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Abstract. Quasi-elastic operation of joints in multi-
segmented systems as they occur in the legs of humans,
animals, and robots requires a careful tuning of leg
properties and geometry if catastrophic counteracting
operation of the joints is to be avoided. A simple three-
segment model has been used to investigate the segmental
organization of the leg during repulsive tasks like human
running and jumping. The effective operation of the
muscles crossing the knee and ankle joints is described in
terms of rotational springs. The following issues were
addressed in this study: (1) how can the joint torques be
controlled to result in a spring-like leg operation? (2) how
can rotational stiffnesses be adjusted to leg-segment
geometry? and (3) to what extend can unequal segment
lengths and orientations be advantageous? It was found
that: (1) the three-segment leg tends to become unstable
at a certain amount of bending expressed by a counter-
rotation of the joints; (2) homogeneous bending requires
adaptation of the rotational stiffnesses to the outer
segment lengths; (3) nonlinear joint torque-displacement
behaviour extends the range of stable leg bending and
may result in an almost constant leg stiffness; (4)
biarticular structures (like human gastrocnemius muscle)
and geometrical constraints (like heel strike) support
homogeneous bending in both joints; (5) unequal
segment lengths enable homogeneous bending if asym-
metric nominal angles meet the asymmetry in leg
geometry; and (6) a short foot supports the elastic
control of almost stretched knee positions. Furthermore,
general leg design strategies for animals and robots are
discussed with respect to the range of safe leg operation.

1 Introduction

Although many movement studies using the leg-spring
concept can be found in the literature (Blickhan 1989;
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Farley and Gonzalez 1996; Seyfarth et al. 1999), little is
known about the mechanisms and benefits of such a
manner of leg operation. The concept of spring-like
operation of the total leg can be extended to spring-like
operation of joints for exercises such as hopping,
running, and jumping (Stefanyshyn and Nigg 1998;
Farley and Morgenroth 1999). Depending on the
execution characteristics, exhaustion or external con-
straints changes in joint kinetics and kinematics have
been observed (e.g., Williams et al. 1991; Farley et al.
1998; Kovacs et al. 1999). Thereby the elastic operation
of joints may disappear depending on movement criteria
such as foot placement (Kovacs et al. 1999) or hopping
height (Farley and Morgenroth 1999). The elastic
operation of a joint requires a significant distance
between the joint axis and the line of action of the
ground reaction force (Farley et al. 1998). If more than
one joint fulfils this condition, the loads must be shared
between these joints. With respect of multi-segment legs,
this evokes the kinematic redundancy problem; i.e., the
same leg length can be realized by different joint
configurations. This problem was first addressed in
Bernstein’s motor equivalence problem (Bernstein 1967).
There is no generally accepted theory available which
could explain the observed behaviour in biological limbs
(for review see Gielen et al. 1995). The approaches
found in the literature postulate different optimization
criteria which result in corresponding movement pat-
terns taking physiological, energetic, or metabolic as-
pects into account. Nevertheless, these constraints did
not explain the unique motor pattern used by biological
systems for an intended movement. It is well accepted
that biological actuators are adapted to their mechanical
environment and to different task-depending require-
ments (van Leeuwen 1992). By their intrinsic properties
muscles may help to stabilize cyclic joint rotations in the
case of sudden disturbances (Wagner and Blickhan
1999).

A key to solve the kinematic redundancy problem
(Gielen et al. 1995) is the assumption of spring-like
muscle behaviour (Winters 1995), as this defines a po-
tential which specifies local minima at distinct joint
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configurations. However, the quasi-elastic muscle oper-
ation is not sufficient to guarantee stable joint configu-
rations (Dornay et al. 1993). To investigate the interplay
between elastically operating actuators, leg architecture,
and motor program, a mechanical model is required. A
simple model recently introduced by Farley et al. (1998)
represented torque actuators as linear rotational springs
at ankle, knee, and hip joints within a four-segment
model. The observed torque characteristics, however,
rather suggest nonlinear torque characteristics in the
ankle and knee joints. Due to the small distance to the
line of action of the ground reaction force, the hip joint
did not show elastic behaviour. If elastic joint operation
is assumed in such situations kinematic instabilities will
appear. The stability was not addressed in their study.

The aim of our study is to explore the requirements of
elastically operating torque actuators of a kinematically
redundant segmented leg. Thereby the influence of the
segment length design and different kinematic conditions
are taken into account. At least three leg segments are
necessary to address kinematic redundancy. The leg
design will be judged by investigating the possible ki-
nematic responses to different loading situations. The
stability and predictability of the leg operation will be
quantified by calculating the configurations of inherent
leg instability. This allows the derivation of criteria for
leg length design, motor control (torque adjustment),
and kinematic programs. The effects of segment inertia
are neglected, as they are of minor importance during
fast types of locomotion.

2 Methods
2.1 The three-segment model

The planar model (Fig. 1) consists of the following
parts: (1) a point mass m representing the total body
mass, and (2) three massless leg segments (foot, shank,
and thigh; lengths /, /; and /3), linked by frictionless
rotational joints. The point mass is attached at the top of
the thigh (hip). As there is only one point mass the
equations of motion are:

mi‘:Fleg—l—mg R (1)

where r is the position of the point mass, Fi, is the force
due to the operation of the leg segments, and g is the
gravitational acceleration vector. As all segments are
massless the force Fie; acting on the point mass is equal
to the external ground reaction force.

2.2 Torque equilibrium

To integrate the equations of motion (1) the instanta-
neous leg force Fi; has to be calculated. In contrast
to the dynamics of the point mass, we neglect all
dynamic effects due to segment inertias within the leg.
The position of the point mass with respect to the point
of ground support determines the instantaneous leg
length. This length is directly related to leg force if

point mass m

Fig. 1. Three-segment model with one point mass. Torques are
applied at ball, ankle, and knee joints (My;, M| and M3). The leg
configuration is represented by the inner joint angles (ankle angle:
@12 = @y + 1 — @y, knee angle: ¢,3 = ¢, + 1 — @3). The angle y is
defined as the difference between middle segment and leg orientation:
7 = @) — @y, (in this sketch y is negative)

conservative (angle-dependent) torque actuators are
present at the knee and ankle joints. In the case of
external torques (e.g., at the ball of the foot) a further
influence of the leg orientation with respect to the
ground exists.

The torques at the hinge joints (ball My, ankle M,
and knee M>3) and the orientation of the leg segments
(11, 15,13) must fulfil the following static torque equilib-
rium (all A;; direct in z; for details see Appendices A-C):

(I X Fieg) | .= Mo1 — M)

(b x Fie,) |Z= My — M»3 (2a—)
(I3 % Fieg) |.= M2y

where

L+h+L=r. (2d)

These are five algebraic equations to estimate the
following five unknowns: the leg force Fi; (two compo-
nents), and the segment angles ¢,, ¢, and ¢;. Hereby
constant segment lengths || = /;, a given leg vector r,
and given torques M;;(¢;, @5, @3;t) were assumed.

The segment angles ¢, ¢,, and ¢; may be substituted
by the leg angle ¢, and by two variables representing
the internal leg configuration (e.g., @5, @3 Or Ay, h3;
Fig. 1). As the leg length r = |r| merely depends on the
internal leg configuration we separate r = r(¢,, P23)-
e-(@ee) where e, represents the unit vector uniquely
determined by the leg orientation ¢y, (r) and
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(@12, 0r3) = \/l% + 34 13— 21115c0s ¢y — 211508 a3 + 21115 c08(0 15 — @r3) - (3)

After replacing (2d) by (3) four equations now exist for
the following unknowns: two components of the leg force
Fi, and two variables representing the internal leg
configuration. The internal configuration is a conse-
quence of the chosen torque characteristics at the joints
and must fulfil (3). For torque characteristics only
depending on the internal configuration M;;(¢,, @y3)
we can identify all configurations of ¢|,, and @5 fulfilling
the torque equilibrium (2a—c) denoted by O(¢,, ¢,3) =0.

Fleg(ﬁf’lz’ ?23)

M o; Mp+
(@12, 923) - (Tlsm P23+

M, . My — My .
O(@12, 923) = Tsm P23 + TSIH((PD — ¢23)
Mrys .
+l—235m @, =0 (7)
3

The internal leg configuration characterized by (3) and
(7) requires to know the torque characteristics (see
below). The amount of leg force Fc, remains to be
estimated using either (2a—c) or (4a,b) resulting in:

Mo

Ao sin(@; — @a3) — I sin (Plz) (8)

11(cos @p3 — €O8(2¢015 — ¢13)) + 212 8in @15 Sin a3 + [3(COS 13 — €OS(P15 — 2¢023)) — 2%@112((912 —¢3)

In this paper these solutions of Q(¢;,, ®y3) =0 will be
derived for simplified situations. After estimating the
joint angles using Q(¢1,, ®»3) = 0 and (3), the leg force is
simply given by two linearly independent equations
(2a—c).

2.3 Neglecting the external torque My

To find a first solution of the torque equilibrium, the
torque at the ball of the foot is neglected: My = 0.
This results in leg forces Fig always parallel to r as we
can summarise (2a—c) to rXFleg‘z: My;. For joint
torques Mi; and M>,3 only depending on the internal
configuration (¢, @,;; Fig. 1), the amount of the
leg force also does not depend on the leg orientation
Preg- As (2b) becomes the negative sum of (2a) and
(2¢), only two remaining torque equations must be
fulfilled:

hy - Fieg = MlZa

—h3 - Fieg = Ma3 (4a,b)

or eliminating Fie,:
O(@12; ¢23) = Mizhs + Moshy =0, (5)

where A1 (@, ¢»3) and A3(@,, ¢,3) are the distances of
the joints to the line of action of the leg force
h,’ = li sin(l,»,r):

ar((ngw(pZS) hl
Vor(@12, ¢23) = (ar(gozlfm)) = (h3) (6)
0pa3

that is, #; >0 and k3 >0 in Fig. 1. Equation (5)
determines the ratio of ankle to knee torque M,/M>;
to be equal to —h;/h3 as long as the foot contacts the
ground at the ball with no external torque (My; = 0; no
effects of heel or toe contact). In terms of the inner joint
angles, the simplified torque equilibrium (5) results in
the requested Q function:

where 7(¢;,, ¢»;) denotes the instantaneous leg length

3).

2.4 Potential energy and leg length at Q = 0

In the case of conservative torque actuators at the knee
and ankle joints the torque equilibrium (5, 7) is equiv-
alently represented by a dependency between the poten-
tial energy E(¢,, ¢»3) and the leg length r(¢;,, ¢3):

VoE(@12, 923) = B(@12, 023) - Vor (@12, 923) 9)
where
VoE - Vor
B(@12, 923) :H: _Fleg((/’lz)q’m) (10)
|V<pr|

is the negative leg force Fie, and

—-M
V(PE(GD127<P23) = ( MZ) (11)

in the case of monoarticular torque characteristics
Mi>(¢,) and Ms3(py;). Equation (9) is a sufficient
condition for a local extreme of E(¢,,@,;) on a
(@12, P23) = conmst. line. The equivalence of (9) with
O =0 becomes obvious by multiplying VoE(¢;5, ¢3)
with any vector t.(¢,,¢y;) perpendicular to
Vor(®1y, ®23) (6). The stability of a configuration
fulfilling the torque equilibrium (or Eq. 9, respectively)
requires an increase of E for displacements in the
internal joint configuration (@5, ,;) along r = const.
nearby the solution of Q=0. The corresponding
conditions are derived in the Appendix D.

2.5 Symmetrical loading: stiffness equilibrium

To investigate the influence of knee and ankle rotational
stiffness, linear (v =1) or, more generally, nonlinear
(v > 0, v # 1) rotational springs are introduced:
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My = cia(of, — o1y)" (12a)

My = —023(¢g3 —0n) (12b)

where ¢, and ¢9; are the nominal angles of the
rotational springs, ¢, and ¢,3 are the joint angles (with
¢ < (pg-), c1» and c,3 are the rotational stiffnesses, and v
is the exponent of nonlinearity. Such a joint torque
characteristic is present in humans and several mammals
during fast locomotion (Stefanyshyn and Nigg 1998).
The nonlinearity may result from tendon properties and
muscle-tendon dynamics.

For the particular case of symmetrical loading with
@ = @5 and ¢, = @y, the torque equilibrium (5)
results in

v

012(90(1)2 - 9012)‘1 . 023(9083 — ¢23)

- = - 13
Lisin(@y —y)  I3sin(gy; —7) 13
which requires:

Cl2 _ €n3

Zle e 14
A (14)

where y(¢1,, ¢3) is the intersectional angle between 1,
and r (see Fig. 1). Thus, if the ratio of ankle to knee
stiffness is equal to the ratio of the foot to thigh segment
length, a symmetrical loading of the system is a solution
of the torque equilibrium (5, 7). The stiffness equilibrium
(14) does not depend on [,.

2.6 Introduction of normalized segment lengths
and the stiffness ratio

As there is no influence of the total leg length,
Imax =1 + I, + I3, on either the torque equilibrium
(5, 7) or on the stiffness equilibrium (14), we can
substitute the actual segment lengths by a normalized
length 4; = I;/Iymax. To fulfil a symmetrical shortening,
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only the ratio of the rotational stiffnesses Rc = c¢12/c23 1s
crucial. The stiffness equilibrium (14) requires the ratio
Rc to be equal to the length ratio R, = 4,/43, or:

Re/R, =1 . (15)

2.7 Transition between zigzag and bow mode
(h; =0 or h3 = 0, respectively)

Two qualitatively different geometrical configurations of
the segmental arrangement can be distinguished. In
Fig. 1 the leg joints (ankle and knee) are arranged in a
‘zigzag’ mode. Here both joints are located at opposite
sides with respect to the leg axis. However, there is
another possible geometrical arrangement for the same
leg length: the ‘bow’ mode where knee and ankle joint lie
on the same side.

The actual configuration of the leg depends not
merely on the leg length but is largely determined by the
torque characteristics at the leg joints. Nevertheless,
multiple solutions of possible leg configurations might
be present for given torque characteristics (e.g., like
Eqgs. 12a,b; see Sect. 3). A transition between the zigzag
and bow modes requires particular geometrical condi-
tions: angle configurations where either the ankle
(hy = 0) or the knee (h; =0) joint is crossing the leg
axis. These configurations can be expressed as follows
(Fig. 2A,B): h; = 0 is fulfilled for

Sin @3

N 16a
COS Q3 — A2/ 23 (162)

tan Py =

and ¢, = ¢%, (in the case of monoarticular actuators);
or 3 = 0 is fulfilled for

sin P12

—_— 16b
cos @iy — A2/ A (166)

tan ¢, =

and @,3 = ¢%; (in the case of monoarticular actuators).

40}

Joint angle configurations
with h;=0

60 80 100 120 140 160

ankle angle ¢, (deg)

180

Fig. 2A,B. Joint angle configurations where (A) the ankle joint (2; = 0) and (B) the knee joint (h; = 0) coincides with the leg axis for different

segment length designs (denoted by 4,/4; and 1,/1;; Eq. 16a,b)



2.8 Numerical investigation of the model

Two different approaches were applied to investigate the
three-segment model: (i) forward dynamic modelling of
the equations of motion (1), and (ii)) mapping the
solutions of the torque equilibrium (5, 7). In this article
the results of the second approach are presented in terms
of the possible leg configurations (¢;,, ¢,3) with respect
to: (a) the nominal angle configuration (¢%,, %), (b)
the segment length design (42, R; = 4;/73), and (c) the
torque design (stiffness ratio Rc, exponent v). The
influence of nonconservative structures (e.g., heel strike,
represented by Moy (¢, ¢;)), segment inertias, and
continuous changes of the nominal angles on the joint
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kinematics may be investigated applying the first
approach, and will be discussed.

3 Results

We aim to identify the construction and control
strategies of the three-segment leg for a well-behaving
(i.e., homogeneous and stable) loading of the elastic
joints. We approach this issue by exploring the beha-
viour of the static solutions of the torque equilibrium
(5, 7) for some representative examples of leg design
(Fig. 3). Starting with solutions fulfilling the stiffness
equilibrium resulting in symmetrical joint flexions we
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Fig. 3A-D. Solutions of the torque equilibrium (Eq.5 Q=0
denoted by /lines with circles) in the configuration space (¢, @23)
with different leg designs and torque characteristics (see below)
fulfilling the stiffness equilibrium (Egs. 14, 15: R¢ = R;) and nominal
angles at a relative nominal leg length o = 0.94. The grey areas
represent restrictions due to the oblique solution. Configurations with
a constant relative leg length A(¢},, ¢»3) = const. are denoted by grey
lines with embedded length values (0.2-0.9). Configurations where
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joints are crossing the leg axis (h; =0 or h; =0) are denoted
schematically by bold dashed lines. Leg designs: (A) equal segment
lengths 1:1:1 (all 4 =1/3, ie.,, R, = 1), (B, C, D) human-like leg
design A1:/2:43 = 2:5:5 (R, =2/5). Torque characteristics: (A, B)
linear rotational springs at ankle and knee joint, (C) quadratic
characteristic (v = 2; M;; ~ A(p ), (D) linear rotational springs plus a
biarticular ~ spring (M3 = cl3Aq013 with  A@;3 = @23 — @012,
c13 = 0.05¢2)
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complete our consideration by giving some examples
with asymmetric joint configurations.

3.1 General description

For a leg with conservative torque characteristics at the
ankle and knee joints (e.g., rotational stiffnesses; Eq. 12)
we can consider all possible joint configurations within
the configuration space (¢;,, ®y;) (Fig. 3). Hereby the
influence of the leg orientation with respect to the
ground on the leg force (e.g., due to an external torque
like My) is neglected.

A symmetrical operation of both joints (¢, = ¢,3)
requires a stiffness adjustment according to the outer
segment lengths (stiffness equilibrium; Eq. 14). This
fulfils zigzag mode with an opposite arrangement of
ankle and knee with respect to the leg axis (Fig. 1).
Errors in the stiffness ratio or nominal angle adjustment
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Fig. 4A-D. Bifurcations in symmetrical loading: A, B for each
nominal angle ¢, and a given exponent v of the torque
characteristic, the location of the possible bifurcation angle(s) ¢g
depend merely on 4, and not on R;. If 1, exceeds a critical threshold
Joxon(v) (small circles)y a sudden change in ¢p occurs at a
corresponding nominal angle ¢ (42, v). Then, new bifurcations
appear for ¢y > ¢,y Which reduce the working range A (small

deflect the solutions from the symmetrical solution and
may lead to an extension of one joint while leg short-
ening. Consequently, a transition into the bow mode may
occur where both joints are at the same side with respect
to the leg axis (Fig. 3A).

The three segment leg tends to leave the symmetrical
Jjoint configuration. Even an optimal joint stiffness ad-
justment (14) can not guarantee the parallel operation of
both joints. Depending on the nominal configuration of
the leg ¢, (i.e., the joint angles for zero leg force) there
exist odd solutions of the torque equilibrium intersecting
the symmetrical axis at distinct leg lengths (Fig. 3). This
results in up to three paths being possible for further leg
shortening (Fig. 3A,B). The symmetrical branch with
@12 = @3 proves to be unstable (Appendix D). As two
branches remain to be considered we call this intersec-
tion a bifurcation (Fig. 3A).

For the case of symmetrical loading (equal nominal
angles and stiffness equilibrium), the dependency between
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arrows). The local extremes in ¢ (¢p) (E4) determine the existence
of type I (symbol *+’: cos @p gy = A + V/B) or type II (symbol *x:
COS Py = A — vB; Eq. E5) bifurcations; C,D relative working
range AL = Jo(@y)— Ag(@p) for different A,-designs depending on
the relative nominal leg length 4y and v (but not on R;). The highest
advantage of nonlinear (quadratic) torque design is found for
/2 =0.3-0.5 and 4y > 0.8



the bifurcation angle ¢ and the nominal angle ¢, can be
expressed in one algebraic equation ¢, (¢p) (see Eq. E3).
There are only two parameters influencing the shape of the
¢o(pp) function (Fig. 4A,B; summarized in Fig. 8): the
relative length of the middle segment A, and the exponent
v of the torque characteristic. The difference between the
nominal angle and the bifurcation angle (or the corre-
sponding leg lengths) is a measure of stable leg shortening
which we denote as the angular working range A (or as
the translational working range A/, respectively).

Two types of bifurcations can be distinguished. The
type I bifurcation limits the working range for a// nomi-
nal angles ¢, if 1, < 1/2. While increasing ¢, a sudden
decrease in working range may occur at a critical nominal
angle @, due to an inserted zype II bifurcation (see
Fig. 8). Even both bifurcations may occur in a very small
region in 4, and v, which results in up to three intersec-
tions of odd solutions with the symmetrical axis (e.g.,
Ay = 0.48 in Fig. 4A). This region is very important for
legs with relative middle segment lengths 1, < 1/2, as
here the maximum working range is obtained.
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Different optimal nominal configurations ¢, (which
corresponds to 4y in Fig. 4C,D) exist for either maxi-
mum angular or maximum translational working range
at a given middle segment length /7, and an exponent v of
the torque characteristic (Fig. 5). For exponents v < 3
the type II bifurcation threatens to reduce the symmet-
rical working range if the relative middle segment length
approaches 1/2 (thin black lines in Fig. 5, compare to
Fig. 4C). The region in A, and v with an effective re-
duction in the translational working range A1 due to a
type II bifurcation (black area in Fig. 5B,D) is smaller
than the corresponding reduction in the angular working
range A (black area in Fig. 5A,C).

3.2 Specific statements and explanations

1. It is always possible to operate the three-segment leg
with symmetrical joint configurations until a bifurcation.

But it is not possible to continue the symmetrical path
during shortening beyond the bifurcation. The mechan-

maximum angular
working range
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bifurcation

maximum translational
working range

max. working range
at nominal angle
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A2
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v
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Fig. 5A-D. Symmetrical loading. Different nominal angle configura-
tions ¢, (A,B) are necessary to reach the maximum angular (C) or
translational (D) working range for given leg designs 4, and torque
characteristics v. For 1, < 1/2 a type I bifurcation always restricts the
working range (Fig. 9). In the area surrounded by the thin line, a type
1I bifurcation may further reduce (Fig. 11A,B) the working range if
the critical nominal angle @ ¢y (Fig. 8) is exceeded (denoted by the
black area). With increasing v the nominal angle @gypax (A, B) and
the corresponding maximum working ranges Appax (C) or Admax

(D) are shifted to higher values. Also, an increase in 4, leads to higher
maximum working ranges (C,D) and for about v > 1 to higher
@omax (A,B) as well. For maximum translational working range
(D), slightly lower nominal angles (B) are necessary than for
maximum angular working range (A, C). For /4, > A1, a type II
bifurcation is inserted if @ pax > Qo crie 18 fulfilled (black area). Due
to the more flexed leg operation optimizing the translational rather
than the angular working range the disturbance by the type II
bifurcation is reduced to a smaller area within the (4,, v)-space
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ical stability of the system with respect to perturbations
at a given leg length r changes from stable to unstable if
a bifurcation occurs (Appendix D). Therefore, the
translational (rotational) working range in the zigzag
mode is only guaranteed between the nominal length
(angle) and the bifurcation length (angle). Nearby the
nominal configuration the system is always stable due to
the local minimum of the potential energy E at this
point. This is a consequence of the fact that the curvature
of the scalar field E is exceeding any limit while the
curvature of r remains limited whilst approaching the
nominal configuration (Eq. D4). The limitation due to
the bifurcation even holds for solutions with changed
nominal configurations ¢!, # @9, at a given nominal
length Ay and Rc = R;: the odd branch can not be
crossed by these solutions (Fig. 3A).

2. Both remaining odd branches are accessible if they al-
low further leg shortening. In the case of equal outer
segment lengths (R, =1) and symmetrical loading
(Y, = @Y and Rc=R;) both branches are stable
(Fig. 3A). However, in most cases the odd branch is
crossing the » = const. line at the bifurcation point
(Fig. 6). Then the only branch which allows further leg
shortening is stable and will be chosen (for stability
conditions see Appendix D). Even without a bifurcation
a sudden change in stability may occur if further leg
shortening is prohibited due to the alignment of the
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Fig. 6. Stability analysis of solutions for O =0 (Eq. 5; lines with
circles) in the configuration space (¢1,, @,3) for a human leg design
2:5:5 and slightly varied nominal configuration ¢, = 120 +0.5°,
@95 = 150 £ 1° (denoted by ‘+°), Rc = 0.596, v = 1. The system is
unstable in the grey areas (AE < 0 in Eq. D4). The transition between
stable and unstable behaviour occurs either at a bifurcation (VO = 0,
near to left lower corner) or if the O = 0 line aligns with an » = const.
line (t'VQ=0; e.g., at about ¢, = 100°, @,; = 60°). The grey
r = const. lines denote the leg lengths (0.2-0.9). The area of instability
slightly depends on the nominal angles. The arrows denote the
tendency with respect to the varied nominal configuration

solution of the torque equilibrium Q = 0 with a » = const.
line. Such a situation is illustrated in Fig. 6 and occurs in
solutions adjacent to the symmetrical solution in the case
of unequal outer segment lengths (in Fig. 3C, between
the #; =0 line and the symmetrical axis). Further leg
shortening can not be achieved within the static torque
equilibrium. A leg with inertias or friction would swap
into an adjacent torque equilibrium at this leg length.

3. A transition from the zigzag into the bow mode requires
a focus at a h =0 line. The limit between bow and
zigzag mode is given by the #; = 0 and /3 = 0 lines (see
Sect. 2, Fig. 2). In the case of monoarticular actuators
(12a,b), one joint (ankle or knee, respectively) must be in
its nominal position while crossing the leg axis (Table 1,
Fig. 3A—C). The intersection of a Q = 0 line witha 2 =0
line occurs at the corresponding nominal angle regard-
less of the stiffness ratio R¢, the remaining nominal angle
and the exponent v of the torque characteristic. As this
particular configuration is very attractive to solutions of
the torque equilibrium we denote it as a focus (Fig. 3).
The geometry of the # =0 lines is determined by the
segment length design (Eq. 16; Figs. 3 and 7B).

4. When bypassing the bifurcation the working range can
be extended. 1f one outer segment 4; (or A3) is smaller
than Z, there is no focus in one half of the configuration
space @y < @3 (Or @, > @y, respectively) if the
corresponding nominal angle <p23 (or (p?z, respectively)
is smaller than the critical joint angle @3 i (OT @15 cyirs
respectively; Table 1). Furthermore, in the case of
unequal outer segment lengths R, # 1 (Fig. 7D) the
odd branch crossing the bifurcation is deflected
(Fig. 3B). This facilitates almost homogeneous bending
which continues shortening on the stable odd branch
that remains in the zigzag mode. In this case, nominal
angle configurations shifted into the well-behaving half-
space @, < @3 (Or @5 > @y3, respectively) are suited
for a high working range without crossing a bifurcation
(Fig. 3B).

5. The symmetrical working range depends on the relative
length of the middle segment but not on the ratio of the
outer segment lengths. In Appendix E an analytical
function is derived describing the dependency between
the nominal angle ¢, and the bifurcation angle ¢y in the
case of symmetrical loading ¢ = ¢, = ¢,; (E3), which

Table 1. The minimum of the A;=0 line (16b) expressed as
¢@13(@2) is present for a critical knee angle ¢,; . with a corre-
sponding reference angle ¢y, p.r- Solutions may be attracted by a
focus at 3 =0 if nominal angles ¢, are larger than ¢, ., (Fig. 2B,

Fig. 3A)
Ao/ A 023 Crit Q12 Ref

1.0 90° 0° /M= 1 125 [15 |2 |25 |3 |10
1.25 126.9° 36.9° _l

1.5 138.2° 48.1°

2.0 150.0° 58.8°

25 156.4° 65.1°

3.0 160.5° 70.1°

10 174.3° 81.2°
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Fig. 7A. Segment length design
is characterized by a triplet (4,
Ao, A3) with 41 + A + 23 = 1; ie.

a point within the triangle. Dif-
ferent strategies of leg design can
be distinguished: B To avoid the
attraction of solutions by foci,
the nominal angle design is re-
stricted by the location of the

h =0 line (Figs. 2, 3; Table 1) in
the chosen half of the configura-
tion space (above or below the
symmetrical axis @, = @,3). C 1>
is locating the bifurcation
point(s) in symmetrical loading.
D The R, design (ratio 4;/43)
allows the advantage of asym-
metric nominal configurations by
properly adjusting the joint stiff-
ness ratio R¢

-
2

A>-design

is illustrated in Fig. 4A for an exponent v=1. Two
phenomena are striking in this ¢g(¢,) dependency: (i)
the angular working range is largely influenced by the
nominal angle ¢,, and (ii) exceeding a critical middle
segment length Ay there is a sudden change in the
location of the bifurcation ¢g which limits the symmet-
rical working range A, or AZ respectively (Fig. 4A,C:
V= 1, izylﬁu(v) = 0464)

6. With increasing nominal angles, a sudden loss in sym-
metrical working range may occur. An inserted type II
bifurcation (Appendix F) requires a nominal angle ¢,
which exceeds a critical angle ¢, ¢ (Fig. 8B) and may
occur even for J, > 1/2 (Fig. 4A,B and Fig. 9). Within
the configuration space an additional QO = 0 solution may
be inserted with two intersections with the symmetrical
solution. We denote the critical A, at which the transition
between type I and type I bifurcation may occur first time
while increasing the relative middle segment length as
Z21-n (Fig. 10; Table 2). The loss in angular (transla-
tional) working range at this particular condition is
illustrated in Fig. 11. The maximum critical angular
(translational) working range occurs at v = 1.5 (or 0.8,
respectively) and amounts to Apci; ~ 85° (Adcric = 0.47).

7. The symmetrical working range is largely increased by
a nonlinear torque characteristic. The angular working
range (Fig. 3B,C) as well as the critical 4,1 (Fig. 4-
A,B; Fig. 10) is depending on the exponent v of the
torque characteristic. The corresponding critical nomi-
nal angle ¢, for the emergence of a type II
bifurcation is illustrated in Fig. 8B. For a given nominal

angle ¢, between 140° and 160° the working range is
significantly increased for an exponent v = 2 (Fig. 4B,D)
as compared to v =1 (Fig. 4A,C). Exponents between
1.5 and 2 result in an almost linear leg stiffness (not
shown here). With high exponents (v > 1.5) the type II
bifurcation may occur for smaller middle segment
lengths (Fig. 4A,B; Fig. 10). However, the high critical
nominal angles @ ,;, of 160° or higher (Fig. 8B) prevent
the type II bifurcation from reducing the working range.

8. In symmetrical loading of legs with a middle segment
smaller than both outer segments the type II bifurcation is
less relevant for optimal translational working range as
compared to optimal angular working range (Fig. 5).
For a maximum angular (Fig. 5C) or translational
(Fig. 5D) working range a corresponding nominal angle
(Fig. 5A,B) is required. At Ay this nominal angle is
still lower than the critical angle @ ;; for the insertion
of the type II bifurcation. An effective reduction of the
working range in symmetrical loading occurs only in the
black areas in Fig. 5. Here the nominal angle for
optimum working range exceeds ¢ ¢ (Fig. 8B).

9. A small biarticular elastic structure may significantly
increase the working range. In Fig. 3D a linear elastic
biarticular actuator is introduced which operates similar
to the human gastrocnemius muslce (knee flexor and
ankle extensor), and has a nominal position at ¢f; =0
with @3 = @23 — @;» and ¢j3 = 0.05/¢3. The working
range in symmetrical loading is not influenced by the
biarticular element. However, there is a strong influence
in the upper half-space ¢, < ¢,3 which results in largely
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extremes
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lower extreme exists

COSQPp gy = A+ VB

upper extreme exists

COSQp gy = A = VB
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Fig. 8A-D. Regions in (4, v)-space where according to (E4) extremes
in the @, (¢g) function occur with corresponding nominal (A, B) and
bifurcation (C, D) angles. Solutions of cos @p gy, = A + VB (A, C)
and cos g, = A — VB (B,D) must be within [—1,1]. Only the
existence of the upper extreme (compare Fig. 4A,B) may lead to a
sudden decrease in working range if ¢, exceeds the ¢qc; values
shown in (B) with a corresponding gy shown in (D). For

parallel solutions for O = 0 and a deflection of the odd
branch to the symmetrical axis. The parallel alignment
continues even into the bow mode (Fig. 3D) which allows
elastic leg operation with almost-stretched knee angles.

10. There are also bifurcations for asymmetric nominal
configurations (¢}, # ¢9;). Leaving the symmetrical
axis we can calculate a modified R¢ # R, (Appendix E)
for getting again a solution directing to a bifurcation
(Fig. 6). Similar to the symmetrical situation we can use
this bifurcation to estimate a minimum guaranteed
working range (Fig. 12) which even might be extended
for solutions bypassing the bifurcation according to the
orientation of the odd branch (Fig. 6).

11. The predicted nominal configuration for a maximum
translational working range agrees with the observed leg

J2 > 1/v, no type II bifurcation exists. The A, = 1/v line (B,D)
corresponds to cos gy = —1. In the case of pulling leg forces, a
sudden decrease in working range occurs in leg lengthening (¢ > ¢,)
for all @y < @opgqe (A) and ¢p < Qg (C). This holds for
Ja > 1/(2—v) (upper left corner in Fig. 9), which is not relevant
for human legs

operation in humans. In Fig. 12A,B, the translational
working range is depicted for a human-like segment leg
design 2:5:5 depending on the chosen nominal angle
configuration and for exponents v = 1,2. The working
range is largely increased for asymmetric nominal angle
configurations. For a nonlinear torque characteristic
(v=2) an optimum in working range occurs at
@Y, ~ 120° and ¢9; ~ 155°. Note that for the symmet-
rical axis the working range can be determined analyt-
ically (E3).

12. The working range can be further increased by stiff-
ness adjustment. The calculated values for Rc
(Fig. 12C,D) correspond to the identified bifurcation.
Similar to the observations in Fig. 3C, we can either
shift the nominal angles to a more extended knee
position for a constant R¢ or, vice versa, we can reduce
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Table 2. Symmetrical loading. Critical relative length of the middle
segment A ;n(v) (E6) for given exponents of the torque char-
acteristics v, where for 4, > 4,111 @ new type II bifurcation ap-
pears (Figs. 9 and 10) if the nominal angle ¢, exceeds a critical
nominal angle @¢ crit(42,v) (here denoted for 7, = Z,1-1). This
critical nominal angle g ¢y corresponds to the bifurcation angle
¢B.crit (denoted again for 4, = Ay 111)

o ¥ T v )~2,H11(V) Q’B,Crit()vz,lﬁllvv) (PO,Crit((PB,Crit)
‘_{ ———
0.5 0.483 36.7° 100.8°
04 1.0 0.464 54.7° 135.8°
A 1.5 0.442 71.6° 157.5°
2,1>11(V) e 2.0 0.414 90.0° 171.0°
0.2 W 4 25 0.380 114.1° 178.2°
& | type | bifurcation | .
. @y R¢ compared to the predicted value for a bifurcation for
DO 1 5 3 4 2 constant nominal angle configuration. For example,

\P

Fig. 9. Regions in (4, v)-space of different bifurcation behaviour in
symmetrical loading. A type I bifurcation is present for 1, < 1/2 and
any nominal angle ¢ . The type II bifurcation exists if solutions for ¢g
according to the upper extreme cos(¢p py) = A — VB (Fig. 4A,B;
Eq. ES5) and the corresponding nominal angles ¢ are within [0, 180°].
With respect to the angular working range A¢(@q) = @y — ¢p
(represented by schematic sketches), the following statements can be
made: (i) for 4, < 1/2 the working range is reduced for all nominal
angles ¢, due to type I bifurcation. This leads to a curved graph in
Ap(py); (i) for 4, > 1/2 the working range Ag is identical to ¢, as
long as no type II bifurcation appears; (iii) in a region within
Jojon(v) < a2 < 1/v a sudden decrease in angular working range
occurs (Fig. 11) if ¢, exceeds the critical nominal angle @ ¢ (42, V)
(Fig. 8B) which corresponds to a ¢gg (Fig. 8D) with
c08(¢p pr) = A — V/B according to (ES). For v < 1 there is a lower
extreme cos(Qp pyr) = A+ VB with @p > ¢, (Fig. 8A,C) if
exceeds the dashed line A, =1/(2—v). For v>3 the dashed
A2 (v) line (fulfilling B = 0) has no importance any more as there
is no corresponding bifurcation angle (A + v/B < —1; Fig. 8C)
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Fig. 10. Critical 4, 1_11(v), where for v < 3 a new type II bifurcation
occurs (small circles correspond to Fig. 4A,B). An increase in v from 0
to 3 leads to smaller A j_y. For v > 3, the importance of A i (v)
vanishes as the critical nominal angle leaves the considered interval [0,
180°]. For 3 < v <4, no type II bifurcations occur for 1, above
A2 151 (solid line; Fig. 8B,D)

the optimal working range with v =2 predicts a R¢
adjustment of about 0.8. As seen in Fig. 3C, we can
extend the working range even more by bypassing the
bifurcation on the stable side. However, reducing R¢
should be limited due to the increase of the magnitude of
ankle flexion compared to knee flexion.

13. A nonlinear torque characteristic reduces the asym-
metry in joint angles while loading (Fig. I2EF). As
already indicated by Fig. 3B,C, the parallel alignment of
the solutions for Q =0 with the symmetrical axis is
supported by a nonlinear exponent of the torque
characteristic. In Fig. 12 this behaviour is investigated
in detail by -calculating the position of the bi-
furcation (%, ¢%,) relative to various nominal configu-
rations (¢Y,, ¢9;) for v =1,2. The relative location to
each other is illustrated in Fig. 12E,F in terms of an
inclination angle o representing the ratio of ankle to
knee flexion Ra,. At the symmetrical axis this angle
amounts to 45°; i.e., both joint flexions until bifurcation
are identical. In the case of linear torque characteristics,
small deviations of the nominal configuration from the
symmetrical axis lead to an increase in the asymmetry of
both joints for knee and ankle angles higher than about
100°. The opposite is true for the nonlinear case. Here
the system tends to reduce the asymmetry reaching the
bifurcation.

4 Discussion

The kinematic redundancy problem of a three-segment
leg (with foot, shank, and thigh) can be solved success-
fully if quasi-elastic torque characteristics are present at
the joints (ankle and knee). The requirements for the
joint torque characteristics and the leg geometry were
identified.

4.1 Leg design for stable operation

Two different types of leg bending were found: (i) zigzag
loading where both joints are flexed simultaneously, or
(i1) bow-like loading where both joints tend to stay at the
same side with respect to the leg axis.
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Fig. 11A,B. Further decrease in working range at the transition from
type I to type II bifurcation in symmetrical loading (Figs. 9, 10): (A)
corresponding nominal angle ¢, c; and bifurcation angle @g ¢y
resulting in an angular working range Agcy = @gci — ©p.crit LOT
4o = Ja1-1(v); and B relative nominal leg length 7o crit (g cvi¢ )» relative
bifurcation length Ap crit(@p ciit), and corresponding relative working
range Alcrit = Ao.crit — 4B.crit- An increase in v from 0 to 3 leads to

Leg loading starting with nominal conditions in the
zigzag mode as observed in humans and many other
mammals may lead to a homogeneous joint flexion for
properly adjusted rotational stiffnesses. Considerable
adjustment errors result in unequal joint loading and in
the worst case lead to leaving the zigzag mode. But even
when starting at a symmetrical nominal configuration
and keeping the stiffness ratio optimal, the system may
lose the symmetry due to stability issues.

Three major segment length design strategies could be
identified (Fig. 7): the A, design, the R, design, and the
design of the 4 =0 lines. For symmetrical loading the
middle segment length design (4, properly adjusted to
the exponent v of the torque characteristic) largely de-
termines the working range.

The ratio of the outer segment lengths R, predicts the
stiffness adjustment for symmetrical loading but has no
influence on the symmetrical working range. Finally, the
design of the 2 =0 lines (Fig. 7B) determines which
nominal angles can be used to avoid the attraction of a
focus with the consequence of leaving the zigzag mode.

The risk of swapping into the bow mode can be
avoided by either low nominal angles or small outer
segment lengths shifting the # =0 lines outside the
configuration space. A third strategy is the increase of
the exponent of the torque characteristics. A fourth
possibility is to add elastically operating structures
spanning more than one joint.

Making the middle segment (shank) longer than both
of the remaining segments (foot and thigh) together
(42 > 1/2) results in avoidance of this unfavourable
transition in most cases. But even then the system may
yield a bifurcation (type II) for certain nominal angles
(Fig. 8B) and exponents of the torque characteristic
(Fig. 9). Moreover, a very long middle segment reduces
the capability of leg shortening due to geometrical
constraints. This solution was not chosen by nature.
Middle segment lengths of less than half the total leg

?L'B.II ?ha.r:ri: lB.l

. l&lcrit

higher ¢ it (A21-11) (A). For a satisfactory working range, choosing
the exponent v is important. If a critical nominal angle ¢, ¢;; (v) (Table
2, Fig. 4A,B) is exceeded a sudden decrease in (angular or translational)
working range occurs at Ayj_p(v) due to the inserted type II
bifurcation. This is shown in (A,B) by A¢g = @y — @p; and
Al = g — A, respectively (I = type I bifurcation, /I = inserted
type Il bifurcation; a change in ¢ of 1.8° is considered between I and II)

length are typical. Then, the range of quasi-symmetric
leg shortening (i.e., the working range) is always limited.
To reach an optimum angular or translational working
range, relative middle segment lengths higher than 0.4
and exponents of the torque characteristic larger than
one are necessary (Fig. 5).

4.2 Significance for human legs

In a human leg the relative length of the middle
segment (shank) is approximately A, = 0.42. This is
about the region where the inserted type II bifurcation
threatens to reduce the working range dramatically for
exponent v values between 1 and 2 (Fig. 11A,B).
Increasing the exponent v the type II bifurcation
(Figs. 4, 10) occurs even at smaller middle segment
lengths (for v =2: Ayj;; = 0.414; Table 2). Fortunate-
ly, here the critical nominal angle is shifted to almost
stretched angle positions (for v =2: ¢y = 171°;
Table 2) and is in general avoided by a more flexed
leg at touchdown.

In fact, the human leg design seems to result in a
maximum working range for exponent v values between
1 and 2. Such values correspond to torque characteristics
predicted for highly loaded muscle-tendon complexes in
the human leg and are mainly determined by tendon
stress-strain properties (Seyfarth et al. 2000).

A longer middle segment (or a shorter foot, see
Sect. 4.5) would run the risk of a sudden loss in working
range for stretched nominal angles (type II bifurcation).
Shortening the middle segment or having exponent
values smaller than one would clearly reduce the work-
ing range (Fig. 5). The asymmetry in the outer segment
lengths in a human-like leg resulted in shifted nominal
angle configurations for optimum working range. The
predicted angle configurations agree with landing con-
ditions in running and hopping (Farley et al. 1998), if an
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Fig. 12A-F. Asymmetric loading. Influence of the nominal angle
configuration (¢Y,, ¢%;) on (A,B) the maximum translational
working range AA, (C,D) the corresponding stiffness adjustment
Rc, and (E,F) the ratio of joint flexions Ra, = (09, — %) /(03—

exponent of the torque characteristic of v = 2 is assumed
(Fig. 12B: @9, ~ 120°, ¢9; ~ 155°).

4.3 Advantages of operating asymmetrically

The ratio of the outer segment lengths R; had no
influence on the working range as long as the joints were
working in parallel; i.e., the same inner joint angles were
present at the ankle and knee joints. Such a symmetrical

¢2,) expressed as an angle o for a human-like leg design 2:5:5
(42 =5/12, R; = 2/5). The location of the bifurcation (¢%, ¢%)
nearest to the nominal configuration and R¢ are calculated using (7)
and (E1)

operation of the leg is achieved by adapting the joint
stiffnesses to the length of the adjacent outer segments
(stiffness equilibrium, Eqs. 14, 15) and choosing exactly
equal nominal angles.

Leaving the symmetrical axis within the configura-
tion space, different outer segment lengths (R, # 1)
were of advantage. For instance, a small foot (see
Sect. 4.5) extended the working range for more stret-
ched nominal knee angles, almost independently of the
chosen exponent of the torque characteristic. Thus,



378

unequal nominal angles and nonlinear torque charac-
teristics are alternative strategies for stable leg opera-
tion. Furthermore, the location of the 43 = 0 line where
the knee is crossing the leg axis is shifted to high knee
angles (Fig. 2B, Table 1), and it allows access to almost
the whole upper half of the configuration space
(12 > @,3). Finally, the attraction of the 4 = 0 lines is
reduced using higher exponent values of the torque
equilibrium (e.g., v = 2; Fig. 12E,F).

An asymmetrically operating leg with one joint more
flexed than the other is advantageous if the outer seg-
ment length design is asymmetric. A homogeneous
flexion of both joints is then achieved by adapting the
stiffness ratio Rc to the chosen difference in nominal
angles (Fig. 12C,D). The predicted stiffness adjustment
Rc (leading to a bifurcation) is only one strategy to
guarantee the denoted working range, other values even
might be more advantageous (Figs. 3B—D). This remains
to be investigated in more detail.

4.4 The role of biarticular muscles

A homogeneous joint loading is supported by biarticular
structures in the leg. Different moment arms of biartic-
ular muscles crossing the knee and ankle joints could
help to fulfil the required stiffness ratio. An optimal ratio
of the moment arms was found for maximum vertical
jumping performance (Fig.2 in Bobbert and van
Zandwijk 1994). Position-dependent moment arms
might adapt the ratio to different nominal positions.

As shown in Fig. 3D, only one such muscle (like the
gastrocnemius muscle) is necessary to synchronize ankle
and knee flexion, as only the upper half of the configu-
ration space is of practical interest. A biarticular antag-
onist is not required. This coincides with the observation
that no such muscle opposite to the gastrocnemius
muscle is present in many mammals and humans. The
mechanism of the biarticular muscle characterized by the
stiffness c;3 can be described as an effective enhancement
of the critical knee angle @3 ¢- In contrast to the case
of merely monoarticular springs, the crossing with the
hsy = 0 line occurs for nominal angles ¢, which are now
higher than the intersection itself (Fig. 3D).

4.5 The role of the foot

The introduction of a third leg segment has two major
advantages: it reduces the torques required at the leg
joints and minimises the energy due to segment rotation
(Alexander 1995). The foot length design is critical with
respect to the range of safe leg operation. Having a small
foot compared to the shank length allows large knee
extensions. A small foot compared to the thigh requires
a reduced stiffness in the ankle joint with respect to the
knee. This requires smaller calf muscle cross-sections
compared to the knee extensors, and fits to the generally
observed leg design with lower masses at the more distal
segments.

Nonetheless, very short feet increase the tendency to
snap from the zigzag mode into the bow mode due to the

now almost two-segment system. The effective length of
the human foot may vary between about 8 and 20 cm,
changing the point of support from heel to ball. This
results in a relative length of the middle segment near to
the type II bifurcation. Two mechanisms are involved to
avoid the potential instability:

1. Overextension of the ankle joint is prevented by an
increase in effective foot length as the center of pres-
sure is shifted to the tip of the foot. Then, the range of
safe leg operation is increased due to a decrease in
effective length of the middle segment.

2. Overextension of the knee is avoided by an almost flat
touchdown orientation of the foot and the kinematic
constraint due to the heel contact. Therefore, the
stiffness of the contacting heel pad must be high en-
ough to avoid large deformations which in turn would
allow knee overextension. In effect, deformations of
about 1 cm are allowed due to the highly nonlinear
force-displacement characteristic of the human heel
pad (Denoth 1986). This corresponds to a complete leg
extension starting at initial knee angles of about 165°.

4.6 Influence of segment masses

The presented model is not able to predict a first impact
peak after touchdown (observed, for example, in long
jump) even by representing the heel pad by external
torques (My;) and replacing the torque characteristics by
muscle tendon complexes (Seyfarth et al. 2000). This
phenomenon requires the representation of leg segment
masses (Denoth 1986). As shown by Gruber (Gruber
1987; Gruber et al. 1998), the proper representation of
soft and rigid parts in the human leg is necessary to
estimate the internal loads and to predict the observed
ground reaction forces. As the leg masses must be
decelerated after touchdown, the separation into soft
and rigid subsystems allows small foot displacements by
reducing the effective mass of the leg (Denoth 1986). The
main part of the leg consists of softly coupled masses
(Gruber et al. 1998; Seyfarth et al. 1999) whose decel-
eration is delayed relative to the skeleton. After the
impact, the forces predicted by the three-segment model
are in agreement with experimental observations for fast
types of locomotion (e.g., running and long jump).

Due to neglecting segment masses, zero ground
reaction forces during touchdown and take off are
requiring zero joint torques at these instants. Therefore,
effective joint torques just before landing due to mus-
cular preactivation can not be described adequately with
the present three-segment model.

4.7 The leg as a spring?

In this study an elastic joint operation is shown to result
in relatively simple strategies for successful leg opera-
tion. Nevertheless, there are no structures in the human
leg which are compliant enough to account for the
observed joint behaviour. Taking the basic muscle



properties (force-length and force-velocity relationships,
and activation dynamics) into account the spring-like leg
behaviour may result from muscle stimulation optimized
for performance. This leads to torque characteristics
similar to the results from inverse dynamics (Stefany-
shyn and Nigg 1998), and agrees with the assumptions
made in this study. The homogeneous loading of the leg
joints enables the contribution of the major leg muscles
to performance. The sensory control of the leg muscles
results in stiffness ratios similar to the values predicted
by the three-segment model and in a high leg stiffness at
quasi-symmetric leg operation.

The subtle interplay between rotational stiffnesses
and the leg stiffness requires further investigation.
Nevertheless, the linear spring characteristic observed in
biological legs is clearly superior to linear rotational
springs, and can be supported by nonlinear tendon
properties with exponent values between 1.7 and 2
(Seyfarth et al. 2000). Such values are sufficient for safe
leg operation and show the highest advantage in work-
ing range for preventing type II bifurcations. Higher
exponents would lead to nonlinear leg stiffness beha-
viour and higher joint loading rates. The latter effect
increases the demands on material design. Furthermore,
a more sensitive stiffness adjustment to differences in
joint angles would be necessary, which requires stiffer
ankle joint actuators (Fig. 12C,D).

4.8 Further steps

The strategies developed in this study are suitable for
testing in mammalian and human locomotion. First
attempts showed promising predictions of leg kinemat-
ics for running and jumping. In forward dynamic
modeling the effects of heel strike (geometrical con-
straints at ground support) or changing nominal angles
(to represent energy changes as in drop jump or squat
jumps) can be considered. The latter effect would help
in the neurophysiological understanding of the adjust-
ment of muscle stiffness and rest length (Feldman
1966).

Taking the three-segment model as a starting point,
further effects can be taken into account, such as: (a) the
influence of additional leg segments, (b) the influence of
segment masses and inertias, or (c) the influence of dis-
sipative joint operation (muscles, and heel pad defor-
mation). For (a), the torque equilibrium (2a—c) must be
extended by introducing equations representing the ad-
ditional segments (Appendices A—C). For (b) and (c), the
joint variables must be integrated using the differential
equations which are replacing the corresponding alge-
braic equations in the torque equilibrium. The influence
of external torques (Mp;) and moments of inertia (e.g.,
®3, see Appendix A) can be estimated by taking peak
values as a constant in the torque equilibrium. A first
estimation of torques M, induced by heel strikes in
human revealed that the solutions of the torque equi-
librium are only slightly shifted with respect to solutions
with Mp; = 0. This remains to be investigated in the
future.
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Appendix A: General dynamics of a chain
of rigid segments

To derive the equations determining the static configu-
ration of the three leg segments in the sagittal plane, we
start with the equations of motion of n free rigid bodies
(i=1,2,...,n) in the inertial system:

mii:i = ZFk.i
k(i)
0,0, = Z (ri + di,k) X Fri+ Z Mj; .

k(@) J()

(Ala,b)

Here the index k(i) denotes the points of interaction with
all forces F; working on body i (mass: m;; moment of
inertia tensor @;), whereas ¥; is the acceleration vector of
the center of mass (COM) and ®; is the rotational
acceleration with respect to the inertial system. The force
Fi; is acting in a distance d;; from the COM. All
additional torques (e.g., joint torques) are denoted by
M;;. The dynamics of a chain of n rigid bodies
connected by n — 1 spherical joints additionally requires
the following constraint equations (i =1,2,...,n— 1):

i+ dii =1 Hdiggy

(A2a,b)
ro=r;+djo .

For instance, the vector d, 3 points from the COM of
body 2 to the joint between the bodies 2 and 3, whereas
d3» points from the COM of body 3 to the very same
joint. Note that d; (A2b) is the distance between the
COM of body 1 and the point of application of the
ground reaction force.

Let us consider a distal (lower) and a proximal (up-
per) joint for each body i (or segment 7). Taking the
gravitational acceleration vector g into account, (Al)
can be written as:

mit; = Fi1; + Fip1; +mig
O = (r;+di; 1) xFioy;+ (i +disr) X Figyy

+ M,'_IJ' + Mi+17i . (A3a,b)
Except for gravity, ground reaction force Fy;, and
ground torque My, all forces and torques are internal.
For instance, at the joint between bodies 2 and 3, Fj,
and Mj, are the constraint force and the torque
(produced by structures spanning the very same joint)
acting on body 2. The corresponding force F,3; and
torque M, 3 are pointing in the opposite direction and
are acting on body 3, or generally:

Fii1;=—Fiip1

(Ada.b)
M =M .
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Appendix B: Segment dynamics neglecting
inertial contributions (m;, ©;) of the leg

The dynamic properties of a segment (body i) will be
neglected by setting its mass m; and moment of inertia
®; to zero. This is the case for all leg segments
(i=1,2,3). Furthermore, all body weight is shifted to
the uppermost segment (body 4). Later, even the
moment of inertia of this remaining mass will be
neglected.

The assumption of a quasi-static operation of the leg
in the system (A3a) together with (A4a) leads to
i=1,2,....n—1)

Foi =Fiip1 = —Fip1; - (B1)

For a massless leg (segments i = 1,2,3) supporting a
mass (body 4) at the proximal end of the third leg
segment and touching the ground at its distal end
(segment 1), we can reduce the system (A3a,b) to a
planar model (i = 1,2, 3):

[(djj1 —dij1) x Fo] ‘Z: M1 —M; -
myky = Fo1 + mug

O4py = [(rs +ds3) x Foy] |Z+M3,4|z (B2a—)

where @y is the principal moment of inertia of body 4
with respect to z. For each leg segment (B2a) there
remains only one equation determining the torque
equilibrium. Additionally, we have two equations
(B2b) describing the translational acceleration and one
equation (B2c) representing the rotational acceleration
of the supported body (i = 4). Note that all torques are
pointing into the z-direction, perpendicular to the
sagittal plane.

Appendix C: Reduction to a point mass model (©4 = 0)

In order to describe the total body COM dynamics in
terms of a point mass, the supported segment has to be
reduced to zero length (dy3 =|ds3|=0) and zero
moment of inertia (®4 = 0). Consequently, there can
not be a torque acting on the supported mass
(M34 = M3 4|, = 0) which leads to:

mi = Figg + mg

(I X Fieg) | .= Mo1 — M)
(I X Fieg) | .= M12 — M3
(Is % Fieg)| .= Mas
r=L+bL+L

with I =d;;;1 —dij_1, Frg=Fo1, m=my, and
r =r4 —r9. For simplicity, M;; denotes M;;|,. The last
equation (Cle) follows directly from (A2) by subse-
quently subtracting (A2a) with i =1,2,3 from (A2b).
With given torques My, M1, and M>3 as functions of the
leg configuration ¢, ¢, and @3, one can solve the system
(Clb—e) of five equations for the five unknowns ¢, @,,
@3, Fiegx and Figg, at any point in time.

(Cla—e)

For forward dynamic integration of (Cla), an initial
configuration ¢, ¢, and ¢, must be chosen which fulfils
the system (Clb—e) in accordance to the torque charac-
teristics M;;(@y, @5, ¢3). For example, using rotational
springs (12a,b), this can easily be realized by setting the
initial angles to the nominal angles. Then by solving the
system (Clb—e) at each time step, the acting force — and
therefore the body mass dynamics — can be calculated.

Appendix D: Stability at solutions for Q = 0

To fulfil a stable leg configuration at torque equilibrium
(denoted by O = 0; Eqs. 5 and 7) we need to consider the
potential energy of the torque actuators at the knee and
ankle joints with respect to displacements within the
internal joint configurations at a given leg length r.
Nearby O =0 we can approximate £ and r until the
second order:

E(@) = E(@p—) + VoE(9p—) - Ae

1
+540" - He(9go) - A + o(A¢?) (D1)
r(e) = ”((PQ:O) + V(p’”((PQ:O) -Ag
1
+540" - Ho(0go) - Ap + 0(Ag?) (D2)

where @ denotes the angular configuration (@5, ¢3), A@
is the displacement in @ and Hg, H, are representing the
Hessian matrices of the scalar fields £ and » containing
the second-order derivatives with respect to ¢@. For
stability we demand AE = E(@)— E(@y_y) >0 with
Ar = r(@) — r(@p_y) = 0. The latter equation Ar=0
determines all a%owed disturbances A@ which can be

separated (Ao = Ao, + Aq’l\ where A, = % t.

Ao = —A‘gv“ﬁr Ver) and with any vector t, perpendicular
o

to Ver:

V‘Pr((pQ:O) : A‘PH

1
= —3A0] - H(@g) - Ap. +0(Ag?) . (D3)
Hereby, Ag, > A@ is assumed. Substituting (9) and
(D3) in (D1) leads to the asked energy fluctuation
surrounding Q = 0:

2

AE =1 A“"zt” ATLAH | (D4)
2\ el

with

AH = Hg(@g_) + Fieg(®p—o) - H-(9p_g) - (D3)

The Hessian matrices are defined as follows:

Q’E Q’E _ oMy oMy
—_ 012001, 0130093 _ 091, 0pa3
Hp = QE Q’E - M3 OM»; (D())

00230012 0230023 0¢13 0913

and



(D7)

% 2 Ohy  Oh
H, = (a‘/’lzza(/’lz a‘/)lzza‘/‘23> — (6(4712 6%3) .
_or  _or Ohy  Ohs
00230017 0230¢3 dpy  Opa3
For the case of merely monoarticular torque actuators
(e.g., Egs. 12a,b) the matrix Hg becomes diagonal. Due
to the leg length of the three-segment system (3) the
Hessian H, is symmetrical. Consequently, this results in
a symmetrical difference matrix AH.

A stable torque equilibrium is fulfilled if both eigen-
values w; > of AH are positive, or more generally if

tTAH -t = w2 |e)[P+wy - £ - |ea*> 0 (D8)

where t, = ¢, - e + £, - e; and e, are the eigenvectors of
AH.

Due to the equivalence of V,0 = AH - t, derived us-
ing (4), (5), (D5) and t, = <_Z?>, we can distinguish
two possibilities for tT - AH - t, = 0, see (D4) i.e., for the
transition from stability to instability:

1. Vo0 =0; i.e., the condition for a bifurcation (see
Appendix E) which requires det(AH) = 0 and t, is an
eigenvector corresponding to the vanishing eigen-
value, or

2. VoO||Ver; i.e., the solution for O = 0 aligns with an
r = const. line (Fig. 6).

Appendix E: Conditions for the bifurcation point

In the case of symmetrical nominal angle configuration
®o = ¢, = ¢, the stiffness equilibrium (R¢c = R;) leads
to a symmetrical solution (¢, = ¢,3) of the torque
equilibrium (5, 7), which might be crossed by an odd
solution. The intersectional point between these solu-
tions of O(@ 5, ;) =0 is called a bifurcation point,
which is determined by the condition V,O(¢ 5, ¢3) = 0.
It represents a saddle point of the Q function within the
configuration space. The components of the gradient can
be expressed for the three segment system as:

0 . oM
Q_ 21COS @1y - Moz + A3 Sin a3 12

0¢» 091,
}vl }v:; |:6M12 sin( )
% 001, P12 — P23
+(M1z — Maz) cos(@; — @23)] = 0
00 ., . OM»3
—= — )21cOS M /1 sin -
30r, A3 ¥z - M1z + 21 P12 30
},113 [6M23 SiIl( )
72 |00y P12 = P23

+(Mi2 — Ma3) cos(@1y — @a3)] =0 (Ela,b)

In general a bifurcation can be found in an asymmetric
nominal angle configuration if R¢ is properly adapted.
Therefore, the solutions of Vo0O(¢,, ¢,3) =0 together
with O(¢1,, ¢»3) = 0 do not merely provide the bifurca-
tion point ¢@gy, @po; but also the corresponding
stiffness ratio Rc.
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For symmetrical loading (¢ = @, = @,3, with
¢o = @Y, = ¢% and Rc = R;) the two equations for the
condition V,0(¢,,¢3) =0 (Ela,b) become linearly
dependent and can therefore be simplified to one equa-
tion. In the case of rotational springs at the joints
(12a,b), this leads to:

vsing - (@ — )"

2 ,
+ <cos<p— ]jM
2

)-to—or =0 (E2)
For ¢ # ¢, this explicitly defines the nominal angle ¢,
as a function of the bifurcation angle ¢g, the relative
length of the middle segment A,, and the exponent v of
the torque characteristic:

vsin ¢g

Po(PB) =7————+ o8

= E
Ay —cos g (E3)

with A, = (1 — 42)/7%,. This function implicitly defines
all bifurcations ¢y that are present for a given nominal
angle ¢, (Fig. 4). For /1, < 1/2 there is always at least
one bifurcation. For 2, > Ayp.n(v) there may be
additional bifurcations (one or two) if ¢, is larger than
the critical @¢(421—m(v)). To identify the criteria for
multiple bifurcations we consider the local extremes of
¢@o(pp), which are given by

SZO— A} — v+ Ay(v —2)cos oy +cos> o =0 ,  (E4)
B
yielding the solutions:
Ar(2—v Av(y —4) + 4y
COos (PB,EXII = ( 2 ) - ( 4 )
=A+VB. (ES)

The values for ¢g gy, and the corresponding ¢ gy, (E3)
are depicted in Fig. 8. Vanishing of the square root
defines a condition for a critical Ayj_p(v) where
additional bifurcations within 0 < ¢ <7 may appear
(see Fig. 10):

1

}~27I—>II(V) =7 -
L+ /7

(E6)

Appendix F: Existence and consequences
of type II bifurcation

Two conditions are necessary and sufficient for a type II
bifurcation:

Condition 1. A, must fulfil 1/v > 4, > A1 (v) (Fig. 9).
Condition 2. the nominal angle ¢, is greater than an
angular threshold ¢, ¢ (42, v) (Fig. 8).

This critical angle @, ¢, results from ¢, (¢g) (E3) with
COS @p gy = A — VB according to the upper extreme
(negative sign in Eq. ES). The condition 4, < 1/v (part
of condition 1) is a consequence of (ES) where the right
side must be within [—1, 1].
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In Fig. 11A and B, the effects of an emerging type 11
bifurcation (for A, = Azj—u(v)) on the angular and
translational working range are shown for 0 <v < 3. To
consider the inset of the type II bifurcation, the corre-
sponding critical nominal angles ¢ i, (or lengths Ao crit;
Table 2) were depicted.

The working range A@cg (or Alcrit, respectively)
around such a critical nominal angle (or length) changes
dramatically if a nominal angle slightly above or below
the critical g, is chosen (a change in ¢, of 1.8° is
considered). At v~ 1.75 there is a maximum loss of
AJg =~ 0.25 in translational working range A4, due to the
appearance of the type II bifurcation.
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