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INTRODUCTION
In addition to the capability to navigate from arg@f origin to a given goal and
avoiding all static and dynamic obstacles, a matob®t must posses another two

competenciesnap building andlocalization in order to be useful.

A mobile robot acquires information of its enviroant via the process of map
building. Map building for mobile robots are comnhodivided intooccupancy grid
andtopological maps.Occupancy-grid maps seek to represent the geometric
properties of the environmer@ccupancy-grid mapping was first suggested by Elfes
in 1987 and the idea was published in his Ph.Gish@. Elfes, 1989) in 1989.
Topological mapping was first introduced in 1985 as an altirado theoccupancy-
grid mapping by R. Chatila and J.-P. Laumond (R. ChaéilJ.-P. Laumond, 1985).

Topological maps describe the connectivity of different logas in the environment.

The pose of a mobile robot must be known at alésirfor it to navigation and build a
map accurately. This is the problem of localizatmml it was first described in the
late 1980’s by R. Smith et al (R. Smith et al, 19&bme key algorithms for map

building and localization will be discussed in thisicle.

BACKGROUND

Map building is the process of acquiring informatif the environment via sensory
data and representing the acquired informationforraat that is comprehensible to
the robot. The acquired map of the environmentbeansed by the robot to improve

its performance in navigation.
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Localization is the process of finding the poséhef robot in the environment. It is
perhaps the most important competency that a madiilet must possess. This is
because the robot must know its pose in the envieort before it can plan its path to

the goal or follow a planned path towards the goal.

In this article, two key algorithms for map buildiroccupancy-grid andtopological
mapping are discussed. Toecupancy grid andtopological maps are two different
methodologies to represent the environment in ati®lnemory. Two key
localization methods: Localization wialman filter andparticlefilter are also

reviewed.

MAP BUILDING

As seen from thentegrated algorithm from part | of the article, a mobile robot must
be able to acquire maps of an unknown environneeathieve higher level of
autonomy. Map building is the process where sensdoymation of the surrounding

is made comprehensive to a mobile rolothis section, two key approaches for map

building: occupancy-grid andtopological mapping are discussed.

Occupancy-Grid Maps

Occupancy-grid maps (H.P. Moravec, 1988; H.P. Moravec et al, 128%lfes, 1987,
A. Elfes, 1989; S. Thrun et al, 2005) representtmaronment as a tessellation of
grid cells. Each of the grid cells correspondsrt@eea in the physical environment
and holds an occupancy value which indicates tbhbalility of whether the cell is
occupied or free. The occupancy value ofithgrid cell at current timewill be

denoted byp;. Note thafp,; must be within the range of O to 1 following thecans



MOBILE ROBOTSNAVIGATION, MAPPING & LOCALIZATION: PART I1

of probability.p;; = [0,0.5) indicates the confidence level of a beling empty where
0 indicates absolute certainty that the cell is g, = (0.5,1] indicates the
confidence level of a cell being occupied wheradidates absolute certainty that the

cell is occupiedp;; = 0.5 indicates that the cell is an unexplorecare

A robot does not have any knowledge of the worl@rvit was first placed in an
unknown environment. It is therefore intuitive &t g;; = 0.5 for alli at timet = 0.

The map is updated via thag odds (S. Thrun et al, 2005) representation of
occupancy. The advantagelof odds representation is that it can avoid numerical
instabilities for probability near 0 or 1. TH&grid cell that intercepts the sensor line
of sight is updated according to

t,i It—1,i + lsensor (1)
wherel.,; is thelog odds computed from the occupancy value of the ceflat

pt—li
[ .. =log———— 2
t-1i gl— pt_lyi ( )

lsensor = locc if the cell corresponds to the sensor measurear@ite o = liree if the
range to the cell is shorter than the sensor measmt. The other cells in the map

remain unchanged.

Figure 1(a) illustrates the update process fonthp. The cell that corresponds to the
sensor measurement is shaded black and all theetbatlintercept the sensor
measurement beam are shaded white. Figure 1(b)ssh@ase where the sensor
measurement equals to maximum sensor rangéapd= lye for all cells that

intercepts the sensor beam. This is because isisvas] that no obstacle is detected if
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the sensor measurement equals to maximum sengw. kgpnandls e are computed

from

and |, =log Pree

—= 3
1_ pocc free 1_ p ( )

free

wherepocc andpree denote the probabilities of the sensor measurenwrgctly
deducing whether a grid cell is occupied or emphe two probabilities must add up
to 1 and their values depend on the accuracy ageheorp.cc andpsee Will have
values closer to 1 and 0O for an accurate sensorvdlaes ofpo..c andpsee have to be

determined experimentally and remain constantemtlap building process.
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Fig. 1. Updating an occupancy grid map (a) when an obstacle is detected (b)
when a maximum range measurement is detected, i.e. it is assumed that in this
case no obstacleis detected

The occupancy value of a grid cell is easily recegidrom

1

=1
P T T expl )

(4)

Figure 2 shows an occupancy grid map of the cordtung block EA level 3 in the

Faculty of Engineering of the National UniversifySingapore (NUS) acquired with
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a laser range finder. The black regions denoteaclest, white regions denote free

space and grey regions denote unexplored areas.

Fig. 2. Occupancy grid map of the corridor along block EA level 3in the Faculty

of Engineering of the National University of Singapore (NUS).

Topological Maps

Unlike theoccupancy grid maps, topological maps (D. Kortenkamp et al, 1994;
Choset, 1996; H. Choset et al, 1996) do not attemppresent the geometric
information of the environment. Insteddpological maps represent the environments
asgraphs. An example of the topological map is shown inufegg3. List of significant
features such as walls, corners, doors or corridiigsepresented as noagesand
connectivity between adjacent features is represeas edgesy. In many

topological maps, distances between adjacent features areeplssented by the
edges connecting the nodes. The success tbpbkogical maps depends greatly on
the efficiency in features extraction. Exampleseafture extraction algorithms can be

found in (Martin David Adams, 1999; Sen Zhang ef803; Jodo Xavier et al, 2005).
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Fig. 3. Example of atopological map. Thefeatures arerepresented as nodes m;.
The connectivity and distance between features arerepresented as edges Ui
Topological maps are better choice for mapping if memory spgaanajor concern.
This is because less memory is required to st@@dides as compared to the large
number of grid cells in occupancy grid maps. Theaathge of less memory
consumption for théopological map however comes with the tradeoff of being less
accurate. This is because some important informatich as precise location of the
free spaces in the environment may not be repredemthe maps. The limited
accuracy ofopological maps thus restricts the robot’s capability fot &asd safe

navigation.

LOCALIZATION

Most mobile robots localize their pose with respect to a given map based on

odometry readings. Unfortunately, wheel slippagesdrifts cause incremental
localization errors (J. Borenstein et al, 1998Badrenstein et al, 1996). These errors
cause the mobile robot to lose track of its ownepmsd hence losing the ability to

navigate autonomously from one given point in tregrto another. The solution to
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the localization problem is to make use of informrabf the environment from
additional sensors. Examples of sensors used seerange finder and sonar sensor
that measure the distance between the robot antktrest obstacles in the
environment. Thextended Kalman filter (EKF) andparticlefilter are two

localization algorithms that use odometry and aold#l sensory data of the
environment to localize a mobile robot. Both altfums are probabilistic methods that
allow uncertainties from the robot pose estimatk sansor readings to be accounted

for in a principled way.

L ocalization with Extended Kalman Filter

EKF (John J. Leonard et al, 1991; A.Kelly, 1994 Weelch et al, 1995; Martin David
Adams, 1999; S. Thrun et al, 2005) is perhaps thst mstablished algorithm for
localization of mobile robots because of its rohast and efficiency. The EKF is a
recursive algorithm for estimating the pose ofriblgot with noisy sensor readings. A
key feature of the EKF is that it maintains a postedelief bel (x, )of the pose
estimate, which follows &aussian distribution, represented by a mean and
covariancé® . The meanx, represents the most likely pose of the robotna¢tiand
covariancé® represents the error covariance of this estinfdte. EKF consists of
two steps: the prediction and update steps. Iiptédiction step, the predicted belief

@(xt) is first computed using a motion model which ddsesithe state dynamics of

the robot.@(xT) is subsequently transformed inbel (x, by)incorporating the sensor

measurements in the update step.
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As mentioned above, the predicted beﬁ(x[), which is represented by the

predicted mear and covariancP:, is computed from the prediction step given by

% = f(x.u) (5)

P. =FP_F" +Q (6)
wheref (.) is the motion model of the mobile robdi,is the Jacobian of
f (.)evaluated a, _,, Q, is the covariance of the motion model ands the control

data of the robot.

@(xt) is subsequently transformed i (x, by incorporating the sensor

measuremer, into the update step of the EKF shown in Equatigrand 9.

K, = BH/(HPRH/+R)™ (7)
X = X +K(z —h(X,m) (8)
R = (I -KH)R 9)

K., computed in Equation 7, is called thaman gain. It specifies the degree to
which z should be incorporated into the new pose estingajeation 8 computes
by adjusting it in proportion ti§, and the deviation of trewith the predicted

measuremertit(X,, m) . It is important to note that the sensor measuntme

z, =[z0 z* ..]" refers to coordinates of a set of observed lankisnastead of the

raw sensor readings and the sensor measurement imodgives the predicted
measurement from the given topological maand X,. H, is the Jacobian ofi (.)
evaluated at,_, . Finally, the covarianc®, of the posterior beliebel (x, )s

computed in Equation 9 by adjusting for the infotiora gain resulting from the

sensor measurements.
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L ocalization with Particle Filter

In the recent years, there is an increasing int@megbe use of particle filter (S. Thrun
et al, 2001; C. Kwok et al, 2002; D. Fox et al, 20@annis M. Rekleitis, 2004; S.
Thrun et al, 2005) over EKF for robot localizatidiis increased interest is likely
due to four reasons. First, raw sensor measureroéttie environment are used in
particle filter localization where the EKF localtmn requires feature extraction.
Second, the particle filter is more robust becaudike the EKF, it does not assume
Gaussian distribution for the posterior belbef (x, . Third, the particle filter is able
to recover from localization failure. Localizatiailure occurs if the robot suddenly
loses track of its pose during the localizationcess. Localization failure is also
known as the kidnapped problem. Fourth, unlikeEK& there is no need to derive

complicated Jacobians for the particle filter.

The intuition behind the particle filter is to regent the posterior belibEl (x, by a
finite sample set d¥I weighted particles. This sample set is drawn atingrto
bel (x,). The particles set is denoted by

&=x0 X (10)
where '™ =[x{™ w™]" denotes thel" particle. Here X™ is a random variable
that represents a hypothesized state sl is a non-negative value called the

importance factor which represents the weight chegazarticle. Similar to the EKF,
the particle filter consists of the prediction ammtlate steps. In the prediction step,

samples of the particles are drawn from a motiodehof the robot to represent the

predicted belietg(xt). The particles are then weighted according testresor

measurements in the update step. Finéd_day(x[) is transformed into the posterior

10
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beliefbel (x, ) by resampling the particles according to theirghts.

L& =& =0,
.form=1 toM do
generate random samplexdt from p(x, |u,,xX7);

w" = p(z, [ X", m)
A" =040 W
. end;
.form=1toMdo
drawy!™ from & with probability proportional ton®™, w,...., w"!;
end,

© ®NO U A WN R

Table 1: Pseudo algorithm for maobile robot localization with particlefilter

Table 1 shows an iteration of the recursive partidler algorithm for localization.
The inputs to the particle filter are the set atigdes representing the previous state

belief ¢,_,, the most recent control actions and measurement data Line 3 is the
prediction step that generates the hypotheticée s¢&' by sampling from the motion
model p(x, |u,,x" ) of the robot. The set of particles obtained affeterations
represent@(x[). Line 4 computesw{m] from the sensor measurement model. The

importance factor accounts for the mismatch betv@(xt) andbel (x, ). Finally,
the resampling process from line 7 to 9 draws wafilacemenm particles from the

temporary sef, with a probability proportional to the importarfeetors. The

distribution of@(xt)is transformed intdel (x, By incorporating the importance

factors in the resampling process.

Figure 4(a) to (d) shows an implementation resiudt mbot localizing itself in a
corridor. The patrticle set is initialized to thetia known pose of the robot show in

Figure 4(a). The particles are initialized unifoymalithin a circle with radii 2000mm

11
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and the initial position of the robot is taken las tenter. The orientation of the
particles is also initialized uniformly within 2%o the initial orientation of the robot.
This is to eliminate possible errors in estimating initial pose of the robot. Figure
4(b) to 4(d) show that the error from the odometigws as the robot travels a greater
distance. The robot thinks that it is travelingpoctupied space if it relied solely on the
odometry readings and this is obviously wrongs &pparent that the particle filter
gives a more reasonable pose estimate becausebibias always moving within the

free space.

It was mentioned earlier that the particle filteable to recover from localization
failure. An example of localization failure is whtre robot is pushed by human
resulting in a mismatch between the true and egtidnaose of the robot. Fortunately,
the problem can be easily solved by observingdted weights of the filter after each
iteration. Localization failures will cause shamek in the total weights of the
particles. The particles are re-initialized uniféyrnm the free space after detecting a
sharp drop in the total weights of the particldse particles will eventually converge

to the true pose of the robot.

The patrticle filter is a powerful algorithm in solg the localization problem.
However, it must be noted that the number of pegiased to represent beliefs is an
important parameter for efficiency of the partitileer in recovering from localization
failures. A large size of particles is necessametmver from localization failures in
large environments and in many cases the maximunbaupatrticles is restricted by
the available computing resources. This probleaiss known as theurse of

dimensionality.

12
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Initial Robot Pose

Odometry

Pos e Estimate Particles

Pose Estimate Odometry

Odometry

Poze Estimate

Particles

(d)
Fig. 4. Implementation of the particlefilter to solve the localization problem.
Noticethat theerror from the odometry grows astherobot travels a greater
distance.
CONCLUSION
A mobile robot has to possess three competenciashieve full autonomy:
navigation, map building and localization. Over yl@ars, many algorithms have been
proposed and implemented with notable succesy&mgobile robots all the three

competencies. Some of the key algorithms sucheasathgation function, roadmaps,

13
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artificial potential field, vector field histogram, hybrid navigation and thentegrated
algorithm for navigationjoccupancy grid andtopological based mapping; as well as
theKalman filter andparticlefilter for localization are reviewed in both Part | ahd |

of this article.

FUTURE TRENDS

While the navigation, map building and localizatedgorithms are implemented with
notable success, the scale and structure of theoenwents for these algorithms to
work are limited. Hence, the future challengesnabile robot autonomy are in the
implementations of the algorithms in larger scald mmore complex environments

such as the urban cities or jungles.

14
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TERMSAND DEFINTIONS

Odometry: A method to do position estimation for a wheeleligie during
navigation by counting the number of revolutiorietaby the wheels that are in
contact with the ground.

Recursive algorithm: It refers to a type of computer function that iplggd within
its own definition. Thextended Kalman filter andparticlefilter are recursive
algorithms because the outputs from the filtethatcurrent time step are used as
inputs in the next time step.

Gaussian distribution: It is also known as normal distribution. It is aniéy of
continuous probability distributions where each rbhenof the family is described by
two parameters: mean and variance. This form afilligion is used by the
localization withextended Kalman filter algorithm to describe the posterior belief
distribution of the robot pose.

Jacobians: The Jacobian is a first-order partial derivativéa éunction. Its
importance lies in the fact that it representstibst linear approximation to a
differentiable function near a given point.

Posterior belief: It refers to the probability distribution of thebm@t pose estimate
conditioned upon information such as control antsee measurement data. The
extended Kalman filter andparticlefilter are two different methods for computing the
posterior belief.

Predicted bdlief: It is also known as the prior belief. It referghe probability
distribution of the robot pose estimate interprdtedh the known control data and in
the absence of the sensor measurement data.

Curse of dimensionality: This term was first used by Richard Bellman. lersfto
the problem of exponential increase in volume assed with adding extra
dimensions to a mathematical space.
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