
Evolving complex robot behaviors

Wei-Po Lee *

Research Lab. 301, Microelectronics and Information Systems Research Center,

National Chiao Tung University, Hsin-Chu, Taiwan, ROC

Received 1 January 1998; received in revised form 25 September 1998; accepted 15 December 1998

Communicated by Kaoru Hirota

Abstract

Building robots is a tough job because the designer has to predict the interactions

between the robot and the environment as well as to deal with them. One solution to

such di�culties in designing robots is to adopt learning methods. The evolution-based

approach is a special method of machine learning and it has been advocated to auto-

mate the design of robots. Yet, the tasks achieved so far are fairly simple. In this work,

we ®rst analyze the di�culties of applying evolutionary approaches to synthesize robot

controllers for complicated tasks, and then suggest an approach to resolve them. Instead

of directly evolving a monolithic control system, we propose to decompose the overall

task to ®t in the behavior-based control architecture, and then to evolve the separate

behavior modules and arbitrators using an evolutionary approach. Consequently, the

job of de®ning ®tness functions becomes more straightforward and the tasks easier to

achieve. To assess the performance of the developed approach, we evolve a control

system to achieve an application task of box-pushing as an example. Experimental re-

sults show the promise and e�ciency of the presented approach. Ó 1999 Elsevier

Science Inc. All rights reserved.

Keywords: Evolutionary computing; Genetic programming; Computational intelligence;

Robot learning; Automatic robot programming

Information Sciences 121 (1999) 1±25
www.elsevier.com/locate/ins

* Present address: Department of Management Information Systems, National Pingtung

University of Science and Technology, Nei-Pu, Pingtung, Taiwan, ROC.

E-mail address: wplee@mail.npust.edu.tw (W.-P. Lee)

0020-0255/99/$ - see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 0 2 0 - 0 2 5 5 (9 9) 0 0 0 7 8 - X

1. Introduction

Building behavior-based control systems for robots has become a major
alternative to the traditional robot design nowadays. Many behavior-based
robots have been built in recent years, and this approach has been proven
successful [1±3]. In contrast to the classical robot control (which divides the
task of implementing intelligent behaviors along functional lines to form a
sense±think±act cycle), behavior-based control performs task decomposition to
structure the overall control mechanism as layers of behavior modules in an
incremental manner. A behavior module is a task-achieving controller; it is a
simple but complete computational mechanism which only uses sensory in-
formation related to this partial task to compute actuator outputs. To build a
behavior-based system is to develop the behavior modules ®rst, and then to
design mediators to combine the individual results from di�erent behavior
modules into an uni®ed command for actuators. By this design methodology,
researchers are able to break the computational bottleneck, and successfully
build robots acting in the real world in real time.

However, the extension of this approach to design complete autonomous
robots for more complex tasks still present some challenges, as its initiator
Brooks has already informed us [4]. The ®rst concern is about how to code a
single behavior module always capable of dealing with the information in the
uncompletely known world to achieve a speci®c task. The second one is
actually the action selection problem; it concerns how to decide, for a system
including multiple behaviors to handle a variety of situations, which behavior
or behaviors should be active at any particular time to achieve various tasks.
All these problems will become even more challenging when the number of
behavior modules involved increases to follow the increase in task com-
plexity.

Both of the above problems are in fact caused by the di�culties in predicting
complicated robot±environment interactions and in dealing with them. One
solution to these problems is to adopt learning methods by that the robot is
expected to self-improve its own behaviors to adapt to the di�erent environ-
mental situations it experiences, without explicit programming. Evolution-
based algorithms, inspired by the Darwinian principle of selective reproduction
of the ®ttest, are a speci®c kind of machine learning approach. They simulate
the natural evolution process in which members of populations change their
structures to adapt to the environment, in order to survive. The evolutionary
algorithms have been proposed to synthesize (evolve) robot control systems
[5,6] and there are some successful results [6,8,9]. As can be seen, researchers in
this application ®eld have mainly focused themselves on exploring the power of
evolutionary algorithms and on analyzing the dynamics of evolutionary
mechanisms, so their experiments always tried to use the least built-in know-
ledge to evolve a monolithic control systems from the scratch (i.e., evolving the

2 W.-P. Lee / Information Sciences 121 (1999) 1±25

controller as a whole). Admittedly, the tasks achieved so far, such as obstacle
avoidance or light seeking, are relatively simple.

To investigate how the evolutionary computation technique can be used to
develop robot controllers for more complicated tasks, in this paper we ®rst
analyze the problems of direct use of this technique to solve complicated
control tasks, and then present a practical approach at the intermediate level:
instead of hand-coding a behavior-based system or insisting on a strong
learning principle as others do, we take a distributed control architecture
similar to the behavior-based system, meanwhile, use the evolutionary tech-
nique to learn the individual behavior modules and the coordination strategies
between them. This will take the advantages of both approaches and mediate
between the two to overcome their own disadvantages. To demonstrate the
proposed approach can speed up the learning process and can be scaled up to
develop control systems for more complex tasks, we use it to undertake an
application task of box-pushing as an example. In addition, we also use the GP
system to evolve monolithic controllers to solve the same task in comparison to
our approach. The results prove that only our approach can successfully evolve
controllers to ful®ll the target task.

2. Background

2.1. Related work

In general, the process of evolving control systems is similar to that of the
traditional evolution-based work; but the major di�erence lies in that evolving
controllers involves a robot (simulated or real). Evaluating a controller is to
execute the corresponding control code on a robot in the experimental envi-
ronment for a period of time and then to measure its performance. Based on
the evolutionary technique used, research work in this ®eld can be categorized
into genetic algorithm (GA)-based work [6±8] and genetic programming
(GP)-based work [10±12]. A GA-based work normally involves encoding the
parameters of a controller, such as the weights and thresholds of a neural
network, to a linear string and then used a standard GA to determine values
for the relevant parameters. A GP-based work, on the other hand, uses a tree
structure to represent a control program and employs GP techniques to de-
termine the tree-like program. According to the literature work, it can be
observed that using GP to evolve robot controllers has the innate advantage of
operating variable-size genotypes. This is an important feature in developing
control systems because it provides complete freedom to evolve the morphol-
ogy of controllers. However, the GP-based work has been criticized for its
need of a relatively large population size which in fact means more computa-
tional resources. This is especially an unfavorable feature in evolving robot

W.-P. Lee / Information Sciences 121 (1999) 1±25 3

controllers for its time-consuming characteristic. But, in this work we will show
that by de®ning an appropriate representation, GP can restrain itself to use a
relatively small population size to evolve reliable and robust controllers in a
short period of time.

2.2. Genetic programming

Genetic programming is a new evolutionary computation technique which
was recently invented by Koza [13], and its popularity is now increasing in the
community of evolutionary computation research. It is an extension of the
traditional GAs with the basic distinction that in GP, the individuals are dy-
namic tree structures rather than ®xed-length vectors. GP aims to evolve dy-
namic and executable structures often interpreted as computer programs to
solve problems without explicit programming.

As in computer programming, a tree structure in GP is constituted by a set
of non-terminals as the internal nodes of the trees, and by a set of terminals as
the external nodes (leaves) of the trees. The construction of a tree is based on
the syntactical rules which extend a root node to appropriate symbols (non-
terminals and/or terminals) and each non-terminal is extended again by suit-
able rules accordingly, until all the branches in a tree end up with terminals.
Hence, the ®rst step in applying GP to solve a problem is to de®ne appropriate
non-terminals, terminals and the syntactical rules associated for the program
development. The search space in GP is the space of all possible tree structures
composed of non-terminals and terminals.

The next step is to evaluate tree-individuals to determine their ®tness for the
creation of a new population. This is normally done by pre-de®ning a ®tness
function which quantitatively describes the requirements of a target task ®rst,
and then executing the corresponding codes for tree-individuals in the envi-
ronment of the particular problem. After that, the genetic operators are applied
to the ®tters selected (based on a certain selection criterion) to generate new
trees. The evaluation and recreation cycle is repeated until the termination
criterion is met. Fig. 1 illustrates the general ¯ow of such an evolution mech-
anism.

In GP, three kinds of genetic operators ± reproduction, crossover, and
mutation ± are normally used to create new tree individuals. The reproduction
simply copies the original parent tree to the next generation; the crossover
randomly swaps subtrees for two parents to generate two new trees; and mu-
tation randomly regenerates a subtree for the original parent to create a new
individuals. Among them, crossover is the major one to create most of the
o�spring; when it is performed, all syntactic constraints must be satis®ed to
guarantee the correctness of new trees. Fig. 2 shows an example of the oper-
ation of crossover in GP. Considerable details about GP are referred to [13].

4 W.-P. Lee / Information Sciences 121 (1999) 1±25

Fig. 2. An example of crossover in GP. Two new trees, representing two functions di�erent from

the original ones, are created by swapping subtrees of parents.

Fig. 1. The general ¯ow of a simulated evolution mechanism.

W.-P. Lee / Information Sciences 121 (1999) 1±25 5

3. Evolving controllers for complex tasks

3.1. The di�culties

Generally speaking, the evolutionary approach is a kind of search-based
method in which genetic operators are used in the hope of ®nding a satisfactory
solution in a space; and the dimensionality of this space is determined by the
number of basic elements constituting a controller. When the size of the con-
troller is reasonably increased to match the increase in task complexity, the
solution space will grow exponentially and then leads the search to be more
and more di�cult. This is particularly apparent in work that uses recurrent
neural networks as control systems, since the characteristic of recurrence en-
larges the search space even faster.

Increasing task complexity also introduces certain di�culties in de®ning
®tness functions to guide the search direction during evolution. In evolving
controllers, it is preferred to de®ne a ®tness function in terms of lower-level
quantities, such as sensor or motor activities. This is because of that these
quantities vary gradually and continuously when the robot is acting in the
world; di�erent controllers thus have distinguishable ®tness values and this
makes an evolutionary system easy to converge, and the task easy to achieve.
However, an increase in task complexity implies a high-level goal to achieve,
which almost always involves the interaction of multiple subgoals. Under such
circumstances, de®ning a ®tness function means to describe multiple subgoals
and the interaction between them simultaneously ± this is never a easy job.

Another way is to directly de®ne a ®tness function at the higher-level for a
complex task. This is relatively straightforward, but it makes the task di�cult
to achieve. For example, in the work [14], the authors have shown that, in their
grasping task, if the ®tness function was simply de®ned as the number of ob-
jects grasped and deposited correctly, the desirable behavior could not be
evolved successfully. This is due to the fact that during the earlier generations,
none of the individuals can achieve the complete task; this results in equally
bad ®tness for all the population members (all scored zero) and made all the
control systems indistinguishable in performance. On the other hand, in the
same example, if lower-level subgoals were introduced to the ®tness function,
such as rewarding the behaviors of recognizing objects and picking objects up,
the performance of controllers became more distinguishable and then the
target task could be achieved, but at the expense of making great e�orts to
de®ne a proper ®tness function. It shows that manipulating ®tness at lower
levels can assist the evolutionary system to converge; nevertheless de®ning an
appropriate ®tness function at a lower level is di�cult. Furthermore, such
di�culty will increase as the consequence of the increase in task complexity.

The above analyzes the di�culties one will encounter in evolving monolithic
control systems for complex tasks. From the point of view of controlling a

6 W.-P. Lee / Information Sciences 121 (1999) 1±25

robot, we may want the evolved control systems to be distributed for their
corresponding advantages, but this is generally di�cult to obtained by the
strategy of evolving a control system as a whole. In a distributed architecture,
the perceptual processing is distributed across multiple independent modules,
and every module only deals with the sensory information directly related to its
particular need. This not only reduces the sensory bottleneck but also allows
each control module to be developed with the most suitable representation and
approach with least restriction. Owing to the modular and distributed char-
acteristics, the performance of the overall system will degrade gradually, even if
some of the devices or control strategies do not function properly. Also, with
an explicitly distributed architecture, an overall system will be easily integrated
from di�erent subsystems which could be designed independently; it can also
be easily maintained. Therefore, from the point of view of developing robot
control systems, a centralized control structure from the strategy of evolving a
control system as a whole is not suitable.

3.2. Task decomposition

In order to reduce the search space to make the search easier, to simplify the
job of de®ning ®tness functions, and to obtain a distributed control system, a
breakthrough is to adopt the divide-and-conquer problem-solving methodol-
ogy. In such approach, the designers break tasks from complex (higher-level)
down to simple (lower-level) recursively and then achieve the tasks in the re-
verse sequence. How to decompose a task generally depends on the designers'
experiences, and human designers are normally quite capable of that. The tasks
are arranged to be achieved in a sequence of increasing complexity and, at each
level, the control systems are evolved on top of the ones evolved at lower-levels.
Hence, ®tness functions will become easier to de®ne, and the tasks easier to
achieve (the ®tness function of a certain level task can be de®ned simply as the
goal at this level, to reduce the di�culty in embedding the lower-level subgoals
into it; and evolving control systems on top of other lower-level controllers can
exploit their corresponding control skills to achieve the current goal). In ad-
dition, each subtask only needs to deal with the perceptual information directly
related to it, which also makes the tasks easier to achieve.

As a matter of fact, the concept of such approach is much like behavior-
based control described in the ®rst section, while the main di�erence is that the
approach here employs evolutionary techniques to evolve new behaviors and
behavior coordinators, rather than to hand-code them. By the use of evolu-
tionary techniques, the human designer can concentrate on the system-level
design and let the evolutionary system take care of the implementation details.
In addition, since the tasks in this approach are decomposed in the horizontal
way proposed in [15], the corresponding control architectures will be explicitly
distributed and then fully exploit all the advantages of distributed architectures

W.-P. Lee / Information Sciences 121 (1999) 1±25 7

as analyzed in the above section. The task decomposition technique has also
been applied to other robot learning domains; examples are Dorigo and Col-
ombetti's [7] and Colombetti et al.'s [16] work in learning classi®er systems, and
Mataric's [17] and Lin's [18] work in reinforcement learning.

We are especially interested in investigating some ways to reduce the load of
robot programmers and in evolving distributed architectures for complex
tasks. After analyzing the advantage of the use of task decomposition, we will
now investigate how to combine this technique, with our GP system to evolve
control modules and coordinators to achieve complex tasks.

4. Evolving distributed task-achieving controllers

As described above, to evolve distributed control systems to achieve com-
plex tasks, we intend to use the technique of task decomposition to break the
overall tasks and use the GP techniques to evolve separate behavior controllers
and coordinators for integration. In this section, we will describe the general
structure of the control architecture corresponding to the task decomposition,
and then present the genetic representation of the controller to be evolved.

4.1. Control architecture

Since we will decompose tasks in a hierarchical way, the corresponding
control system is organized in multiple layers. After decomposition, the overall
control system includes a set of behavior primitives and behavior arbitrators.
Here, a behavior primitive is a reactive controller with the representation de-
scribed in the section below; it involves the lowest-level sensory±motor control.
Unlike the ®xed priority network in the subsumption architecture [15], a be-
havior arbitrator here is not hardwired in advance; it is also treated as an
adaptive controller and implemented as a switcher as shown in Fig. 3(b). The
behavior arbitrator has the same structure and representation as the primitives;
the only di�erence between them is: the output of a primitive is used to control
the motors, but the output of an arbitrator is used to activate one of the
subcontrollers involved. Thus, in a similar manner to a reactive planner in [19]
or a conditional sequencer in [20], an arbitrator here allows the binding be-
tween environment conditions and activations of lower-level behaviors to take
place at run time. This provides adaptiveness not only at the lower-level sen-
sory±motor control but also at the behavior level.

Depending on whether the computing system used supports parallel
computation, the control ¯ow in the control system with the above archi-
tecture can be implemented as bottom±up (if parallel computation is sup-
ported) or top±down (if not). For bottom±up ¯ow, all reactive controllers are
active and run in parallel. The behavior primitives send outputs to the

8 W.-P. Lee / Information Sciences 121 (1999) 1±25

arbitrators as their inputs, and each arbitrator selects one of its inputs (ac-
cording to the environmental stimuli) as its output, and then sends this value
to higher-level arbitrators. In this way, the output of the highest-level arbi-
trator will be the output of the overall control system. In contrast to this, for
top±down ¯ow, all the control modules are passive. At each time step, the
highest-level arbitrator invokes one of its subcontrollers to be in charge of the
control, according to certain sensory information. If the invoked subcon-
troller includes an arbitrator, this arbitrator will be evaluated ®rst and its
output can then be used to activate another controller. This process continues
until a control primitive at the lowest level is invoked and drives the actu-
ators. Because our system does not support parallel computation, top±down
¯ow is used. Fig. 3(a) illustrates the general architecture of our control
systems.

4.2. Genetic representation of a behavior controller

In the behavior-based control paradigm, the circuit network has been proven
to provide a ®ner-grained view to represent a behavior controller. In the circuit
approaches [21±23], a behavior controller exists in the form of digital hardware;
and it is made up by two types of components, pure functions and delays,
depending on what kind of tasks (reactive or sequential) it is achieving. Pure
functions mean logic gates, and delays correspond to the ¯ip-¯ops or registers.
The output of one component may be the input to one or more other com-
ponents, thus forming a network. Signals propagate through the network and
sensing is thus linked to action. As is well known, any ®nite state transduction
can be carried out by such a network. In this work, we concentrate on the
reactive controller; afterwards the same approach can be extended to evolve
sequential ones with minor modi®cation.

Fig. 3. (a) The general architecture of a control system. S and A represent the sensors and actuators

related to a certain control work. (b) The implementation of an arbitrator.

W.-P. Lee / Information Sciences 121 (1999) 1±25 9

The genetic representation of our reactive controller is inspired by the logic
representation in the circuit approaches. By duplicating and separating those
components, the output of which serve as inputs of multiple components, and
by introducing a dummy root node to connect the outputs of a circuit network
together, we ®nd it very straightforward to convert a circuit network to a
circuit tree. Fig. 4 shows an example. In this ®gure, an input variable Xi rep-
resents a sensor response thresholded by a pre-de®ned value. But in a real
control work, the threshold is normally unknown and, when the robot con-
tinuously senses the environment to monitor the variation, it not only checks
whether certain sensors reach some kind of threshold, but also observes the
di�erence between sensors (if they are comparable) to determine its actions.
Therefore, in our representation, we structure the perception information into
sensory conditionals and connect them to the inputs of a logic circuit.

In our design, structured sensory conditionals involve comparing the re-
sponses of di�erent sensors or comparing sensor response to numerical
thresholds. For these purposes, both sensor responses and numerical thresh-
olds are normalized to be between 0 and 1 inclusive. Thus, a sensor conditional
has a constrained syntactic structure; it exists in the form of X > Y , where
X ; Y can be any normalized sensor response or threshold which is determined
genetically.

Depending on the characteristics of the speci®c tasks, di�erent kinds of
sensors will be required. In general, a sensor is de®ned to be associated with a
value between 0 and 1 which indicates the angle between the direction which
the sensor is pointing at and the robot's heading. Thus, whenever a sensor is
called in the control system, the normalized sensor response is returned, in the
direction indicated by the value associated with that sensor. For instance, a

Fig. 4. An example shows converting a circuit network to a tree.

10 W.-P. Lee / Information Sciences 121 (1999) 1±25

sensor with the value 0.3 will return the normalized sensor response in the
direction 0.3 revolution �108°� anti-clockwise, relative to the robot's heading.
In this way, the sensor positions and directions are also allowed to be co-
evolved if the sensors are adjustable [24]. For a robot with ®xed sensors, the
values associated with the sensor are constrained, subject to the availability of
sensors. In the experiments below, we use a robot with ®xed sensors.

After organizing our genetic representation, we then de®ne non-terminals
and terminals which constitute a circuit tree for our GP system. In general,
three types of non-terminals are de®ned: the dummy root node, the logic
components, and the comparator. The dummy root node is to collect the main
outputs of a control system for convenient manipulation by a GP system; the
logic components are to constitute the main frame of the controller to map
the structured sensor information into appropriate actuator commands; and
the comparator is to construct the sensor conditionals. As is mentioned above,
because the elements in a sensor conditional can be normalized sensor response
or numerical thresholds, both of them are de®ned as terminals. The tree rep-
resentation of a typical controller is illustrated in Fig. 5. In such a structure, the
outputs of the subtrees of a circuit tree are interpreted as actuator commands
to drive actuators.

To evolve instances to solve di�erent control tasks, we have to de®ne dif-
ferent sensor terminals, depending on the requirements of the speci®c tasks.
For example, we may de®ne infra-red sensors as sensor terminals to detect
walls and objects for an obstacle avoidance task; we may also de®ne ambient

Fig. 5. (a) The general structure of a controller. In this ®gure, N0 is a dummy root node, N1

represent logic components, and N2 is the comparator >�. T can be a normalized sensor response

or a threshold between 0 and 1 inclusive. The outputs of the subtrees are used to drive the actuators

or activate another control system. (b) An example of a typical controller in which i; j; k are values

indicating the sensor directions.

W.-P. Lee / Information Sciences 121 (1999) 1±25 11

light sensors as terminals to sense the light for a phototaxis task. The following
experiments will give an account of how to evolve such kind of controllers in
detail.

4.3. Other implementation issues

Because there are some constrained syntactic structures de®ned in this work,
the crossover operation must be constrained to protect the de®ned structures.
If the selected crossover point in the ®rst parent is the root node, the second
crossover point must also be a root node; if the chosen crossover point in one
parent is an internal node, then the crossover point in the other parent must be
an internal node as well; otherwise if the selected crossover point in the ®rst
parent is a terminal node, the crossover point for the second parent is restricted
to be a terminal node.

In order to maintain the diversity and to reduce the computation cost, an
island model [25] GP system is implemented. The subpopulations in our dis-
tributed genetic system are con®gured as a binary n-cube. Migration will
happen only between immediate neighbors, along di�erent dimensions of
the hypercube, and the communication phase is to send a certain number of the
best individuals of each subpopulation to substitute the same number of the
worst individuals of its immediate neighbors at a regular interval.

5. Experimental setup

5.1. The robot and simulator

The robot used in this work is the miniature mobile robot, Khepera [26] (Fig.
6). It has two wheels driven by two DC motors and both motors can revolve
forward and backward independently. It is originally equipped with eight infra-
red proximity sensors which can also be used in a di�erent mode to measure
ambient light around the robot. For the purpose of identi®cation, the sensors
are numbered from 0 to 7 as illustrated in Fig. 6.

The main goal of this paper is to demonstrate how our approach can be used
to overcome the di�culties in building behavior-based robots manually and in
evolving monolithic control systems, so we only present the simulation result.
The simulator in this work was built by a look-up table approach and its
performance, in bridging the gap between the simulated and real robots, has
been shown in our preliminary study: the evolved controllers can be down-
loaded to the real robot without the loss of performance [27].

In addition to the eight sensors mentioned earlier, we assume that there are
another set of eight sensors on the top of the simulated robot and those top
sensors are higher than the box. This is to ensure that the robot can detect the

12 W.-P. Lee / Information Sciences 121 (1999) 1±25

light by the upper set of sensors, even in the situation where the box is between
the robot and the light. Besides, the two sets of sensors can be used to construct
box recognizers: a recognizer BR is de®ned to give the normalized reading
di�erence between a pair of upper and lower IRs that point at the same di-
rection.

5.2. Task description and decomposition

In the following experiments, we will follow the approach described in
Section 4 to develop a behavior-based style control system for a moderately
di�cult box-pushing task. In this task, the robot has to explore the given arena
in order to ®nd a box; once it detects the box, it is then required to push the box
toward a goal position indicated by a light source.

The task to be achieved is di�cult for the following reasons. First of all, the
robot is round, so that it only contacts the box at one point while pushing it;
when the pushing force exerted by the robot is not directed straight through the
center of the box, it tends to slide and rotate unpredictably. Therefore, the
robot has to adjust its own position occasionally in order to push the box
forward. Furthermore, as there is no particular restriction on the initial relative
positions of the robot, the box, and the ambient light, the robot could ap-
proach and detect the box at any position and orientation around the box;
under such circumstances, the robot needs to deliberately move to a proper
position in order to perform an e�cient pushing to satisfy the ®nal goal.

To accomplish this task, we can decompose it into two subtasks, exploration
and push-box-toward-light. The former is to control the robot to explore the
given arena in order to ®nd the box without bumping into a wall; and the
latter, to push the box detected to the light center. As is mentioned above,

Fig. 6. The Khepera miniature robot and its sensor arrangement. In the right ®gure, a sensor Si can

function as an infra-red or an ambient light sensor.

W.-P. Lee / Information Sciences 121 (1999) 1±25 13

when the robot ®nds the box, it has to move to a proper position before
pushing it, so the task push-box-toward-light can be decomposed again into two
even lower-level subtasks, box-pushing and box-circling. Box-pushing is to keep
the robot pushing a box forward, while box-circling is to keep the robot moving
along the side of a box in order to provide the opportunity for the robot to
move to suitable positions for pushing. Fig. 7 shows the result of decomposi-
tion and the design of the corresponding architecture for the target task. Each
of the atomic subtasks is controlled by a separate behavior primitive, and the
di�erent subcontrollers can be merged by an arbitrator, which is implemented
as a switcher as described in Section 4.1.

6. Experiments and results

In our experiments, a ®tness function is in fact a penalty function. This
di�ers from the traditional GAs, but is often used in GP-based work. As we
emphasized previously, in our approach, the ®tness function for a lower-level
task should be de®ned in terms of sensor and motor activities; but for a
complex task, the ®tness function can be directly de®ned at the high level
without describing all of the subgoals involved. The experiments below will
show how ®tness functions at di�erent levels are de®ned and how our approach
works.

To be objective, 10 independent runs (with di�erent random seeds) were
conducted for each task. In a single evolutionary run, 2 populations of 50
individuals were used. For the behavior primitives, each run lasted for 50

Fig. 7. The decomposition and integration of the target task; Si indicates the sensory information

relevant to control work i.

14 W.-P. Lee / Information Sciences 121 (1999) 1±25

generations; but for the behavior arbitrators the GP system was run for 100
generations, in order to clearly demonstrate the di�erences between strategies
with and without the use of task decomposition (we have also conducted ex-
perimental runs without using task decomposition for comparison). During the
experiment, an individual was trained in multiple trials with di�erent starting
positions, to ensure the robustness and reliability of the evolved result [24].
Experimental details are described below.

6.1. Evolving a primitive for the box-pushing task

The task of box-pushing is that the robot keeps pushing a box forward as
straight as possible. To achieve such a task, the robot needs to use its IR
sensors to acquire perception cues for the location of the box. Therefore, we
de®ned two kinds of terminals, IRs and numerical thresholds, for our GP
system to evolve controllers capable of achieving this task.

The second step is to de®ne a ®tness function to guide the evolution. For this
low-level task, the ®tness function was formulated, through the quantitative
description of the expected behavior, as keeping the activation value of the
robot's front IR sensor high, the robot moving fast forward, and the speed
di�erence between two motors low. The pressure from keeping the front IR
sensor with high activation value was to reinforce the robot to approach a box;
and the pressure from keeping robot moving fast forward with low speed
di�erence between two motors was to prevent it from getting stuck in front of a
box and to encourage the robot to move straight. The combination of these can
lead to a pushing-forward behavior. Thus, the ®tness function for evolving a
behavior controller of box-pushing was de®ned as

f �
XT

t�1

�a � �1ÿ s�t�� � b � �1ÿ v�t�� � c � w�t��;

in which s(t) is the average of normalized sensor activations of the front sensors
IR2 and IR3, v(t) the normalized forward speed, w(t) the normalized speed
di�erence of two motors at each time step t and a, b, c are the corresponding
weights expressing the relative importance of the above three criteria (and
determined by preliminary testing).

In order to illustrate the performance of our GP system, the ®tness curves
over the 10 runs are shown in Fig. 8(a). It indicates that our GP system is
considerably e�cient: the performance was improved quickly and stably. The
typical box-pushing behavior of the simulated robot, when performing the
evolved controller, is shown in Fig. 8(b). To prove its reliability and robustness,
the controller evolved was tested many times and at each time the robot started
from an arbitrary position and heading around the box. During the tests, the
robot always generated the consistent behavior: it turned to face the box,

W.-P. Lee / Information Sciences 121 (1999) 1±25 15

approached it, and then pushed the box; while at some speci®c time steps, the
robot produced prompt turns to drive back from path deviations and to head
towards the box again.

6.2. Evolving a primitive for the box-circling task

The task of box-circling is de®ned as that the robot keeps moving forward
and circling along the sides of a box. As performing the box-pushing task, the
robot needs to use its IRs to capture the location of the box in this task. Thus,
terminals for evolving a controller to achieve this task were de®ned as the same
as those in the box-pushing task: IRs and numerical thresholds.

Again, a ®tness function was needed, and it was formulated as keeping
the side sensor IR0 with a certain activation value and the speed positive.
The former was to encourage the robot to keep a certain heading relative to
the box and a certain distance away from the box; and the latter was to
reinforce the robot moving forward. The combination of these would be
able to produce a box-circling behavior. Thus, the ®tness function was
de®ned as

f �
XT

t�1

�a � abs�s�t� ÿ k� � b � �1ÿ v�t���;

where abs is the absolute function, s�t� gives a normalized activation value of
the speci®c sensor IR0, k a pre-de®ned constant (between 0 and 1) indicating

Fig. 8. (a) Population average ®tness and best individual ®tness at each generation. Values are

averaged over 10 runs. (b) The trajectories of the simulated robot when it was pushing a box (the

darker circles represent the boxes; the boxes are pushed from top to down).

16 W.-P. Lee / Information Sciences 121 (1999) 1±25

the distance between the robot and the box; and v is the normalized forward
speed of a robot.

Fig. 9(a) shows the ®tness curves over the 10 independent runs and Fig. 9(b)
presents the evolved box-circling behavior of the simulated robot, which
demonstrates that the task was achieved successfully. We tested the evolved
controller several times by putting the robot around the box with an arbitrary
heading each time. In all tests, the robot had the similar behavior: it performed
turning to adjust its heading ®rst and then moving along the side of the box
with a certain turning rate.

6.3. Evolving a primitive for the exploration task

In this task, the robot is required to wander safely in an enclosure and visit
as much of the enclosed space as possible. It can be described quantitatively as
that the space is divided into some grid squares and the robot must visit as
many squares as possible during a ®xed period of time. There are di�erent ways
to achieve this task. For instance, it can be achieved by using a map to provide
location information to the robot. Having the location information, the robot
can realize its own location and the locations of those squares that have been
visited already. It can then head to those squares which have not been visited
according to the records of the map. There is also another kind of strategy
without using a map, when no location information is available. In such a
strategy, the robot does not know where it is and which squares it has not
visited yet. To carry out the exploration task, the robot needs to determine its
turning angle carefully in the situations when it senses the boundary of the

Fig. 9. (a) The ®tness curves averaged from 10 independent runs. (b) The box-circling behaviors of

the robots.

W.-P. Lee / Information Sciences 121 (1999) 1±25 17

enclosure. In our experiment, we intended to evolve a reactive controller for
exploring a space without using location information.

Because the controller to be evolved was reactive and there was no location
information provided here, to achieve this task the robot must fully exploit its
IR sensors to determine the turning angle carefully. Since IR sensors were the
only mechanism for providing perception cues, the terminals for the explora-
tion task were then de®ned to include IRs and numerical thresholds as the
above two tasks. Unlike the experiments presented above, the ®tness mea-
surement for this task was not the sum of penalties over each time step but
rather could only be assigned after a complete trial. The main concern for the
®tness was to minimize the number of squares which had not been visited,
while an extra pressure on the speed was added to encourage the robot to move
forward when exploring. Thus, the ®tness function was de®ned as

f � a� �1ÿ P � � b� �1ÿAvg�;
where P is the proportion of the space visited, i.e., visited-grids/total-grids, and
Avg is the average speed of the robot during a complete trial.

Fig. 10(a) illustrates the converging ®tness curves for evolving controllers of
exploration. It indicates the fast and smooth converging behavior of the evo-
lutionary runs and again, shows the performance of our GP system. The
typical exploration behavior produced is presented in Fig. 10(b), which shows
that the robot was able to visit most of the speci®ed arena during a ®xed period
of time. We should note that it is not important how the robot moved, when it
did not sense anything; but the appropriate match between the turning
angle (when the robot sensed the wall) and the way it moved (when it did not
sense anything) is nevertheless crucial for a reactive controller to perform

Fig. 10. (a) Population average ®tness and best individual ®tness at each generation. Each value

represents the average over 10 runs. (b) The exploration behavior evolved.

18 W.-P. Lee / Information Sciences 121 (1999) 1±25

exploration. As we can see in Fig. 10(b), a successful match has been evolved
and it enabled the robot to achieve the task.

6.4. Evolving an arbitrator for the push-box-toward-light task

As mentioned above, an arbitrator is also implemented as a reactive con-
troller; its inputs are from sensors, and its outputs are used to trigger other
controllers. For the arbitrator here, two kinds of sensors ± IRs and LDRs ± are
needed to detect the locations of the box and the light, so both kinds of sensors
and the numerical thresholds were de®ned as terminals to the GP system to
construct the conditionals for the arbitrator. Since there were only two sub-
controllers involved, the arbitrator was designated to have a single output to
activate them: if the output was 0, then the controller for subtask box-pushing
dominated the control, otherwise the controller for subtask box-circling did.
During the experiment, the two subcontrollers were frozen and only the ar-
bitrator was evolved.

In this task, the robot was expected to push the box as close as possible to the
center of the area brightened by the light. As analyzed in Section 3.2, we can
directly de®ne the ®tness function at this level: to measure the distance rather
than to describe the low-level quantities. Thus, the ®tness function was de®ned as

F �
XT

t�1

Db;l�t�;

in which Db;l(t) represents the distance between the box and the light source at
each time step t. In this experiment, each step was a complete cycle: both the
arbitrator and the activated controller were executed once.

Fig. 11 illustrates, step by step, the typical behavior of the robot. As can be
seen, the arbitrator ®rst activated the primitive box-circling to move the robot
along the side of a box. Once the robot reached an appropriate position in
which the box was between the light and the robot itself, the control was im-
mediately switched to the other primitive, box-pushing, to drive the robot to
push the box forward. The box-circling and the box-pushing primitives were
activated again in the same order if the pushing path deviated. After the box
was pushed to the goal position, the arbitrator continuously activated the
primitive box-circling to make the robot circle the box in order to prevent it
pushing the box away from the goal position. From Fig. 11, we can see that the
box was successfully pushed to the center of the bright area.

6.5. Evolving arbitrators for the overall task

After evolving an arbitrator to combine two pre-evolved lower-level prim-
itives, we can regard the integrated control system (including one arbitrator

W.-P. Lee / Information Sciences 121 (1999) 1±25 19

and two primitives) as a building block, and then evolve a new arbitrator to
combine this building block and the exploration controller to achieve the
overall task. In order to generate proper output sequence to coordinate two
control systems involved, this arbitrator needs the perceptual information to
recognize the appearance of the box. Therefore, the box recognizer BRs and
the numerical thresholds were de®ned as terminals to evolve the desired arbi-
trator. As in the above section, this arbitrator was to coordinate two con-
trollers, so it was designated to have one output: if the output was 0, the
controller for exploration was activated, otherwise the controller for push-box-
toward-light was activated. Again, the controllers to be combined were frozen
and only the arbitrator was evolved.

This task is to train the robot to push the box as close as possible to the
speci®ed position after it detects the box, so the ®tness function can be de-
scribed as to accumulate the distance between the box and the goal position at
each time step, starting from the time when the the robot ®nds the box. Hence,
the ®tness function was de®ned as

f �
Xk�T

t�k�1

Db;l�t�;

Fig. 11. The behavior sequence of the robot during a typical test: (1) the initial positions of the box

(dark circle), the light (smallest circle) and the robot; (2) the robot moved along the side of the box;

(3) it pushed the box forward; (4) it then circled again to an appropriate position; (5) it pushed the

box again to the goal position; (6) and it continuously circled the box after the box has been pushed

to the goal position.

20 W.-P. Lee / Information Sciences 121 (1999) 1±25

in which Db;l�t� is the distance between the box and the goal position at time t,
k the time when the robot ®nds the box and T is the number of time steps for
®tness measurement; each time step was a complete cycle from the highest-level
arbitrator to the lowest-level primitive.

The typical behavior of the robot, when executing the whole control system,
is shown in Fig. 12. From these ®gures, we can see that the arbitrator ®rst kept
activating the controller exploration to drive the robot to explore the given
environment and to avoid the walls. Once the robot found the box, the arbi-
trator began to activate the other controller, push-box-toward-light, according
to the sensory stimuli. Since the arbitrator was able to activate this control

Fig. 12. The behavior sequence of the robot: (1) the initial conditions; (2) the robot wandered

around the environment to look for the box; (3)±(7) the robot continuously performed the building

block controller push-box-toward-light to achieve the task after it found the box.

W.-P. Lee / Information Sciences 121 (1999) 1±25 21

block continuously after the robot had found the box, the overall task was then
achieved successfully.

6.6. Evolving arbitrators vs. evolving monolithic controllers

In the above experiments, we have shown that by taking an explicitly dis-
tributed control architecture and then evolving behavior primitives and arbi-
trators, one can synthesize control systems to achieve complicated task without
making too much e�ort. In order to evaluate the proposed approach more
objectively, we had also used our GP system to evolve a monolithic controller
for the same overall task and then compared the performance of the two dif-
ferent methods.

For the experiments of evolving monolithic controllers, we de®ned IRs,
LDRs, BRs and the numerical thresholds as terminals. The ®tness function and
other experimental parameters were exactly the same as those in evolving ar-
bitrators. A successful controller was expected to integrate di�erent sensory
information to achieve the target task.

Fig. 13 compares the ®tness curves of the best individual ®tness at each
generation for the di�erent strategies, in which values are averaged over 10
runs. The upper ®tness curve represents the result of evolving monolithic
controllers; it indicates that the task can not be accomplished by the method of
evolving controller as a whole from the scratch. On the contrary, the lower
®tness curves in Fig. 13, which are the results of evolving arbitrators for the
pushing-box-toward-light task and the overall task, clearly show that our

Fig. 13. The comparison of the best individual ®tness by di�erent strategies; values are averaged

over 10 runs. In this ®gure, arbitrators1 and 2 are the results of evolving arbitrators for the push-

box-toward-light task and the overall task, respectively.

22 W.-P. Lee / Information Sciences 121 (1999) 1±25

approach can e�ciently and consistently evolve control systems to achieve
the target task (the typical robot behaviors have been illustrated in Figs. 11
and 12).

7. Conclusion

In this paper, we have indicated the challenges of extending the behavior-
based approach to design control systems and have analyzed, from di�erent
points of view, the main di�culties in applying evolutionary techniques to
synthesize robot controllers for complicated tasks. None of them are trivials,
nor are they easy to achieve. In order to reduce the load of robot programmers,
and to evolve distributed control systems e�ciently, we proposed our approach
at the intermediate level. Instead of programming all components for a be-
havior-based robot or evolving the overall control system as a whole, we
suggest to perform task decomposition in which a behavior-based architecture
is adopted (and a target task is decomposed to ®t that architecture), and to
evolve separate behavior primitives and arbitrators for coordination. This al-
lows the robot control systems for more complicated skills to be evolved in an
incremental way. As is indicated, the use of evolving arbitrators to coordinate
lower-level controllers for complex tasks makes the job of de®ning ®tness
functions more straightforward and simple, and the tasks easier to achieve.
Moreover, the resulting control systems can be explicitly distributed, under-
standable to the system designer, easy to maintain, and perform like a be-
havior-based system.

To assess the proposed approach, we have employed it to evolve control
systems to achieve a moderately complex task, in which a robot has to explore
a given environment to ®nd a box without bumping the walls, and then push
the box to a goal position indicated by a light source. Experimental results have
shown that our approach can reliably evolve control systems for the target
task. In addition, we have also conducted experiments to evolve a monolithic
control system for the same task, to compare the performance of two di�erent
approaches. The results indicate that because of the di�culties described, the
target cannot be achieved successfully by the latter approach.

From the point of view of employing the evolutionary technique to evolve
a single control module, our GP system has some advantages, because of the
genetic representation designed. It has the feature of operating variable-size
genotype as other GP-based work, but does not have the disadvantage of the
need of a large population size. In fact, we have shown that our GP system
can evolve reliable and robust behavior controllers within a relatively small
number of generations, by a relatively small number of population size (In
[10,11], a population size of a few thousands was needed to evolve controllers
for even simpler tasks.) Also, the logic representation means our system is

W.-P. Lee / Information Sciences 121 (1999) 1±25 23

computationally cheap, and its characteristic of low output sensitivity to
input noise makes the result robust, subject to the unreliable sensors and
motors in the real world. These features are all very important in evolving
robot controllers.

Our work presented here points to some prospects of further research. One
is to use the proposed approach to evolve control systems for various tasks and
even far more di�cult tasks to examine its generality. In particular, it will be
worthwhile to extend our system to evolve controllers for sequential tasks
which involve internal states in the control mechanisms. For this, it is necessary
to introduce some memory components, such as ¯ip-¯ops, into our circuit trees
to participate the evolution. Another direction is to investigate how to integrate
the system presented in this paper, with our previous work which explores the
co-evolution of robot controllers and physical structures [24], to synthesize
complete autonomous robots automatically.

References

[1] R.A. Brooks, A robot that walks: emergent behaviors from a carefully evolved network,

Neural Computation 1 (2) (1989) 365±382.

[2] R. Pfeifer, C. Scheier, Sensory±motor coordination: the metaphor and beyond, Robotics and

Autonomous Systems (1997).

[3] L. Steels, Building agents out of autonomous behavior systems, in: L. Steels, R. Brooks (Eds.),

The Arti®cial Life Route to Arti®cial Intelligence, Erlbaum (Lawrence), London, 1993.

[4] R.A. Brooks, Challenges for complete creature architectures, in: From animals to animats:

Proceedings of the First International Conference on Simulation of Adaptive Behavior, 1991,

pp. 434±443.

[5] R.A. Brooks, Arti®cial life and real robots, in: Proceedings of the First European Conference

on Arti®cial Life, 1992, pp. 3±11.

[6] D. Cli�, I. Harvey, P. Husbands, Explorations in evolutionary robotics, Adaptive Behavior 2

(1) (1993) 73±110.

[7] M. Dorigo, M. Colombetti, Robot shaping: developing autonomous agents through learning,

Arti®cial Intelligence 71 (2) (1994) 321±370.

[8] D. Floreano, F. Mondada, Evolution of homing and navigation in a real robot, IEEE

Transactions on Systems, Man and Cybernetics 26 (3) (1996) 396±407.

[9] T. Gomi, A. Gri�th, Evolutionary robotics ± an Overview, in: Proceedings of IEEE

International Conference on Evolutionary Computation, 1996, pp. 40±49.

[10] J.R. Koza, J.P. Rice, Automatic programming of robots using genetic programming, in:

Proceedings of AAAI-92, 1992, pp. 194±201.

[11] C.W. Reynolds, Evolution of corrider following behavior in a noisy world, in: From animals

to animats 3: Proceedings of the Third International Conference on Simulation of Adaptive

Behavior, 1994, pp. 402±410.

[12] S.J. Ross, J.M. Daida, C.M. Doan, T.F. Bersano-Begey, J.J. McClain, Variations in evolution

of subsumption architectures using genetic programming: the wall following robot revisited,

in: Genetic Programming: Proceedings of the First Annual Conference, 1996.

[13] J.R. Koza, Genetic Programming: on the Programming of Computers by Means of Natural

Selection, MIT Press, Cambridge, MA, 1992.

24 W.-P. Lee / Information Sciences 121 (1999) 1±25

[14] S. Nol®, Using emergent modularity to develop control system for mobile robots, Adaptive

Behavior (1997).

[15] R.A. Brooks, A robust layered control system for a mobile robot, IEEE Journal of Robots and

Automation RA-2 (1) (1986) 14±23.

[16] M. Colombetti, M. Dorigo, G. Borghi, Behavior analysis and training: a methodology for

behavior engineering, IEEE Transactions on Systems, Man, and Cybernetics 26 (6) (1996)

365±380.

[17] L.-J Lin, Scaling up reinforcement learning for robot control, in: Proceedings of International

Conference on Machine Learning, 1992, pp. 182±189.

[18] M. Mataric, Reward functions for accelerated learning, in: Proceedings of International

Conference on Machine Learning, 1994, pp. 181±189.

[19] R.J. Firby, Task networks for controlling continuous processes, in: Proceedings of the Second

International Conference on AI Planning Systems, 1994, pp. 49±54.

[20] E. Gat, Robot navigation by conditional sequencing, in: Proceedings of IEEE International

Conference on Robotics and Automation, 1994, pp. 1293±1299.

[21] P. Agre, D. Chapman, Pengi: an implementation of a theory of activity, in: Proceedings of

AAAI-87, 1987, pp. 268±272.

[22] S.J. Rosenschein, L.P. Kaelbling, A situated view of representation and control, Arti®cial

Intelligence 73 (1995) 149±174.

[23] S.J. Rosenschein, L.P. Kaelbling, The synthesis of digital machines with provable epistemic

properties, in: Proceedings of Conference on Theoretical Aspects of Reasoning about

Knowledge, 1986, pp. 83±98.

[24] W.-P. Lee, J. Hallam, H.H. Lund, A hybrid GP/GA approach for co-evolving controllers and

robot bodies to achieve ®tness-speci®ed tasks, in: Proceedings of IEEE International

Conference on Evolutionary Computation, 1996, pp. 384±389.

[25] R. Tanese, Distributed genetic algorithms, in: Proceedings of the Third International

Conference on Genetic Algorithms, 1989, pp. 434±439.

[26] F. Mondada, E. Franzi, P. Ienne, Mobile robot miniaturation: a tool for investigation in

control algorithms, in: Proceedings of the Third International Symposium on Experimental

Robotics, 1993.

[27] W.-P. Lee, J. Hallam, H.H. Lund, Applying GP to evolve behavior primitives and arbitrators

for mobile robots, in: Proceedings of IEEE International Conference on Evolutionary

Computation, 1997, pp. 501±506.

W.-P. Lee / Information Sciences 121 (1999) 1±25 25

