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Abstract In this article, we present a novel approach to learn-
ing efficient navigation policies for mobile robots that use
visual features for localization. As fast movements of a mo-
bile robot typically introduce inherent motion blur in the ac-
quired images, the uncertainty of the robot about its pose
increases in such situations. As a result, it cannot be ensured
anymore that a navigation task can be executed efficiently
since the robot’s pose estimate might not correspond to its
true location. We present a reinforcement learning approach
to determine a navigation policy to reach the destination re-
liably and, at the same time, as fast as possible. Using our
technique, the robot learns to trade off velocity against lo-
calization accuracy and implicitly takes the impact of mo-
tion blur on observations into account. We furthermore de-
veloped a method to compress the learned policy via a clus-
tering approach. In this way, the size of the policy repre-
sentation is significantly reduced, which is especially desir-
able in the context of memory-constrained systems. Exten-
sive simulated and real-world experiments carried out with
two different robots demonstrate that our learned policy sig-
nificantly outperforms policies using a constant velocity and
more advanced heuristics. We furthermore show that the pol-
icy is generally applicable to different indoor and outdoor
scenarios with varying landmark densities as well as to nav-
igation tasks of different complexity.
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Fig. 1 Visual features observed in the same floor patch at different
velocities (0.05 m/s, 0.4 m/s, 1.0 m/s), with motion blur of increasing
magnitude.
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1 Introduction

Completing navigation tasks reliably and efficiently is one
of the most essential objectives for an autonomous robot.
As a precondition for finding the way to a target location,
the robot needs to know its pose in the environment. Es-
pecially in the case of small robots with a limited payload,
such as humanoids or unmanned aerial vehicles, compact
and lightweight cameras are often used as the only sensor.
However, the movements of a mobile robot typically intro-
duce motion blur in the acquired images, with the amount
of degradation depending on camera quality, on the lighting
conditions, and on the movement velocity. To illustrate this,
typical images of a floor patch observed with a downward-
looking camera on a wheeled mobile robot moving at differ-
ent speeds are depicted in Fig. 1. With an increasing veloc-
ity the image is highly affected by motion blur. As a result,
the reliability of feature detection and matching and, thus,
the localization accuracy typically decreases. An uncertain
localization may result in a wrong pose estimate which, in
turn, may prevent the robot from executing the navigation
task reliably and efficiently.
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In this article, we present a novel approach to vision-
based navigation that implicitly takes the influence of mo-
tion blur, which results from fast movements, into account.
Our method applies reinforcement learning (RL) to deter-
mine actions the robot should execute to reach its desti-
nation fast and reliably. We use an unscented Kalman fil-
ter to track the pose of the robot and include the uncer-
tainty of the state estimate into the state representation of the
augmented Markov decision process (MDP) modeling the
navigation task. The state representation comprises further
features such as the estimated distance and the estimated
relative angle of the robot to the goal location. The action
space of the augmented MDP consists of the velocities to be
chosen by the robot. We apply Sarsa(λ ) RL (Wiering and
Schmidhuber 1998) to determine the optimal policy which
minimizes the time to reach the destination. In contrast to
previous works that aim at minimizing the uncertainty in the
belief distribution (Huynh and Roy 2009; He et al. 2008;
Kollar and Roy 2006; Roy et al. 1999), our approach en-
ables the robot to reach the destination as fast as possible.
Thereby, the robot learns to actively avoid delays caused by
localization errors. Furthermore, we show that it is possible
to compress the learned policy using a clustering technique.

Experiments carried out in simulation and with real ro-
bots demonstrate that the learned policy significantly out-
performs standard navigation strategies such as constant ve-
locity policies or dual-mode controllers (Cassandra et al.
1996). Additionally, we provide experiments showing that
the learned policy can be transferred to different indoor and
outdoor scenarios with different landmark densities and to
navigation tasks with multiple waypoints.

Note that the purpose of our work is not to compute a
path for the robot. We assume that a sequence of subgoals
or waypoints the robot has to traverse are already given, i.e.,
computed by an external path planning module. Instead, we
aim at determining appropriate velocities for the robot so
as to reach the navigation goals reliably and efficiently. We
consider here an instance of the more general problem of
system dynamics affecting localization accuracy. Our tech-
nique is relevant whenever time matters in navigation tasks,
i.e., when a robot is desired to execute a task as fast as pos-
sible. Examples are delivery tasks with wheeled robots or
playing soccer with humanoid robots. In these applications,
the robots need an accurate estimate of their pose in order
to successfully fulfill the task, and have to trade off velocity
against localization accuracy.

The remainder of this article is structured as follows. In
the next section, we first present our vision-based localiza-
tion system. The navigation task and our learning approach
are described in detail in Sec. 3. Afterwards, we introduce
our technique for policy compression in Sec. 4. In Sec. 5 we
then provide and thoroughly discuss experimental results.
Finally, we present related work in Sec. 6.

2 Localization

In this section, we describe how we track the robot’s pose
over time given observations made by the robot and exe-
cuted motion commands.

2.1 The Unscented Kalman Filter

We apply the unscented Kalman filter (UKF) to estimate the
pose of the robot in a given map of the environment. The
UKF is a recursive Bayes filter to estimate the state xt of
a dynamic system (Julier and Uhlmann 1997). This state is
represented as a multivariate Gaussian distribution N(µ ,Σ).
The estimate is updated using nonlinear controls and obser-
vations ut and zt . The key idea of the UKF is to apply a
deterministic sampling technique that is known as the un-
scented transform to select a small set of so-called sigma
points around the mean. Then, the sigma points are trans-
formed through the nonlinear state transition and measure-
ment probability functions, and the Gaussian distributions
are recovered from them thereafter. The UKF can better deal
with nonlinearities and thus leads to more robust estimates
compared to other techniques such as the extended Kalman
filter. Besides Monte Carlo localization, Kalman filter-based
localization is one of the standard techniques applied in mo-
bile robotics.

2.2 Vision-based Pose Estimation

A control ut for the UKF is obtained from the robot’s mo-
tion. We use an odometry motion model here, utilizing the
data from the robot’s wheel encoders (Thrun et al. 2005).

As observations zt , we extract Speeded-Up Robust Fea-
tures (Bay et al. 2006) from the camera images as visual
landmarks, as depicted in Fig. 1. Extracted descriptors of
these features are then matched to landmarks in a map. This
map was constructed beforehand and contains the global
2D positions and descriptors of the landmarks on the floor.
Whenever the robot matches a perceived feature to a land-
mark in the map, it integrates the relative 2D position of the
landmark as observation zt = (rt ,ϕt) in the UKF in order to
estimate its pose xt = (xt ,yt ,θt). Here, rt and ϕt are the po-
lar coordinates of the landmark relative to the robot, xt and
yt are the global position of the robot, and θt is the robot’s
orientation.

3 Learning Navigation Policies

In this section, we first describe the navigation task we con-
sider and then formulate it as a reinforcement learning prob-
lem.
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(a) (b)

Fig. 2 Navigation environments for learning (a) and evalua-
tion (a and b)

3.1 Navigation Task

The objective of the robot is to reach its navigation goal
reliably and as fast as possible. We assume that a path of
waypoints is given which can be obtained by a path plan-
ner such as A∗. During learning, we consider the scenario of
a robot navigating from its current position to one such in-
termediate goal location, which is in viewing distance (see
Fig. 2(a)). The learning task is completed as soon as the dis-
tance between the robot’s true position and the goal location
is below a certain threshold.

After learning, the policy is then also applied to a more
general scenario containing several waypoints on a longer
path (see Fig. 2(b)). In this application, once the robot’s
pose estimate is sufficiently close to the current goal point,
the next waypoint on the path is regarded as the new goal
point. The task is finished as soon as the distance between
the robot’s true position and the final destination is below a
certain threshold.

We employ a straightforward controller which steers the
robot to the next goal point, based on the current most-likely
pose estimate xt = (xt ,yt ,θt) and a desired target velocity
vtarget (which corresponds to the chosen action, see Sec. 3.6).
Depending on the angle ϕ to the next goal point, the transla-
tional and rotational velocities v and ω are set in the follow-
ing way. When |ϕ | ≥ π

2 , v is set to zero and the robot orients
itself towards the goal. Otherwise, v is set to the desired tar-
get velocity vtarget and ω is set depending on ϕ .

The overall velocity influences the visual perception of
the robot because the observed scene is affected by motion
blur. The faster the robot moves, the more its visual per-
ception is degraded. This has a direct impact on feature ex-
traction and matching and, thus, on the localization perfor-
mance. By moving slowly, the negative impact of motion
blur can be avoided, but the robot needs more time to fin-
ish the navigation task. We formulate the problem of trading
off velocity against localization accuracy as a reinforcement
learning task.

3.2 Reinforcement Learning

In reinforcement learning, an agent seeks to maximize its re-
ward by interacting with the environment (Sutton and Barto
1998). Formally, this is defined as a Markov decision pro-
cess (MDP) using the state space S , the actions A , and the
rewards R. By executing an action at ∈A in state st ∈S ,
the agent experiences a state transition st→ st+1 and obtains
a reward rt+1 ∈R. The overall goal of the agent is to maxi-
mize its return Rt given by

Rt =
T

∑
i=t+1

ri , (1)

where T is the time when the final state is reached. One finite
sequence of states s0, . . . ,sT is called an episode.

The decision of which action to take in a certain state is
governed by the policy

π(s,a) = p(a|s) ∀s ∈S , (2)

which denotes the probability of taking action a in state s.
The action-value function, also called Q-function, for a pol-
icy π is defined as

Qπ(s,a) = Eπ{Rt |st = s,at = a} , (3)

which denotes the expected return of taking action a in state
s and following policy π afterwards. The optimal policy max-
imizes the expected return, which corresponds to the maxi-
mum Q-value for each state-action pair.

A reinforcement learning problem is solved by finding
the optimal policy, for example, through temporal differ-
ence (TD) learning (Sutton and Barto 1998). TD learns mod-
el-free, which means that transition probabilities between
states do not need to be defined but are experienced from
samples. Sarsa is one such TD learning algorithm (Rum-
mery and Niranjan 1994)1. The estimate of the Q-function
is continuously updated in Sarsa. Qπ(s,a) is learned on-poli-
cy, which means that the current behavior policy π is learned
and updated. The current estimate is updated based on its old
values, the new reward, and the new value:

Q(st ,at)←
Q(st ,at)+α

(
rt+1 + γQ(st+1,at+1)−Q(st ,at)

)
(4)

The parameters α and γ are step size and discounting factor,
respectively. This form of Sarsa uses only the immediate re-
ward rt+1 and belongs to the class of TD(0) learners.

By looking further into the future, a more accurate esti-
mate of Rt can be obtained. We use Sarsa(λ ), an extension of

1 In their original work, Rummery and Niranjan called the algorithm
Modified Connectionist Q-Learning. The name “Sarsa” was introduced
by Sutton (1996).
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Sarsa that averages over a number of future rewards (Wier-
ing and Schmidhuber 1998). In detail, an n-step return

R(n)
t =

n

∑
i=1

γ i−1ri + γnQt(st+n,at+n) (5)

looks n steps into the future and takes the future rewards
into account. Sarsa(λ ) uses a number of these n-step returns,
weights them by λ n−1, and computes the average, yielding
the so-called λ -return

Rλ
t = (1−λ )

∞

∑
n=1

λ n−1R(n)
t . (6)

The parameter λ ∈ [0,1] determines the decay of the impact
of future rewards. For λ = 0, only the immediate rewards are
used, which corresponds to the previously discussed TD(0)
learning.

Throughout the learning phase, we use an ε-greedy ac-
tion selection. This selection method chooses the action with
the highest Q-value with probability ε and all non-greedy
actions with equal probability in each step.

3.3 Augmented Markov Decision Process

In an MDP, it is assumed that the agent is able to uniquely
determine its state. If the belief about the state is represented
by a probability distribution, the system is ideally modeled
by a partially observable MDP (POMDP) (Sondik 1971).
Since POMDPs require an explicit modeling of the probabil-
ity distribution of the state, they are computationally hard to
solve and intractable for most real-world tasks. It is a com-
mon practice to use approximations instead (Lovejoy 1991;
Roy and Gordon 2002). In cases where the underlying distri-
bution is modeled by a unimodal distribution as in our case,
the so-called augmented MDP (Roy and Thrun 1999) can be
used as an efficient approximation. The belief of the state is
then represented by its most-likely estimate and the task is
modeled as an MDP. The uncertainty of the underlying be-
lief distribution is taken into account by including the corre-
sponding entropy in the state representation.

The probability distribution of the robot’s pose given
all previous odometry information and visual observations
is estimated by an UKF. For the MDP, we define the state
space S , the set of actions A , and the rewards R as fol-
lows.

3.4 State Space S

The complete state of the robot consists of the global pose
estimate xt , the current velocity, and a characterization of
the environment including the goal location and the land-
marks. However, this complete state representation is im-
practical to consider for reinforcement learning. Learning in

this complete description would take too long and general-
ization would be hard to achieve.

Thus, we define a set of features based on the complete
state which characterizes the state sufficiently detailed and
as general as needed for learning. Based on the current, most-
likely pose estimate xt = (xt ,yt ,θt) and the environment, we
define the following features:

– The Euclidean distance to the next goal point (gx,gy)
T

d =
√

(gx− xt)2 +(gy− yt)2. (7)

– The angle relative to the next goal point

ϕ = atan2(gy− yt ,gx− xt)−θt . (8)

In combination with d, this completely characterizes the
relative position of the next goal point which has to be
reached. In the multiple-waypoint scenarios, the next way-
point is regarded as goal point.

– The uncertainty of the localization, represented in terms
of the differential entropy of the pose:

h =
1
2

ln
(
(2πe)3 · |det(Σ)|

)
. (9)

This measures how well the robot is localized: A higher
entropy corresponds to a higher pose uncertainty. Note
that we use the differential or continuous entropy here
as opposed to the Shannon entropy, because the robot’s
pose estimate is continuous. Since the probability den-
sity function can be greater than one, h can have negative
values.

We experimentally found these features d,ϕ, and h to be
most relevant and sufficient for completing the task. Other
combinations of them, also including the current velocity
and the landmark density in the state representation, did not
lead to a significant improvement of the robot’s performance.

We represent the state-action space by a radial basis func-
tion (RBF) network, which is a linear function approxima-
tor (Doya 2000). The continuous features of the state are
approximated by a discrete, uniform grid. In between the
centroids of the grid, the state is linearly interpolated with a
Gaussian activation function. In contrast to a strictly discrete
representation as feature table, the RBF network suffers less
from the effects of discretization.

3.5 Possible Extensions of the State Space

A probably straightforward extension is to incorporate se-
mantic information into the state space. For example, if there
are different surfaces in the environment, such as carpet and
concrete, this information can be easily included into the
state space. The quality of the odometry of the robot typ-
ically depends on the surface. In this way, this knowledge
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can be considered during action selection since it has an in-
fluence on the resulting pose uncertainty.

The information about the surface can be estimated us-
ing vibration-based approaches which have been applied in
outdoor environments (Wurm et al. 2009; Weiss et al. 2006)
or it can be integrated into the environment representation
by hand. Given the pose estimate of the robot, the seman-
tic information can then be directly deduced from the map.
By including the semantic label into the state space, the ap-
proach allows the robot to select the motion commands that
are best suited in its current situation.

3.6 Action Set A

The actions the robot can choose from correspond to restrict-
ing the overall velocity of the navigation controller to the so-
called target velocity vtarget. The rotational and translational
velocities of the robot are selected in a way such that the
resulting movement of the camera respects this value vtarget.
Choosing vtarget (in m/s) is the action the robot learns via
reinforcement learning. We define the possible actions as

A = {0.1,0.2,0.3,0.4,1.0}. (10)

We determined this discretization according to the effect
of motion blur on the landmark observation probability (see
Fig. 5). In our setting, velocities higher than 0.4 m/s blur the
image almost beyond recognition.

3.7 Rewards R

We define the immediate reward at time t as

rt =

{
100 if t = T

−∆t otherwise,
(11)

where T is the final time step and ∆t is the time interval
between the update steps. The final state is reached when the
robot’s true pose is sufficiently close to the destination. This
has the effect that the robot is driven to reach the destination
as fast as possible.

We do not model an explicit punishment for delocal-
ization or running into a wall. We assume that the robot
has some sensors for obstacle avoidance on board, such as
bumpers, infrared, or sonar. When the robot is in danger of
running into an obstacle, it is immediately stopped by the
obstacle avoidance. The time it takes to stop, re-localize,
and accelerate is the implicit punishment for getting off the
track, which is typically a few seconds.

4 Policy Compression

A policy learned using the presented framework is repre-
sented by a table whose size depends on the discretization
of the state space. For each given state tuple (d,ϕ ,h) of dis-
tance to the next goal point, angle, and entropy, the optimal
velocity vtarget can be obtained from that table.

While the learned table of the policy contains entries for
all values of (d,ϕ,h) within the discretized ranges, not all
of these values are relevant since some never appear in prac-
tice. Thus, it is desirable to find a more compact representa-
tion of the learned policy, which might be interesting when
implementing it on systems with memory constraints.

In contrast to methods of dimension reduction in partic-
ular during learning (Uther and Veloso 1998; Rubinstein and
Kroese 2004; Menache et al. 2005; Satoh 2006), we aim at
a data reduction of the representation of the learned policy
when it is executed, i.e., the learned behavior of the robot.

4.1 Formulation as Classification Problem

We treat the problem of finding a compressed policy as a
classification problem on the visited state space, i.e., we
use labeled samples available from the robot following the
learned policy. In particular, the robot follows the learned
policy for 100 episodes. For each visited state (d,ϕ,h), we
regard the chosen velocity vtarget as the classification of the
state. This labeled data contains only the regions of the state
space that are relevant for the task.

We hereby abstract from the RBF network as an under-
lying function approximation of the state space. Any kind of
function approximator can be used during the learning phase
instead. Afterwards, the learned policy is used greedily and
our compression method can be applied to the visited state
space and the chosen actions.

4.2 X-means Clustering

We use X-means clustering (Pelleg and Moore 2000) to find
a number of clusters which approximate the data d,ϕ ,h,
and vtarget. X-means, which is an extension of K-means clus-
tering, finds the best number of clusters according to the
Bayesian information criterion (BIC), also known as Schwarz
criterion. We cluster input data points into K clusters. Ini-
tially, K random cluster means are chosen. Based on the
Euclidean distance to these means, the data are iteratively
assigned to the closest mean and the mean is adjusted to the
centroid of the cluster. The BIC of a model M j for input
data D is given as

BIC(M j) = l̂ j(D)−
p j

2
log |D|, (12)
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Fig. 3 Pioneer 2-DX8 robot in the experimental indoor environ-
ment (left) and an observed floor patch with SURF as visual land-
marks (right).

Fig. 4 Powerbot robot in the experimental outdoor environment (left)
and an observed ground patch with SURF as visual landmarks (right).

where l̂ j(D) is the log-likelihood of the data according to the
model and p j is the number of parameters in the model (Kass
and Wasserman 1995). A model hereby corresponds to a K-
means clustering solution for a given K.

After the number of clusters and the locations of their
means are found, each data point (d,ϕ,h,vtarget) is assigned
to the cluster that is closest by means of the Euclidean dis-
tance. To account for different scales, such as distance in
meters and angle in radians, state vectors and cluster means
are normalized within their discretization range. During clus-
tering, the velocity classification of each cluster is set to the
average velocity of the samples within that cluster. The clus-
ter means – each labeled with a velocity value – can now be
used as a compact representation of the learned policy. Dur-
ing execution, the robot uses the tuple (d,ϕ,h) to look up
the closest cluster and its velocity.

5 Experiments

We conducted the practical experiments with two different
ActivMedia robots, a Pioneer 2-DX8 (Fig. 3) and a Power-
bot (Fig. 4). We equipped both robots with a top-mounted
ImagingSource DFK 31AF03 camera to observe the ground
in front of them and extract Speeded-Up Robust Features
(SURF) from the images as visual landmarks. These obser-
vations are integrated with odometry information in an UKF
for vision-based localization as described in Sec. 2. Addi-
tionally, a SICK laser range finder was mounted on the ro-
bots and used for obstacle avoidance as well as for providing

Fig. 5 Experimentally determined observation model p(z|v). The mea-
sured data (blue crosses) are approximated by a sigmoid function (red
line).

a ground truth pose estimate needed for evaluation. The in-
door environment for the Pioneer robot was a hallway with
wood parquet floor and a distance of approximately eight
meters between the starting pose and the destination. The
Powerbot robot was employed in a paved outdoor environ-
ment with four waypoints and a total path length of approx-
imately 30 meters. To make the indoor experiments more
challenging, one tire of the Pioneer robot was slightly de-
flated in order to introduce a systematic error in the odome-
try.

We learned the policy in simulations. This allows for
evaluating different parameter settings for the learning algo-
rithm and for running a large number of learning and eval-
uation episodes. We modeled the robots and their environ-
ments as realistic as possible. This includes the systematic
error on the odometry of approximately 5◦ on the yaw an-
gle per meter of translation. Instead of modeling SURF de-
tection and matching explicitly, we used a map of artifi-
cial landmarks. The landmark positions were randomly dis-
tributed with an average density as in the real map (40 land-
marks/m2). Because we wanted to avoid an adaptation of
the robot’s behavior to a specific environment, landmark po-
sitions and the direction of the systematic error were ran-
domized in each new learning and evaluation episode. In-
accuracies in the robot’s initial pose estimate were modeled
by sampling the initial position and orientation with a small
standard deviation. In order to obtain a policy which takes
motion blur into account, we modeled motion blur as an ef-
fect on the probability of an observation z given the current
velocity v, i.e., we determined the probability that a feature
which is in the robot’s field of view is detected given v. This
dependency p(z|v) was experimentally estimated using real
data, as displayed in Fig. 1 and 5. We approximated the mea-
sured values by a fitted sigmoid function

p(z|v) = s1 ·
(

1− 1
(1+ e−s2v+s3)

)
+ s4 (13)
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Fig. 6 A typical example of the trajectory of a learned policy (left)
and the dimensions distance and entropy of the state space with actions
over time (right). The robot maximizes its velocity until its uncertainty
gets too high, indicated by a high value of the differential entropy. To
re-localize, it then slows down. As soon as the uncertainty decreases as
an effect of localization, it accelerates again. As the robot approaches
the goal location, it slows down more frequently.

with parameters s1, . . . ,s4. For our hardware setting, we ob-
tained the values s1 = 1.0068, s2 = 24.1437, s3 = 5.3991,
and s4 = 0.0002.

For the learning parameters, we used α = 0.2, γ = 0.95,
λ = 0.85, and ε = 0.1 (see Sec 3.2). These values were ex-
perimentally determined and yielded good learning results.
We found 500 learning episodes to be sufficient for conver-
gence of the policy. We then evaluated it by using a greedy
action selection in 100 evaluation episodes, measuring the
average time from the starting pose to the destination and a
95% confidence interval. All following statements concern-
ing significance are with respect to a t-test with 95% confi-
dence.

In the following, we present and discuss our experimen-
tal results to evaluate the learned policy in terms of perfor-
mance and generalizability. We present simulation experi-
ments as well as results obtained with real robots.

5.1 Qualitative Analysis

A typical trajectory and the corresponding state space over
time of the learned policy is displayed in Fig. 6. The robot
optimizes its time to reach the destination by driving at max-
imum speed as long as it is confidently localized. When
there is risk of getting lost, indicated by a high entropy, it
slows down in order to observe landmarks. As mentioned in
Sec. 3.4, the differential entropy can have negative values.
Note that for different values of the distance d, different lev-
els of the entropy are learned to be important. As the robot
gets closer to the goal, it frequently slows down so that the
target is reliably reached.

5.2 Quantitative Analysis

We now quantitatively compare a policy learned using our
approach to two standard methods of setting the target ve-
locity vtarget. In the absence of motion blur, the best choice
to minimize the time to the destination would be the highest
possible velocity. In our scenario, however, there is not an
immediate benefit of driving at maximum speed. If a high
velocity is chosen, the robot quickly gets lost which leads to
a longer overall journey time since the robot has to stop and
re-localize later on.

5.2.1 Comparison to Constant Velocity

A naive approach is to set a constant target velocity vtarget.
Figure 7(a) displays an evaluation of following a constant
velocity from vtarget = 0.2 m/s to 1 m/s, compared to our
learned policy. Up to 0.4 m/s, an increased velocity directly
improves the time to destination. For higher velocities, the
robot is no longer able to perform observations, regularly
gets lost on its path, and has to stop in order to avoid col-
lissions and to re-localize. Despite this, there is still a small
improvement in the average time to destination. This means
the robot accepts the risk of nearly colliding and getting lost,
in favor of a faster speed.

But even when choosing the best policy of constant ve-
locity, our learned approach is significantly better. While the
average time to destination at 1 m/s is 13.56 s±0.61 s (95%
confidence interval), the robot is able to finish the task with
our learned policy in 10.04 s±0.18 s, which corresponds to
a reduction of 26%.

5.2.2 Comparison to a Dual-Mode Controller

A more advanced approach is to employ a dual-mode con-
troller as introduced by Cassandra et al. (1996). Similar to
our learned policy, the entropy is used to decide on which
action to take. When the entropy is above a threshold hthres,
an action to reduce the uncertainty is selected, otherwise a
greedy action is chosen. These actions are vtarget = 0.1 and
vtarget = 1.0 in our scenario, respectively. Figure 7(c) dis-
plays the resulting times for various values of hthres com-
pared to the learned policy.

Using the dual-mode controller, we achieve best results
for hthres =−2, resulting in a time to reach the destination of
12.39 s±0.31 s. The learned policy still yields a significant
reduction of 17%.

To summarize, our learning approach outperforms the
dual-mode controller which represents a special case of our
approach by just considering the entropy and choosing only
between two actions. This indicates that a more complex
learning framework such as ours is indeed necessary in order
to gain improved performance.
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(a) Constant velocity in the simulated short
scenario (path length: 8 m, two waypoints,
see Fig. 2(a)).

(b) Constant velocity in the simulated longer
scenario (path length: approx. 17 m, four way-
points, see Fig. 2(b)).

(c) Dual-mode control policies at various
thresholds for the entropy in the simulated
short scenario (path length: 8 m, two way-
points).

Fig. 7 Comparison of constant velocity policies and the dual-mode controller to our learned policy in simulations. Each policy is displayed with
mean and 95% confidence interval over 100 runs. The learned policy is significantly better than each other policy.

density in test density in learning environment
environment 40 matching test env.

10 11.19±0.44 s 10.78±0.16 s
40 10.42±0.24 s
70 10.32±0.25 s 10.56±0.18 s

Table 1 A policy learned in an environment with 40 landmarks/m2 is
evaluated in environments with 10, 40, and 70 landmarks/m2 and is
compared to a policy learned in the specific test environment. Accord-
ing to the results of the t-test, there is no significant difference in the
performance which shows that the learner did not overfit to the learning
environment.

5.3 Generalization over Landmark Density

We will now examine how the density of landmarks affects
the learned policies, and how one can generalize over differ-
ent environments. To do so, we evaluated policies learned in
an environment with an average landmark density of 40 land-
marks/m2 in significantly sparser (10 landmarks/m2) and dens-
er environments (70 landmarks/m2). We compared the per-
formance to a policy learned in an environment with the
same landmark density as the respective test environment,
which we expect to yield the best results.

In order to obtain general results, we compare 50 in-
dependently learned policies, each learned in 500 learning
episodes and evaluated over 100 test episodes. The resulting
times are displayed in Table 1. There is no significant differ-
ence between using a fixed density of 40 landmarks/m2 dur-
ing learning and the optimal case where the landmark den-
sity of the learning environment fits the test environment.
This can be seen as an indication that our learned policy
does not overfit to the learning environment and that it can
be applied to different environments, without the need of ex-
plicitly accounting for this in the learning scenario.

d in test d in learning environment
environment 8 m matching test env.

8 m 10.62±0.31 s
6 m 8.31±0.21 s 8.28±0.25 s
4 m 6.87±0.32 s 6.16±0.27 s
2 m 4.20±0.25 s 3.27±0.19 s

Table 2 A policy learned for a path length of d = 8 m is evaluated at
shorter path lengths and is compared to policies learned for the specific
lengths. Small differences are apparent at short lengths, where it would
be sufficient to drive blindly ahead to the goal without slowing down.

5.4 Application to General Navigation Paths

So far, we considered the scenario of a rectilinear path with
a fixed length of eight meters. We now show how a policy
learned in this environment can be used in scenarios with
general paths, i.e., paths of different lengths and containing
multiple waypoints that have to be passed by the robot.

We evaluated the robustness of the policy towards shorter
paths by comparing it to policies learned in the specific test
environment. Applying the policy learned from a longer path
to shorter paths is straightforward. Again, 50 independently
learned policies were compared for each path length. Table 2
displays the results. At a path length of six meters, there is
no significant difference. However, shorter scenarios with
two or four meters distance produce small, but significant
different outcomes. In these cases, a policy tailored to the
specific short path length seems to be better. Especially for
the distance of two meters, it would be sufficient to drive
blindly at maximum speed, since it is unlikely not to reach
the destination with sufficient accuracy.

We now consider paths which consist of a number of
successive waypoints. This does not only allow for longer
trajectories but also for more complex, non-straight paths
and navigation tasks involving multiple waypoints that have
to be reached subsequently. Figure 7(b) displays an evalua-
tion of following a constant velocity policy compared to a
policy learned in the short two-waypoint scenario. The total
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Fig. 8 Comparison of constant velocity policies to a learned policy
evaluated in the real indoor scenario (path length: 8 m, two waypoints).
Each policy is displayed with mean and 95% confidence interval over
10 runs. The learned policy is significantly better than each policy with
a constant velocity.

Fig. 9 Comparison of real robot trajectories at constant velocity
(top: 0.2 m/s, middle: 0.8 m/s) and variable velocity, i.e., following the
learned policy (bottom). Since the localization is plotted with a con-
stant time interval, the velocity of the robot can be inferred from the
distance of the localization points (the larger the distance the higher
the velocity). This behavior is also displayed in Animation 1 (available
online).

path length in this evaluation scenario over four waypoints
is approximately 17 meters (see Fig. 2(b)). As in the two-
waypoint scenario, the learned policy significantly outper-
forms the best constant velocity policy. This demonstrates
that the learned policy generalizes over different path lengths.

5.5 Verification on Real Robotic Systems

We now transfer the results from simulations into the real
world. We apply the policy learned in simulation on two
real robots. We first employ the Pioneer robot as shown in
Fig. 3 in an indoor environment similar to the environment
depicted in Fig. 2(a). Each policy is evaluated in 10 test runs

Fig. 10 Trajectory when following the learned policy in a real
multiple-waypoint outdoor environment. The gray area is terrain not
traversable by the robot. Since the localization is plotted with a con-
stant time interval, the velocity of the robot can be inferred from the
distance of the localization points. This behavior is also displayed in
Animation 2 (available online).

consisting of navigating from the start location to the desti-
nation. The resulting navigation times are shown in Fig. 8.

Similar to the results from simulations, the learned pol-
icy outperforms any policy of constant velocity by more than
25% and is significantly better. When looking at the trajec-
tories generated by the policies qualitatively, the results are
also similar to the simulated ones (Fig. 9). At a slow con-
stant velocity, the robot stays close to the optimal path of
the straight-line connection between start and destination.
When driving faster at 0.8 m/s, the robot is not able to ob-
serve landmarks and quickly gets lost with the result of a
near-collision with the wall. Contrary to that, the robot is
not stopped by the obstacle avoidance when following the
learned policy. When the robot is in risk of getting lost, it
immediately slows down to re-localize. As a result, the robot
reaches its destination reliably and fast.

Furthermore, we demonstrate the applicability to multi-
ple-waypoint outdoor environments by employing the Power-
bot (Fig. 4) in an environment similar to the one depicted in
Fig. 2(b). As shown in Fig. 10, the robot successfully nav-
igates to the destination using the learned policy to trade
off a fast velocity against an accurate localization. Due to
the open environment, the robot only finds the destination at
slow constant velocities. When driving faster than 0.3 m/s,
it cannot obtain reliable observations anymore, resulting in
a complete delocalization which usually leads to leaving the
mapped area. In these cases, the robot needs to be stopped
by hand.

To summarize, the policy learned in simulations could
be successfully applied on real robots and performs signifi-
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cantly better than the naive approach of driving with a con-
stant velocity.

5.6 Policy Compression

The policy we learned is represented by a table whose size
depends on the discretization of the feature space. As dis-
cussed in Sec. 4, the robot then followed this learned policy
in order to obtain labeled samples. These labeled data points
are shown in Fig. 11, with the resulting clustering found via
X-means in Fig 12. In total, four clusters with three differ-
ent average velocities were found (0.21 m/s, 0.26 m/s, 2×1
m/s). These four clusters lead to a representation which is
significantly smaller than the full initial table. For compari-
son, a careful reduction of the state space discretization by
hand (with no significant loss of performance) lead to a table
which still had size 10×3×4 = 120.

Note that the velocity distribution and the resulting clus-
tering also illustrates that our navigation task is too complex
to be solved with a dual-mode controller. The entropy alone
yields not enough information to select an optimal velocity.

To decide on which velocity to set, the robot now uses
the approximated policy which consists of the four clusters
instead of the table-based action selection. For each vis-
ited state (d,ϕ,h), the velocity of the closest cluster is se-
lected. Using the policy represented by the original table, the
robot needs 10.04 s±0.18 s to finish the task. Using the ap-
proximated representation, it is able to finish the task within
10.87 s± 0.70 s. Thus, there is no significant performance
difference between the two representations. This shows that
we were able to compress the learned policy to a signifi-
cantly smaller representation with no loss of performance in
the task.

It is worth noting that this compression is at the cost of
a slightly increased query time when using the policy on a
system. Instead of directly querying a table entry, the nearest
cluster mean needs to be found. Since the number of cluster
means is typical small, however, this only leads to a minimal
increase of computational effort.

6 Related Work

In the last few years, various frameworks have been pre-
sented which employ active methods in the context of lo-
calization and navigation. Kollar and Roy (2006) use rein-
forcement learning to optimize the robot’s trajectory during
exploration. Similar to our approach, the authors learn opti-
mal parameters of the navigation controller. While we con-
sider the problem of reaching the destination reliably and
as fast as possible, Kollar and Roy learn the translational
and rotational behavior which minimizes the uncertainty in
SLAM (simultaneous localization and mapping). Huynh and
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Fig. 11 Evaluation of the learned policy throughout 100 simulated test
episodes. For visualization, the three-dimensional state space is pro-
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Fig. 12 X-means clustering of the learned policy (see Fig. 11). Ob-
served values of distance, entropy, angle, and the corresponding ve-
locities are used for clustering, while only the projection on distance
and entropy is shown here. Four clusters with three different velocity
classifications are found, highlighted in the single plots.

Roy (2009) generate control laws by combining global plan-
ning and local feedback control to obtain trajectories which
minimize the pose uncertainty during navigation. Cassandra
et al. (1996) introduced dual-mode controllers as heuristics
for POMDPs. A threshold on the entropy as a measure of the
uncertainty determines whether a greedy action or an action
reducing the uncertainty is selected.

A different method of minimizing the uncertainty about
the state of the robot is to plan a path for the robot which
takes the information gain into account. Roy et al. (1999)
presented an approach for this called coastal navigation.
Recently, He et al. (2008) have applied this technique to
a quadrotor helicopter for indoor navigation with a short-
range laser range finder. Bryson and Sukkarieh (2006) sug-
gested a framework for unmanned aerial vehicle localization
and exploration in unknown environments. They also use an
intelligent path planning scheme in order to maximize the
quality of the resulting SLAM estimate. Similarly, Martinez-
Cantin et al. (2009) proposed a Bayesian optimization method
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that trades off exploration and exploitation for online path
planning.

Strasdat et al. (2009) developed a reinforcement learn-
ing approach for the problem of landmark selection in vi-
sual SLAM. They learn a policy on which new landmark
to integrate into the environment representation in order to
improve the navigation capabilities of the robot. The mo-
tivation behind their work is the application on memory-
constrained systems where it is not possible to maintain all
observed landmarks in the belief. Michels et al. (2005) pro-
posed to learn a control policy for high speed obstacle avoid-
ance of a remotely controlled car. Based on depth estima-
tion with a monocular vision system, steering directions are
learned. The authors focus on obstacle avoidance whereas
we consider the effect of fast movements on the observation
quality and adapt the speed accordingly. Kwok and Fox (2004)
apply reinforcement learning to increase the performance of
soccer-playing robots by active sensing. In their approach,
the robot learns where to point its camera in order to local-
ize relevant objects.

Several authors proposed techniques for state space re-
duction and basis function optimization in order to speed up
reinforcement learning. Most notably is the work of Men-
ache et al. (2005). They presented a method for optimiz-
ing the basis functions during the TD learning process us-
ing either a gradient-based approach or the cross entropy
method (Rubinstein and Kroese 2004). The compression tech-
niques proposed by Satoh (2006) concentrate on the curse
of dimensionality and how to obtain an appropriate lower
dimensional representation of the feature space. Uther and
Veloso (1998) proposed a tree-based discretization for state
space compression by determining relevant, contiguous parts
of a large domain. While all these methods mainly focus
on gaining a speed-up during learning, our approach, which
compresses an already trained policy by clustering, is mo-
tivated by the storage problem. The question we address is:
How can we represent the learned policy in a most compact
way so that it becomes applicable on memory-constrained
systems and so that, at the same time, the compression does
not lead to a loss of performance.

Bennewitz et al. (2006) developed a localization method
based on visual features and presented experiments with a
humanoid robot. The authors mentioned the impact of mo-
tion blur on feature extraction, but did not address the prob-
lem specifically. Instead, their robot interrupted its move-
ment at fixed intervals in order to perform observations. To
overcome the problem of motion blur in the context of hu-
manoid robots, Ido et al. (2009) explicitly consider the shak-
ing movements of the head while warlking and acquire im-
ages only during stable phases of the gait.

Pretto et al. (2009) proposed an additional image pro-
cessing step prior to feature extraction, in particular for hu-
manoid robots. The authors estimate the direction of the

motion blur for image patches and developed a novel fea-
ture detection and tracking scheme. While their approach
increases the matching performance, motion blur cannot be
completely removed by filtering. However, such a pre-pro-
cessing technique could be easily combined with our learn-
ing approach in order to further improve the navigation per-
formance of the robot.

Miura et al. (2006) presented a method for adaptive speed
control in partially unknown environments. In this approach,
the velocity is chosen to be as fast as possible while still be-
ing safe in the sense that potential collisions with obstacles
are avoided. The authors use heuristics which depend on the
distance of the robot to unexplored areas and empirically de-
termined safety margins around obstacles. In contrast to our
work, the uncertainty of the robot about its pose is not ex-
plicitly considered. Similarly, reactive collision avoidance
systems assume the pose of the robot to be known. These
systems compute translational and rotational velocities for
the robot, thereby considering the progress towards the goal,
the current velocities, and the distance to obstacles (Stach-
niss and Burgard 2002; Brock and Khatib 1999; LaValle
and Kuffner 1999; Schlegel 1998; Fox et al. 1997; Simmons
1996). Our approach can be seen as orthogonal to these tech-
niques. It could be combined with them, e.g., by relating the
size of the search space considered in these approaches to
the uncertainty of the pose estimate.

To the best of our knowledge, we developed the first
technique which learns about the influence of motion blur
on the observations and hence on the localization perfor-
mance, generating a policy to reach the destination reliably
and as fast as possible. This article is an extension of our
previous work (Hornung et al. 2009). The new contribution
lies in the application of our approach to general scenarios
also involving several goal points which have to be reached
subsequently. Furthermore, we discussed technical issues in
more detail and presented additional experiments carried out
with two different robot platforms.

7 Conclusion and Future Work

In this article, we presented an approach which enables a
robot to generate efficient policies for vision-based naviga-
tion. Typically, the quality of the pose estimate seriously de-
creases during fast movements. This is due to motion blur
introduced in the images and the resulting high noise in the
feature observations. As a result of a wrong pose estimate,
the robot may not be able to accomplish its navigation task
efficiently and successfully.

We formulate the task of navigating to a target location
reliably and, at the same time, as fast as possible as a re-
inforcement learning problem. While the robot applies the
learned policy, it avoids delays caused by localization er-
rors and implicitly takes the effect of motion blur on the
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feature detections into account when choosing appropriate
velocities. As we showed in simulated and real-world exper-
iments, our learned policy significantly outperforms strate-
gies which apply a constant velocity and the more advanced
dual-mode controllers with respect to the time to reach the
destination. We used different indoor and outdoor scenar-
ios to show the general applicability of the learned policy in
terms of landmark density and path length.

Furthermore, we applied a clustering approach on the
visited state space to compress the learned policy. In our ex-
periments, the approximation yielded a similar performance
as the original learned policy. This is especially valuable for
memory-constrained systems such as lightweight UAVs.

In the future, we plan to apply our approach to walking
humanoid robots or fast moving UAVs. Active policies for
vision-based navigation are especially promising for such
platforms since they have a high trade-off between accu-
racy and speed. The related navigation tasks are in general
more complex than those presented in this article. For exam-
ple, the motion of an UAV has typically 6 degrees of free-
dom (DOFs) where the movement along each dimension has
a different impact on motion blur. For a moving humanoid
robot, at least 20 DOFs have to be controlled. Thus, the re-
sulting search spaces are high-dimensional. Approximations
and dimension reduction techniques to explore them during
reinforcement learning will be needed for efficient learning.
The adaptation of our presented learning scheme to these
more complex platforms is a challenging problem for future
research.
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lanos, and Arnaud Doucet. A bayesian exploration-exploitation ap-
proach for optimal online sensing and planning with a visually guided
mobile robot. Journal of Autonomous Robots, 27(2):93–103, August
2009.
Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function
adaptation in temporal difference reinforcement learning. Annals of
Operations Research, 134(1):215–238, 2005.
Jeff Michels, Ashutosh Saxena, and Andrew Y. Ng. High speed obsta-
cle avoidance using monocular vision and reinforcement learning. In
Proc. of the Int. Conf. on Machine Learning (ICML), pages 593–600,
New York, NY, USA, 2005. ACM.
Jun Miura, Yoshiro Negishi, and Yoshiaki Shirai. Adaptive robot
speed control by considering map and motion uncertainty. Journal
of Robotics & Autonomous Systems, 54(2):110–117, 2006.
Gerhard Neumann. The reinforcement learning toolbox, reinforcement
learning for optimal control tasks. Diplomarbeit, Technischen Univer-
sität (University of Technology) Graz, May 2005.
Dan Pelleg and Andrew Moore. X-means: Extending K-means with ef-
ficient estimation of the number of clusters. In Proc. of the Int. Conf. on
Machine Learning (ICML), pages 727–734. Morgan Kaufmann, 2000.
Alberto Pretto, Emanuele Menegatti, Maren Bennewitz, Wolfram Bur-
gard, and Enrico Pagello. A visual odometry framework robust to mo-
tion blur. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2009.



13

Nicholas Roy and Geoffrey Gordon. Exponential family PCA for belief
compression in POMDPs. In Suzanna Becker, Sebastian Thrun, and
Klaus Obermayer, editors, Proc. of the Conf. on Neural Information
Processing Systems (NIPS), pages 1043–1049, Vancouver, Canada,
December 2002.
Nicholas Roy and Sebastian Thrun. Coastal navigation with mobile
robots. In Proc. of the Conf. on Neural Information Processing Systems
(NIPS), volume 12, pages 1043–1049, 1999.
Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun.
Coastal navigation–mobile robot navigation with uncertainty in dy-
namic environments. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), volume 1, pages 35–40, 1999.
Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method.
A Unified Approach to Combinatorial Optimization, Monte-Carlo Sim-
ulation and Neural Computation. Springer, 2004.
Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using
connectionist systems. Technical Report CUED/F-INFENG/TR 166,
Cambridge University, Cambridge, UK, September 1994.
Hideki Satoh. A state space compression method based on multivari-
ate analysis for reinforcement learning in high-dimensional continu-
ous state spaces. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E89-A(8):2181–2191, 2006.
Christian Schlegel. Fast local obstacle avoidance under kinematic and
dynamic cons traints for a mobile robot. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 1998.
Reid Simmons. The curvature-velocity method for local obstacle
avoidance. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 1996.
Edward J. Sondik. The optimal control of partially observable Markov
decision processes. PhD thesis, Stanford University, Stanford, USA,
1971.
Cyrill Stachniss and Wolfram Burgard. An integrated approach to goal-
directed obstacle avoidance under dynamic constraints for dynamic en-
vironments. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), pages 508–513, Lausanne, Switzerland, 2002.
Hauke Strasdat, Cyrill Stachniss, and Wolfram Burgard. Which land-
mark is useful? Learning selection policies for navigation in unknown
environments. In Proc. of the IEEE Int. Conf. on Robotics & Automa-
tion (ICRA), 2009.
Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Adaptive Computation and Machine Learning. The MIT
Press, March 1998.
Richard S. Sutton. Generalization in reinforcement learning: Success-
ful examples using sparse coarse coding. In Proc. of the Conf. on Neu-
ral Information Processing Systems (NIPS), pages 1038–1044. MIT
Press, 1996.
Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. The MIT Press, September 2005.
William T. B. Uther and Manuela M. Veloso. Tree based discretiza-
tion for continuous state space reinforcement learning. In Proc. of the
National Conference on Artificial Intelligence (AAAI), pages 769–774,
1998.
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