , 

z~2 = - u 2  - w y l  - fly2 + Uo , 

z'f~2 = - v2 + Y 2 ,  

Yi  = f ( u i )  ( f ( u i )  = max(0, u i ) )  (i = 1, 2), (5) 

where u i is the inner state of the ith neuron; Yi is the 
output of the ith neuron; vi is a variable representing 
the degree of  the adaptation or self-inhibition effect of 
the ith neuron; u o is an external input with a constant 
rate; w is a connecting weight; and z and z' are time 
constants of  the inner state and the adaptation effect, 
respectively. 

Conditions under which the network generates os- 
cillatory activity are found by investigating differential 
equations obtained by linearizing (5) in the vicinity of 
stationary solutions (Matsuoka 1985). The time con- 
stants z and z' change the frequency, while the constant 
input Uo changes not the frequency but the amplitude. 

3 . 2 . 2  N e u r a l  r h y t h m  g e n e r a t o r .  By using the neural os- 
cillator model described above as a unit oscillator, a 
neural rhythm generator, composed of six unit oscilla- 
tors, for bipedal locomotion is constructed as illustrated 
in Fig. 3. The six unit oscillators have inhibitory con- 
nections. Each unit oscillator induces a torque at a 

Neural Rhythm Generator F : flexor 
flexor neuron E : extensor 
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oscillator (~)~F 

Hip 

Knee 
knee unit 
oscillator t , ~)~"x 

ankle unit ~ A n k l  oscillator e 

right leg 
left right 

Fig. 3. Neural rhythm generator. The output of the neural rhythm 
generator to the right leg joints is shown, wfe, wrt, and wh~ represent 
the weights of interconnections between subunit neurons of unit 
oscillators 

specific joint. The two neurons of each unit oscillator 
alternately induce torques in opposite directions: the 
directions of contraction of flexor and extensor muscles. 
It is assumed that the torque generated at the joint is 
proportional to the output of the subunit neurons. This 
model is consistent with a hypothetical model for the 
spinal network for locomotion proposed by Grillner 
(1981). 

The neural rhythm generator is represented by the 
following differential equations: 

12 
"~i~li -~- --U i "~ ~ w J j  - -  flvi + Uo + Feedi(X, X, Fg(X, 1~)), 

ij=l 

z ' i f i  = - v i  + y i ,  

Yi =f (u ; )  ( f ( u i )  = max(0, u,)) (i = I, 12), (6) 

where Feed i is a feedback signal from the musculo-skele- 
tal system, as explained in the next section. The other 
parameters in (6) were given in (5). 

The values of the parameters for the unit oscillators 
and for the interconnections between them are specified 
so that the patterns of activity are generated consis- 
tently with the observed motion of  the human biped, as 
is described below. 

Serial angular patterns of movements of the human 
biped can be characterized as follows: within each 
walking cycle, the hip pattern shows one excursion of 
flexion and extension; the knee and ankle patterns, on 
the other hand, show two excursions of flexion and 
extension (Murray 1967). In the present model, the 
values of z and r '  of the hip unit oscillators are chosen 
to be twice those of the knee and ankle unit oscillators 
so that the frequency of the latter is twice that of the 
former. The frequency of the hip unit oscillators is 
chosen to be slightly slower than the characteristic 
frequency of a damped pendulum corresponding to a 
straight leg with no knee joint. Since the amplitude of 
the leg's oscillation forced by the unit oscillator be- 
comes large owing to the resonance effect under this 
condition, the mutual entrainment between the unit 
oscillator and the leg is expected to become stable. 

The inhibitory connections between hip unit oscilla- 
tors on the contralateral side produce alternate excita- 
tions to give the alternation between the movements of 
the two legs. In order to produce relative phases appro- 
priately in ipsilateral joints, the interconnections be- 
tween unit oscillators on the ipsilateral side are chosen 
in such a way that the extensor neurons of the knee and 
ankle unit oscillators are inhibited by the flexor and 
extensor neurons of the hip unit oscillators. Then the 
extensor neurons of the knee and ankle unit oscillators 
are excited each time they are disinhibited. 

3 .3  F e e d b a c k  p a t h w a y  

The human motor system receives two different types of 
sensory information: proprioceptive and exteroceptive 
information. The former is the sense of the positions 
and movements of different parts of the body, while the 
latter is constituted of visual, somatic, and vestibular 
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information and is important for monitoring the rela- 
tionship between the body and the environment. 

Two obvious choices for kinematic state variables 
are the anatomical and inertial angles. The anatomical 
angles may be sensed only by proprioceptors. To get 
inertial angles, however, both the proprioceptive and 
exterocepfive information are needed. Information on 
the proprio-extero relationship seems to be crucial for 
adaptation to the environment. 

In this model, we will postulate explicit representa- 
tions of sensory signals of inertial angles, angular veloc- 
ities, and somatic senses. Figure 4A illustrates the 
feedback pathway to each unit oscillator. Here the 
inertial angles of the thigh and the shank and the 
angular velocity of the shank are assumed to be sig- 
naled. The somatic senses are signaled only when the 
ankle is in contact with the ground. 

The design of the feedback pathway is mainly based 
on a simple mechanism, shown in Fig. 4B, which is an 
extended form of the stretch reflex in vertebrates. Let us 
consider a simplified system composed of a unit oscilla- 
tor, a pendulum controlled by antagonistic muscles, 

and a pair of receptors called the angle receptors. It is 
assumed that each angle receptor is activated when the 
inertial angle of the pendulum exceeds the upright 
position and the strength of the activity is proportional 
to the angle. The afferent signal from the angle receptor 
on one side enhances the activity of the ipsilateral 
neuron and suppresses the activity of the contralateral 
one. This stretch-reflex like feedback is responsible for 
the entrainment between the activity of the unit oscilla- 
tor and the movement of the pendulum. As illustrated 
in Fig. 4A, the hip and ankle unit oscillators have this 
type of feedback. The stretch-reflex like feedback is also 
extensively used in the inter joint feedback pathways, 
which are important for generating appropriate phase 
relationships among the movements of the joints. It is 
noted that the signals of the somatic sense are used for 
taking account of only the relevant phases of the signals 
of the stretch-reflex like feedback, so that the inertial 
angles of the ankle joints are signaled only when the 
ankle is in contact with the ground. The feedback of the 
angular velocities and the somatic senses are expected 
to be effective for the stability of locomotion. 

Fig. 4.A Feedback pathway. Le~: Feedback to the hip unit oscillator. Middle: Feedback to the 
knee unit oscillator. Right: Feedback to the ankle unit oscillator. B Stretch-reflex like feedback. 
This simplified model shows the basic mechanism of the feedback. IA, inertial angle; AV, 
angular velocity; SS, somatic sense 
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4 R e s u l t s  

In this section, some of  the results of the computer 
simulation using the HITACHI  M-680/682H system at 
the Computer Center of  University of  Tokyo will be 
presented. Equations (4) and (6) were implemented in 
Fortran using the fourth-order Runge-Kutta-Gill 
method for integration. The inverse matrix in (4) was 
solved by using the Gauss-Jordan method. Given a 
certain set of  initial conditions and a function describ- 
ing the terrain, our bipedal model generated locomotor 
patterns as a completely autonomous system. 

4.1 Generation o f  walk ing  movemen t s  

4.1.1 Walk ing  pat tern .  Figure 5 shows the simulated 
motion of  the legs on level ground. As clearly demon- 
strated in Fig. 5A, the equations for this autonomous 
system have a stable limit cycle solution for an appro- 
priate set of  initial conditions. The pattern of  move- 
ment within a stepping cycle is shown in Fig. 5B, where 
the single- and double-support phases are separately 
illustrated. The single-support phase is the period dur- 
ing which only one ankle is in contact with the ground, 
while the double-support phase is the period during 
which both ankles are in contact with the ground. The 
walking pattern resembles that of  the human biped. 

The activity of  the neural rhythm generator during 
walking is demonstrated in Fig. 6A. The frequency 
becomes higher than the characteristic frequency of  the 
neural rhythm generator in the isolated state, as shown 

in Fig. 6B. This shows that the neural rhythm generator 
and the musculo-skeletal system are mutually entrained. 
Therefore this motion of  the system is the global limit 
cycle, as was noted in 2.2. The phase relationships 
among the unit oscillators during walking are more 
complex than those in the isolated state. This means 
that the neural rhythm generator is not entirely respon- 
sible for establishing the relative timing of  motor  activ- 
ity, but some contribution is made by sensory feedback. 

4.1.2 Responses  to perturbation.  Mechanical perturba- 
tions to a part of  the body were examined (Fig. 7). The 
results demonstrate that the system returns to steady 
walking within a few step cycles after instantaneous 
perturbations. The stability against the perturbations is 
attributed to the orbital stability of  the global limit cycle. 
The biped fell down for such a large perturbation as that 
which forces the system to move beyond the separatrix 
of  the stable limit cycle. Many of  the details of  trajectory 
responding to perturbation arise directly from the struc- 
ture of  the dynamical system and need not be controlled 
by higher levels of  the nervous system. 

4.1.3 Stabi l i ty  to environmental  changes. The behavior 
of  the biped was investigated when the environmental 
constraints were changed. 

First, the values of  parameters of the ground were 
changed with the same values of  the other parameters 
as used in 4.1.1. The walking movements were stable in 
the conditions; 8.0 x 103~<kg ~<2.0 • 10 4 and 8.0 x 102~< 
b~ ~< 1.0 • 10 4. This shows that the global limit cycle is 
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Fig. 5A, B. The stick figure of the walking movement on level 
ground, u 0 = 5.5. The values of the other parameters of the system 
and the initial conditions are shown in the Appendix. A The walking 
movement over 10 s. Given a set of initial conditions, the system was 

y tm) ' "  

. . . . . . . . . .  ; . . . . . . . . .  ,., . . . . . . . . .  ,,, 
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asymptotic to steady walking. The stick figure was traced every 0.1 s. 
B The walking pattern in the steady state within a stepping cycle. 
Left: Double-support phase. Right: Single-support phase. The stick 
figure was traced every 0.02 s 
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Fig. 6.A The activity of  the neural rhy thm generator during walking. 
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Fig. 7A, B. The walking movement  when mechanical  perturbation was 
applied. The values of  the parameters of  the system were the same as 
those of  4.1.1. The initial condition was chosen to be the value of  the 
steady state. Dots  show the time when a mechanical force was applied. 

The stick figure was traced every 0.1 s. A Perturbation to the leg. A 
force of 200 N in the forward direction was applied to the center of  
the mass  of  link5 during swinging for 0.2 s. B Perturbation to the head. 
A force of  288 N in the forward direction was applied to link1 for 0.2 s 

structurally stable to the wide range of the parameter 
changes. 

Secondly, uphill walking on a shallow slope was 
examined with the same values of parameters as used in 
4.1.1 (Fig. 8). The upper limit of the slope that the 
biped could walk on was 6%. The biped fell down on a 

downhill slope, because the torque strong enough to 
support the upright body was generated before the 
swing leg touched the ground, which caused balance 
loss. The stability against environmental changes is 
attributed to the structural stability of the global limit 
cycle in the whole system. 
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Fig. 8. Uphill walking. The walking movement on a 6% uphill slope is shown. The values of the parameters and the initial condition were the 
same as those of 4.1.2 

4.2 Control of speed and transition of gait pattern 

Human  bipeds adopt  a walking gait over a wide range 
of  velocities. The adaptat ion to increasing speed is 
accomplished by an increase in both frequency and 
amplitude of  the movement .  Above a certain speed, a 
man changes his gait f rom walking to running (Nilsson 
et al. 1985), just as quadrupeds change gaits from 
walking to trotting to galloping. 

Hierarchical control by the higher center was exam- 
ined as follows. The constant input parameter  u0, setting 
the activity level of  the neural rhythm generator, was 
changed continuously. This may be compared to the 
experiments by Shik et al. (1966) on the electrical stimu- 
lation to the midbrain region of  decerebrate cats. The 
result showed that the biped changed not only its speed 
but also the gait pattern between walking and running. 

The simulated mot ion for a large value of  u0 is 
demonstrated in Fig. 9A. It was categorized as a run- 
ning mode for the following reason. The stepping cycle 
can be divided into the flight phase and the single-sup- 

port  phase, as shown in Fig. 9B. Comparing this mo- 
tion with that shown in Fig. 5B, walking and running 
can be distinguished from each other by the presence of  
the double-support  phase and the flight phase, respec- 
tively. As the present model does not take account of  
the stiffness of  the leg storing elastic energy, the dura- 
tion of  the flight phase is, therefore, shorter than that of  
the human biped. The activity of  the neural rhythm 
generator in the running mode is shown in Fig. 10. The 
fine structure of  the activity is different from that in the 
walking mode shown in Fig. 6A. 

The change of  the gait between the walking and 
running modes was not continuous but abrupt.  The 
bifurcation diagrams, established numerically as indi- 
cated in Fig. 11, represent the steady-state stride length, 
the stride cycle duration and the speed as a function of  
the constant input Uo. The abrupt  transition occurs with 
hysteresis. The coexistence of  two stable limit cycles 
in the same condition provides the capability of  switch- 
ing back and forth between the gaits upon appro- 
priate perturbation or parameter  change. This hys- 
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teresis phenomenon is typical for a nonlinear dynamical 
system. 

5 Discussion 

In summary, the following generalized principles for 
locomotor control are derived from the present study, 
though the structure of our model was abstracted from 
neurophysiological knowledge. (I) Self-organized rela- 
tionships among nonlinear oscillators in a locomotor 
system due to their mutual entrainment are the basis for 
the flexible generation of motor patterns. (2) Dynamic 
stability for the locomotor system is produced by a 
global entrainment between the control system com- 
posed of nonlinear oscillators and the controlled system 
which has oscillatory dynamics. This entrainment gen- 
erates a global limit cycle in the whole system including 
the environment. (3) Gait patterns can be hierarchically 
controlled by changes of a nonspecific parameter in the 
form of bifurcations between different types of global 
limit cycles. 

These principles may work in animal locomotion, 
including not only walking and running but also such 
diverse forms as swimming, crawling, and flying. It is 
suggested from the present study that the control of 
rhythmic movements is not merely switching on of 
preexisting motor programs, nor reflex chains, but gen- 
erative phenomena; neural, sensory, and musculo-skele- 
tal systems behave cooperatively to adapt to what is 
happening to the system in real time. 

The transitions of the gait patterns in our model are 
caused not only by the internal dynamics of the nervous 
system, but also by the external dynamics of the envi- 
ronment. As the relationship between the dynamics of 
the nervous system and the dynamics of the musculo- 
skeletal system is gradually varied, a critical point may 
be reached at which a transition to a qualitatively 
different pattern of movement occurs. Haken et al. 
(1985) proposed that gait changes can be regarded as 
nonequilibrium phase transitions in a synergetic system. 
Inspired by this view, Sch6ner et al. (1990) showed 
theoretically, only on the kinematic level of observa- 
tion, that different patterns arise from the same under- 
lying nonlinear dynamical structure and that a pattern 
switch can be brought about by nonspecific parameter 
change. The present model demonstrates a possible 
mechanism underlying gait transitions; gait patterns are 
flexibly generated through the interplay of motor and 
sensory systems. 

With regard to the motor performance, the cerebel- 
lum is known to play a crucial role (Ito 1984 for 
review). The cerebellum receives detailed information 
concerning the activity of an executive motor appara- 
tus: the phase and degree of contraction of various 
muscles, joint angles, and contact with the ground 
(Arshavsky et al. 1984). As the explicit processing of 
such sensory signals is treated in our model, the func- 
tions of the cerebellum might be partly involved. 
Kawato et al. (1987) proposed an inverse-dynamics 
model of the cerebellum for control and learning of 
voluntary arm movements. However, the dynamical 
coupling between the cerebellum and the spinal net- 



156 

work for locomotion is still an open question. Further- 
more, the relationship between voluntary movements 
and rhythmic movements remains for further experi- 
mental and theoretical research. 

Although motor development and learning have not 
been considered, our model will provide insight into 
this problem. Thelen (1988) characterizes infant motor 
development as self-organizing phenomena; infants seek 
stable solutions of walking patterns which would be 
given as a result of cooperative interactions among their 
physical as well as neural subsystems. This view is 
consistent with our model that stable walking is realized 
as a global limit cycle of the whole system. How 
locomotor systems develop to find stable states interact- 
ing with the environment remains a problem for further 
theoretical research. Recurrent neural network models 
for learning limit cycles (Doya and Yoshizawa 1989; 
Williams and Zipser 1989; Pearlmutter 1989) might be 
applied to motor learning. 

As a final note, we would like to stress that the 
strategy for the motor control presented in this paper is 
strikingly different from that for the robotic control. 
Many kinds of bipedal robots have been studied using 
the conventional control theory (Kato 1983 for survey). 
In these approaches, planning and execution of move- 
ments are strictly separated and sequentially solved. 
The planning of a desirable trajectory, however, is time 
consuming. Direct encoding of the trajectory is the 
source of inflexibility. Kato and Mori (1984) proposed 
a flexible control of a bipedal robot in which a trajec- 
tory is realized as a stable limit cycle. However, a 
desirable trajectory is uniquely defined by the torque 
given as a function of the state of the movement, and 
the dynamics of the control system is not considered. In 
the view presented in this paper, the control and con- 
trolled systems are coupled dynamically and are insepa- 
rable. Coordinated rhythmic movements emerge as a 
result of the dynamic interaction of the global  entrain-  
m e n t  between the control and controlled systems. 
Therefore, the planning and execution are performed in 
parallel with constant interactions with the environ- 
ment. The present principle of motor control in an 
unpredictable environment is expected to exploit a 
novel paradigm. 

Appendix 

A The  equations o f  mot ion  f o r  the bipedal 
muscu lo - ske le ta l  s y s t em  

The equations of motion of the bipedal musculo-skele- 
tal system are derived using the Newton-Euler method. 
All variables and conventions correspond to those 
shown in Fig. 2 and Fig. 12. 

MS/~ =F~ +F3 ,  

MS~ 2 = F 2 + F 4 - M g  , 

F •  linkl 

link3 / / ~  4 / ~  link2 

Tr 4 ~ g - ' ~  F7 Tr 

F 7 r  r4 

l i n k 5 / ~  

~ Fg3 

F6 ~ link4 

m2g + ~Ftg 2 

Fig. 12. Dynamics of each link 

mls/4 = - - F  2 + F6 --  m l g  , 

115/5 = - - F l ( l l / 2 )  sin x5 -- F2(11/2) cos x5 

- -  Fs( l t /2 )  sin x5 -- F6(l l /2)  cos Xs 

-- b, - - {b~ + bkf(x5  - x , , )  }(-xs - -~711 ) 

- kkh(x5 - x l i )  + Trl + T,3, 

mls/6 = - - F  3 + F 7 ,  

mr5/7 = --F 4 + F8 - m t g  , 

/15/8 = -- F3 (ll/2) sin x8 -- F4 (ll/2) cos x8 

- -  F7(l l /2  ) sin xs - Fs(l~/2) cos x8 

- b, [x~ - =/21.,t, - {b2 + bkf(x8  - X14) }(-7r - -  "9CI4) 

-- kkh(x8 - x14 ) -]- Tr2 + Tr4, 

m25/9 = - F5 + Fgl , 

mzs/lO = - -F6  + Fg2 --  m 2 g ,  

I25/11 = -F5(12 /2)  sin Xll -- F6(12/2) cos xll 

- -  Fgl(12/2) sin x l l  -- F~2(12/2) cos Xll 

-- {b2 + b , f ( x 5  - x,,)}(.~,, - .is) 

+ kkh(x5 - x l l )  - Tr3 --  Trs ,  

m25/12 = - - F  7 + Fg3, 

ml5/3 = - - E l  + F s ,  m25/13 = --Fs + Fg4 --  m 2 g ,  



1 5 7  

IzS~a = -F7(12[2 ) sin X14 - -  F8(12/2) cos X14 

- Fg3(12/2) sin X , 4  - -  Fg4(12/2) cos  x~4 

- {b2 + bkf(x8 -- Xl,)}(:~14 --  xs)  

+ kkh(X8 - x14 ) - -  Tr4 - -  Tr6 , 

f ( x ) = m a x ( O , x ) ,  h(x) = (01 (x~<O) 

(x >10). 

H o r i z o n t a l  a n d  vert ical  forces on  the ankles  are 
given by: 

Fg, - - (okg(x , . -X , .o ) - -bg f r  ,. for  otherwise,Y"-yg(X~)<O 

Fg2= ~--kg(y , . -y , .o)  +bgf ( -~ , . )  for  yr--yg(X,.) <0  

o the rwi se ,  

F g 3 = { ; k g ( x t - x t o ) - b g Y c  t for  otherwise,Yt-yg(Xt)<0 

Fg4= { ; k g ( y t -  y~o) + b g f ( - ~ t )  fOrotherwise,y,-yg(X,)<0 

where  yg(x) is the  func t ion  which  represents  the terrain.  
W h e n  the g r o u n d  is level, yg(X) = O. (x,, y~) and  (x~, y~) 
represent  the  pos i t ions  o f  the  ankles,  wh ich  are given 
by: 

(Xr, y~) = (X9 + (/2/2) COS X~I, X~0 -- (12/2) sin x H ) ,  

(x~, y~) = (x~2 + (12/2) cos  x~4, xla --  (/~/2) sin Xl~). 

T o r q u e s  gene ra ted  at each jo in t  are  given by: 

T~ = phey z -- p~y~, h Zr2 = P e Y 4  - -  P f  Y3,  

T~3=PkeY6--p~'ys, T~a=pkeys--p~y7, 

T~5 = (P~Y~o -- p~y9)h(Fg 2), 

T~6 = (P~YI2 -p~yl~)h(Fg4), 

where  p is the posi t ive cons tan t .  
These  equa t ions  can  be wr i t ten  in the c o m p a c t  f o r m  

s h o w n  in the  text. 

= P(x)F + Q(x, k, Tr(y), Fg(x, ~)). (1) 

B The equations o f  the kinematic constraints 

xl = x3 - (1~/2) cos  x 5 , X2 = X4 " ] - ( l l / 2 )  sin x s ,  

x~ = x6 --  (l~/2) cos Xs, x~ = x7 + (6 /2 )  sin x8 ,  

x3 + (/~/2) cos  x5 = x9 - (/~/2) cos x ~ ,  

x4 - (l~/2) sin x5 = Xl0 + (/2/2) sin x H ,  

x6 + (/~/2) cos  x8 = x~2 - (/2/2) cos  x~4, 

x7 - (/~/2) sin x8 = x~3 + (lz/2) sin x~4. 

T he  equa t ions  o f  the k inemat ic  cons t ra in t s  are  
different ia ted twice and  we obta in :  

s - -  JC3  - -  ( / 1 / 2 )  sin x55~5 = (11/2) cos  x s~  2 , 

x2 - -  5C4 - -  ( l l /2)  cos  x55?,s = - ( l l /2 )  sin x s : ~ ,  

5~1 - s --  (l l /2) sin x85~8 = ( l l /2)  cos  x 8 ~ ,  

s --  5c7 -- (/1/2) cos xsY8 = --(l~/2) sin x8~ ~, 

5~3 -- (l~/2) sin x55~ -- 5~9 --  (/2/2) sin x115~1 

= (l l /2) cos  x s ~  + ( l : /2)  c o s  x 1 1 x 2 1  , 

5~ 4 - (I 1/2) cos x55~5 - s - (/z/2) cos  x115Cll 

= - (11 /2)  sin xs~  2 - (/2/2) sin X l l . ~ 2 1  , 

5~6 - (/1/2) sin x85/8 - 5~12 - (12/2) sin x145~14 

= (l l /2) cos  x8~ 2 + (12/2) cos  x14~24, 

5~7 --  (6 /2)  cos  x8s - xl3 - (/2/2) cos  x~45~14 

= - ( l a / 2 )  sin x8~ 2 - (lz/2) sin x14~24. 

These  equa t ions  can  be wr i t ten  in the c o m p a c t  f o r m  
as s h o w n  in the  text. 

C (x )R  = D ( x ,  ~) (2) 

C Feedback pathway 

F e e d b a c k  signals f r o m  the musculo-ske le ta l  sys tem to  
the neura l  r h y t h m  gene ra to r  are  given by: 

Feeal= aa (xs - 7z/2) - a2(x8 - n/2)  

+ a3(xll - 7r/Z)h(Fg2) + a4h(Fg4), 

F~d2 = al (r~/2 -- xs)  --  a2(~z/2 -- x8) 

+ a 3 (r~/2 --  xa l)h(Fg2) - -  a 4 h ( F g 4 ) ,  

Feed3 = al (x8 - n /2)  --  a2(x5 -- n/2)  

- q -  a 3 ( x 1 4  - -  ~ / 2 ) h ( F g 4 )  + a4h(Fg2)  , 

Feed4 = al (re/2 --  Xs) -- a2(~/2 -- x5) 

+ a3(~/2 - -  Xl4)h (Fg4)  - -  a4h(Fg2)  , 

Feed5 = asOr /2 -- x14)h(Fg4) , 

F~ed6 = a5 (X14~z/2)h(Fg4), 

F, ed7 = as(~z/2 -- xl l)h(fgz),  

r ~ e ~  = a s ( x .  - ~ / 2 ) h ( V g 2 )  , 

Feed9 = a6(Tr/2 --  Xll)h(Fgz) + a70r /2  --  x14)h(Fg4) 

- as:~H h(Fg2), 

VeedlO ---- a6(x11 -- n/2)h(Fg2) + a7(x14 - -  n/2)h(Fg,) 

+ as~ l lh (Fg2) ,  

F~edll = a6(lr/2 --  x14)h(Fg4) + aT(n/2 -- xH)h(Fg2) 

- -  as.iCl4h(Fg4) , 

Feedl 2 = a 6 ( x 1 4  - -  rc /2)h(Fg4)  + a 7 ( X l l  - -  n [ 2 ) h ( F g 2 )  

+ as:~14h(Fg4). 
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D Simulation parameters 

Musculo-skeletal system 

M = 48.0, 

m l = 7 . 0 ,  11=0.5,  II=mll~/12, 

mz = 4.0, /2 = 0.6, 12 = m21~/12, 

bl = 10.0, b2 = 1 0 . 0 ,  b k --- 1 0 0 0 . 0 ,  

kk=10000.0 ,  g = 9 . 8 ,  

kg = 10000.0, bg = 1000.0 , 

= 1 5 . 0 ,  = 8 5 . 0 ,  = 1 5 . 0 ,  

p k = 1 5 . 0 ,  p~=lO0.O,  p ~ = 7 5 . 0 .  

neural rhythm generator 

271, "C2, ~'3, "g4 = 0 . 0 5  , 

! / t t 
"/SI, T 2 ,  Z 3 ,  T 4 = 0.60, 

275, 276, 277, V8,  279, q~10, 2711, Z12 = 0.025, 

27~, ~ ,  27~, r~, ~;, rio, ~]1, r~: = 0.30, 

fl = 2 . 5 ,  

WI 2~ W21~ W34~ W43~ W56, W65, W78~ W87, W910, WI09, 

Wll 12, W12 l l  = W f e  = - 2 . 0 ,  

Wl 3, w3 1, w 2 4 ,  14242 = Wrl  = - -  1.0 , 

W61, W62~ W83, W84, W10 1, WI02~ WI23, W124 ~ W h k a  

= - 1 . 0 ,  

o t h e r w i s e  wij = 0 . 0 .  

f e e d b a c k  

a 1 = 1 . 5 ,  a 2 = 1 . 0 ,  a 3 = 1 . 5 ,  a 4 = 1 . 5 ,  

a5 = 3 . 0 ,  a 6 = 1.5 , a 7 = 3 . 0 ,  as  = 1 . 5 .  

E Initial condition 

x l = 0 . 0 ,  x 2 = 1 . 0 9 ,  x s , x l l = 0 . 4 5 7 r ,  

X8, X14 = 0 . 5 7 ~ z ,  

x3 = x l  + ( l l / 2 )  c o s  x s ,  x4  = x2 - ( l l / 2 )  s in  x s ,  

x6 = x l  + ( l l / 2 )  c o s  x 8 ,  x7  = x2 - ( l i / 2 )  s in  X s ,  

x9 = 11 c o s  x5 + (12/2) c o s  X l l  , 

x l 0  = x2 - ll s in  x5 - (12/2) s in  x l l  , 

x12 = 11 c o s  x8 + (12/2) c o s  X14 , 

Xl3 = x2 - 11 s in  x8 - ( / 2 /2 )  s in  x l 4 ,  

:~i = 0 . 0  (i  = 1, 1 4 ) ,  

fii, ~;i = 0 . 0  ( i  = 1, 12)  . 
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