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1. Introduction 

     Research on biped humanoid robots is currently one of the most exciting topics in the 
field of robotics and there are many ongoing projects. Because the walking of humanoid 
robot is complex dynamics inverse problem the pattern generation and dynamic simulation 
are extensive discussed. Many different models are proposed to simple the calculation. Many 
researches about the walking stability and pattern generation of biped robots are made using 
ZMP principle and other different methods. 
Vukobratovic first proposed the concept of the ZMP (Zero Moment Point). Yoneda etc 
proposed another criterion of "Tumble Stability Criterion" for integrated locomotion and 
manipulation systems. Goswami proposed the FRI (Foot Rotation Indicator). As for the 
pushing manipulation, Harada researched the mechanics of the pushed object. Some 
researches mentioned that changes of angular momentum of biped robot play the key roles 
on the stability maintenance. However, there have been fewer researches on stability 
maintenance considering the reaction with external environment. 
A loss of stability might result a potentially disastrous consequence for robot. Hence man has 
to track robot stability at every instant special under the external disturbance. For this 
purpose we need to evaluate quantity the danger extent of instability. Rotational equilibrium 
of the foot is therefore an important criterion for the evaluation and control of gait and 
postural stability in biped robots. In this paper by introducing a concept of fictitious 
zero-moment (FZMP), a method to maintain the whole body stability of robot under 
disturbance is presented. 

2. Kinematics and dynamics of humanoid robot 

Robot kinematics deals with several kinematic and kinetic considerations which are 
important in the control of robotic kinematics. In kinematic modeling of robots, we are 
interested in expressing end effector motions in terms of joint motions. This is the direct 
problem in robot kinematics. The inverse-kinematics problem is concerned with expressing 
joint motions in terms of end-effector motions. This latter problem is in general more 
complex. In robot dynamics (kinetics), the direct problem is the formulation of a model as a 
set of differential equations for robot response, with joint forces/torques as inputs. Such 
models are useful in simulations and dynamic evaluations of robots. The inverse-dynamics 
problem is concerned with the computation of joint forces/torques using a suitable robot 
model, with the knowledge of joint motions. The inverse problem in robot dynamics is 
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directly applicable to computed-torque control (also known as feed forward control), and 
also somewhat indirectly to the nonlinear feedback control method employed here. 

2.1 Representation of position and orientation 

2.1.1 Description of a position 
Once a coordinate system is established we can locate any point in the universe with a 3×1 
position vector. Because we will often define many coordinate systems in addition to the 
universe coordinate system, vectors must be tagged with information identifying which 
coordinate system they are defined within. In this book vectors are written with a leading 
superscript indicating the coordinate system to which they are referenced (unless it is clear 
from context), for example, AP. This means that the components of AP have numerical values 
which indicated distances along the axes of {A}. Each of these distances along an axis can be 
thought of as the result of projecting the vector onto the corresponding axis. 
Figure 2.1 pictorially represents a coordinate system, {A}, with three mutually orthogonal 
unit vectors with solid heads. A point AP is represented with a vector and can equivalently be 
thought of as a position in space, or simply as an ordered set of three numbers. Individual 
elements of a vector are given subscripts , ,x y and z : 
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Fig. 1. Vector relative to frame example 
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In summary, we will describe the position of a point in space with a position vector. Other 
3-tuple descriptions of the position of points, such as spherical or cylindrical coordinate 
representations are discussed in the exercises at the end of the chapter. 

2.1.2 Description of an orientation 
Often we will find it necessary not only to represent a point in space but also to describe the 
orientation of a body in space. For example, if vector AP in fig.2.2 locates the point directly 
between the fingertips of a manipulator’s hand, the complete location of the hand is still not 
specified until its orientation is also given. Assuming that the manipulator has a sufficient 
number of joints the hand could be oriented arbitrarily while keeping the fingertips at the 
same position in space. In order to describe the orientation of a body we will attach a 
coordinate system to the body and then give a description of this coordinate system relative 
to the reference system. In Fig.2.2, coordinate system {B} has been attached to the body in a 
known way. A description of {B} relative to {A} now suffices to give the orientation of the 
body. 
Thus, positions of points are described with vectors and orientations of bodies are described 
with an attached coordinate system. One way to describe the body-attached coordinate 
system, {B}, is to write the un it vectors of its three principal axes in terms of the coordinate 
system {A}. 
We denote the unit vectors giving the principal directions of coordinate system {B} as 

, ,ˆ ˆ ˆ
B B B

A B AandX Y Z . When written in terms of coordinate system {A} they are called 

, ,ˆ ˆ ˆ
B B B

andX Y Z . It will be convenient if we stack these three unit vectors together as the 
columns of a 3×3 matrix, in the order , ,ˆ ˆ ˆ

B B B
A B AX Y Z  . We will call this matrix a rotation 

matrix, and because this particular rotation matrix describes {B} relative to {A}, we name it 
with the notation A

B R . The choice of leading sub-and superscripts in the definition of rotation 
matrices will become clear in following sections. 
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Fig. 2. locating an object in position and orientation 
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In summary, a set of three vectors may be used to specify an orientation. For convenience we 
will construct a 3×3 matrix which has these three vectors as its columns. Hence, whereas the 
position of a point is represented with a vector, the orientation of a body is represented with 
a matrix. In section 2.8 we will consider some other descriptions of orientation which require 
only three parameters. 
We can give expressions for the scalars ijr  in (2.2) by nothing that the components of any 
vector are simply the projections of that vector onto the unit directions of its reference frame. 
Hence, each component of A

B R in (2.2) can be written as the dot product of a pair of unit 
vectors as  
 

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
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⎡ ⎤⋅ ⋅ ⋅
⎢ ⎥

⎡ ⎤= = ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦ ⎢ ⎥
⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

               (3) 
 

For brevity we have omitted the leading superscripts in the rightmost matrix of (2.3). In fact 
the choice of frame in which to describe the unit vectors is arbitrary as long as it is the same 
for each pair being dotted. Since the dot product of two unit vectors yields the cosine of the 
angle between them, it is clear why the components of rotation matrices are often referred to 
as direction cosines. 
Further inspection of (2.3) shows that the rows of the matrix are the unit vectors of {A} 
expressed in {B}; that is,  
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Hence, BAR , the description of frame {A} relative to {B} is given by the transpose of (2.3); that 
is, 
 

B B T
A AR R=                                     (5) 

 
This suggests that the inverse of a rotation matrix is equal to its transpose, a fact which can be 
easily verified as  
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Where 3I  is the 3×3 identity matrix. Henec, 
 

1B B B T
A A AR R R−= =                               (7) 

 
Indeed from linear algebra we know that the inverse of a matrix with orthonormal columns 
is equal to its transpose. We have just shown this geometrically. 

2.1.3 Description of a frame 
The information needed to completely specify the whereabouts of the manipulator hand in 
Fig.2.2 is a position and an orientation. The point on the body whose position we describe 
could be chosen arbitrarily, however: For convenience, the point whose position we will 
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describe is chosen as the origin of the body-attached frame. The situation of a position and an 
orientation pair arises so often in robotics that we define an entity called a frame, which is a 
set of four vectors giving position and orientation information. For example, in Fig.2.2 one 
vector locates the fingertip position and three more describe its orientation. Equivalently, the 
description of a frame can be thought of as a position vector and a rotation matrix. Note that 
a frame is a coordinate system, where in addition to the orientation we give a position vector 
which locates its origin relative to some other embedding frame. For example, frame {B} is 
described by A

B R  and A BORGR , where A BORGR  is the vector which locates the origin of 
the frame {B}: 
 

                      { } { , }A A
B BORGB R P=                                   (8) 
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Fig. 3. Example of several frames 

    In Fig.2.3 there are three frames that are shown along with the universe coordinate 
system. Frames {A} and {B} are known relative to the universe coordinate system and frame 
{C} is known relative to frame {A}. 
In Fig.2.3 we introduce a graphical representation of frames which is convenient in 
visualizing frames. A frame is depicted by three arrows representing unit vectors defining 
the principal axes of the frame. An arrow representing a vector is drawn from one origin to 
another. This vector represents the position of the origin at the head of the arrow in terms of 
the frame at the tail of the arrow. The direction of this locating arrow tells us, for example, in 
Fig.2.3, that {C} is known relative to {A} and not vice versa. 
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In summary, a frame can be used as description of one coordinate system relative to another. 
A frame encompasses the ideas of representing both position and orientation, and so may be 
thought of as a generalization of those two ideas. Position could be represented by a frame 
whose rotation matrix part is the identity matrix and whose position vector part locates the 
point being described. Likewise, an orientation could be represented with a frame. Whose 
position vector part was the zero vector. 

2.2 Coordinate transformation 

2.2.1 Changing descriptions from frame to frame 
In a great many of the problems in robotics, we are concerned with expressing the same 
quantity in terms of various reference coordinate systems. The previous section having 
introduced descriptions of positions, orientations, and frames, we now consider the 
mathematics of mapping in order to change descriptions frame to frame. 
    Mappings involving translated frames 
In Fig.2.4 we have a position defined by the vector BP . We wish to express this point in 
space in terms of frame {A}, when {A} has the same orientation as {B}. In this case, {B} differs 
from {A} only by a translation which is given by B BORGP , a vector which locates the origin of 
{B} relative to {A}. 
Because both vectors are defined relative to frames of the same orientation, we calculate the 
description of point P relative to {A}, AP , by vector addition: 
 

A B A
BORGP P P= +                                (9) 

 
Note that only in the special case of equivalent orientations may we add vectors which are 
defined in terms of different frames. 
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Fig. 4. Translational mapping 
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In this simple example we have illustrated mapping a vector from one frame to another. This 
idea of mapping, or changing the description from one frame to another, is an extremely 
important concept. The quantity itself (here, a point in space) is not changed; only its 
description in changed. This is illustrated in Fig.2.4, where the point described by BP is not 
translated, but remains the same, and instead we have computed a new description of the 
same point, but now with respect to system {A}. 
We say that the vector A BORGP  defines this mapping, since all the information needed to 
perform the change in description is contained in A BORGP (along with the knowledge that 
the frames had equivalent orientation). 
 
    Mappings involving rotated frames 
Section 2.2 introduced the notion of describing an orientation by three unit vectors denoting 
the principal axes of a body-attached coordinate system. For convenience we stack these 
three unit vectors together as the columns of a 3×3 matrix. We will call this matrix a rotation 
matrix, and if this particular rotation matrix describes {B} relative to {A}, we name it with the 
notation A

B R . 
Note that by our definition, the columns of a rotation matrix all have unit magnitude, and 
further, these unit vectors are orthogonal. As we saw earlier, a consequence of this is that 

                            
1B B TA

B A AR R R−= =                                (10) 

Therefore, since the columns of A
B R are the unit vectors of {B} written in {A}, then the rows of 

A
B R are the unit vectors of {A} written, in {B}. 
So a rotation matrix can be interpreted as a set of three column vectors or as a set of three row 
vectors as follows: 
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                     (11) 

As in Fig.2.5, the situation will arise often where we know the definition of a vector with 
respect to some frame, {B}, and we would like to know its definition with respect to another 
frame, {A}, where the origins of the two frames are coincident. This computation is possible 
when a description of the orientation of {B}, is known relative to {A}. This orientation is given 
by the rotation matrix A

B R , whose columns are the unit vectors of {B} written in {A}. 
In order to calculate AP , we note that the components of any vector are simply the 
projections of that vector onto the unit directions of its frame. The projection is calculated 
with the vector dot product. Thus we see that the components of AP may be calculated as  
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Fig. 5. rotating the description of a vector 

In order to express (12) in terms of a rotation matrix multiplication, we note form (11) that the 

rows of A
B R  are ˆ

A
B X  ˆ

A
BY and ˆ

A
BZ . So (12) may be written compactly using a rotation 

matrix as  

                             A A B
BP R P=                                 (13) 

 
Equation (13) implements a mapping—that is, it changes the description of a vector—from 
BP , which description of the same point, but expressed relative to {A}. 
We now see that out notation is of great help in keeping track of mappings and frames of 
reference. A helpful way of viewing the notation we have introduced is to imagine that 
leading subscripts cancel the leading superscripts of the following entity, for example the Bs 
in (13). 
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2.3 General rotation transformation 
    Mappings involving general frames 

Very often we know the description of a vector with respect to some frame, {B}, and we 
would like to know its description with respect to another frame, {A}. We now consider the 
general case of mapping. Here the origin of frame {B} is not coincident with that of frame {A} 
but has a general vector offset. The vector that locates {B}’s origin is called A

BORGP . Also {B} 
is rotated with respect to {A} as described by A

B R . Given BP , we wish to computer AP , as in 
Fig.2.7. 

We can first change BP to its description relative to an intermediate frame which has the 
same orientation as {A}, but whose origin is coincident with the origin of {B}. This is done by 
pre-multiplying by A

B R as in Section 2.3. We then account for the translation between origins 
by simple vector addition as in Section 2.3, yielding 

A A B
B BORG

AP R P P= +                              (14) 

Equation (2.17) describes a general transformation mapping of a vector from its description 
in one frame to a description in a second frame. Note the following interpretation of our 
notation as exemplified in (2.14): the B’s cancel leaving all quantities as vectors written in 
terms of A, which may then be added. 
The form of (2.14) is not as appealing as the conceptual form; 

A A B
BP T P=                                    (15) 

That is, we would like to think of a mapping from one frame to another as an operator in 
matrix form. This aids in writing compact equations as well as being conceptually clearer 
than (2.14). In order that we can write the mathematics given in (2.14) in the matrix operator 
form suggested by (2.15), we define a 4×4 matrix operator, and use 4×1 position vectors, so 
that (2.15) has the structure 

                            
1 0 0 0 1 1

A A A B
B BORGP R P P⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                 (16) 

That is, 
1�A “1”is added as the last element of the 4×1 vectors. 
2�A row “[ ]0 0 0 ”is added as the last row of the 4×4 matrix. 
We adopt the convention that a position vector is 3×1 or 4×1 depending on whether it 
appears multiplied by a 3×3 matrix or by a 4×4 matrix. It is readily seen that (2.16) 
implements 
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                                  A A B A
B BORGP R P P= +   

                               1 1=                                        (17) 
 

The 4×4 matrix in (2.16) is called a homogeneous transform. For our purposes it can be 
regarded purely as a construction used to cast the rotation and translation of the general 
transform into a single matrix form. In other fields of study it can be used to compute 
perspective and scaling operations (when the last row is other than“[ ]0 0 0 ”, or the 
rotation matrix is not orthonormal). The interested reader should see. 
Often we will write equations like (2.15) without any notation indicating that this is a 
homogeneous representation, because it is obvious from context. Note that like while 
homogeneous transforms are useful in writing compact equations, a computer program to 
transform vectors would generally not use them because of time wasted multiplying ones 
and zeros. Thus, this representation is mainly for our convenience when thinking and 
writing equations down on paper. 
Just as we used rotation matrices to specify an orientation, we will use transforms (usually in 
homogeneous representation) to specify a frame. Note that while we have introduced 
homogeneous transforms in the context of mappings, they also serve as descriptions of 
frames. The description of frame {B} relative to {A} is ABT . 

2.4 Transformation matrix for links 

     Link description 
A manipulator may be thought of as a set of bodies connected in a chain by joints. These 
bodies are called links. Joints form a connection between a neighboring pair of links. The 
term lower pair is used to describe the connection between a pair of bodies when the relative 
motion is characterized by tow surfaces sliding over one another. 
Due to mechanical design considerations, manipulators are generally constructed from joints 
which exhibit just one degree of freedom. Most manipulators have revolute joints or have 
sliding joints called prismatic joints. In the rare case that a mechanism is built with a joint 
having n degrees of freedom, it can be modeled as n joints of one degree of freedom 
connected with n-1 links of zero length. Therefore, without loss of generality, we will 
consider only manipulators which have joints with a single degree of freedom. 
The links are numbered starting from the immobile base of the arm, which might be called 
link 0. The first moving body is link 1, and so on, out to the free end of the arm, which is link 
n. In order to position an end—effector generally in 3-space, a minimum of six joints is 
required. Typical manipulators have five or six joints. Some robots may actually not be as 
simple as a single kinematic chain—they may have parallelogram linkages or other closed 
kinematic structures. We will consider one such manipulator later in this chapter. 
A single link of a typical robot has many attributes which a mechanical designer had to 
consider during its design. These include the type of material used, the strength and stiffness 
of the link, the location and type of the joint bearings, the external shape, the weight and 
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inertia, etc. However, for the purposes of obtaining the kinematic equations of the 
mechanism, a link is considered only as a rigid body which defines the relationship between 
two neighboring joint axes of a manipulator. Joint axes are defined by lines in space. Joint 
axis i  is defined by a line in space, or a vector direction, about which link i rotates relative 
to link i -1. It turns out that for kinematic purpose, a link can be specified with two numbers 
which define the relative location of the two axes in space. 
For any two axes in 3-space there exists a well—defined measure of distance between them. 
This distance is measured along a line which is mutually perpendicular to both axes. This 
distance is measured along line which is mutually perpendicular to both axes. This mutual 
perpendicular always exists and is unique except when both axes are parallel, in which case 
there are many mutual perpendiculars of equal length. Figure 3.2 shows link i -1 and the 
mutually perpendicular line along which the link length, 1ia − , is measured. Another way to 
visualize the link parameter 1ia − is to imagine an expanding cylinder whose axis is the 
joint i -1 axis—when it just touches joint axis is the joint i -1 axis—when it just touches joint 
axis i the radius of the cylinder is equal to 1ia − . 
The second parameter need to define the relative location of the two axes is called the link 
twist. If we imagine a plane whose normal is the mutually perpendicular line just 
constructed, we can project both axes i -1 and i  onto this plane and measure the angle 
between them. This angle is measured from axis i -1 to axis i in the right-hand sense 
about 1ia − . We will use this definition of the twist of link i -1, 1ia − . In Fig.3.2, 1ia − is 
indicated as the angle between axis i -1 and axis i (the lines with the triple hash marks are 
parallel). In the case of intersecting axes, twist is measured in the plane containing both axes, 
but the sense of 1ia − is lost. In this special case, one is free to assign the sign of 

1ia − arbitrarily. 

1Axis i − 1Link i −

Axis i

Link i

iα

iθ
id1ia −

1ia −

 
Fig. 6. The link offset, d, and the joint angle, θ , are two parameters which may be used to 
describe the nature of the connection between neighboring links. 



308                                                                                  Humanoid Robots  

 
2.5 Kinematics of robot 

    Robot kinematics is the study of the motion (kinematics) of robots. In a kinematic 
analysis the position, velocity and acceleration of all the links are calculated without 
considering the forces that cause this motion. The relationship between motion, and the 
associated forces and torques is studied in robot dynamics. One of the most active areas 
within robot kinematics is the screw theory. 
    Robot kinematics deals with aspects of redundancy, collision avoidance and singularity 
avoidance. While dealing with the kinematics used in the robots we deal each parts of the 
robot by assigning a frame of reference to it and hence robot with many parts may have 
many individual frames assigned to each movable parts. For simplicity we deal with the 
single manipulator arm of the robot. Each frames are named systematically with numbers, 
for example the immovable base part of the manipulator is numbered 0, and the first link 
joined to the base is numbered 1, and the next link 2 and similarly till n for the last nth link. 
    Robot kinematics is mainly of the following two types: forward kinematics and inverse 
kinematics. Forward kinematics is also known as direct kinematics. In forward kinematics, 
the length of each link and the angle of each join are given and we have to calculate the 
position of any point in the work volume of the robot. In inverse kinematics, the length of 
each link and position of the point in work volume is given and we have to calculate the 
angle of each joint. 
Robot kinematics can be divided in serial manipulator kinematics, parallel manipulator 
kinematics, mobile robot kinematics and humanoid kinematics. 

2.6 Reverse kinematics of robot 

Direct kinematics consists in specifying the state vector of an articulated figure over time. 
This specification is usually done for a small set of “key-frames", while interpolation 
techniques are used to generate in-between positions. The main problems are the design of 
convenient key-frames, and the choice of adequate interpolation techniques. The latter 
problem, and in particular the way orientations can be represented and interpolated has been 
widely studied. Designing key positions is usually left onto the animator's hand, and the 
quality of resulting motions deeply depends on his skills. In many cases, available physical 
and biomechanical knowledge such as the characterization of motion phases  for human 
walking, can help the animator to create relevant key-frames.  
The exclusive use of direct kinematics makes it direct to add constraints to the motion, such 
as those specifying that the feet should not penetrate into the ground during the support 
phases. These constraints may be solved using inverse kinematic algorithms. Here, motion 
XΔ of the end link of a chain (ie. a foot) is specified by the animator in world coordinates. 

The system computes the variation θΔ  of the state vector (ie. the orientations between 
intermediate links) that will meet the constraint. The relation between the _main task" XΔ  
and the angular displacements θΔ  takes the form: 
 

XΔ  = J θΔ                                       (18) 



Walking Gait Planning And Stability Control                                                         309 

 
where J is the Jacobian matrix of the system . J is not directly invertible, due to the direct 
dimensions of X  and θ  (ie. there is an infinity of angular positions at joints that lead to 
the same Cartesian position of a foot). So the most frequently used solution is: 

( )J X I J J zθ α+ +Δ = Δ + − Δ                              (19) 

Where J +  is the pseudo-inverse of the Jacobian matrix J , α  is a penalty constant, I  is 
the identity matrix, and zΔ  is a constraint to minimize, called the secondary task. This 
secondary task is enforced on the null space of the main task. Thus, the second term does not 
affect the achievement of the main task, whatever the secondary task zΔ  is. Generally, zΔ  
is used to account for joint angular limits or to minimize some energetic criteria. 

3. Walking gait planning for humanoid robot 

3.1 Walking pattern generation based on a inverted pendulum model 
    An inverted pendulum is a pendulum which has its mass above its pivot point. It is often 
implemented with the pivot point mounted on a cart that can move horizontally and may be 
called a cart and pole. Whereas a normal pendulum is stable when hanging downwards, an 
inverted pendulum is inherently unstable, and must be actively balanced in order to remain 
upright, either by applying a torque at the pivot point or by moving the pivot point 
horizontally as part of a feedback system. 

 

Fig. 7. a schematic drawing of the inverted pendulum on a cart. The rod is considered 
massless. The mass of the cart and the pointmass at the end of the rod are denoted by M and 
m. The rod has a length l . 

The inverted pendulum is a classic problem in dynamics and control theory and widely used 
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as benchmark for testing control algorithms (PID controllers, neural networks, fuzzy control, 
genetic algorithms, etc). Variations on this problem include multiple links, allowing the 
motion of the cart to be commanded while maintaining the pendulum, and balancing the 
cart-pendulum system on a see-saw. The inverted pendulum is related to rocket or missile 
guidance, where thrust is actuated at the bottom of a tall vehicle. The understanding of a 
similar problem is built in the technology of Segway, a self-balancing transportation device. 
The largest implemented uses are on huge lifting cranes move the box accordingly so that it 
never swings or sways. It always stays perfectly positioned under the operator even when 
moving or stopping quickly. 
Another way that an inverted pendulum may be stabilized, without any feedback or control 
mechanism, is by oscillating the support rapidly up and down. If the oscillation is sufficiently 
strong (in terms of its acceleration and amplitude) then the inverted pendulum can recover 
from perturbations in a strikingly counterintuitive manner. If the driving point moves in 
simple harmonic motion, the pendulum’s motion is described by the Mathieu equation. 
In practice, the inverted pendulum is frequently made of an aluminum strip, mounted on a 
ball-bearing pivot; the oscillatory force is conveniently applied with a jigsaw. 
Equations of motion 
Stationary pivot point 
The equation of motion is similar to that for an uninverted pendulum except that the sign of 
the angular position as measured from the vertical unstable equilibrium position: 

sin 0g
l

θ θ− =&&                                     (20) 

When added to both sides, it will have the same sign as the angular acceleration term: 

sing
l

θ θ=&&                                      (21) 

Thus, the inverted pendulum will accelerate away from the vertical unstable equilibrium in 
the direction initially displaced, and the acceleration is inversely proportional to the length. 
Tall pendulums fall more slowly than short ones. 
Pendulum on a cart  
The equations of motion can be derived easily using Lagrange’s equations.   Referring to the 
drawing where x (t) is the position of the cart, ( )tθ  is the angle of the pendulum with 
respect to the vertical direction and the acting forces are gravity and an external force in the 
x-direction, the lagrangian L = T – V, where T is the kinetic energy in the system and V the 
potential energy, so the written out expression for L is:  

2 2
1 2

1 1 cos
2 2

L Mv mv mgl θ= + −                       (22) 

Where 1v  is the velocity of the cart and 2v  is the velocity of the point mass m . 
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1v  and 2v  can be expressed in terms of  X  and θ  by writing the velocity as the first 
derivative of the position: 

2 2
1v x= &                                           (23) 

( ) ( )
2 2

2
2 cos sind dv l x l

dt dt
θ θ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                    (24) 

Simplifying the expression for 2v  leads to: 

2 2 2 2
2 2v x xl lθ θ= + +& && &                              (25) 

The Lagrangian is now given by: 

( ) 2 2 21 1cos cos
2 2

L M m x mlx ml mglθ θ θ θ= + + + −& && &            (26) 

and the equations of motion are 
 

d L L F
dt x x

∂ ∂
− =

∂ ∂&
                                      (27) 

0d L L
dt θ θ

∂ ∂
− =

∂ ∂&                                       (28)  

Substituting L in these equations and simplifying leads to the equations that describe the 
motion of the inverted pendulum: 

( ) 2cos sinM m x ml ml Fθ θ θ θ+ + − =&& &&&                       (29) 

( )sin cos 0ml g x lθ θ θ− + + =&&&&                               (30) 

These equations are nonlinear, but since the goal of a control system would be to keep the 

pendulum upright the equations can be linearized around 0θ ≈ . 
Pendulum with oscillatory base 
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Fig. 8. a schematic drawing of the inverted pendulum on an oscillatory base. The rod is 
considered massless. The pointmass at the end of the road is demoted bym . The rod has a 
length l . 

The equation of motion for a pendulum with an oscillatory base is derived the same way as 
with the pendulum on the cart, using the Lagrangian. 
The position of the point mass is now given by: 

( )sin , cosl y lθ θ+                                 (31) 

And the velocity is found by taking the first derivative of the position: 

2 2 2 22 sinv y l y lθ θ θ= − +& && &                             (32) 

The Lagrangian of this system can be written as: 

( )2 2 21 2 sin ( cos )
2

L m y l y l mg y lθ θ θ θ= − + − +& && &             (33) 

and the equation of motion follows from: 

0d L L
dt θ θ

∂ ∂
− =

∂ ∂&                                  (34) 

Resulting in: 
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sin sinl y gθ θ θ− =&& &&                                   (35) 

If y represents a simple harmonic motion, siny a tω= , the following differential 
equation is: 
 

2sin sin sing a t
l l

θ θ ω ω θ− = −&&                           (36) 

Fig. 9. Plots for the inverted pendulum on an oscillatory base. The first plot shows the 

response of the pendulum on a slow oscillation, the second the response on a fast oscillation 
A solution for this equation will show that the pendulum stays upright for fast oscillations. 
The first plot shows that when y is a slow oscillation, the pendulum quickly falls over when 
disturbed from the upright position. The angle θ  exceeds 90°after a short time, which 
means the pendulum has fallen on the ground. 

    If y  is a fast oscillation the pendulum can be kept stable around the vertical position. 
The second plot shows that when disturbed from the vertical position, the pendulum now 
starts an oscillation around the vertical position ( 0θ = ). The deviation from the vertical 
position stays small, and the pendulum doesn’t fall over. 

3.2 Gait planning of robot based on a seven-link model 
    In order to simplify research process we first discuss how to get ankle trajectory and hip 
trajectory. Then the knee trajectory could be got by kinematics. Here we take the left foot for 
example and the right foot is similar only with a delay of half cycle. The link model we used 
is shown in Figure 3. 
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Fig. 10. The model of the humanoid robot going upstairs. 

3.2.1 Gait Planning of Ankle  
According to the walking procedure of human, we suppose that the walking cycle is

cT , 

ckTt = is the k th cycle begins with the moment when the left foot is just apart from the 
ground and ends with the left foot gets into contact with the ground; dcc TkTtkT +≤< is 
double support phase, during which the sole is rotated about toes, and the center of gravity 
moving forwards; the swing foot reaches the highest point when nc TkTt += . 
We get the key point )(),( tztx ff

of ankle in plane XOZ as follows: 
 

 

 

 

(37) 

 

 

 

 
 
where al is the distance between tiptoe and the centre of gravity of sole; bl is the distance 
between heel and the centre of gravity of sole; fh is the height of heel and nT is the time 
when the robot just walks through a step. 
The key point of the angle between sole and ground can be denoted as follows: 
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Since the whole sole of the right foot is in contact with the ground at 

ct kT= and ( 1) c dt k T T= + + , the following derivative constraints must be satisfied. 
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3.2.2. Gait Planning of Hip 
We assume that the robot is decelerated in double support phase and accelerated in single 
support phase and the acceleration in direction of x -axis and z -axis are xha and zha  
respectively. The distance between the hip and the ankle of supporting leg is sx at the 
beginning of the double support phase and ex at the end of the double support phase. The 
changes in the direction of z -axis are sz  and ez  at the beginning and end of the double 
support phase respectively. Then the trajectory of hip can be expressed like this: 
 

           

(42) 
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(43) 

 
It must satisfy the following constraints: 
 The derivative constraints ( ) ( 1)

( ) ( 1)
h c h c

h c h c

x kT x k T
x kT x k T

= +⎧
⎨ = +⎩

& &

&& &&
 and ( ) ( 1)

( ) ( 1)
h c h c

h c h c

z kT z k T
z kT z k T

= +⎧
⎨ = +⎩

& &

&& &&
 must be 

satisfied. 
 max( )hz t h≤ , 

maxh is the maximum height of hip; max 1 2 fh l l h= + + , 
1 2,l l  are the length 

of thigh and shin respectively, fh is the height of ankle. 
 min( )hz t h≥ � minh  is the minimum height of hip and it’s value can be set according to the 

process of human walking. 
 2 2 1/ 2

1 2{[ ( ) ( )] [ ( ) ( )] }h a h ax t x t z t z t l l− + − ≤ +  

4. Stability control of humanoid robot 

4.1 ZMP and FZMP concept 
Zero moment point was introduced in January 1968 by Miomir Vukobratović at The Third 
All-Union Congress of Theoretical and Applied Mechanics in Moscow. In the following 
works and papers that were produced between 1970 and 1972 it would then be called zero 
moment point and would be spread around the world. 
The zero moment point is a very important concept in the motion planning for biped robots. 
Since they have only two points of contact with the floor and they are supposed to walk, 
“run” or “jump” (in the motion context), their motion has to be planned concerning the 
dynamical stability of their whole body. This is not an easy task, especially because the upper 
body of the robot (torso) has larger mass and inertia than the legs which are supposed to 
support and move the robot. This can be compared to the problem of balancing an inverted 
pendulum. 
The trajectory of a walking robot is planned using the angular momentum equation to ensure 
that the generated joint trajectories guarantee the dynamical postural stability of the robot, 
which usually is quantified by the distance of the zero moment point in the boundaries of a 
predefined stability region. The position of the zero moment point is affected by the referred 
mass and inertia of the robot’s torso, since its motion generally requires large ankle torques to 
maintain a satisfactory dynamical postural stability.  
One approach to solve this problem consists in using small trunk motions to stabilize the 
posture of the robot. However, some new planning methods are being developed to define 
the trajectories of the legs’ links in such a way that the torso of the robot is naturally steered in 
order to reduce the ankle torque needed to compensate its motion. If the trajectory planning 
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for the leg links is well succeeded, then the zero moment point won’t move out of the 
predefined stability region and the motion of the robot will become smoother, mimicking a 
natural trajectory. 
The resultant force of the inertia and gravity forces acting on a biped robot is expressed by the 
formula: 

gi
GF mg ma= −                                     (44) 

Where m is the total mass of the robot, g is the acceleration of the gravity, G is the center of 
mass and aG is the acceleration of the center of mass. The moment in any point X can be 
defined as: 

gi
X G GM XG mg XG ma H= × − × − &                      (45) 

where is the rate of angular momentum at the center of mass. The Newton-Euler 
equations of the global motion of the biped robot can be written as: 

c
GF mg ma+ =                                  (46) 

c
X G GM XG mg H XG ma+ × = + ×&                      (47)                

where cF is the resultant of the contact forces at X and c
XM is the moment related with 

contact forces about any point X. 
The Newton-Euler equations can be rewritten as: 

( ) 0C
GF mg ma+ − =                            (48) 

( ) 0c
X G GM XG mg XG ma H+ × − × − =&                 (49) 

So it’s easier to see that we have: 

0c giF F+ =                                (50) 

0C gi
X XM M+ =                               (51) 

These equations show that the biped robot is dynamically balanced if the contact forces and 
the inertia and gravity forces are strictly opposite. 
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If an axis giΔ is defined, where the moment is parallel to the normal vector n from the surface 
about every point of the axis, then the Zero Moment Point (ZMP) necessarily belongs to this 
axis, since it is by definition directed along the vector n. The ZMP will then be the intersection 
between the axis Δgi and the ground surface such that: 

gi
Z G GM ZG mg ZG ma H= × − × − &                       (52) 

with 

0gi
ZM n× =                                    (53) 

where Z represents the ZMP. 
Because of the opposition between the gravity and inertia forces and the contact forces 
mentioned before, the Z point (ZMP) can be defined by: 

gi
P

gi

n MPZ
F n
×

=
⋅

                                   (54) 

where P is a point of the sole where is the normal projection of the ankle. 
Fictitious zero moment point (FZMP) is an important expand of ZMP, it can be used in 
stability control. In order to evaluate dynamic stability, we use the ZMP principle. The ZMP is 
the point where the influence of all forces acting on the mechanism can be replaced by one 
single force. If the computed ZMP is the real ZMP, this means the computed ZMP inside the 
real support polygon, the biped robot can be stable. If the ZMP is not the real ZMP, this means 
the computed ZMP is on the boundary of the support polygon, the robot will fall down or 
have a trend of falling down. If the computed ZMP is outside the support polygon, then the 
robot will fall down and in this case, the computed ZMP is called fictitious ZMP. The link 
model of the humanoid robot is shown in Figure 3.4. 
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Fig. 11. The link model of the humanoid robot. 
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The projection of position vector of computed ZMP can be computed by the following 
equations: 
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where im is mass of every links, ( ix , iy , iz ) is the coordinate of the mass center of the links, 
( , )Tix iyM M  is the moment vector. 
If the ZMP is inside the support polygon and the minimum distance between the ZMP and 
the boundaries of support polygon is large, then the biped will be in high stable, and this 
distance is called the stability margin. We can know the situation of walking stability from the 
stability margin. 
 

 
Fig. 12. The relationship between FZMP and support polygon. 

As shown in Figure2, if the ZMP is outside the support polygon, i.e. FZMP, the norm of 
vector s represents the shortest distance between FZMP and the edges of the support polygon. 
This edge is called rotation edge. The direction of vector s is the rotation direction of the 
robot. 
The importance of FZMP is: 

 We can judge the falling down possibility by calculated the position of FZMP; 
 According the position of FZMP, we can calculate the distance of rotate boundary and 

falling downing direction. 
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 When the robot in the stability situation, support polygon can be defined as the 
minimum distance between the boundaries of support polygon and the ZMP, this means 
robot stability margin; while in the instability situation, the minimum distance between the 
boundaries of support polygon and the ZMP, it is a measure of instability. 

4.1.1 ZMP and stable walking 
 Apart from the realization of the relative motion of the mechanism’s links, the most 
important task of a locomotion mechanism of humanoid robot during walking is to preserve 
its dynamic balance in contact with the ground. The foot relies freely on the upport and is 
realized via the friction force and vertical force of the ground reaction. The foot cannot be 
controlled directly but in an indirect way, by ensuring the appropriate dynamics of the 
mechanism above the foot. Thus, the overall indicator of the mechanism behavior is the point 
where the influence of all forces acting on the mechanism can be replaced by one single force. 
This point was termed the Zero-Moment Point (ZMP). ZMP is very important for humanoid 
robot as dynamic criterion of gait planning, stability and control. The ZMP principle can be 
generalized as follows. 

 If ZMP is inside of the footprint of support foot in single support phase, or inside of 
support polygon in double support phase, then biped robot can keep its dynamic balance and 
the stable walking is possible. 

 If ZMP is on the boundary of the footprint in single support phase or of support polygon in 
double support phase, then the robot will fall down or have a trend of falling down. 

 If computed ZMP is outside of the footprint of support foot in single support phase, or 
without support polygon in double support phase, then the robot cannot be in the dynamic 
stable and will fall down. In this case, it should be called fictitious ZMP, shortly FZMP.  
There are two different cases in which the ZMP plays a key role: 
�(1) in determining the proper dynamics of the mechanism above the foot to ensure a desired 
ZMP position. This belongs to the task of gait synthesis. 
�(2) in determining the ZMP position for the given mechanism motion. This refers to the gait 
control. 
Biped walking is a periodic phenomenon. A complete walking cycle is composed of two 
phases: a double-support phase and a single-support phase. During the double-support 
phase, both feet are in contact with the ground. This phase begins with the heel of the forward 
foot touching the ground, and ends with the toe of the rear foot leaving the ground. During 
the single-support phase, one foot is stationary on the ground, the other foot swings from the 
rear to the front. The gait of walking robot can be generated by using ZMP principle. 

4.1.2.FZMP and stability maintenance 
 For determination of dynamic equilibrium we have to consider the relationship between 
the computed position of reaction point P on the ground and the support polygon. If the 
position of point P is within the support polygon, the robot is in dynamic equilibrium. The 
computed position P is called traditional ZMP, if only one foot contacts with floor, the force 
acting at ZMP is real reaction force, if two feet contact with floor it is total force of all contact 
reaction forces. If the computed point P is located outside the support polygon, it can be called 
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as a fictitious ZMP (FZMP). In this case, the humanoid robot would start to rotate about the 
edge and the robot would lose the stability. The real acting point of ground reaction force 
would be located in the edge. The calculated position of the point P outside the support 
polygon represents only fictitious locations. The FZMP is very useful to deal with the stability 
maintenance and control in the emergency case. For the stable walking of humanoid robot the 
ZMP must be kept within the support polygon. To maintain regularly the mechanism 
dynamic stable at the moment of the occurrence of an external disturbance an 
emergency-coping strategy based on FZMP concept can be applied. The importance of the 
FZMP to deal with the stability control and maintenance is mentioned by several authors. But 
how to fully utilize its property should be further researched. In this paper the FZMP is 
efficiently used to deal with the stability maintenance of humanoid robot under disturbance. 

4.2 The determination of support polygon and stability margin 

4.2.1 The determination of support polygon  
If only one foot contacts with floor, the above mentioned support polygon is the region of the 
foot. But if the two feet contact with the floor, the situation would be sometime complex. In 
the current related researches the support polygon used to be expressed simply with the 
graphs. It is not convenient in stability analysis and control. In this paper, we present a 
computerization expression of support polygon. 
We assume that the shape of the foot is rectangle. Then two feet contain eight edges all 
together. The support polygons are composed of some edges of the above mentioned eight 
edges and other two new edges. We call all edges that constitute the support polygon as valid 
connection edges (VCE). The candidates of the VCE are all connection edges of the eight 
corner points on two feet. In figure 3 the corner points in left foot are denoted with 1P , 3P , 5P , 

7P , the right foot 2P 4P , 6P , 8P . The line ijL through two point iP  and jP can be expressed 
as follows: 
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Fig. 13. The determination of support polygon 
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In order to determine whether the edge connecting point iP  and jP  is the VCE we have to 
consider the position relationship between ijL  and all eight corner points. If all eight corner 
points are the same side of the line ijL , that is, satisfy (6), then edge ijE according to line ijL  
is the VCE. Otherwise ijE  is not VCE and should be ignored. Here, sP , tP  is respectively 
the one of the eight corner points.  
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Where '
sP  and '

tP are the projection points of sP and tP on the 

ijL , ijsijs bxay +='

, ijtijt bxay +='

. 

 
4.2.2  The Relationship Between FZMP and Support Polygon 
We have to determine which is the rotation edge in all VCEs when robot lose stability. and in 
this case the distance from FZMP to the rotation edge can be calculated. In figure 4 the 
distance from FZMP to ijE  is expressed as follows: 

ijFZMPnpji
pp −=

=,
mins                               (59) 

Where ijp is the position vector of vertical point from FZMP to ijE . 
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We denote the point op  as the position vector of the vertical point that satisfies (7). That is  

                       ofzmp pp −=s                                     (61) 

If we know the position of FZMP the rotation edge can be determined according to (7), the 
distance from FZMP to the rotation edge and the direction of losing stability can be calculated 
by (9).Those two parameters play the key role in maintaining the robot stability.     
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Fig. 14. The relationship between FZMP and support polygon 

4.2.3  Control algorithm considering external environment 
When the robot might lose stability because of the external disturbance, it must immediately 
react this situation and be controlled to keep in stable state. 
The control approaches could be one of the several methods such as the movement of the 
upper body to change of the center of gravity, the enlargement or movement of the support 
polygon, the attachment of robot hand to the surrounding. 
 
(1) The Enlargement of Support Polygon 
We can enlarge the support polygon by modifying the prescribed landing position of the 
swing foot to maintain stability under disturbance. It is mentioned by some research, but it is 
not explained how to realize the enlargement of support polygon. It is not realistic to move 
parallel the rotation edge, which means to moving two feet at same time. 
In figure 5 the moving foot should land the planed position expressed in dashed line if no 
external disturbance. But under disturbance the robot will be rotate about RB. In this case, the 
landing position should be changed to maintain the stability. The changed angle *

fα of 
moving direction of the foot is determined by (10).  
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= −1* cosα                                 (62) 

Here e is the normal planed direction vector. 
The foot moving distance *

fl  relative to planed landing position is determined by the 
formula (4.19)  
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If the change of center of gravity due to the foot extra moving is ignored, then at new landing 
position the robot will be stable.  

             
Fig. 15. The determination of foot landing position 

(2) The Movement of Upper Body 

We assume that the all links of upper body have same the displacement, the velocity and 

acceleration uuu avs ,,  respectively. The moving direction should be pointed to the FZMP. 
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jj zconstz for all upper body j-th link. In this case, 

equation (3) is modified to equation (12).  
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where uM  is the total mass of upper body. zmpx and zmpy are the x- and y-projector of 
pre-designed ZMP. From this equation *

us  and *
ua  can be calculated.  

 
(3) The Attachment of the Hand to the Surrounding 
Through the arm movement to attach with the surrounding to ensure additional support 
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points the static equilibrium may be re-established and the dynamically balanced gait 
continued. This procedure of re-establishing dynamic equilibrium might be considered as a 
kind of total compliance procedure. The position of computed zero-moment point will be 
changed under the support reaction force as shown as following:    
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Here we assume arl xxx == , arl yyy == , arl zzz == , 2/*
xrxlx QQQ == , 

2/*
zrzlz QQQ == , 0== ryly QQ , c

,
cch xxx −=Δ , c

,
cch yyy −=Δ , we can obtain: 
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Because the hand can not only push but also pull the environment, the forces *
xQ and *

zQ can 
be positive or negative. 
(4) The Optimization Control Strategy 
The method above can be used to maintain the stability of the robot, but in some cases only 
one method is unrealistic because of the limitation of the time or foot stride etc.. we have to 
use the combination of the method above to maintain the stabilities of robot. In this case the 
stability maintenance can be considered the following dynamic optimization problem. 
Objective function: 
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( )Xpo  is determined by (7) 

Where ( ) ( )Tauf
T XXXxxxxxxxX ,,7654321 == , ( ) ( )Tccc yxXp 0=  is the 

optimization design variable. ( )Tfff lX α,=  is the movement vector of the foot, in which 

ffl α,  is the moving distance and direction of the foot relative to planed landing position, 

respectively. T
uuuu avsX )(= is the movement parameter vector of upper 

body. T
zxa QQX ),(= is the hand support force parameters vector, and the force in y-direction  
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is ignored. γλ, are the weight coefficients, but they should be set with different numerical 
value. λ  should be chose a relative small value, which depends on the optimization demand. 
The value γ expresses the influence extent of FZMP on the objective function. It is very 
important to choice right γ value. If computed value cp  is within the support polygon, 
γ =0. If outside the support polygon, γ should be chose the large value as the punishment. 

( )afu kkkk =  is the choice coefficient vector in which uk , fk , ak  equal 0 or 1. For example, 
)0,1,1(=k  means that the extra movement of upper body and foot are considered and the 

hand attachment does not exist. 
This is a parameter optimization problem that means the normal gait pattern of robot before 
the external disturbance is introduced is known. From (15) we present a hierarchy control 
strategy as shown in figure 4.4.  
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Fig. 16. The control strategy 
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4.3 Example: 
With the method above we have constructed a simulator of humanoid robot by using 
dynamic analysis software package ADAMS. The total height of humanoid robot is 1650 mm. 
The walking speed is 2 km/h, the stride is 520 mm. The part of simulation parameters is 
shown in Table 1. 
 

Components Length(m) Mass (kg) 
Thigh 0.35 5.0 
Shank 0.35 3.0 

Ankle Height 0.10 0.5 
Upper Arm 0.307 0.56 
Lower Arm 0.241 0.58 

Hand 0.178 20.0 
Foot heel / Tiptoe 0.10 / 0.12 0.8 

Table 1. Simulation Parameters 
 
After building the model of humanoid robot we have made the several simulations 
considering the upper movement, enlargement of foot stride and their combination. In 
simulation the foot contact with the ground is emphasized. The figure 7 shows the normal 
walking process of humanoid robot.  
 

 
Fig. 17. The walking simulation 
 
The x-coordinate and z-coordinate of center of gravity at normal walking and added upper 
body moving to maintain stability under external disturbance are shown in figure 8 and 
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figure 9The stable walking under the reaction of external force can be kept also by the change 
of foot stride. In figure 10 the foot stride should be enlarged 120 mm compared the normal 
stride, where the walking direction was not changed. The optimization process is shown in 
figure 11.The simulations show that the stability under external disturbance can be kept with 
the described strategy. 
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 Fig. 18. The x-coordinate of center of gravity 
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Fig. 19. The z-coordinate of center of gravity 
 

 

 

 

 

 
 
 
 
 
 
 
 
Fig. 20. The enlargement of foot stride (no change in direction) 

left foot

right  foot

F(t)

t0

520 520
120



330                                                                                  Humanoid Robots  

- 50
0

50
100
150
200
250

1 2 3 4 5 6 7 8 9
I t er at i on st ep

Di
st

an
ce

(m
m)

 
Fig. 21. The Distance between FZMP and center of support polygon 

The stability maintenance is important issue in humanoid robot walking. The roles of FZMP 
are emphasized to maintain the robot stability. The support polygon is expressed with 
computerized form. According to the position of FZMP the rotation border can be automatic 
determined. The distance between the FZMP and the rotation border represents the strength 
and direction of losing the stability. The stability maintenance methods such as the movement 
of upper body, the change of foot landing position and the hand attachment with 
environment are discussed. The optimization control model considering different stability 
maintenance measures is proposed. The numerical simulation shows that the proposed 
method is effective and has the advantage of less calculation time. 

5. Summary 

The stability control is important issue in humanoid robot walking. A balance controller 
consisting of an off-line walk pattern planner and a real-time modification was proposed. If 
we can solve this problem, the robot can walk smoothly and adapt to unknown environments, 
and many functions will become true. Inverted pendulum model, ZMP and FZMP conception 
are effective methods for walking gait planning and the stability control. 
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