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Learning and Interacting in Human–Robot Domains
Monica N. Nicolescu and Maja J. Mataric´

Abstract—Human–agent interaction is a growing area of re-
search; there are many approaches that address significantly dif-
ferent aspects of agent social intelligence. In this paper, we focus
on a robotic domain in which a human acts both as a teacher and
a collaborator to a mobile robot. First, we present an approach
that allows a robot to learn task representations from its own ex-
periences of interacting with a human. While most approaches to
learning from demonstration have focused on acquiring policies
(i.e., collections of reactive rules), we demonstrate a mechanism
that constructs high-level task representations based on the robot’s
underlying capabilities. Second, we describe a generalization of the
framework to allow a robot to interact with humans in order to
handle unexpected situations that can occur in its task execution.
Without using explicit communication, the robot is able to engage a
human to aid it during certain parts of task execution. We demon-
strate our concepts with a mobile robot learning various tasks from
a human and, when needed, interacting with a human to get help
performing them.

Index Terms—Learning and human–robot interaction, robotics.

I. INTRODUCTION

H UMAN–AGENT interaction is a growing area of re-
search, spawning a remarkable number of directions for

designing agents that exhibit social behavior and interact with
people. These directions address many different aspects of
the problem and require different approaches to human–agent
interaction based on whether they are software agents or
embedded (robotic) systems.

The different human–agent interaction approaches have two
major challenges in common. The first is to build agents that
have the ability to learn through social interaction with humans
or with other agents in the environment. Previous approaches
have demonstrated social agents that could learn and recognize
models of other agents [1], imitate demonstrated tasks (maze
learning of [2]), or use natural cues (such as models of joint
attention [3]) as means for social interaction.

The second challenge is to design agents that exhibit social
behavior, which allows them to engage in various types of in-
teractions. This is a very large domain, with examples including
assistants (helpers) [4], competitor agents [5], teachers [6]–[8],
entertainers [9], and toys [10].

In this paper, we focus on the physically embedded robotic
domain and present an approach that unifies the two challenges,
where a human acts both as a teacher and a collaborator for
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a mobile robot. The different aspects of this interaction help
demonstrate the robot’s learning and social abilities.

Teaching robots to perform various tasks by presenting
demonstrations is being investigated by many researchers.
However, the majority of the approaches to this problem to
date have been limited to learning policies and collections of
reactive rules that map environmental states with actions. In
contrast, we are interested in developing a mechanism that
would allow a robot to learn representations of high level tasks,
based on the underlying capabilities already available to the
robot. Our goal is to enable a robot to automatically build a
controller that achieves a particular task from the experience it
had while interacting with a human. We present the behavior
representation that enables these capabilities and describe the
process of learning task representations from experienced
interactions with humans.

In our system, during the demonstration process, the
human–robot interaction is limited to the robot following the
human and relating the observations of the environment to
its internal behaviors. We extend this type of interaction to a
general framework that allows a robot to convey its intentions
by suggesting them through actions, rather than communicating
them through conventional signs, sounds, gestures, or marks
with previously agreed-upon meanings. Our goal is to employ
these actions as a vocabulary that a mobile robot could use to
induce a human to assist it for parts of tasks that it is not able
to perform on its own.

This paper is organized as follows. Section II presents the be-
havior representation that we are using and Section III describes
learning task representations from experienced interactions with
humans. In Section IV, we present the interaction model and the
general strategy for communicating intentions. In Section V we
present experimental demonstrations and validation of learning
task representations from demonstration, including experiments
where the robot engaged a human in interaction through actions
indicative of its intentions. Sections VI and VII discuss different
related approaches and present the conclusions on the described
work.

II. BEHAVIOR REPRESENTATION

We are using a behavior-based architecture [11], [12] that al-
lows the construction of a given robot task in the form of be-
havior networks [13]. This architecture provides a simple and
natural way of representing complex sequences of behaviors and
the flexibility required to learn high-level task representations.

In our behavior network, the links between nodes/behaviors
represent precondition–postcondition dependencies; thus, the
activation of a behavior is dependent not only on its own
preconditions (particular environmental states) but also on
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the postconditions of its relevant predecessors (sequential
preconditions).

We introduce a representation of goals into each behavior, in
the form of abstracted environmental states. Themet/not met
status of those goals is continuously updated, and communi-
cated to successor behaviors through the network connections,
in a general process of activation spreading which allows for
arbitrary complex tasks to be encoded. Embedding goal repre-
sentations in the behavior architecture is a key feature of our be-
havior networks and, as we will see, a critical aspect of learning
task representations.

We distinguish between three types ofsequential precondi-
tionswhich determine the activation of behaviors during the be-
havior network execution.

• Permanent Preconditions: Preconditions that must be
met during the entire execution of the behavior. A change
from met to not met in the state of these preconditions au-
tomatically deactivates the behavior. These preconditions
enable the representation of sequences of the following
type:the effects of some actions must be permanently true
during the execution of this behavior.

• Enabling Preconditions: Preconditions that must be
met immediately before the activation of a behavior.
Their state can change during the behavior execution
without influencing the activation of the behavior. These
preconditions enable the representation of sequences of
the following type: the achievement of some effects is
sufficient to trigger the execution of this behavior.

• Ordering Constraints: Preconditions that must have
been met at some point before the behavior is activated.
They enable the representation of sequences of the
following type: some actions must have been executed
before this behavior can be executed.

From the perspective of a behavior whose goals arePerma-
nent Preconditionsor Enabling Preconditions for other be-
haviors, these goals are what the planning literature calls goals
of maintenanceand ofachievement, respectively [14]. In a net-
work, a behavior can have any combination of the above precon-
ditions. The goals of a given behavior can be of maintenance for
some successor behaviors and of achievement for others. Thus,
since in our architecture there is no unique and consistent way
of describing the conditions representing a behavior’s goals, we
distinguish them by the role they play as preconditions for the
successor behaviors. Fig. 1 shows a generic behavior network
and the three types of precondition–postcondition links.

A default Init behavior initiates the network links and de-
tects the completion of the task.Init has as predecessors all the
behaviors in the network. All behaviors in the network are con-
tinuously running, i.e., performing the computation described
below, but only one behavior isactive, i.e., sending commands
to the actuators, at a given time.

Similar to [15], we employ a continuous mechanism of acti-
vation spreading, from the behaviors that achieve the final goal
to their predecessors (and so on), as follows. Each behavior
has anactivation levelthat represents the number of successor
behaviors in the network that require the achievement of its
postconditions. Any behavior with activation level greater than

Fig. 1. Example of a behavior network.

zero sends activation messages to all predecessor behaviors that
do not have (or have not yet had) their postconditions met. The
activation level is set to zero after each execution step, so it can
be properly re-evaluated at each time, in order to respond to any
environmental changes that might have occurred.

The activation spreading mechanism works together with
precondition checking to determine whether a behavior should
be active, and thus able to execute its actions. A behavior is
activated if and only if

(Theactivation level! ) AND
(All ordering constraints TRUE) AND
(All permanent preconditions TRUE) AND
((All enabling preconditions TRUE) OR (the behavior
was active in the previous step)).

In the current implementation, checking precondition status
is performed serially, but the process could also be implemented
in parallel hardware.

The behavior network representation has the advantage of
being adaptive to environmental changes, whether they be fa-
vorable (achieving the goals of some of the behaviors, without
them being actually executed) or unfavorable (undoing some of
the already achieved goals). Since the conditions are continu-
ously monitored, the system executes the behavior that should
be active according to the current environmental state.

III. L EARNING FROM HUMAN DEMONSTRATIONS

A. Demonstration Process

In a demonstration, the robot follows a human teacher and
gathers observations from which it constructs a task representa-
tion. The ability to learn from observation is based on the robot’s
ability to relate the observed states of the environment to the
known effects of its own behaviors.

In the implementation presented here, in thislearningmode,
the robot follows the human teacher using itsTrack(color,
angle, distance)behavior. This behavior merges information
from the camera and the laser-rangefinder to track any target of
a known color at a distance and angle with respect to the robot
specified as behavior parameters (described in more detail in
Section IV).

During the demonstration process, all of the robot’s behaviors
are continuously monitoring the status of their postconditions.
Whenever a behavior signals the achievement of its effects, this
represents an example of the robot having seen something it is
able to do. The fact that the behavior postconditions are rep-
resented as abstracted environmental states allows the robot to
interpret high-level effects (such as approaching a target, a wall,
or being given an object). Thus, embedding the goals of each be-
havior into its own representation enables the robot to perform
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a mapping between what it observes and what it can perform.
This provides the information needed for learning by observa-
tion. This also stands in contrast to traditional behavior-based
systems, which do not involve explicit goal representation and
thus any computational reflection.

Of course, if the robot is shown actions or effects for which
it does not have any behavior representation, it will not be able
to observe or learn from those experiences. For the purposes of
our research, it is reasonable to accept this constraint; we are
not aiming to teach a robot new behaviors but to show the robot
how to use its existing capabilities in order to perform more
complicated tasks.

Next, we present the algorithm that constructs the task rep-
resentation from the observations the robot has gathered during
the demonstration.

B. Building the Task Representation from Observations

During the demonstration, the robot acquires the status of the
postconditions for all of its behaviors, as well as the values of
the relevant behavior parameters. For example, for theTracking
behavior, which takes as parameters a desired angle and distance
to a target, the robot continuously records the observed angle
and distance whenever the target is visible, i.e., theTracking
behavior’s postconditions are true). The last observed values are
kept as learned parameters for that behavior.

Before describing the algorithm, we present a few notational
considerations. Similar to the interval-based time representation
of [16], we consider that for any behaviorsand , the post-
conditions of being met and behavior being active are time
extended events that take place during the intervals
and , respectively (Fig. 2).

• If and , behavior is a predecessor
of behavior . Moreover, if , the postcondi-
tions of are permanent preconditions for (case 1).
Else, the postconditions of are enabling preconditions
for (case 2).

• If , behavior is a predecessor of behavior
and the postconditions of are ordering constraints for
(case 3).

Behavior Network Construction:

1) Filter data to eliminate false indications of behavior ef-
fects.These cases are detected by having very small dura-
tions or unreasonable values of the behavior parameters.

2) Build a list of intervals for which the effects of any be-
havior have been true, orderedby the time these events
happened. These intervals contain information about the
behavior they belong to and the values of the parameters
(if any) at the end of the interval. Multiple intervals re-
lated to the same behavior generate differentinstancesof
that behavior.

3) Initialize the behavior network as empty.
4) For each interval in the list, add to the behavior network

an instance of the behavior it corresponds to. Each be-
havior is identified by a unique ID to differentiate be-
tween possible multiple instances of the same behavior.

5) For each interval in the list:
For each interval at its right in the list:

Fig. 2. Precondition types.

Compare the end-points of the intervalwith those of
all other intervals on its right in the list. (We denote
the behavior represented by as and the behaviors
represented in turn by with ).
• If , then the postconditions of areperma-

nent preconditions for (case 1). Add this perma-
nent link to behavior in the network.

• If and , then the postconditions
areenabling preconditionsfor (case 2). Add this
enabling link to behavior in the network.

• If , then the postconditions ofareordering
constraints for (case 3). Add this ordering link to
behavior in the network.

The general idea of the algorithm is to find the intervals
when the postconditions of the behaviors were true (as detected
from observations) and to determine the temporal ordering
of those: whether they occurred in strict sequence or if they
overlapped. The resulting list of intervals is ordered temporally,
so one-directional comparisons are sufficient; no reverse
precondition–postcondition dependencies could exist.

IV. COMMUNICATION BY ACTING—A MEANS FOR

ROBOT-HUMAN INTERACTION

Our goal is to extend a robot’s model of interaction with hu-
mans so that it can induce a human to assist it by being able
to express its intentions in a way that humans could easily un-
derstand. The ability to communicate relies on the existence of
a sharedlanguagebetween a “speaker” and a “listener.” The
quotes above express the fact that there are multiple forms of
language, using different means of communication, some of
which are not based on spoken language, and therefore, the
terms are used in a generic way. In what follows, we discuss
the different means which can be employed for communication
and their use in current approaches to human–robot interaction.
We then describe our own approach.

A. Language and Communication in Human–Robot Domains

Webster’s Dictionary gives two definitions forlanguage, dif-
ferentiated by the elements that constitute the basis for commu-
nication. Interestingly, the definitions correspond well to two
distinct approaches to communication in the human–robot in-
teraction domain.

Definition 1: Language is a systematic means of commu-
nicating ideas or feelings by the use of conventionalized signs,
sounds, gestures, or marks having understood meanings.

Most of the approaches to human–robot interaction so far fit
into this category, since they rely on using predefined, common
vocabulariesof gestures [17], signs, or words. These can be said
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to be using asymbolic languagewhose elements explicitly com-
municate specific meanings. The advantage of these methods is
that, assuming an appropriate vocabulary and grammar, arbi-
trarily complex information can be directly transmitted. How-
ever, as we are still far from a true dialogue with a robot, most
approaches that usenatural languagefor communication em-
ploy a limited and specific vocabulary which has to be known
in advance by both the robot and the human users. Similarly, for
gestureandsign languages, a mutually predefined, agreed-upon
vocabulary of symbols is necessary for successful communica-
tion. In this work, we address communication without such ex-
plicit prior vocabulary sharing.

Definition 2: Languageis the suggestion by objects, actions,
or conditions of associated ideas or feelings.

Implicit communication, which does not involve a symbolic
agreed-upon vocabulary, is another form of usinglanguage,
and plays a key role in human interaction. Using evocative
actions, people (and other animals) convey emotions, desires,
interests, and intentions. Using this type of communication for
human–robot interaction, and human–machine interaction in
general, is becoming very popular. For example, it has been
applied to humanoid robots (in particular head-eye systems),
for communicating emotional states through face expressions
[18] or body movements [19], where the interaction is per-
formed throughbody language. This idea has been explored
in autonomous assistants and interface agents as well [20].
Action-based communication has the advantage that it need
not be restricted to robots or agents with a humanoid body
or face; structural body similarities between the interacting
agents are not required to achieve successful interaction. Even
if there is no exact mapping between a mobile robot’s physical
characteristics and those of a human user, the robot may still
be able to convey a message since communication through
action also draws on human common sense [21]. In the next
section we describe how our approach achieves this type of
communication.

B. Approach: Communicating through Actions

Our goal is to use implicit ways of communication that do not
rely on a symbolic language between a human and a robot, but
instead to use actions, whose outcomes are common regardless
of the specific body performing them. We first present a general
example that illustrates the basic idea of our approach.

Consider a prelinguistic child who wants a toy that is out of
his reach. To get it, the child will try to bring a grownup to the
toy and will then point and even try to reach it, indicating his
intentions. Similarly, a dog will run back and forth to induce its
owner to come to a place where it has found something it de-
sires. The ability of the child and the dog to demonstrate their
intentions by calling a helper and mock-executing an action is
an expressive and natural way to communicate a problem and
need for help. The capacity of a human observer to understand
these intentions from exhibited behavior is also natural since the
actions carry intentional meanings, and thus are easy to under-
stand.

We apply the same strategy in the robot domain. The ac-
tion-based communication approach we propose for the purpose
of suggesting intentions is general and can be applied across

Fig. 3. Behavior network for calling a human.

different tasks and physical bodies/platforms. In our approach,
a robot performs its task independently, but if it fails in a cog-
nizant fashion, it searches for a human and attempts to induce
him to follow it to the place where the failure occurred and
demonstrates its intentions in hopes of obtaining help. Next, we
describe how this communication is achieved.

Immediately after a failure, the robot saves the current state of
the task execution (failure context), in order to be able to later
restart execution from that point. This information consists of
the state of theordering constraints for all the behaviors and
an ID of the behavior that was active when the failure occurred.

Next, the robot starts the process of finding and luring
a human to help. This is implemented as a behavior-based
system, and is thus capable of handling failures, and uses two
instances of theTrack (human, angle, distance)behavior,
with different values of thedistanceparameter: one for getting
close (50 cm) and one for getting farther (1 m) (Fig. 3). As
part of the first tracking behavior, the robot searches for and
follows a human until he stops and the robot gets sufficiently
close. At that point, the preconditions for the second tracking
behavior are active, so the robot backs up in order to get to
the farther distance. Once the outcomes of this behavior have
been achieved (and detected by theInit behavior), the robot
reinstantiates the network, resulting in a back and forthcycling
behavior, much like a dog’s behavior for enticing a human
to follow. When the detected distance between the robot and
the human becomes smaller than the values of thedistance
parameter for any one of itsTrack behaviors for some period
of time, the cycling behavior is terminated.

TheTrack behavior enables the robot to follow colored tar-
gets at any distance in the cm range and any angle in
the range. The information from the camera is merged
with data from the laser rangefinder in order to allow the robot
to track targets that are outside of its visual field (see Fig. 4). The
robot uses the camera to first detect the target and then to track
it after it goes out of the visual field. As long as the target is vis-
ible to the camera, the robot uses its position in the visual field

to infer an approximate angle to the target (the
“approximation” in the angle comes from the fact that we are not
using precise calibrated data from the camera, and we compute it
without taking into consideration the distance to the target). We
get the real distance to the target dist from the laser
reading in a small neighborhood of the angle. When the
target disappears from the visual field, we continue to track it by
looking in the neighborhood of the previous position in terms
of angle and distance which are now computed as and
dist . Thus, the behavior gives the robot the ability
to keep track of positions of objects around it, even if they are
not currently visible, akin to working memory. This is extremely
useful during the learning process, as discussed in the Section V.

After capturing the human’s attention, the robot switches
back to the task it was performing, i.e., loads the task behavior
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(a) (b)

Fig. 4. Merging laser and visual information for tracking. (a) Space coverage
using laser rangefinder and camera. (b) Principle for target tracking by merging
vision and laser data.

network and the failure context that determines which behav-
iors have been executed and which behavior has failed, while
making sure that the human is following. Enforcing this is
accomplished by embedding two other behaviors into the task
network as follows.

• Add aLead behavior as apermanent predecessor for all
network behaviors involved in the failed task. The purpose
of this behavior is to insure the human follower does not
fall behind, and it is achieved by adjusting the speed of the
robot such that the human follower is kept within desirable
range behind the robot. Its postconditions are true as long
as there is a follower sensed by the robot’s rear sonars. If
the follower is lost, none of the behaviors in the network
are active, as task execution cannot continue. In this case,
the robot starts searching again for another helper. After
a few experiences withunhelpfulhumans, the robot will
again attempt to perform the task on its own. If a human
provides useful assistance, and the robot is able to execute
the previously failed behavior,Lead is removed from the
network and the robot continues with task execution as
normal.

• Add a Turn behavior as anordering predecessor of
the Lead behavior. Its purpose is to initiate the leading
process, which in our case involves the robot turning
around (in place, for 5 s) and beginning task execution.

Thus, the robot retries to execute its task from the point where
it has failed, while making sure that the human helper is nearby.
Executing the previously failed behavior will likely fail again,
effectively expressing to the human the robot’s problem.

In the next section we describe the experiments we performed
to test the above approach to human–robot interaction, involving
cases in which the human is helpful, unhelpful, or uninterested.

V. EXPERIMENTAL RESULTS

In order to validate the capabilities of the approach we have
described, we performed several sets of evaluation experiments
that demonstrate the ability of the robot to learn high-level task
representations and to naturally interact with a human in order
to receive appropriate assistance when needed.

We implemented and tested our concepts on a Pioneer 2-DX
mobile robot, equipped with two rings of sonars (eight front
and eight rear), a SICK laser rangefinder, a pan-tilt-zoom color
camera, a gripper, and onboard computation on a PC104 stack
(Fig. 5).

Fig. 5. Pioneer 2-DX robot.

A. Evaluation Criteria

We start by describing the evaluations criteria we used in
order to analyze the results of our experiments, specifically the
notions of success and failure.

The first challenge we addressed enables a robot tolearn
high-level task representations from human demonstrations, re-
lying on a behavior set already available to the robot. Within this
framework, we define an experiment assuccessfulif and only
if all of the following properties hold true.

• The robot learns the correct task representation from the
demonstration.

• The robot correctly reproduces the demonstration.
• The task performance finishes within a certain period of

time (in the same and also in changed environments).
• The robot’s reports on its reproduced demonstration (se-

quence and characteristics of demonstrated actions) and
user observation of the robot’s performance match and
represent the task demonstrated by the human.

Conversely, we characterize an experiment as havingfailed
if any one of the properties below holds true.

• The robot learns an incorrect representation of the demon-
stration.

• The time limit allocated for the task was exceeded.
• The robot performs an incorrect reproduction of a correct

representation.
The second challenge we addressed enables a robot tonatu-

rally interact with humans, which is harder to evaluate by exact
metrics such as the ones that we used above. Consequently, here
we rely more on the reports of the users that have interacted with
the robot, and take into consideration if the final goal of the task
has been achieved (with or without the human’s assistance). In
these experiments, we assign the robot the same tasks that it has
learned during the demonstration phase, but we change the en-
vironment up to the point where the robot would not be able to
execute them without a human’s assistance.

Given the above, we define an experiment assuccessfulif and
only if all of the following conditions hold true.

• The robot is able to get the human to come along to help
if a human is available and willing.

• The robot can signal the failure in an expressive and un-
derstandable way such that the human could understand
and help the robot with the problem.

• The robot can finish the task (with or without the human’s
help) under the same constraints of correctness as above.
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Conversely, we characterize an experiment as havingfailed
if any one of the properties below holds true.

• The robot is unable to find a present human or to entice a
willing human to help by performing actions indicative of
its intentions.

• The robot is unable to signal the failure in a way the human
can understand.

• The robot is unable to finish the task due to one of the
reasons above.

B. Experiments in Learning from Demonstration

In order to validate our learning algorithm we designed three
different experiments which rely on navigation and object ma-
nipulation capabilities of the robot. Initially, the robot was given
a behavior set that allowed it to track colored targets, open doors,
pick up, drop, and push objects. The behaviors were imple-
mented using AYLLU [22], which is an extension of the C lan-
guage for development of distributed control systems for mobile
robot teams.

We performed three different experiments in a 4 m6 m
arena. During the demonstration phase a human teacher led the
robot through the environment while the robot recorded the ob-
servations relative to the postconditions of its behaviors. The
demonstrations included

• teaching a robot to visit a number of targets in a particular
order;

• teaching a robot to move objects from a particular source
to a particular destination location;

• teaching a robot to slalom around objects.

We repeated theseteachingexperiments more than five times
for each of the demonstrated tasks, to validate that thebehavior
network construction algorithm reliably constructs the same
task representation for the same demonstrated task. Next, using
the behavior networks constructed during the robot’s observa-
tions, we performed experiments in which the robot reliably re-
peated the task it had been shown. We tested the robot in exe-
cuting the task five times in the same environment as the one
in the learning phase, and also five times in a changed environ-
ment. We present the details and the results for each of the tasks
in the following sections.

1) Learning to Visit Targets in a Particular Order:The goal
of this experiment was to teach the robot to reach a set of tar-
gets in the order indicated by the arrows in Fig. 6(a). The robot’s
behavior set contains aTracking behavior, parameterizable in
terms of the colors of targets that are known to the robot. There-
fore, during the demonstration phase, different instances of the
same behavior produced output according to their settings.

Fig. 7 shows the behavior network the robot constructed as a
result of the above demonstration.

As expected, all the precondition–postcondition dependen-
cies between behaviors in the network areordering type con-
straints; this is evident in the robot’s observation data presented
in Fig. 8. The intervals during which different behaviors have
their postconditions met did not overlap (case 3 of the learning
algorithm) and, therefore, the ordering is the only constraint
that has to be imposed for this task representation. More than
five trials of the same demonstration were performed in order to

(a) (b) (c)

Fig. 6. Experimental setup for the target visiting task. (a) Experimental setup
1. (b) Experimental setup 2. (c) Approximate robot trajectory.

Fig. 7. Task representation learned from the demonstration of theVisit
Targets task.

(a) (b)

Fig. 8. Observation data gathered during the demonstration of theVisit
Targets task. (a) Observed values of a Track behavior’s parameters and
the status of its postconditions. (b) Observed status of all the behaviors’
postconditions during three different demonstrations.

verify the reliability of the network generation mechanism. All
of the produced controllers were identical and validated that the
robot learned the correct representation for this task.

Fig. 9 shows the time (averaged over five trials) at which the
robot reached each of the targets it was supposed to visit (ac-
cording to the demonstrations) in an environment identical to
the one used in the demonstration phase. As can be seen from
the behavior network controller, the precondition links enforce
the correct order of behavior execution. Therefore, the robot
will visit a target only after it knows that it has visited the ones
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Fig. 9. Averaged time of the robot’s progress while performing theVisit
Targets task.

that are predecessors to it. However, during execution the robot
might pass by a target that it was not supposed to visit at a given
time. This is due to the fact that the physical targets are suffi-
ciently distant from each other such that the robot could not see
them directly from each other. Thus, the robot has to wander
in search of the next target while incidentally passing by others;
this is also the cause behind the large variance in traversal times.
As is evident from the data, due to the randomness introduced
by the robot’s wandering behavior, it may take less time to visit
all six targets in one trial than it does to visit only the first two
in another trial.

The robot does not consider these visits as achievements of
parts of its task since it is not interested in them at that point of
task execution. The robot performs the correct task as it is able
to discern between an intended and an incidental visit to a target.
All the intended visits occur in the same order as demonstrated
by a human. Unintended visits, on the other hand, vary from trial
to trial as a result of different paths the robot takes as it wanders
in search of targets, and are not recorded by the robot in the task
achievement process.

In all experiments, the robot met the time constraint, finishing
the execution within 5 min, which was the allocated amount of
time for this task.

2) Learning to Slalom:In this experiment, the goal was to
teach a robot to slalom through four targets placed in a line, as
shown in Fig. 10(a). We changed the size of the arena to 2 m
6 m for this task.

During eight different trials the robot learned the correct task
representation as shown in the behavior network from Fig. 11.
For this case, we can observe that the relation between behaviors
that track consecutive targets is ofenabling precondition type.
This correctly represents the demonstration, since, due to the
nature of the experiment and of the environmental setup, the
robot began to track a new target while still near the previous
one (case 2 of the learning algorithm).

We performed 20 experiments in which the robot correctly
executed the slalom task in 85% of the cases. The failures con-
sisted of two types: 1) the robot, after passing one “gate,” could
not find the next one due to the limitations of its vision system
and 2) the robot, while searching for a gate, turned back toward
the already visited gates. Fig. 10 (b) shows the approximate tra-
jectory of the robot successfully executing the slalom task on its
own.

(a) (b)

Fig. 10. Slalom task. (a) Experimental setup. (b) Approximate robot
trajectory.

Fig. 11. Task representation learned from the demonstration of theSlalom
task.

3) Learning to Traverse “Gates” and Move Objects from
One Place to Another:The goal of this experiment was to
extend the complexity and thus the challenge of learning the
demonstrated tasks in two ways. First, we added object ma-
nipulation to the tasks, using the robot’s ability to pick up and
drop objects. Second, we added the need for learning behaviors
that involved co-execution, rather than only sequencing, of the
behaviors in the robot’s repertoire.

The setup for this experiment is presented in Fig. 12(a).
Close to the green target there is a small orange box. In order to
teach the robot that the task is to pick up the orange box placed
near the green target (the source), the human led the robot to
the box, and when sufficiently near it, placed the box between
the robot’s grippers. After leading the robot through the “gate”
formed by the blue and yellow targets, when reaching the
orange target (the destination), the human took the box from the
robot’s gripper. The learned behavior network representation
is shown in Fig. 13. Since the robot started the demonstration
with nothing in the gripper, the effects of theDrop behavior
were met, and thus an instance of that behavior was added to
the network. This ensures correct execution for the case when
the robot might start the task while holding something: the first
step would be to drop the object being carried.
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(a) (b)

Fig. 12. Object manipulation task. (a) Traversing gates and moving objects.
(b) Approximate trajectory of the robots.

Fig. 13. Task representation learned from the demonstration of theObject
manipulation task.

During this experiment, all three types of behavior precondi-
tions were detected: during the demonstration the robot is car-
rying an object for the entire time while going through the gate
and tracking the destination target, the links betweenPickUp
and the behavior corresponding to the actions above areper-
manent preconditions (case 1 of the learning algorithm).En-
abling precondition links appear between behaviors for which
the postconditions are met during intervals that only temporarily
overlap, and finally theordering constraints enforce a topolog-
ical order between behaviors, as it results from the demonstra-
tion process.

The ability to track targets within a range allows the
robot to learn to naturally execute the part of the task involving
going through a gate. This experience is mapped onto the robot’s
representation as follows: “track the yellow target until it is at
180 (and 50 cm) with respect to you, then track the blue target
until it is at 0 (and 40 cm).” At execution time, since the robot
is able to track both targets even after they disappeared from
its visual field, the goals of the aboveTrack behaviors were
achieved with a smooth, natural trajectory of the robot passing
through the gate.

Due to the increased complexity of the task demonstration,
in 10% of the cases (out of more than ten trials) the behavior
network representations built by the robot were not completely
accurate. The errors represented specialized versions of the cor-
rect representation, such asTrack the green target from a cer-
tain angle and distance, followed by the sameTrack behavior

Fig. 14. Robot’s progress (achievement of behavior postconditions) while
performing theObject manipulation task.

TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS

but with different parameters—when only the last was in fact
relevant.

The robot correctly executed the task in 90% of the cases. The
failures were all of the type involving exceeding the allocated
amount of time for the task. This happened when the robot failed
to pick up the box because it was too close to it and thus ended
up pushing it without being able to perceive it. This failure re-
sults from the undesirable arrangement and range of the robot’s
sensors, not to any algorithmic issues. Fig. 14 shows the robot’s
progress during the execution of a successful task, specifically
the intervals of time during which the postconditions of the be-
haviors in the network were true: the robot started by going to
the green target (the source), then picked up the box, traversed
the gate, and followed the orange target (the destination), where
it finally dropped the box.

4) Discussion: The results obtained from the above experi-
ments demonstrate the effectiveness of using human demonstra-
tion combined with our behavior architecture as a mechanism
for learning task representations. The approach we presented
allows a robot to automatically construct such representations
from a single demonstration. The summary of the experimental
results is presented in Table I. Furthermore, the tasks the robot is
able to learn can embed arbitrarily long sequences of behaviors,
which become encoded within the behavior network represen-
tation.

Analyzing the task representations the robot built during the
experiments above, we observe the tendency toward over-spe-
cialization. The behavior networks the robot learned enforce
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that the execution go through all demonstrated steps of the task,
even if some of them might not be relevant. Since, during the
demonstration, there is no direct information from the human
about what is or is not relevant, and since the robot learns the
task representation from even a single demonstration, it assumes
that everything that it notices about the environment is impor-
tant and represents it accordingly.

Like any one-shot learning system, our system learned a
correct but potentially overly specialized representation of the
demonstrated task. Additional demonstrations of the same task
would allow it to generalize at the level of the constructed
behavior network. Standard methods for generalization can be
directly applied to address this issue within our framework.
An alternative approach to addressing overspecialization is to
allow the human to signal to the robot the saliency of particular
events, or even objects. While this does not eliminate irrelevant
environment state from being observed, it biases the robot to
notice and (if capable) capture the key elements. In our future
work, we will explore both of the above approaches.

C. Interacting with Humans–Communication by Acting

In the previous section we presented examples of learning
task representation from human demonstrations. The ex-
periments that we present next focus on another level of
robot–human interaction: performing actions as a means of
communicating intentions and needs.

In order to test the interaction model we described in Sec-
tion IV, we used the same set of tasks as in the previous section,
but changed the environment so the robot’s execution of the task
became impossible without some outside assistance. The failure
to perform any one of the steps of the task induced the robot to
seek help and to perform evocative actions in order to catch the
attention of a human and get him to the place where the problem
occurred. In order to communicate the nature of the problem, the
robot repeatedly tried to execute the failed behavior in front of
its helper. This is a general strategy that can be employed for a
wide variety of failures. However, as demonstrated in our third
example below, there are situations for which this approach is
not sufficient for conveying the message about the robot’s in-
tent. In those, explicit communication, such as natural language,
is more effective. We discuss how different types of failures re-
quire different modes of communication for help.

In our validation experiments, we asked a person that had not
worked with the robot before to be close during the tasks execu-
tion and expect to be engaged in interaction. During the experi-
ment set, we encountered different situations, corresponding to
different reactions of the human in response to the robot. We can
group these cases into the following main categories.

• Uninterested: The human was not interested in, did not
react to, or did not understand the robot’s calling for help.
As a result, the robot started to search for another helper.

• Interested, unhelpful: The human was interested and fol-
lowed the robot for a while but then abandoned it. As in
the previous case, when the robot detected that the helper
was lost, it started to look for another one.

• Helpful : The human followed the robot to the location of
the problem and assisted the robot. In these cases the robot

(a) (b) (c)

Fig. 15. Human–robot interaction experiments setup. (a) Going through a gate.
(b) Picking up an accessible box. (c) Visiting a missing target.

was able to finish the execution of the task, benefiting from
the help it had received.

We purposefully constrained the environment in which the
task was to be performed, in order to encourage human–robot
interaction. The helper’s behavior, consequently, had a deci-
sive impact on the robot’s task performance: when uninterested
or unhelpful, failure ensued either due to exceeding time con-
straints or to the robot giving up the task after trying for too
many times. However, there were also cases when the robot
failed to find or entice the human to come along, due to visual
sensing limitations or the robot failing to expressively execute
its calling behavior. The few cases in which a failure occurred
despite the assistance of a helpful human, are presented below,
along with a description of each of the three experimental tasks
and overall results.

1) Traversing Blocked Gates:In this section, we discuss
an experiment in which a robot is given a task similar to the
one learned by demonstration (presented in Section V-B.3),
traversing gates formed by two closely placed colored targets.
The environment [see Fig. 15(a)] is changed in that the path
between the targets is blocked by a large box that prevents the
robot from going through.

Expressing intentionality of performing this task is done by
executing theTrack behavior, which allows the robot to make
its way around one of the targets. While trying to reach the de-
sired distance and angle to the target, hindered by the large box,
the robot shows the direction it wants to go in, which is blocked
by the obstacle.

We performed 12 experiments in which the human proved to
be helpful. Failures in accomplishing the task occurred in three
of the cases, in which the robot could not get through the gate
even after the human had cleared the box from its way. For the
rest of the cases the robot successfully finished the task with the
human’s assistance.

2) Moving Inaccessibly Located Objects:A part of the ex-
periment described in Section V-B3 involved moving objects
around. In order to induce the robot to seek help, we placed the
desired object in a narrow space between two large boxes, thus
making it inaccessible to the robot [see Fig. 15(b)].

The robot expresses the intentions of getting the object
by simply attempting to execute the correspondingPickUp
behavior. This forces the robot to lower and open its gripper and
tilt its camera down when approaching the object. The drive
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to pick up the object is combined with the effect of avoiding
large boxes, causing the robot to go back and forth in front of
the narrow space and thus convey an expressive message about
its intentions and its problem.

From 12 experiments in which the human proved to be
helpful, we recorded two failures in achieving the task. These
failures were due to the robot losing track of the object during
the human’s intervention and being unable to find it again
before the allocated time expired. For the rest of the cases the
help received allowed the robot to successfully finish the task
execution.

3) Visiting Nonexisting Targets:In this section, we present
an experiment that does not fall into the category of the tasks
mentioned above and is an example for which the framework of
communicating through actions should be extended to include
more explicit means of communication. Consider the task of vis-
iting a number of targets (see Section V-B1), in which one of the
targets has been removed from the environment [Fig. 15(c)]. The
robot gives up after some time of searching for the missing target
and goes to the human for help. By applying the same strategy
of executing in front of the helper the behavior that failed, the re-
sult will be a continuous wandering in search of the target from
which it is hard to infer what the robot’s goal and problem are. It
is evident that the robot is looking for something—but without
the ability to name the missing object, the human cannot inter-
vene in a helpful way.

D. Discussion

The experiments presented above demonstrate that implicit
yet expressive action-based communication can be successfully
used, even in the domain of mobile robotics where the robots
cannot utilize physical structure similarities between themselves
and the people with which they are interacting.

From the results, our observations, and the report of the
human subject interacting with the robot throughout the exper-
iments, we derive the following conclusions about the various
aspects of the robot’s social behavior.

• Capturing a human’s attention by approaching and then
going back and forth in front of him is a behavior typically
easily recognized and interpreted as soliciting help.

• Getting a human to followby turning around and starting
to go to the place where the problem occurred (after cap-
turing the human’s attention) requires multiple trials in
order for the human to completely follow the robot the
entire way. This is due to several reasons. First, even if in-
terested and realizing that the robot wants something from
him, the human may not actually believe that he is being
called by a robot in a way in which a dog would do it
and does not expect thatfollowing is what he should do.
Second, after choosing to go with the robot, if wandering
in search of the place with the problem takes too much
time, the human gives up not knowing whether the robot
still needs him.

• Conveying intentionsby repeating the actions of a failing
behavior in front of a helper is easily achieved for tasks
in which all the elements of the behavior execution are
observable to the human. Upon reaching the place of the

robot’s problem, the helper is already engaged in interac-
tion and is expecting to be shown something. Therefore,
seeing the robot trying and failing to perform certain ac-
tions is a clear indication of the robot’s intentions and need
for assistance.

VI. RELATED WORK

The work presented here is most related to two areas of
robotics research: robot learning and human–robot interaction.
Here we discuss its relation to both areas and state the advan-
tages gained by combining the two in the context of adding
social capabilities to agents in human–robot domains.

Teaching robots new tasks is a topic of great interest in
robotics. Specifically in the context of behavior-based robot
learning, the majority of approaches have been at the level of
learning policies and situation-behavior mappings. The method,
in various forms, has been successfully applied to single-robot
learning of various tasks, most commonly navigation [23],
hexapod walking [24], box-pushing [25], and multirobot
learning [26].

Another relevant approach has been in teaching robots by
demonstration, which is also referred to as imitation. Refer-
ence [2] demonstrated simplified maze learning, i.e., learning
turning behaviors by following another robot teacher. The robot
uses its own observations to relate the changes in the environ-
ment with its own forward, left, and right turn actions. Refer-
ence [1] describes how robots can build models of other robots
that they are trying to imitate by following them, and by moni-
toring the effects of those actions on their internal state ofwell
being. Reference [27] used model-based reinforcement learning
to speed up learning for a system in which a 7 degree of freedom
(DOF) robot arm learned the task of balancing a pole from a
brief human demonstration. Other work in our lab is also ex-
ploring imitation based on mapping observed human demon-
stration onto a set of behavior primitives, implemented on a 20
DOF dynamic humanoid simulation [28], [29]. The key differ-
ence between the work presented here and those above is at the
level of learning. The work above focuses on learning at the level
of action imitation (and thus usually results in acquiring reac-
tive policies), while we are concerned with learning high-level,
sequential tasks.

A connectionist approach to the problem of learning from
human or robot demonstrations using ateacher followingpara-
digm is presented in [30] and [31]. The architecture allows the
robots to learn a vocabulary of “words” representing proper-
ties of objects in the environment or actions shared between the
teacher and the learner and to learn sequences of “words” rep-
resenting the teacher’s actions.

One of the most important forms of body language, which
has received a great deal of attention among researchers, is the
communication of emotional states through face expressions. In
some cases, the robot’s emotional state is determined by phys-
ical interaction such as touch; reference [19] presents a LEGO
robot that is capable of displaying several emotional expressions
in response to physical contact. In others, visual perception is
used as a social cue that influences the robot’s physical state;
Kismet [18] is capable of conveying intentionality through its
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facial expressions and behavior. There, the eye movements, con-
trolled by a repertoire of active vision behaviors, are modeled
after humans and, therefore, have communicative value. Other
researchers (e.g., [32] and [33]) have also addressed the problem
of human–robot interaction from the perspective of using hu-
manoid robots, and this is quickly becoming a fast-growing area
of research.

While facial expressions are a natural means of interaction
for a humanoid, or in general a “headed,” robot, they cannot be
entirely applied to the domain of mobile robots, where the plat-
forms typically have a very different, and nonanthropomorphic
physical structure. Reference [34] discusses the role of artificial
emotions in social robotics for teams of mobile robots, as they
could serve as a basis for mechanisms of social interaction. As-
pects such as managing group heterogeneity, history of effects
over time, and deriving shared meanings are all relevant for the
domain of robot teams—and if addressed from the perspective
of artificial emotionscould help develop social interactions at
the level of the robot group.

Human–robot or robot–robot interaction in the mobile robots
domain have been mostly addressed from the perspective of
using explicit methods of communication. Reference [35]
presents a system that includes, besides robots, people, au-
tomated instruments, and computers in order to implement
multimodal interaction. The approach integrates speech gener-
ation with gesture recognition and gesture generation as means
of communication within this heterogeneous team.

The use of implicit methods of interaction between robots is
also addressed in [1], which presented an approach very much
related to ours. There, the robots interact by maintaining body
contact, either to learn about each other’s internal models or to
detect if continuing the interaction is beneficial for the robot’s
current internal state. The interaction allows robots with dif-
ferent sensory capabilities to learn how to combine their abili-
ties in order to climb hills, an action that they could not perform
alone. In our approach, we demonstrate that the use of implicit,
action-based methods for communicating and expressing inten-
tions can be extended to the human–robot domain, despite the
structural differences between mobile robots and humans.

VII. CONCLUSION

We have addressed two different but related research prob-
lems, both dealing with aspects of designing socially intelligent
agents (SIAs): learning from experienced demonstration and in-
teracting with humans using implicit, action-based communica-
tion.

First, we presented a methodology that extends the frame-
work of learning from demonstration by allowing a robot to
construct high-level representations of tasks presented by a
human teacher. The robot learns by relating the observations
to the known effects of its behavior repertoire. This is made
possible by using a behavior architecture that embeds repre-
sentations of the robot’s behavior goals. We have demonstrated
that the method is robust and can be applied to a variety of
tasks involving the execution of long, and sometimes repeated,
sequences of behaviors as well as concurrently executed
behaviors.

Second, we argued that the means of communication and in-
teraction of mobile robots which do not have anthropomorphic,
animal, or pet-like appearance and expressiveness should not
necessarily be limited to explicit types of interaction, such as
speech or gestures. We demonstrated that simple actions could
be used in order to allow a robot to successfully interact with
users and express its intentions. For a large class of intentions
such asI want to do“this” - but I can’t, the process of cap-
turing a human’s attention and then trying to execute the action
and failing is expressive enough to effectively convey the mes-
sage and thus obtain assistance.
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