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Neuromodulated Control of Bipedal Locomotion 

Using a Polymorphic CPG Circuit

Akio Ishiguro1, Akinobu Fujii1, Peter Eggenberger Hotz2,3

1Department of Computational Science and Engineering, Nagoya University
2Emergent Communication Mechanisms Project, ATR Human Information Science 
Laboratories
3Department of Information Technology, University of Zurich

To date, various methods using the concept of neural circuit or so-called central pattern generators

(CPGs) have been proposed to create agile locomotion for legged robots. In contrast to these

approaches, in this article we propose a polymorphic neural circuit that allows the dynamic change of
its properties according to the current situation in real time to be employed instead. To this end, the

concept of neuromodulation is introduced. To verify the feasibility of this approach, this concept is

applied to the control of a three-dimensional biped robot that is intrinsically unstable. The importance
of an adaptive controller is illustrated with the simulations of biped walking on uneven terrain, and the

results show that the biped robot successfully copes with environmental perturbation by dynamically

changing the torque outputs applied to the joints. Furthermore, the proposed approach outperforms a

monolithic CPG model with sensory feedback.

Keywords neuromodulation · central pattern generator (CPG) · biped robot · locomotion · real-time

adaptation

1 Introduction

Legged robots show significant advantages over wheeled
robots in uneven and unstructured environments. Yet
to build a controller for a legged robot is generally
extremely difficult due to the complicated interaction
dynamics between the robots and their environment.
This challenging task was solved by natural agents
showing agile and adaptive locomotion even in unstruc-
tured environments. Neurophysiological investigations
suggest that locomotion (e.g. walking, swimming, fly-
ing) is generated by specific neural circuits, or so-
called central pattern generators (CPGs). Based on
these findings various approaches have been proposed

for legged robots with artificial CPG controllers con-
sisting of a set of neural oscillators (Taga, Yamaguchi,
& Shimizu, 1991; Cruse et al., 1995; Wadden & Eke-
berg, 1998).

In contrast to these approaches in which monolithic
CPG neural networks are used to control locomotion,
this study employs a polymorphic neural circuit that
allows dynamic changes of its properties according to
the current situation in real time. We are not only
intrigued with simply generating stable locomotion
patterns, but also with investigating how sensory
information modulates locomotion patterns according
to the current situation. To realize this aim, the con-
cept of neuromodulation with a diffusion–reaction
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8 Adaptive Behavior 11(1)

mechanism of chemical substances called neuromodu-
lators is introduced.

Typically artificial neural networks are defined as
massively distributed processors made up of single
units (the structure of the network) and a learning algo-
rithm allowing modification of the synapses, which is
usually a slow process. Biological investigations of
small neural networks in lobsters clarified the impor-
tance of nonsynaptic communication via diffusible
neuromodulators among the neurons, in contrast to
localized synaptic transmission. It was shown that the
stomatogastric nervous system is able to dynamically
rearrange its functional structure by diffusing special
substances, so-called neuromodulators (Hooper &
Moulins, 1989; Meyrand, Simmers, & Moulins, 1991).
This rearrangement is done by enabling or blocking
the functioning of the synapses, which express special
receptors for the neuromodulators on their surface
(see Figure 1). The specificity of the neuromodulators
relies not on the diffusion processes, but on the inter-
actions of the neuromodulators and the expressed
receptors on the synapses. A change in a synapse due to
a particular neuromodulator takes place only if a syn-
apse expresses the corresponding receptor and if the
neuromodulator concentration at the synapse is high
enough. The specificity of the interaction between a
neuromodulator and its corresponding receptor depends
on their steric properties. By introducing such a neuro-
modulator concept synaptic changes on a different time
scale can be investigated, because the interactions
between neuromodulators and receptors allow an
immediate change of the synaptic information transfer.

As there is no current existing theory about how
such neural networks can be created, the evolutionary
approach is the method of choice in exploring the

interactions among neuromodulators, receptors, syn-
apses, and neurons. Although the neuromodulators
diffuse freely to the other neurons in a net, they can
specifically influence synapses by using specific inter-
actions with the receptors on the synapses. Only those
synapses that have an appropriate receptor will be
influenced by a neuromodulator. Possible interactions
can then be explored by an evolutionary algorithm by
changing the expression of different receptors on the
synapses and the production of neuromodulators.

Another reason for the interest of neuromodulators
is their potential to overcome the reality gap (Miglino,
Lund, & Nolfi, 1995; Jakobi, Husbands, & Hervey,
1995; Jakobi, 1998; Nolfi, 1997). An example of a
peg-pushing agent controlled by neuromodulators was
first evolved in a simulator and then successfully trans-
fered to the real world (Eggenberger, Ishiguro, Tokura,
Kondo, & Uchikawa, 2000). The basic idea is to evolve
adaptive controllers that are able to sense their current
situation and to test the same controller for slightly
different situations, which leads to robust and adaptive
behavior of the simulated agent as well as the robot.

Here, as the initial step of the investigation, we
attempt to create neural controllers with a neuromodu-
lation mechanism for a three-dimensional biped robot
in the sagittal plane. Simulations were carried out in a
physical simulator to verify the feasibility of our pro-
posed method.

2 Related Work

Concerning the evolutionary creation of controllers for
legged robots, various methods have been proposed.
Beer and colleagues evolved dynamically recurrent

Figure 1 Illustration of the proposed neuromodulatory concept. The interactions between the neuromodulator and its
receptor depend on their steric properties, represented here as different shapes. In case 1 the diffused neuromodulator
cannot alter the synaptic weight. In case 2 the interaction is specific enough to modulate the synapse.
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neural networks for a hexapod robot (Beer, Chiel, &
Sterling, 1991). Jakobi introduced the concept of min-
imal simulation not only to speed up the evolutionary
process but also to bridge the gap between simulated
and real environments. He applied this concept to
evolve a controller for an octopod robot (Jakobi,
1998). Gruau and Quatramaran (1997) proposed the
cellular encoding scheme based on genetic programming
and implemented it to evolve a hexapod controller.
Kodjabachian proposed a geometry-oriented encoding
scheme called SGOCE and evolved a neurocontroller
for a legged robot (Kodjabachian & Meyer, 1998a, b).
Ijspeert evolved a controller to mimic a salamander’s
locomotion and the resultant controller could smoothly
switch between swimming and walking (Ijspeert, Hal-
lam, & Willshaw, 1998; Ijspeert, 2000).

There are mainly two points to be noted from the
above-mentioned works. First, most of these methods
are based on monolithic neural networks, that is, the
properties of the controllers such as synaptic weights are
fixed once acceptable controllers for the given task are
evolved. Second, as mentioned above, so far various
methods have been proposed for quadruped, hexapod,
and octopod robots; however, still very few biped robots
have been evolved in spite of their remarkable mobil-
ity. This is presumably due to their high instability.

Concerning the evolutionary creation of plastic neu-
ral controllers, Floreano and Mondada (1996) evolved
neural controllers by assigning a learning rule to every
synapse. In contrast, our approach allows us to evolve
learning rules, which can correlate not only the activ-
ity of neighboring neurons and their synapses, but also
the activities from distant neurons depending on which
neuromodulators are diffused in a given situation. Fur-

thermore, by introducing a blocking function, the neu-
romodulators can also dynamically rearrange the
structure of the neural network.

Husbands et al. (1998) introduced a gas model
(nitric oxide), which allows the modulation of syn-
apses. The main difference to our approach is that we
use specific receptors to locate an effect on a neuron
or a synapse. Using the receptor concept a cell can dif-
fuse a neuromodulator to all cells, but only those that
have the corresponding receptor will be changed by
the neuromodulator; all the others remain unchanged.

3 Locomotion Control Using 
Neuromodulation

3.1 Biped Robot Model

The three-dimensional biped robot model used in this
study is illustrated in Figure 2. This robot is composed
of eight rigid parts (i.e., torso, waist, thighs, shanks,
and feet) and seven joints. These joints are all inde-
pendently driven by pairs of antagonistic actuators,
flexor and extensor, to take not only the static torque
but also the stiffness of the joints (for energy efficiency)
into account. The robot has an angle sensor at the hip
joints, informing how the concerned joint rotates. In
addition, an incline sensor exists, detecting how the
robot inclines in the sagittal plane. This incline sensor
returns a positive value when the robot leans forward,
and a negative value otherwise.

The following simulations were conducted with the
use of a physics-based, three-dimensional simulation
environment.1 This environment simulates both the inter-

Figure 2 Three-dimensional biped robot model used in the simulation. This robot has in total 7 degrees of freedom.
For simplicity, the torso is allowed to move only in the lateral plane.
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10 Adaptive Behavior 11(1)

nal and external forces acting on the agent and objects
in its environment, as well as various other physical
properties such as contacts between the agent and the
ground, and torque applied by the motors to the joints
within an acceptable time limit. The body parameters
used in the following simulations are listed in Table 1.

3.2 Structure of the Neural Circuit

The whole structure of the CPG circuit employed to
generate biped locomotion is illustrated in Figure 3a.
This CPG circuit consists of seven sets of neural oscil-
lators, one for each joint in the robot. In this study,
Matsuoka’s oscillator model was employed to create
rhythmic locomotion patterns, where two neurons
mutually inhibit each other (see Figure 3b; Matsuoka,
1987).

The dynamics of each neuron in the oscillator
obeys the following first-order differential equations:

(1)

(2)

(3)

where ui is the membrane potential of neuron i, f is the
variable representing the degree of self-inhibitory
effect of the neuron concerned, b is the parameter
determining the strength of self-inhibitory effect, wij is
the synaptic weight from neuron j to neuron i, y is the
output of the neuron, s is the external input coming
from a neuron, the output of which is set to be con-
stant, and feedi is the sensory feedback applied to neu-
ron i. τr and τa are the time constants. Note that one of
the neurons in the oscillator is responsible for the gen-
eration of the extension torque, whereas the other is

responsible for the flexion torque of the joint. As a
result the torque Tr that will actually be applied to this
joint is proportional to the difference of the activities
of these two neurons.

To establish stable entrainment between the neu-
ral system and the musculo-skeletal system, a sensory

Table 1 Body parameters of the biped robot.

Body part Size (m) Mass (kg)

Torso 0.56 2.0

Body 0.1 × 0.36 (d × w) 1.0

Thigh 0.44 1.0

Shank 0.47 1.0

Foot 0.1 × 0.36 (d × w) 1.0

τr

dui

dt
------- ui– wijyj feedi bfi– si+ +

j 1=

n

∑–=

τa

dfi

dt
------ fi– yi+=

yi u( ) max 0 u,{ }= Figure 3 Controller for the biped robot. Each joint is
controlled by a neural oscillator, composed of two mutu-
ally inhibiting neurons. For stable entrainment between
the central pattern generator (CPG) circuit and the musc-
ulo-skeletal system, each hip neuron receives sensory
feedback from its corresponding angle sensor equipped
at the hip joint.
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feedback is implemented at the hip joints. The infor-
mation from the angle sensor is positively fed back to
the extensor neuron of the hip joint, whereas nega-
tively to the flexor neuron as:

(4)

(5)

where k is the feedback gain, and θhip is the sensor
reading from the angle sensor.

3.3 Neuromodulation Mechanism

The neuromodulation mechanism employed to regu-
late the behavior of the aforementioned CPG circuit
was designed in the following way:

Diffusion Process. In the present work, for simplic-
ity, only the incline sensory neuron is allowed to dif-
fuse specific (i.e., genetically determined) types of
neuromodulators (NMs) as long as its neuronal activ-
ity y is within the corresponding diffusible area, which
is also to be genetically determined. A schematic dia-
gram indicating how the NMs are diffused is depicted
in Figure 4a. The incline sensory neuron diffuses two
types of neuromodulators depending on the sign of its
activity. The neuromodulators NM1 and NM2 (NM3

and NM4) are diffused if the sign of the activity is pos-
itive (negative) and greater (less) than a threshold

 and  (  and ), respectively. Each
type has a specific value assigned to it, the so-called
concentration ∈ [–1.5, 4.0] (k ∈ 1,2,3,4), which
will be used to modify dynamically the synaptic
weights of the CPG circuit. Note that the value of the
concentration and the diffusion threshold (represented
by , , , , , , , and 
in Figure 4a) are genetically determined for each type
of NM.

Reaction Process. The diffused NMs are specifi-
cally interacted with receptors positioned on the syn-
apses of the CPG. This allows us to modify the
synaptic weights selectively and dynamically accord-
ing to the diffusion patterns of the NMs. Since four
types of NMs are used, there exist four types of recep-
tors in the CPG circuit, as represented by R1, R2, R3,
and R4 in Figure 4b. Note that the receptor can specif-
ically recognize the diffused NM with the same

number (e.g., NM1 for R1). In the present work, these
receptors are assumed to be merely on the synapses
concerning the external inputs at the hip joints: R1 and
R3 for the extensor neuron of the joint, R2 and R4 for
the flexor neuron (see Figure 4b). Once the NMs are
diffused, each synapse with the corresponding recep-
tors will be modified as

(6)

where wd is the default synaptic weight, which will be
used to create basic oscillatory behavior (see below)
and  is the concentration of the NM of type k.
The meaning of this equation is that the synaptic
weights are modified according to the genetically
determined concentration of the diffused NM.

3.4 Evolutionary Creation of the Diffusion-
Reaction Rules

To create an appropriate neuromodulation mechanism,
the following parameters were evolved:

feed +k θhip
                   for the extensor neuron at the hip joint

⋅=

feed –k θhip
                   for the flexor neuron at the hip joints

⋅=

θNM1
θNM2

θNM3
θNM4

cNMk

cNM1
cNM2

cNM3
cNM4

θNM1
θNM2

θNM3
θNM4

Figure 4 A schematic diagram of the neuromodulation
mechanism. There are in total four types of neuromodula-
tors, two of which are assumed to influence the synaptic
property at the hip extensor neuron, and the others the
hip flexor neuron. Details are explained in the text (Sec-
tion 3.3).

w t 1+( ) wd cNMk
t( )

k 1=

4

∑+=

cNMk
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12 Adaptive Behavior 11(1)

1. The default synaptic weights of the CPG circuit
wd, and the parameters of the neural oscillator τ�
∈ [0.01, 0.075], τa ∈ [0.04, 0.75], b ∈ [1.25, 2.0],
and s ∈ [0.0, 5.0].

2. The diffusion threshold value and concentration
of each type of NM:  ∈ [0.0, 1.0],  ∈
[0.0, 1.0],  ∈ [–1.0, 0.0], and  ∈ [–1.0,
0.0],  ∈ [–1.5, 4.0],  ∈ [–1.5, 4.0], 
∈ [–1.5, 4.0], and  ∈ [–1.5, 4.0].

Note that these parameters should be determined by
taking the body dynamics and the interaction dynam-
ics with the environment into account. Thus, in this
study a genetic algorithm was employed to meet this
requirement. As mentioned before, the objective of
this study is to develop an adaptive CPG circuit that
can cope with gradient changes of the terrain. To effi-
ciently create such a neural circuit, an incremental
two-staged evolutionary scheme is adopted. In the fol-
lowing section it is shown how each stage of the evo-
lution was conducted.

3.4.1 The First Stage of the Evolution (Acquisition
of the Default CPG Circuit) The aim of this stage is
to create the basic structure of the CPG circuit, which
can generate rhythmic and stable locomotion patterns
on flat terrain. More specifically, the default synaptic
weights of the CPG circuit and the parameters of the
neural oscillator were evolved. These parameters were
encoded as a binary-bit string, which will be used as a
chromosome for the evolutionary process. Each indi-
vidual was tested on flat terrain, allowed to move for
30 s, and the following fitness function was employed
for this purpose:

f1  =  Dflat (7)

where Dflat is the resultant walking distance traveled
during the evaluation period (i.e., 30 s). Dflat only con-
tributed to the fitness if the height of the waist was
beyond the pre-specified threshold (70% height of the
upright posture). This scheme was adopted to encour-
age the generation of stable and successful walking by
alternatively stepping forward. One hundred individu-
als were evolved through 200 generations with a
crossover rate of 0.2 and mutation rate of 0.1.

3.4.2 The Second Stage of the Evolution (Acquisition
of the Neuromodulation Mechanism) The targets to
be evolved in this stage were the neuromodulation
mechanisms that can appropriately modify the synap-
tic weights of the CPG circuit obtained in the previous
stage of the evolution according to the current situa-
tion. The population obtained at the last generation in
the first stage was used as the initial population of this
stage and was evolved through 200 generations. Here,
each individual was tested under two different envi-
ronments, namely 5° uphill and 5° downhill, and the
following fitness function was used as the evaluation
criterion:

f2  =  Duphill  ×  Ddownhill (8)

where Duphill and Ddownhill are the resultant distance
traveled on the uphill and the downhill slopes, respec-
tively. The encoding scheme (i.e., binary-bit chromo-
some) and the parameters of genetic operators (i.e.,
crossover and mutation rates) were exactly the same
as in the first stage of the evolutionary process.

4 Simulation Results

4.1 Acquisition of Locomotion on Flat Terrain

Figure 5a shows the locomotion of the best-evolved
agent obtained in the first stage. In this figure the
robot moves from left to right. Figure 5b indicates the
transition of the hip-joint angle, knee-joint angle, and
ankle-joint angle of the right leg. As the figures show,
the robot can successfully walk on the flat terrain by
periodically and alternately stepping forward. How-
ever, it is observed that this evolved controller is una-
ble to adapt to gradient changes. Note that at this stage
only the angle sensors were employed for the sensory
feedback.

4.2 Acquisition of Locomotion on Inclined 
Terrain

Figure 6a and b show the transition of the oscillator
outputs from the hip flexor and extensor neurons and
the synaptic weights of the best-evolved agent obtained
in the second stage, respectively. As the figures repre-
sent, the robot can continue walking without falling
down by modulating the applied torques.

θNM1
θNM2

θNM3
θNM4

cNM1
cNM2

cNM3

cNM4
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4.3 Validation of Adaptability

4.3.1 Compound Environment To investigate the
adaptability of the evolved neuromodulation mecha-
nism, the best-evolved robot obtained in the second
stage was placed on the slope schematically illustrated

in Figure 7. Remember the environments experienced
in the second stage were purely uphill and downhill
slopes. Thus, the robot has never experienced gradient
changes (e.g., 0° → 5°, –5° → 0°, etc.) during the evo-
lutionary process.

Figure 5 (a) The obtained locomotion through the first stage of evolution. This snapshot indicates the locomotion
recorded between 0 and 8 s. (b) The transition of the hip-joint angle, knee-joint angle, and ankle-joint angle of the right
leg. This indicates that the robot can successfully walk.

Figure 6 Transition of the oscillator outputs from the hip flexor neurons and the connection weights during (a) uphill
and (b) downhill walking. The different connection weights of the hip’s extensor and flexor neurons reflect the adaptation
of the controller to these two different tasks. The controller is therefore changing dynamically (reflected by the dynamic
change of the synaptic weights), which is by definition an adaptive and not a robust control.
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14 Adaptive Behavior 11(1)

Shown in Figure 8 is the resultant locomotion under this
test environment. Interestingly, as the figure indicates,
the robot changes its locomotion pattern to cope with
this environment. To visualize this adaptation process,
the transition of the synaptic weights (i.e., flexor and
extensor neurons) and the oscillator outputs applied to
the hip joints (i.e., right and left oscillator outputs)
during this walking are shown in Figure 9. These fig-
ures show that depending on the gradient of the ter-
rain, the diffusion patterns of the synaptic weights are
changed dynamically, which leads to the real-time
regulation of the torques applied to the hip joints.

4.3.2 Impulsive Force Shown in Figure 10 are the
data obtained after disturbing the biped. In this experi-
ment a constant force was applied at the hip toward
the frontal direction between 4.05 and 4.8 s. From the
figure, the robot resumed its stable locomotion at
approximately 11 s. It is also observed that the robot
can continue walking under the existence of impulsive
force applied oppositely (i.e., toward the backward
direction). It is of great interest that such a simple neu-
romodulation mechanism can adapt to these environ-
mental changes.

4.3.3 “Knock-out” Test To verify the feasibility of
the created neuromodularoty mechanism, a “knock-

out” test was conducted. Figure 11 shows a simulation
result in which one of the neuromodulators was artifi-
cially eliminated from the best-evolved agent. As in
the figure, the adaptability of the robot was signifi-
cantly reduced. This strongly suggests that the created
nonsynaptic communication via neuromodulators plays
an essential role as the feedback control against envi-
ronmental disturbances.

4.4 Comparison with a Monolithic CPG 
Circuit

In this section we compare the neuromodulated circuit
with an evolved monolithic CPG circuit having a fixed
sensory feedback from the incline sensor. For the sake
of fair comparison, the incremental evolution scheme
mentioned above was also employed here: The popula-
tion obtained at the last generation in the first stage
described in the previous section was employed as the
initial population of the second stage, and the connec-
tivity and its strength between the evolved CPG circuit
and the incline sensory neuron were evolved through
200 generations.

The feedback signals from the incline sensor are
expressed as

feedIe  =  + signal · we · Incline (9)

feedIf  =  – signal · wf · Incline, (10)

where feedIe and feedIf are the feedback signals to the
extensor and flexor neuron of the hip oscillator, respec-
tively (see Figure 12); signal (= –1, 0, 1) is a parame-
ter that determines the properties of the synaptic
connection between the hip oscillator neuron and the
incline sensor (e.g., if signal is 1, feedIe will act as the
positive feedback); and we and wf are the strength of
feedIe and feedIf , respectively. In this stage, the targets

Figure 7 Test terrain with downhill, flat, and uphill com-
ponents. This terrain was used to test the adaptability of
the evolved neural controllers for the biped. Note that the
robot has never experienced this environmental configu-
ration during its evolutionary processes.

Figure 8 Obtained trajectory. This snapshot was recorded under the test environment. Interestingly, the robot seems
to be struggling at the place where its gradient changes significantly. It is also observed that the robot changes its loco-
motion speed and step width according to the gradient.
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to be evolved are signal, we and wf. The environment
and the fitness function employed in this evolutionary
process are exactly the same as in the second stage.

Shown in Figure 13 is the comparison of the fit-
ness transition between the aforementioned CPG cir-
cuit with the neuromodulation and the monolithic CPG
circuit with the sensory feedback. These curves were
obtained by averaging over six trials. The results indi-
cate that the proposed neuromodulation mechanism

outperforms the fixed sensory feedback approach not
only in terms of adaptability but also evolvability.

5 Discussion and Conclusion

In this article a neuromodulator-based method to
evolve an adaptive CPG circuit for a biped robot has
been investigated. To this end the concept of neuro-
modulation, widely observed in biological nervous
systems, has been introduced to the control of a three-
dimensional biped robot, which is intrinsically unsta-
ble. Simulation results have shown that the proposed
method can create an appropriate locomotion pattern
according to the environmental perturbation. As the
present work has mainly focused on the feasibility of

Figure 9 Transition of the oscillator outputs from the hip
flexor and extensor neurons and the connection weights
under the test environment. As this figure indicates, the
neuromodulation mechanism changes the synaptic
weights dynamically according to the gradient of the ter-
rain. This leads to the real-time regulation of the torques
applied to the hip joints (e.g., bigger torques at the uphill
compared to the flat terrain).

Figure 10 Transition of the oscillator outputs applied to
the hip joints and connection weights due to an applied
disturbance. A constant force was applied at the hip
toward the frontal direction between 4.05 and 4.8 s, indi-
cated by shaded lines. The robot returned back to its sta-
ble locomotion pattern at approximately 11 s.

Figure 11 A representative result of the knock-out test
with disturbance. In this test, one of the neuromodulators
was artificially eliminated from the evolved neuromodula-
tion mechanism with the result that the robot could no
longer walk. This strongly suggests that the created diffu-
sion–reaction mechanism of neuromodulators acts as an
adaptive sensory feedback to the CPG circuit.

Figure 12 Structure of the monolithic CPG circuit with
the fixed sensory feedback. The signal coming from the
incline sensor is fed back to the extensor and flexor neu-
rons of the hip oscillators. The connectivity (i.e., exitatory/
inhibitory) and the strength of each connection are genet-
ically determined.
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16 Adaptive Behavior 11(1)

the neuromodulation concept in terms of adaptability,
the number of sensory modalities has been intention-
ally minimized (i.e., angle sensor and incline sensor).
To increase the ability to cope with a wide range of
environmental changes, various types of sensory
modalities will be necessary (e.g., vision, reaction
force from the ground, etc.). In addition, the number
of degrees of freedom of the body structure has to be
increased to ameliorate maneuverability. Neverthe-
less, the neuromodulation concept discussed here will
allow us to increase the adaptability of the evolved
controller effectively compared to the conventional
monolithic neural networks.

Note

1 MathEngine SDK; www.cm-labs.com
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