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Abstract

We are developing a system for autonomous nav-
igation of unmanned aerial vehicles (UAVs) based
on computer vision. A UAV is equipped with an on-
board cameras and each UAV is provided with noisy
estimates of its own state, coming from GPS/INS.
The mission of the UAV is low altitude navigation
from an initial position to a final position in a par-
tially known 3-D environment while avoiding ob-
stacles and minimizing path length. We use a hi-
erarchical approach to path planning. We distin-
guish between a global offline computation, based
on a coarse known model of the environment and a
local online computation, based on the information
coming from the vision system. A UAV builds and
updates a virtual 3-D model of the surrounding en-
vironment by processing image sequences and fusing
them with sensor data. Based on such a model the
UAV will plan a path from its current position to
the terminal point. It will then follow such path,
getting more data from the on-board cameras, and
refining map and local path in real time.

1 Introduction

Without complete knowledge of the environment an
agent can only plan a path which is optimal with
respect to its knowledge at the time of planning.
Based on multiresolution environmental models we
use a hierarchical approach to path planning, with
different paths designed at different time and space
scales. Our approach takes its move from the work
of Reissell and Pai [5], who propose a path plan-
ning scheme based on multiresolution terrain rep-
resentation. In our approach we divide the path
planning in two parts: a global offline computa-
tion, based on a coarse model of the environment
and a local online computation, based both on the
original model and on the information provided by
the vision system.

Our testbed is an Unmanned Aerial Vehicle
(UAV). The UAV makes use of an a priori, inaccu-

rate, graph model of the terrain to plan an initial,
coarse path. We use wavelets to filter the map to
the desired level of abstraction. A few waypoints
are selected based on the desired objective. At this
level of abstraction we perform a global offline com-
putation on the entire graph. Computation of op-
timal path over the complete terrain model is very
intensive. At this stage, the planning is performed
deterministically. We use standard optimization al-
gorithms for shortest path computation, such as
Djikstra or A∗.

On the other hand, in-flight navigation mainly
depends on the information gathered by the vision
system. We propose a probabilistic approach to lo-
cal online path planning, for a number of reasons:
first of all, because of the inevitable uncertainty of
measurements from the sensors; secondly, for the
intrinsic uncertainty of an unknown surrounding
environment; and finally, the structure of reasoning
of any (biological or artificial) intelligent system is
naturally probabilistic—whenever a decision has to
be taken, the costs or gains that all possible choices
imply are “weighed” in probabilistic terms, and the
decision that is more “likely” to yield maximum
gain is taken.

The surrounding three-dimensional environment
is divided into cells. Initially each of the cells is
assigned with a probability of occupancy. We will
call such probability function a “risk map”—a risk
map value close to one indicates high risk (presence
of an obstacle), while a value close to zero denotes
low risk (no obstacle). Such an approach was in-
troduced by Thrun [15]: in this work we extend
it to three dimensional environments using vision
rather than sonar sensors. The UAV is equipped
with an initial knowledge of the surrounding envi-
ronment through an a priori risk map assigned from
the mission planner. However, such a risk map will
be refined by the UAV during navigation exploit-
ing sensor data (i.e., multiple image sequences and
state data containing UAV’s position, orientation,
velocity, etc.).

Processing multiple image sequences and inte-
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grating such information with other sensor readings
allows a UAV to estimate the distance between it-
self and the obstacles, and provide a measure of the
uncertainty of the estimates (in terms of error vari-
ances). Using all past information in an “optimal”
way, the UAV is able to refine its virtual map of
the environment, and thus obtain a model that is
more accurate and up-to-date.

Given a probabilistic model of the environment,
path planning can be performed using dynamic pro-
gramming techniques to plan a discrete path, as a
sequence of adjacent cells. Each cell corresponds
to a state of a stochastic transition system, and a
cost is assigned to each state transition. The final
objective is to minimize the total expected cost.

The next section will describe the system archi-
tecture and model. Sections 3 and 4 will provide
a detailed description of our navigation algorithm
for both offline and online computation. The last
section is devoted to conclusion and comments.

2 System Architecture

Our testbed is a helicopter-based UAV, part of a
research project undertaken at UC Berkeley un-
der the acronym of BEAR (Berkeley Aerobots) [1].
Compositional methods represent a natural way to
reduce complexity of system design, by decompos-
ing the problem into a sequence of smaller prob-
lems of manageable complexity. Hierarchy allows
to separate complex global task in a series of sim-
pler, local ones. The helicopter is modeled as a
hierarchical hybrid system. For a detailed discus-
sion please refer to [14]. The system is inherently
hybrid, having to combine continuous control with
discrete logic. The helicopter model consists of
three components: the Flight Management System
(FMS) which is responsible for planning and con-
trolling the operation of the UAV, the vision system
for the detection and investigation of objects of in-
terest and the helicopter, i.e. the vehicle dynamics.
The FMS consists of four layers, the strategic, tac-
tical, and trajectory planners, and the regulation
layer, as described in Figure 1.

The Strategic Planner is concerned with the
planning and execution of the central UAV mis-
sion. It designs a coarse, self-optimal trajectory,
which is stored in form of a sequence of waypoints.
This layer also takes care of the transition between
the points, by acknowledging the completion of a
subtask and scheduling the next one.

The Tactical Planner is responsible for local
obstacle avoidance: it plans a discrete trajectory
between the waypoints provided by the Strategic
Planner and must modify it on-line in real time
in case of appearance of new obstacles along the
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Figure 1: System Architecture

previously planned path. To do this, it makes use
of data provided by the camera, GPS and internal
sensors on position, orientation, linear and angular
velocities.

The Trajectory Planner interpolates the set of
points into a continuous trajectory, that the lower
layers of the system will have to follow. Such trajec-
tory will have to be trackable, i.e. compatible with
the UAV’s dynamics. In safety critical situations
the Trajectory Planner might overrule the behavior
proposed by the Tactical Planner, and send to the
system’s lower layers continuous trajectories that
correspond to safety manœuvres.

The Regulation Layer and the Dynamics

Layer represent the continuous control part of the
system. Their study is out of the scope of this pa-
per, as is the one of the Trajectory Planner. We
suggest reading papers [7] and [6] for a detailed de-
scription of the system’s lower layers and various
control designs.

In the next section we shall describe our ap-
proach to path planning. We design both a global
offline and a local online navigation scheme.

3 Global Navigation: the

Strategic Planner

In 3D navigation the choice of an appropriate
model for the surrounding environment is crucial.
In our design we make extensive use of Digital El-
evation Models (DEM) [2]. Recent advances in
laser technology have provided us with an exten-
sive coverage of earth surface with extreme level of
accuracy. The basic idea consists in gridding the
surface and assigning an altitude to each cell in the
grid. The gridding is up to 1m with accuracy in
the range of centimeters. These models are widely
used in Earth Sciences. In our approach we manip-
ulate these models and use them at different levels
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of resolution via extensive use of wavelet transform.

3.1 The Wavelet transform

Following the approach used in [5] we choose to
perform a wavelet decomposition with the pseu-
docoiflet family introduced by [13]. The wavelets
properties (and those of the pseudocoiflets family in
particular) that justify their use as opposed to other
multiresolution filtering techniques are their Space–
frequency localization, which provides local infor-
mation about the smoothness of the data, and their
natural hierarchical representation. Wavelets also
provide the best possible approximation for contin-
uous functions in L2. The approximation error can
be estimated precisely; the theorem of vanishing
moments provides a way to relate the error to the
properties of the mother wavelet. In the pseudo-
coiflet case the number of vanishing moments is 4,
therefore the error decreases as 24l as scale l in-
creases (i.e. we examine the data at finer scales).

3.2 Terrain analysis for flight plan-
ning

Using the classic wavelet notation we can write the
wavelet decomposition of a one dimensional sig-
nal as a repeated application of two finite filters
H and G:

s
H

−−−−→
G

s1

H
−−−−→

G
s2

H
−−−−→

G
. . .

y
y

y

w1 w2 . . .

where the sequences sl and wl are respectively the
scaling and wavelet coefficients at scale l. Given the
complete set of wavelet coefficients wlj –where j in-
dexes the position– reconstruction is performed us-
ing the corresponding biorthogonal filters H̃ and G̃.

For a two-dimensional signal the decomposition
generates three sequences that correspond to the
horizontal, vertical and diagonal details of the im-
age, as shown in figure 2.

Due to the pseudocoiflets properties the scaling
coefficients form a sampling of approximation sur-
face that is smoother than the original approxima-
tion surface, as shown in Figure 3.

3.3 Algorithm and Results

We employ Dijkstra’s algorithm to find the shortest
path on the transformed grid. Our cost function
result from the sum of three factors, appropriately
scaled. Every cell point has a cost associated with
it:

C(i, j) = α1cd(i, j) + α2ce(i, j) + α3ch(i, j), (1)
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Figure 3: The Terrain at different levels of detail

where cd, ce, ch are costs associated with distance
to goal, roughness of terrain [5], and flight altitude
respectively. The coefficients αi will assign a par-
ticular weight to each cost. The UAV will look for
the shortest path on a smooth part of the terrain
with low altitude. Figure 4 shows a typical out-
come of this algorithm. In the figure the waypoints
have been interpolated.
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Figure 4: Path on a DEM of La Honda, CA.

4 Local Navigation: the Tac-

tical Planner

In this section we shall focus on the problem of
vision-based local obstacle avoidance, which is the
task of the Tactical Planner. We shall describe the
strategy formulated by M. Micheli in [11].

Given a set of waypoints, provided by the Strate-
gic Planner, the Tactical Planner connects them
with a discrete, finer trajectory, i.e. a set of control
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Figure 2: Decomposition of altitude profile of La Honda, CA

points in three dimensional space which will succes-
sively be interpolated into a continuous, trackable
trajectory by the Trajectory Planner (see Figure 1).
We shall assume that the UAV is provided with an
on-board computer, one or more cameras, a GPS
system and sensors that give instantaneous, noisy
estimates of the agent’s orientation in space and
(three-dimensional) linear and angular velocities.

4.1 Bayesian Three-Dimensional
Occupancy Grid Building

The main idea the whole strategy is based on is
splitting local space (i.e. a connected “neighbor-
hood” of the two specific waypoints that we are
considering) into three-dimensional cubic cells (see
Figure 5). To each cell we associate a grid point,
which is simply the center of a cell; grid G is the set
of all grid points. We assume that the agent’s initial
position coincides with a specific grid point, which
corresponds to the first of the two way points that
were previously provided by the Strategic Planner.
We also assume that the second waypoint coin-
cides with another grid point. The Tactical Plan-
ner’s task is to provide a succession of adjacent grid
points (or cells) that connect the agent’s initial po-
sition and the second waypoint, i.e. a discrete tra-
jectory connecting the two waypoints. Such trajec-
tory will have to avoid locally detected obstacles,
and must be modified on-line and in real time in
case of abrupt environmental changes, e.g. the sud-
den appearance of new obstacles. Furthermore, the
Tactical Planner should account for the constraints
on the Trajectory Planner that will have to interpo-
late the discrete trajectory into a continuous, track-

-

6

-�

6
?

• • • •

• • • •

• • • •

• • • •

x2

x1

W

W

Figure 5: Two-dimensional example of grid: dots
represent grid points and squares represent cells.

able one, which will have, among others, curvature
radius constraints.

The Risk Map. Each cell may belong to one of
two classes: occupied or not occupied by an obsta-
cle; we shall indicate this class set as C = {occ, occ}.
Given a probability space S = (Ω,F , P ), for each
grid point Q ∈ G we will consider C(Q) as a random
variable, i.e. a function C(Q) : Ω → C. Therefore,
for all Q ∈ G, C(Q) has a pre-assigned probabil-
ity of belonging to class occupied: P [C(Q) ∈ occ];
we’ll call this function of Q the a priori probability
of occupancy. Its value will be suggested by the
prior knowledge one has on the local environment:
e.g. a value of 0.5 indicates no knowledge, or max-
imum entropy (in the information-theoretic sense).
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The agent continually receives new data about
the local environment through its sensors, e.g. the
on-board digital camera. We shall indicate with
Dk(Q) the data vector relative to the k-th mea-
surement at point Q ∈ G. Dk(Q) : Ω → R

N is a
random vector ; being a function of index k ∈ Z

+

it can be viewed as an N -dimensional stochastic
process.

Define the k-th risk map as the following function
of data:

Rk(Q;dk, . . . ,d1) :=

P
[
C(Q) = occ

∣∣ Dk(Q) = dk, . . . ,D1(Q) = d1

]
;

the risk map associates to each grid point Q ∈ G
the probability that the corresponding cell is oc-
cupied by some obstacle, given all the first k mea-
surements relative to that cell; a probability close
to one indicates high “risk”, whereas a value close
to zero suggests the cell, according to the informa-
tion we have, is “probably” free. Introducing the
compact notation: Dk(Q) := [Dk(Q), . . . ,D1(Q)],
dk := [dk, . . . ,d1], the risk map definition may be
rewritten as follows:

Rk(Q;dk) := P
[
C(Q) = occ

∣∣ Dk(Q) = dk
]

;

in particular, the risk map calculated at k = 0 co-
incides with the a priori probability of occupancy:
R0(Q) = P [C(Q) = occ ].

We will now study the evolution of the risk map
(for growing values of time index k) in function of
the following conditional probabilities:

P
[
C(Q) = occ

∣∣ Di(Q) = di

]
, 1 ≤ i ≤ k; (2)

which we shall call risk map updating functions (for
reasons that will be clarified); they represent the
probabilities of occupancy of the cell corresponding
to Q given the value that the single measurement
vector Di(Q) takes. We shall assume that mea-
surements about any single cell are conditionally
independent given the state of the cell, i.e.:

P [D1(Q) ∈ B1, . . . ,Dn(Q) ∈ Bn |C(Q) = c ] =

=

n∏

j=1

P [Dj(Q) ∈ Bj |C(Q) = c ] , (3)

where {B1, . . . , Bn} are arbitrary Borel subsets of
R

N and c ∈ {occ, occ} is the state of the cell corre-
sponding to grid point Q.

We shall now focus our attention on a partic-
ular grid point, therefore we shall simply write
Rk(dk) instead of Rk(Q;dk), P (occ) instead of
P [C(Q) = occ ], and P (occ |dk) instead of
P [C(Q) = occ |Dk(Q) = dk]. It is possible to

prove [11] [15] that, given hypothesis (3), the fol-
lowing risk map updating law holds:

Rk(dk) = 1 −

{
1 +

P (occ |dk)

1 − P (occ |dk)
· (4)

·
Rk−1(d

k−1)

1− Rk−1(dk−1)
·
1 − P (occ)

P (occ)

}
−1

,

which has to be initialized setting R0 = P (occ).
Clearly, function P (occ | · ) : R

N → [0, 1], i.e. the
risk map updating function (its name is now jus-
tified) plays a fundamental role. Such function is
actually unknown; according to the nature of in-
coming data (in our case, an image sequence and
position/velocity information), it has to be approx-
imated in some way. In other words, we have to
build an appropriate function of data that approxi-
mates the probability of cell occupancy after a sin-
gle observation on the cell has been performed.

Other authors have used the grid-based method
for environment modeling, but always in two di-
mensions, i.e. for indoor robot navigation [12] [15].
For example, Thrun [15] assumes the ground robot
is equipped with an array of sonar sensors; he then
constructs the grid map updating function through
an artificial neural network, training it with exam-
ples of sensor readings. As we will illustrate later
on, we have found an analytic expression for the risk
map updating function, which also accounts for un-
certainties (noise) in our sensor readings (cameras,
GPS, etc.).

Remark. In implementing our strategy cell size
is clearly a very important parameter. It should be
chosen in accordance with the local environment’s
size, the type of the environment (i.e. the type
and size of typical obstacles in the environment),
the agent’s size and the on-board computer’s com-
putational power and storage capabilities, keeping
in mind that incoming data must be processed in
real time.

It is up to the engineer’s experience and knowl-
edge to choose an appropriate cell size. For exam-
ple, making the grid too fine with respect to the
size of the agent or the typical obstacles that are
present in the environment simply wouldn’t make
sense, unless we could count on a very powerful on-
board computer; on the other hand, making the
grid too coarse would be an inefficient use of in-
coming data.

4.2 Vision-based Risk Map Updat-
ing

Consider the geometric model illustrated in Fig-
ure 6. The UAV is equipped with one on-board
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Figure 6: Camera model. Body frame B = {O(t), e1(t), e2(t), e3(t)} is attached to the camera in rigid
motion.

camera, that provides it with an image sequence;
we consider a reference frame (body frame) in rigid
motion with the agent (and the camera). As we
specified at the beginning of this section, we assume
that the UAV is also provided with noisy estimates
of its position with respect to an inertial frame (by
GPS) and its three dimensional linear and angular
velocities, with respect to the body frame.

We first developed an efficient multi-scale proba-
bilistic algorithm [11] for optical flow recovery (see
also [8], [9]); we then modified it to obtain a tech-
nique that allows the simultaneous recovery of opti-
cal flow and depth (see also [10]) in an optimal way,
i.e. making the best use of all past data. The algo-
rithm provides, for each pixel of the depth map, the
corresponding error variance, i.e. a quantity that
somehow measures the amplitude of depth estima-
tion error (i.e. the reliability of our estimate). Such
quantity is a function of all the incoming data error
variances.

The depth map provides information about the
distance between the agent and the obstacles that
appear on the image plane. Suppose we want to
establish whether or not a cell is occupied by an ob-
stacle, and that P is the grid point corresponding
to that cell (see Figure 6); knowing the grid point
coordinates and being provided with the agent’s
position (with respect to the inertial frame) it is
possible to calculate the distance between the grid
point and the agent, and to establish the projec-
tion of point P onto the image plane (point P ′ in
Figure 6). Now, comparing such distance with the

depth reported on the depth map at P ′, one is able
to establish whether point P is in front of, behind,
or on the surface of an obstacle. Calling s the dif-
ference between the value reported on the depth
image at P ′ and the distance between P and the
agent, we have found [11] the following expression
for the risk map updating function:1

P̂ (occ|dk) = R0 Φ
( s

σ

)
+ (1 − R0)

ξ√
σ2 + ξ2

· (5)

· exp

{
−

1

2

s

σ2

(
s −

1

σ2 + ξ2

)}
· Φ

(
ξ

σ

s√
σ2 + ξ2

)
,

whose shape is reported in Figure 7; R0 is the a
priori risk map value for the grid point we are con-
sidering, ξ is a parameter that is proportional to
the typical depth of obstacles in the environment
we are navigating into (it has to be set off-line, be-
fore navigation starts), and σ2 is the error variance
associated with s (defined above), which is a func-
tion of all the incoming data error variances; Φ(·) is
the normalized, zero-mean Gaussian distribution.

Note that if s < 0 and |s| is sufficiently large
(i.e. the cell is in front of the obstacle represented
in P ′ on the image plane) then we set the posterior
probability of occupancy virtually equal to zero; if
s ' 0 (the grid point lies on the obstacle’s sur-
face) then we set such probability close to one; for

1The “hat” (̂) we use here distinguishes the “real” risk
map updating function P (occ|dk) (which is nothing but a
mathematical concept) from the one we constructed from
our sensor models, that we will use to update the risk map
through updating law (4).
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Figure 7: Shape of risk map updating function.

growing values of s (meaning that the grid point is

behind an obstacle) then P̂ (occ|dk) tends to the
a priori probability of occupancy P (occ), which
makes sense since we cannot have any information
on the occupancy state of the cell, that is “hided”
by an obstacle (note that if P (occ|dk) = P (occ)
then formula (4) yields Rk = Rk−1). The width of
function (7) depends on both ξ (depth of objects)
and σ2 (uncertainty in measurements).

4.3 Local Path Planning using Dy-
namic Programming

Using function (5) and formula (4) the Tactical
Planner is able to build and update the risk map.
We will now briefly illustrate a novel algorithm [11]
that, given the risk map, provides a sequence of grid
points (i.e. a discrete path) connecting the two way-
points previously given by the Strategic Planner in
a way that detected obstacles are avoided and path
length is minimized; such algorithm is based on Dy-
namic Programming techniques [3].

We associate a state to each grid point (i.e. state
space S coincides with grid G), and we assume that
from any state we may move, in one step, to any of
its 26 neighbors in the three-dimensional grid; let
U be the 26-element control space. We now asso-
ciate a cost function c : S2 × U → R : (si, sj ; u) 7→
c(si, sj ; u) to each state pair (si, sj) (i.e. to each
state transition) and control u.

We will minimize, with respect to all possible
control policies g : S → U , the total expected cost:

Jg(s) :=

lim
N→∞

E

[
N−1∑

k=0

αk c
(
s(k), s(k + 1); g

(
s(k)

)) ∣∣∣ s(0) = s

]
,

where s is the starting state and 0 < α < 1; the
optimal policy is given by the unique solution to
Bellman’s equation [3].

For our specific path-generation problem we de-
fined cost as a linear combination of three (or more)

terms. The first term is proportional to the value
the risk map assumes in state si (if such value is
higher than a certain threshold, say 0.8, then cost
is set to a very high value, or infinity); this way tra-
jectories that avoid obstacles will have a lower cost.
The second term is proportional to the length of the
path connecting states si and sj , so that globally
shorter paths will have a lower cost than others.
The third term associates a lower costs to states at
a certain altitude from ground, so that the agent is
pushed to fly at those altitudes rather than at more
costly ones in order to achieve a lower total cost.
Finally, we could assign a gain (a negative cost) to
those areas where the risk map assumes values that
are close to 0.5 (maximum entropy), i.e. unknown
areas; thus the agent would be attracted towards
unexplored areas —such exploration might yield
useful information about obstacle presence (or ab-
sence), and allow the Tactical Planner to generate
a “better” path.2 In fact, cost is the translation
into mathematical terms of the task we want our
agent to perform; for example, if we wanted our
agent to reach its destination along a known tra-
jectory (and avoid obstacles at the same time) we
would just need to add to our cost function a term
that is proportional to the distance between each
state and the fixed trajectory.

The theory of Dynamic Programming provides
fast and efficient techniques for finding approxi-
mate solutions to Bellman’s equation (which is non-
linear), such as the value iteration and the policy
iteration methods, which we successfully applied
to our specific problem. Through computer sim-
ulation, we were able to obtain (in real-time) dis-
crete trajectories connecting the first waypoint to
the second one, that avoided obstacles and, at the
same time, minimized global path length.

5 Conclusions & Future Work

This paper reflects a new attempt to address the
problem of vision based autonomous navigation in a
partially known environment. Offline computation
exploits the a-priori knowledge about the environ-
ment, providing an initial guess about the optimal
route. Online computation exploits the informa-
tion provided by the vision sensor, capable of sens-
ing the environment. The choice of a probabilistic
sensor model and, as a consequence, of a probabilis-
tic online path planning scheme is, according to the
authors, the most appropriate to capture the nat-
ural uncertainty typical of every sensing process.

2This situation is referred to as exploration-exploitation
tradeoff, where the first term refers to exploitation of cur-
rent information while some exploration could increase such
knowledge in order to plan a better path.
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Multiresolution via wavelet transform allows to lo-
calize the level of accuracy required to minimize
collision probability, making the approach scalable
with respect to the size of the map. Future work
will include further simulation, implementation and
testing of the navigation system on an autonomous
helicopter within the BEAR project at UC Berke-
ley [1].
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