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Abstract

We consider the problem of autonomous navigation in
unstructured outdoor terrains using vision sensors. The
goal is for a robot to come into a new environment, map
it and move to a given goal at modest speeds (1 m/sec). The
biggest challenges are in building good maps and keeping
the robot well localized as it advances towards the goal. In
this paper, we concentrate on showing how it is possible
to build a consistent, globally correct map in real time, us-
ing efficient precise stereo algorithms for map making and
visual odometry for localization. While we have made ad-
vances in both localization and mapping using stereo vi-
sion, it is the integration of the techniques that is the biggest
contribution of the research. The validity of our approach
is tested in blind experiments, where we submit our code to
an independent testing group that runs and validates it on
an outdoor robot.

1 Introduction

Recent advances in computing hardware coupled with
the availability of different types of sensors have brought
the dream of autonomous robots closer to reality now. Not
surprisingly, good map making and localization are critical
to the autonomous operation and navigation of these robots.
In this paper, we concentrate on showing how it is possible
to build a consistent, globally correct map for outdoor un-
structured environments in real time using stereo vision as
the primary sensor.

The goal is for a small outdoor robot to come into a new
area, learn about and map its environment, and move to a
given goal at modest speeds (1 m/sec). This problem is es-
pecially difficult in outdoor, off-road environments, where
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tall grass, shadows, deadfall, and other obstacles predom-
inate. Although work in outdoor navigation has preferen-
tially used laser rangefinders [11, 3, 5], we use stereo vi-
sion as the main sensor. Stereo vision is a good choice for
several reasons: it is low power, low cost, and can register
dense range information from close objects. More impor-
tantly, vision sensors allow us to use more distant objects
as landmarks for navigation, and to learn and use color and
texture models of the environment, in looking further ahead
than is possible with range sensors alone. Our robot uses
a combination of the following vision-based techniques to
make globally consistent maps in real time.

• Efficient, precise stereo algorithms. Over the past 8
years, we have refined a set of stereo algorithms to take
advantage of parallel-data instructions on PC hard-
ware. We can perform stereo analysis on 512x384 im-
ages in less than 40 ms, enabling a faster system cycle
time for real-time obstacle detection and avoidance.

• Visual odometry (VO) for fine registration of robot
motion and corresponding obstacle maps. We have de-
veloped techniques that run at 15 Hz on standard PC
hardware, and that provide 4% error over runs of 100
m. Our method can be integrated with information
from inertial (IMU) and GPS devices, for robustness
in difficult lighting or motion situations, and for over-
all global consistency. Visual odometry is compared
to the combination of GPS and IMU, and shown to be
superior in producing useable obstacle maps.

• A fast RANSAC method for finding the ground plane.
The ground plane provides a solid base for obstacle de-
tection algorithms in challenging outdoor terrain, and
produces high-quality obstacle maps for a planning
system.

• Sight-line analysis for longer-range inference. Stereo
information on our robot is unreliable past 8m, but it



is possible to infer free space by finding “sight lines,”
directions in which it is likely there is freespace.

While we have made advances in many of the areas above,
it is the integration of the techniques that is the biggest con-
tribution of the research. The validity of our approach is
tested in blind experiments, where we submit our code to
an independent testing group that runs and validates it on
an outdoor robot. In the most recent tests, we have finished
first out of a group of eight teams, in some cases by a large
margin.

1.1 System overview

Figure 1(a) shows our robot equipped with two stereo de-
vices, each stereo device encompassing a 120 degree field
of view, with a baseline of 12 cm. In the current setup,
the robot is near-sighted: depth information for each stero
device degrades rapidly after 6m. There is also an inertial
unit (IMU) with angular drift of several degrees per minute,
and a Garmin GPS. There are 4 Pentium-M 2 GHz comput-
ers, one for each stereo device, one for planning and map-
making, and one for control of the robot and integration of
GPS and IMU readings. In our setup, each stereo computer
performs local map making and visual odometry, and sends
registered local maps to the planner, where they are inte-
grated into a global map. The planner is responsible for
global planning and reactive control, sending commands to
the controller.

1.2 Related work

There has been an explosion of work in mapping and lo-
calization (SLAM), most of it concentrating on indoor en-
vironments [6, 9]. The sensor of choice for indoor environ-
ments is a laser rangefinder, augmented with monocular or
stereo vision. In much of this work, high-accuracy GPS is
used to register sensor scans; exceptions are [5, 11]. In con-
trast, we forego laser rangefinders, and explicitly use image-
based registration to build accurate maps. Other approaches
to mapping with vision are [15, 16], although they are not
oriented towards realtime implementations. Obstacle de-
tection using stereo has also received some attention [15].
There have been a number of recent approaches to visual
odometry [13, 14]. Our system is distinguished by realtime
implementation and high accuracy using a small baseline in
realistic terrain. Finally, [16] applies visual matching tech-
niques to global consistency for maps, in a technique similar
to the maximum likelihood method proposed here.

In the following sections, we first discuss local map cre-
ation from visual input. Then we examine visual odometry
and registration in detail, and show how consistent global
maps are created. Finally, we present performance results
for several tests in Spring 2006.

2 Local map construction

The object of the local map algorithms is to determine,
from the visual information, which areas are freespace and
which are obstacles for the robot: the local map. From the
stereo disparity image, we compute a nominal ground plane,
which yields free space near the robot. We also analyze
height differences from the ground to find obstacles. Fi-
nally, via the technique of sight lines we can infer freespace
to more distant points.

2.1 Stereo analysis and ground plane ex-
traction

We use a fast stereo algorithm [8] to compute a dispar-
ity image at 512x384 resolution (Figure 1(b)). In typical
outdoor scenes, it is possible to achieve very dense stereo
results. The high resolution gives very detailed 3D infor-
mation for finding the ground plane and obstacles. Each
disparity image point [u, v, d] corresponds to a 3D point in
the robot’s frame. We compute the 3D points using a 4x4
homography [2] [X,Y, Z,w]T ≈ H[u, v, d, 1]T .

The most important geometric analysis is finding the
ground plane. Although it is possible to detect obstacles
using local variation in height, using a ground plane simpli-
fies processing and yields more stable results. To extract a
ground plane, we use a RANSAC technique [4]. Any three
noncolinear 3D points define a plane hypothesis. We choose
randomly over the set of points, biasing the choices towards
points the are distributed over the first 5 meters near the
robot, and rejecting hypotheses that are too slanted. Hy-
pothesized planes are ranked by the number of points that
are close to the plane.

This method is very robust, returning reasonable ground
planes even in difficult situations, with clumps of grass or
other distractors. Figure 1(d) shows an example of the ex-
tracted ground plane, with a green overlay indicating the
inliers. Points that lie too high above the ground plane, but
lower than the robot’s height, are labeled as obstacles. This
method is extremely simple, but has proven to work well in
practice, even when the ground has modest dips and rises;
one reason is that it only looks out to 6m around the robot.
As the robot approaches a rise in the ground, for example,
the ground plane will gradually assume the angle of the rise.
A more sophisticated analysis would break the ground plane
into several segments or model more complex shapes.

2.2 Sight lines

Because of the wide angle and short baseline of the
stereo devices, depth information becomes very uncertain
after 6 to 8m. Although we cannot precisely locate obsta-
cles past this limit, we can determine if there is freespace,
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(a) Our Robot (b) Disparity Image (c) Ground Plane (d) Obstacles

Figure 1. (a): Stereo sensors on our robot (b): Disparity image from the left view of the robot; closer pixels are lighter (c):
Extracted ground plane, in green overlay. Limit of ground plane is shown by green bar; sight line has a red bar. (d): Ground plane
overlayed on original image, in green. Obstacles are indicated in purple

using the following observation. Consider the interpreted
image of Figure 1(c). There is a path that goes around the
bushes and extends out a good distance. The ground plane
extends over most of this area, and then ends in a distant
line of trees. The trees are too far to place with any pre-
cision, but we can say that there is no obstacle along the
line of sight to the trees. Given a conservative estimate for
the distance of the trees, we can add freespace up to this
estimate.

The computation of sight lines is most efficiently accom-
plished in the disparity space. We divide the disparity image
into narrow columns, and for each column attempt to find
a contiguous ground plane up to an obstacle. If the ground
plane exists, and the obstacle is distant enough, we can add
a sight line hypothesis to the local map. In Figure 1(c),
the limits of the contiguous ground plane in a column are
marked by green bars. Where the ground plane abuts a dis-
tant object, there is a vertical red line indicating a sight line.
Note in the example that the sight line follows the obvious
path out of the bushes.

3 Constructing consistent global maps

In this section we provide solutions to two problems:
representing and fusing the information provided by visual
analysis, and registering local maps into a consistent global
map using visual odometry.

3.1 Map representation

For indoor work, a standard map representation is a 2D
occupancy grid [12], which gives the probability of each
cell in the map being occupied by an obstacle. Alternatives
for outdoor environments include 2.5D elevation maps and
full 3D voxel maps [7]. These representations can be used
to determine allowable kinematic and dynamic paths for an
outdoor robot in rough terrain. We choose to keep the sim-
pler 2D occupancy grid, foregoing any complex calculation

of the robot’s interaction with the terrain. Instead, we ab-
stract the geometrical characteristics of terrain into a set of
categories, and fuse information from these categories to
create a cost of movement.

We use a grid of 20cm x 20cm cells to represent the
global map. Each cell has a probability of the belonging
to the three categories derived from visual analysis (Sec-
tion 2): obstacle, ground plane freespace and sight line
freespace. Note that these categories are not mutually ex-
clusive, since, for example, a cell under an overhanging
branch could have both freespace and obstacle properties.
We are interested in converting these probabilities into a
cost of traversing the cell. If the probabilities were mu-
tually exclusive, we would simply form the cost function:
c =

∑
i
pici, where ci is the cost associated with category

i. With non-exclusive categories, we chose a simple priori-
tization schedule to determine the cost. Obstacles have the
highest priority, followed by ground plane, sight lines, and
paths.

3.2 Registration and visual odometry

Our robot is equipped with a GPS that is accurate to
within 3 to 10 meters in good situations. GPS informa-
tion is filtered by the IMU and wheel encoders to produce a
more stable position estimate. However, because GPS drifts
and jumps over time, it is impossible using these devices
to differentiate GPS errors from other errors such as wheel
slippage, and the result is that local maps cannot be recon-
structed accurately. Consider the situation of Figure 2. Here
the robot goes through two loops of 10m diameter. There is
a long linear feature (a low wall) that is seen as an obsta-
cle at the beginning and end of the loops. Using the filtered
GPS pose, the position of the wall shifts almost 2m during
the run as is evident from 2(c). Our solution to the registra-
tion problem is to use visual odometry (VO) to ensure local
consistency in map registration. Over larger regions, filter-
ing VO with GPS information provides the necessary cor-
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(a) First Stage (b) Second Stage (c) Third Stage (d) Third Stage using VO

Figure 2. (a),(b) & (c): Three stages during a run using GPS filtered pose. Obstacle points are shown in white, freespace in black,
and the yellow line is the robot’s path. The linear feature is marked by hand in red in all three maps, in its initial pose. (d): Map
registration using VO in the same sequence. GPS filtered path is shown in yellow, VO filtered path is in green.

rections to keep errors from growing without bounds. We
describe these techniques in the next two sections.

3.3 Visual Odometry

Our robot presents a challenging situation for visual
odometry: wide FOV and short baseline make distance er-
rors large, and a small offset from the ground plane makes
it difficult to track points over longer distances. We have
developed a robust visual odometry solution that functions
well under these conditions; we describe it in some detail
here. For a more detailed description of the visual odome-
try system please refer to our detailed paper [1].

Our visual odometry system uses feature tracks to esti-
mate the relative incremental motion between two frames
that are close in time. Corner feature points are detected in
the left image of each stereo pair and tracked across consec-
utive frames. Figure 3(a) shows the tracked feature points
over two consecutive frames. These feature points are then
triangulated at each frame based on stereo correspondences.
Three of these points are used to estimate the motion us-
ing absolute orientation. This motion is then scored using
the pixel reprojection errors in both the cameras. We use
the disparity space homography [2] to evaluate the inliers
for the motion. In the end, the hypothesis with the best
score (maximum number of inliers) is used as the starting
point for a nonlinear minimization problem that minimizes
the pixel reprojection errors in both the cameras simultane-
ously, resulting in a relative motion estimate between the
two frames.

We have found that the approach outlined above is very
efficient (> 15Hz) and works remarkably well, even for
stereo rigs with a small baseline. The fact that we are trian-
gulating the feature points for each frame, builds a firewall
for error propagation. However, this also means that there
will be a drift when the rig is stationary. In order to avoid

this drift, we update the reference frame (the frame with ref-
erence to which the motion of the next frame is computed)
only when the robot has moved some minimum distance
(taken to be 5 cm in our implementation). Since, we are
re-triangulating for every frame, it is important to calibrate
the stereo cameras well. A standard plane based calibration
step works well for all our experiments. The fundamental
reason that our approach gives reliable motion estimates,
even in small-baseline situations is due to the fact that we
stick to image-based quantities and use both the left and
right images symmetrically. The absolute orientation step
used to generate the hypothesis uses the left and the right
cameras symmetrically to generate the motion hypothesis.
The hypothesis is evaluated and scored based on reprojec-
tion errors in both views, resulting in an accurate estimate
of the motion. This estimate is then refined in the nonlin-
ear minimization step which also uses the two cameras uni-
formly.

The IMU and the wheel encoders are also used to fill in
the relative poses when visual odometry fails. This happens
due to sudden lighting changes, fast turns of the robot or
lack of good features in the scene (e.g. blank wall). Thus
it complements the visual pose system. The relative motion
between consecutive frames are chained together to obtain
the absolute pose at each frame. Obviously, this is bound to
result in accumulation of errors and drifting. We use GPS to
correct the pose of the vehicle through a very simple filter
and is described next.

3.4 Global Consistency

Relative motions between consecutive frames are
chained together to obtain the absolute pose at each frame.
Obviously, this is bound to result in accumulation of errors
and drifting. We use GPS to correct the pose of the vehicle
through a simple linear filter. Pose information is used when

4



the GPS receiver has at least a 3D position fix, and head-
ing information is used only when the vehicle is travelling
0.5 m/s or faster, to limit the effect of velocity noise from
GPS on the heading estimate. In addition, GPS measure-
ments are used only if the robot has travelled a minimum
distance from the last GPS measurement. The filter nudges
the VO pose towards global consistency, while maintaining
local consistency. Over larger loops, of course, the 3 m de-
viation of the GPS unit means that the map may not be con-
sistent. In this case, other techniques such as wide-baseline
image matching [10] would have to be employed.

The quality of the registration from filtered VO, shown
in Figure 2(d), can be compared to the filtered GPS of Fig-
ure 2(c). The low wall, which moved almost 2m over the
short loops when using GPS, is much more consistent when
VO is employed. And in cases where GPS is blocked or de-
graded, such as under heavy tree cover in Figure 3(b), VO
still produces maps that are locally consistent. It also allows
us to determine wheel slips and stalls with almost no false
positives – note the end of the run in Figure 3(b), where the
robot was hung up and the wheels were slipping, and wheel
odometry produced a large error.

3.5 Evaluation of Visual Odometry

We have implemented and tested our integrated pose sys-
tem on several outdoor terrains. Since GPS is accurate to
only about 3-4 meters, in order to validate our results, the
robot was moved in a closed loop on a typical outdoor envi-
ronment over 50–100 m, and used the error in start and end
poses.

Table 1 compares this error for vehicle odometry (IMU +
wheel odometry), visual odometry and the GPS integrated
visual odometry for four loops. Except for the first loop,
visual odometry outperforms the vehicle odometry, even
without GPS filtering, and is comparable to the std of GPS
(3m). VO substantially outperformed odometry in 3 of the
4 loops, mainly because of turns and wheel slippage during
those runs. This is especially evident in loop 4, where the
robot was slipping in mud for a substantial amount of time.

4 Results

The combined visual processing results in local maps
that represent traversability with a high degree of fidelity.
Figure 3(b) shows the results of an autonomous run of about
130m, over a span of 150 seconds. The first part of the
run was along a mulch path under heavy tree cover, with
mixed sunlight and deep shadows. For this run, we used
an offline learning of mulch paths on a test site, then used
the learned models on the autonomous run to recognize the
mulch color. Cells categorized as path are shown in yellow;

Run Number 1 2 3 4
Distance(meters) 82.4 141.6 55.3 51.0
Method Percentage Error
Vehicle Odometry 1.3 11.4 11.0 31.0
Raw Visual Odometry 2.2 4.8 5.0 3.9
Visual Odometry & GPS 2.0 0.3 1.7 0.9

Table 1. Loop closure error in percentage.

Test 12 Test 13
BL R BL R

Run 1 5:25 1:46 5:21 2:28
Run 2 5:34 1:50 5:04 2:12
Run 3 5:18 1:52 4:45 2:12

Table 2. Run times for baseline (BL) and
our robots(R).

black is freespace. Obstacles are indicated by purple (for
absolute certainty), and white-to-gray for decreasing cer-
tainty. We did not use sight lines for this run.

The path did not lead directly to the goal, and there were
many opportunities for the robot to head cross-country.
About two-thirds of the way through the run, no more paths
were available, and the robot went through heavy grass and
brush to the goal. The robot’s pose, as estimated from fil-
tered visual odometry is in green; the filtered GPS path is in
yellow. Because of the tree cover, GPS suffered from high
variance at times.

A benefit of using VO is that wheel slips and stalls are
easily detected, with no false positives. For example, at the
end of the run, the robot was hung up on a tree branch, and
spun its wheels for a bit. The filtered GPS, depending on
wheel odometry, moved far off the global pose, while the
filtered VO stayed put.

4.1 Performance

One of the unique aspects of the project is independent
experimental evaluation. An independent testing group ran
monthly blind demos of the perception and control software
developed by eight teams and compared their performance
to a baseline system. Experiments were conducted every
month, with project performers sending in their code on a
flash disk to the evaluation team. The disks were inserted
into a robot, which then was run over a test course. The
last three demos (11, 12, and 13) were considered tests of
performance from the first 18 months of the program.

Our team was first in the last two tests (Test 12 and 13),
after being last in Test 11. Most of the problems in Test
11 were caused by using the baseline planner and controller
(we wrote our own planner and controller for Tests 12 and
13). Table 2 shows the times for the runs in these tests. We
achieved the short run times in Tests 12 and 13 through a
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(a) Tracked Features (b) Autonomous Run

Figure 3. (a): Example of visual odometry showing the motion of successfully tracked features (b): Reconstruction on a 130m
autonomous run. Yellow is recognized path (learnt offline), black is freespace, and purple, gray and white are obstacles. The green
line shows the robot’s trajectory using VO and the yellow line shows the trajectory using IMU and GPS.

combination of precise map building and high-speed path
planning. Our average speed was over 1.1 m/s, while the
robot top speed was limited to 1.3 m/s. Map building relied
on VO to provide good localization, ground-plane analysis
to help detect obstacles, and sight lines to identify distant
regions that are likely to be navigable.

5 Conclusion

We have demonstrated a complete system for off-road
navigation in unstructured environments, using stereo vi-
sion as the main sensor. The system is very robust - we
can typically give it a goal position several hundred meters
away, and expect it to get there. But there are hazards that
are not dealt with by the methods discussed in this paper:
water and ditches are two robot-killers. Finally, we would
like to use visual landmarks to augment GPS for global
consistency, because it would give finer adjustment in the
robot’s position, which is critical for following routes that
have already been found.
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