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Abstract

Many legged robots have been built with a variety of different abilities, from running to hop-
ping to climbing stairs. Despite this however, there has been no consistency of approach to the
problem of getting them to walk. Approaches have included breaking down the walking step
into discrete parts and then controlling them separately, using springs and linkages to achieve a
passive walking cycle, and even working out the necessary movements in simulation and then
imposing them on the real robot. All of these have limitations, although most were successful
at the task for which they were designed. However, all of them fall into one of two categories:
either they alter the dynamics of the robots physically so that the robot, whilst very good at
walking, is not as general purpose as it once was (as with the passive robots), or they control
the physical mechanism of the robot directly to achieve their goals, and this is a difficult task.

In this thesis a design methodology is described for building controllers for 3D dynamically
stable walking, inspired by the best walkers and runners around — ourselves — so the con-
trollers produced are based on the vertebrate Central Nervous System. This means that there is
a low-level controller which adapts itself to the robot so that, when switched on, it can be con-
sidered to simulate the springs and linkages of the passive robots to produce a walking robot,
and this now active mechanism is then controlled by a relatively simple higher level controller.
This is the best of both worlds — we have a robot which is inherently capable of walking, and
thus is easy to control like the passive walkers, but also retains the general purpose abilities
which makes it so potentially useful.

This design methodology uses an evolutionary algorithm to generate low-level controllers for a
selection of simulated legged robots. The thesis also looks in detail at previous walking robots
and their controllers and shows that some approaches, including staged evolution and hand-
coding designs, may be unnecessary, and indeed inappropriate, at least for a general purpose
controller. The specific algorithm used is evolutionary, using a simple genetic algorithm to
allow adaptation to different robot configurations, and the controllers evolved are continuous
time neural networks. These are chosen because of their ability to entrain to the movement
of the robot, allowing the whole robot and network to be considered as a single dynamical
system, which can then be controlled by a higher level system.

An extensive program of experiments investigates the types of neural models and network
structures which are best suited to this task, and it is shown that stateless and simple dynamic
neural models are significantly outperformed as controllers by more complex, biologically
plausible ones but that other ideas taken from biological systems, including network connec-
tivities, are not generally as useful and reasons for this are examined.

The thesis then shows that this system, although only developed on a single robot, is capable
of automatically generating controllers for a wide selection of different test designs. Finally it
shows that high level controllers, at least to control steering and speed, can be easily built on
top of this now active walking mechanism.
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Chapter 1

Introduction

Many legged robots have been built with a variety of different abilities, from running to hop-

ping to climbing stairs. However, despite this there has been little consistency of approach to

the problem of getting them to walk — every research group has followed its own instincts.

For instance, some have broken down the walking step into discrete parts and then controlled

them separately, some have used springs and linkages to achieve a passive walking cycle, and

some have worked out the necessary movements in simulation and then imposed them on the

real robot. All of these approaches have limitations, although most were successful on the

robots for which they were intended.

The design of a controller for dynamically stable walking machines which can be used across

as wide a spectrum of machines as possible would allow the field to progress beyond just

building the robots and making them walk, towards actually putting the robots to use in real

situations.

This has been the focus of my research, and inspiration on how to design controllers for a wide

variety of different body conformations came from the best walkers, runners and stair-climbers

around — ourselves — and as a result the control systems produced are based on the vertebrate

Central Nervous System. The controllers are built by an evolutionary mechanism which adapts

them automatically to any robot with which it is presented. These controllers then become part

of the now walking robot, which is itself controlled, as to direction and speed for instance, by a

higher level controller. This is an easier task than before because the robot is already walking,

and so only has to have its gait modified rather than a single monolithic controller having to

determine the position of limbs or torques in joints directly for all speeds and directions, as is

1



2 CHAPTER 1. INTRODUCTION

normally the case.

1.1 Motivation

Some people believe that control systems give commands to mechanisms. But

mechanisms have a mind of their own: they will obey physical laws. Control is

not to compensate for the limitations of poorly designed mechanisms. The best

systems will have mechanism and control designed to work together in harmony.

Marc Raibert (ISToMM’93)

Marc Raibert was acknowledged as one of the leaders in the field of legged robotics until he

moved into industry in 1993, and the above extract from a talk he gave made me think about

the mechanisms which people use when trying to make robots walk. It seems to me that almost

without exception they are not designed for walking at all, but rather to be as general purpose

as possible, and indeed that the whole purpose of the “controllers” is to get them to walk in

the first place, not to control walking, as they have no innate ability. Exceptions to this include

passive walkers [for instance the “biped glider” ofMcGeer, 1989] which are designed not

to require a controller (or even power) for walking down gentle slopes, and spring actuated

robots [e.g.Wadden et al., 1993], all of which have springs and dampers built into the physical

robot. However there is a significant problem with this approach: although the end result is

generally a very competent walking robot, because all the springs and linkages which make

the mechanism so effective are permanently in place the better the mechanism is at walking

the worse it becomes at everything else — until in the limit it becomes as uncontrollable as the

walking automata of the turn of the century whose intellectual successor it is, and it becomes

impossible to get it to manoeuvre or climb over obstacles or achieve anything else which might

be desirable in the context of a robot designed to carry out a task. However, the idea of the

mechanism being inherently able to walk makes sense since it would make the control job so

much more straightforward, if only there were a way of retaining the multifunctionality which

the more basic robots have.

The answer in the end is clear — if you don’t want the springs all the time, why not simulate

them through the motors so that when you switch off the simulation you are left with your

general purpose robot again? There was a clear precedent for this which encouraged optimism
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in the approach — the vertebrate spinal cord. Take the cat, for example. Clearly this is an ex-

tremely versatile animal capable of an enormous range of movements — yet it can be induced

to walk very easily by sending a simple signal down the spinal cord which excites the Cen-

tral Pattern Generators (CPGs) associated with walking [Grillner, 1985]. These do not exactly

simulate the springs and links mentioned above, but they have a similar effect — they actively

alter the dynamics of the legs through the muscles to create a new dynamical system where

walking is a stable attractor.

The significance of this point becomes clear when you realise that, both with the spinal cat1

and with a robot with simulated springs and linkages, what you still have is a dynamical system

which can be controlled: in the cat’s case this is done by various higher centres in the brain,

notably the cerebellum, but in the robot’s case it can be done by a more conventional controller.

This should be much simpler than most walking controllers, as it no longer has to “compensate

for the limitations of a poorly designed mechanism”, but rather controls an (active) walking

mechanism and so only has to concern itself with maintaining the stability of the walking

behaviour on rough terrain and perhaps during gait changes, as well as higher level concerns

such as direction and speed of movement. The latter are very simple to control in vertebrates —

for instance, the higher the excitation of the CPGs in the cat, the faster the cat will go, changing

gaits automatically as it speeds up [Grillner, 1985], and in the lamprey, where Grillner and his

colleagues have mapped the entire structure of the CPGs [Grillner et al., 1991], it is found that

exciting the CPGs on one side of the body more than those on the other side (which again is

very easily done) causes the lamprey to move smoothly away from the excited side.

Strangely, Raibert’s robots [Raibert, 1986, 1988] do not follow his own advice — neither the

mechanism nor any individual part of the controller walks on its own, so the controller has

to do the whole job in one go and make the robot walk as well as control the walking all

at once. This has resulted in all of Raibert’s controllers being carefully handcrafted, a time-

consuming process, though, despite that, the controllers that he and his successors in the MIT

Leg Lab have made have been the closest yet made to the general purpose controllers that we

are looking for.

In fact very few people seem to have designed walkingmechanismsat all since automata were

replaced by controlled robots in the 1950s. All those that arguably have done so have two

1 a cat whose spinal cord has been severed just below the brain
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things in common (except the passive walkers which have no controller) — firstly they are

controlled by neural networks (this is almost inevitable as they are the only well researched

computational system which can be trained and have their own continuous dynamics), but

secondly and more interestingly, although they alter the dynamics of the robots with neural

networks to make them walk, they do not appreciate they have done this but rather describe

their neural networks as controllers in their own right and do not go one step further to then

design a (higher-level) controller for the walking robot. In trying to do it all in one go the results

tend to be fairly poor, and certainly considerably less impressive than Raibert’s algorithmic

approach.

1.2 Summary of Achievements

In this thesis I describe a new design methodology for creating legged robot controllers, where

a low level controller entrains to the dynamics of the system, adapting it so that walking is a

stable attractor, allowing a higher level controller to be very simple and easy to build when

compared to equivalent controllers for the original robot. This is a general purpose design

strategy which can build controllers for any robot which can be described in the simulation

language provided. Indeed, even if this is not possible, the language is easily extensible to

cover (for instance) new actuators, sensors, and even joint types, and the design strategy can

then be applied to the new robot in exactly the same manner. The significant difference be-

tween this work and previous simulation work on walking such as that byBeer and Gallagher

[1992] is that the simulator was a full 3D simulator, and dynamically stable walking was mod-

elled.

In pursuing this goal a mechanism was built for measuring the ability of a neural network to

control a legged robot in simulation, and as this proved to be a challenging real-world task

a detailed comparison of a variety of evolutionary methods for building neural networks was

carried out and an analysis done of the results to see how different approaches compared on a

standardised but taxing problem.

The whole system consists of a mechanical simulator with its associated simulation language,

a neural simulator capable of simulating a variety of different types of neurons as well as any

network configuration, an evaluation mechanism for determining how well a specific network
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performs in controlling the robot, a genetic algorithm for evolving the controllers, and a series

of implementations of the different neural network encodings used in experiments.

1.3 Organisation of this thesis

Chapter2 discusses past and present work in walking research, looking mostly at robotics and

its precursors but also, where appropriate, at locomotion in vertebrates and its neuromuscular

control, showing how these strands tie into the research done in this thesis.

Chapter3 contains a review of relevant neural network research, particularly evolutionary

approaches, and describes in detail a variety of evolutionary encodings of neural networks,

some of which are examined in this thesis.

Chapter4 presents a detailed examination of the system used to build, model, and evaluate

walking robot controllers, including details of validation experiments, robot models used, and

how analyses were carried out.

Chapter5 provides the initial results of the simulator on simple encodings, showing the poten-

tial of the system to learn appropriate behaviours, and compares a variety of different neural

models.

Chapter6 shows the detailed results of the selection of encodings implemented for comparison

on the system, and then looks at how different fitness functions can help in evolving walking

robots.

Chapter7 uses the best system from the previous chapter to evolve controllers for a variety

of different test robots to show that the algorithm developed is sufficiently general purpose. It

then shows that it is simple to add a higher level controller to the active mechanism evolved

which allows it to be steered and accelerated.

Chapter8 examines what has been achieved in this thesis and suggests avenues for further

research.
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Chapter 2

Walking research

After a long time as a junior partner in robotics, walking has seen an explosion in interest and

achievements in the last fifteen years as computational power unimaginable until recently has

been brought to bear on its problems. At the same time we have seen advances in other related

fields: non-linear dynamics has helped us understand and model the robotic systems that we

are studying; zoology has provided details of the mechanics of animal locomotion to aid in the

design of our robots; and neuroscience has developed a deeper understanding of how rhythmic

movements like walking occur in the natural world, and this has helped us formulate new ideas

for robotic controllers.

In this chapter I will give an overview of the history of walking research, following its progres-

sion from the study of body parts and the construction of clockwork automata to the under-

standing of neural rhythm generators and the control of robotic somersaulting1. We shall see

that it has become a focal point of interdisciplinary research between the biological sciences

and robotics, and we shall examine what can be gained from this work.

2.1 Early research

Fascination with walking goes back millennia, but research began in the 18th and 19th cen-

turies. Interest arose for varying reasons, not all of them scientific.

1 An earlier version of this chapter appeared in [Reeve, 1999a]

7
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2.1.1 Studies of gait

Some of the earliest work involved the examination of cadavers to investigate how they were

constructed (for instance work by J. C. Lavater in the late 18th century), but two significant

studies of gait really started the ball rolling.

The first of these was by E. J. Marey who invented a pneumatic recording device in the 1870’s

which measured stepping patterns through sensors attached to the feet of subjects which moved

the pen on a clockwork recorder [Marey, 1874]. This allowed him to make records of step

patterns in different gaits.

The second (and far more famous) was Eadweard Muybridge, a photographer who, initially

spurred on by a bet to prove whether a horse lifted all of its legs off the ground simultaneously

in a gallop, went on to record a huge collection of high-speed photographs of animal gaits [e.g.

Muybridge, 1887].

These people took some of the first steps in researching the field and though they came from

very different backgrounds, they were looking for the same information. This has always been

a problem for walking researchers — it is an attractive subject to investigate, and it has no

particular allegiance to any one field. As a result there is a danger of duplication of effort

as new disciplines decide locomotion is a field worthy of study. Zoologists and physiologists

were amongst the early researchers [e.g.Gray et al., 1938]; mathematicians found the apparent

simplicity of these patterns interesting, and group theoreticians examined their properties [e.g.

Collins and Stewart, 1993a,b, Collins and Richmond, 1994]; neuroscientists began to study the

structures which control locomotion [e.g.Grillner, 1985], and roboticists have tried to emulate

the ability, as well as embodying their theories of intelligence in legged robots [e.g.Raibert,

1988, Brooks, 1989]; non-linear dynamicists have examined the whole walking system to

determine its dynamics and stability [e.g.Kelso, 1995]; biomechanicists have looked at how to

improve running performance, and are trying to stimulate nerves in paraplegics to allow them

to walk again [e.g.Yamaguchi and Zajac, 1990]; finally, computer graphics researchers have

created the illusion of walking for our entertainment in the cinema or on our computers (e.g.

Toy Story).

All of these people have different contributions to make, but it has become impossible for

anyone to keep track of their different approaches and achievements. However, it is very
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important to legged robot research that some feel for the overall picture is maintained, and that

is the purpose of this chapter.

2.1.2 Automata

In the mid 18th century, even before these early studies of walking in animals, automata were

being constructed to mimic life as closely as possible and were being demonstrated at fairs

and exhibitions. One of their greatest creators was J. de Vaucasson, whose aim was to produce

the perfect artificial person [Elliott, 1997]. He produced a flautist which could imitate the

sound of the instrument and move in a lifelike fashion. It was incredibly intricate and was

controlled by hundreds of bellows and levers. He went on to make a mechanical duck which

could flap its wings, walk, and even eat, drink and defecate by means of a mechanical stomach.

His project was continued in the 1770s by P.-J. Promond and H. Lois who made increasingly

humanoid automata one of which (the Draftsman) could make writing movements and follow

them with its head, and another could even reportedly play the harpsichord. Of course it is

impossible to authenticate these reports and various automata were exposed as frauds, but

incredibly complex machines were certainly being made around this time, and their makers

boasted of mimicking life itself.

In the 1850s Chebyshev invented mechanical linkages which connected joints so that they

moved together. This allowed walking to be developed much more easily as linkages could be

designed which would make the body move horizontally by moving the feet and legs in a fixed

pattern, and many walking automata were designed by this method [Raibert, 1986].

One of the difficulties with this early approach however was that the rigid mechanical linkages

which made walking possible totally fixed the movement of the legs. This meant that no

alterations in the gait could be made, for instance to change gaits and move over uneven terrain.

Subsequent decades were spent designing better linkages in an attempt to produce suitable

stepping motions to generate stable locomotion. However, to allow the gait to change some

means of control would have to be devised, and there the problem lay for half a century.
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2.1.3 Peripheral vs. Central Control

During these early years of the 20th century Neuroscience began to take a serious interest in

locomotion, debating how control of locomotion and other rhythmic movements occurred in

humans and other animals. Two competing hypotheses came to the fore: Peripheral Control

and Central Control.

The former claimed that these movements were achieved through sensory feedback; a reflex

chain existed where each phase of the motion cycle provided the sensory cues which triggered

the correct timing of the next in a repeating loop. Thus the behaviour would be disrupted by a

lack of sensory feedback.

The latter claimed that the Central Nervous System (CNS) does not require sensory feedback

to provide the proper timing, but rather that there is a neural pacemaker providing the rhythm

which, though it may be modulated by feedback, was essentially independent of it.

Both hypotheses had early supporters, but experimental evidence was scarce until the 1930’s

and 40’s, when much support was found for the importance of sensory feedback.

Peripheral Control

Some of the best work supporting Peripheral Control was done by Sir James Gray and his

colleagues [e.g.Gray et al., 1938, Gray and Lissmann, 1940]; they showed that there were

behaviours in both invertebrates and vertebrates which seemed to consist of chains of reflexes.

They also claimed that the same experiments, when repeated on deafferented2 animals, pro-

duced no observable rhythmical motions. These last results have been largely refuted by more

careful recent experiments, but the early behaviours they describe, such as reflex walking in

the spinal toad when it is held against a moving surface, have been widely repeated.

Other work on a variety of animals showed that particular sensory inputs can disrupt or com-

pletely arrest normal motor output. For instance, in one experiment a bivalve scallop with its

shell bound shut was found to completely stop contracting and relaxing its adductor muscle

[Delcomyn, 1980].

Results like these were taken at the time to support the Peripheral Control hypothesis; however,

2 sensory (afferent) nerves are cut so no feedback is received by CNS



2.1. EARLY RESEARCH 11

in reality Central Control did not preclude them, except those which were later shown to be in

error; it only said that sensory feedback was not necessary to create the rhythm, not that it did

not play a significant part.

This became important when, in the 1960’s and 70’s, evidence came in which proved conclu-

sively that rhythmical motions could occur without sensory feedback.

Central Control

A great body of evidence was gathered by various researchers [for a table seeDelcomyn, 1980,

page 494], which showed that creatures from right across the animal kingdom could carry out

rhythmical actions when their nervous systems were completely isolated3, deafferented, or

when their muscles were paralysed. In all these cases there was no feedback to allow reflexes

to generate the movement. That these results were not gathered before was in some cases a

result of poorer experimental techniques and equipment which failed to pick up the rhythms,

and in others because the experimental procedures caused too much extraneous damage for the

nervous system to be able to continue to operate normally.

On the basis of this new evidence, there was no doubt that central mechanisms did generate

many rhythmical motions, and the idea that all meaningful output had to be driven by specific

sensory stimulation died. However, the central control hypothesis fell far short of explaining

what was happening in these pacemakers that it proposed, and certainly observations like the

reflex walking referred to earlier needed to be put into the structure of central control; indeed

some more recent work had also shown results which did not fit in with a strong central theory.

For example, Grillner and Wallén show that a spinal dogfish paralysed by curare will, if the

tail is moved at a frequency different from its natural swimming rhythm, show co-ordinated

bursts in its motoneurones at the imposed frequency [Grillner and Walĺen, 1977]. Also, as in

scallops, the swimming movement can be suppressed by strong stimuli like holding the body

tightly.

Experiments like this led to the realisation that a more sophisticated explanation would have

to be found to replace the rather simplistic Central Control hypothesis.

3 removed from the body
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2.1.4 Early Robots

Meanwhile, back in robotics, the first true walking robots had already been built. It was the

arrival of logic circuits and later computers which made this possible by allowing a control

mechanism to be built which would make variation in the walking patterns possible.

Nevertheless, one of the first ideas was to use a human as the controller, as this was still

early days for computing. General Electric built one such vehicle in the 1960’s [the “versatile

walking truck” in Mosher, 1968] which, under the control of its operator, was capable of up

to 5 mph and could climb over large obstacles. This was really ignoring the control problem

however, and it was not until the late 60’s that truly independent legged robots began to appear.

One of the first of these was built by Frank and McGhee and was called the Phony Pony

[McGhee, 1976]; each joint was controlled by a finite state machine made from digital logic

circuits with each of four states triggering the next in a fixed loop. This was actually very re-

strictive, and made the robot behave in a fixed manner very similar to the automata it replaced.

However it opened the door to the gait being computer controlled, and thus changeable in

software.

After this, many research projects were started into computer controlled walking, and indeed

the first commercial product, Big Muskie, which was a walking dragline used for strip mining,

was produced by the Bucyrus-Erie company in 1969.

The late 1970’s and 80’s saw a succession of simple computer-controlled statically stable

robots whose patterns of locomotion were very simple and inspired by insects [e.g.Gurfinkel

et al., 1981, Hirose and Umetani, 1980]. They remained balanced in static equilibrium all the

time, and moved surplus legs to new positions where they could in turn be used for support.

They were the first computer controlled walking robots, and they moved very slowly (as they

always had to keep 3 legs on the ground for support). Their controllers tended to be reactive

(i.e. they would move to a new state based on the sensory feedback and the state they were in),

and parallels can easily be drawn to the Reflex Controllers mentioned earlier. This strategy

allowed fairly robust movements across terrain, and so long as a state was described in the

controller (e.g. leg moving forward hits obstacle), it could be dealt with by the robot (move

back, raise leg, and repeat). However, this approach does require the enumeration of possible

states, which is far from ideal. These controllers were time-independent, in the sense that the
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system could be frozen and restarted at any point, or run at a different speed, and there would

be no effect on the walking pattern, so it didn’t matter if the computer had to sit and calculate

for a bit to work out what to do next.

The next step forward was the realisation of dynamically stable (or actively balanced) walking,

which arrived as computers became more powerful, and capable of dealing with the complex-

ities involved in staying upright when not always in a stable posture [e.g.Matsuoka, 1979,

Miura et al., 1984, Raibert et al., 1984]. Controllers for this kind of robot were time-dependent,

that is to say that there were points in the motion cycle when stopping or changing speed would

be fatal (imagine stopping moving your legs in the middle of a fast step), so the controller had

to be able to keep up with what was going on in real time.

2.2 Recent developments

At this point walking was still poorly understood. Physiologists had studied the bodies of

animals, neuroscientists had argued about how they walk, and roboticists had created slow,

clumsy walkers, but things had really yet to take off. The pace of change was soon to speed up

however.

2.2.1 First steps with dynamic stability

The first attempt at a dynamically stable robot was byOgo et al.[1980], where a biped with

huge feet walked in a quasi-dynamically stable fashion. They avoided the problems of time-

dependence by only having a small non-statically stable phase where the biped ‘fell’ from one

foot to the other in a controlled fashion.

True dynamic stability was not long in coming however. At the same time as the above Mat-

suoka built a robot capable of running in a 2 dimensional world [Matsuoka, 1979], and not long

after Miura and Shimoyama developed the first actively balanced dynamically stable walker,

the stilt biped, which was supposed to model the behaviour of a person walking on stilts [Miura

et al., 1984].

Raibert and his team at Carnegie-Mellon University (it was later to move to MIT) then started

to produce walking robots. Initially he designed a 3D one-legged hopping machine [Raibert
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et al., 1984]; shortly after this he progressed to bipeds and quadrupeds using the same basic

algorithm for each [Raibert, 1986]. They had finite state controllers, but within each state the

controller was algorithmic, calculating the desired joint angle and the required joint forces.

This was a more centralised control than the statically stable robots and the robots went at

impressive speeds (for instance the one-legged robot had a top speed of 4.5 mph).

On a different front, McGeer built a dynamically stable passive walker which he called the

“biped glider” [McGeer, 1989, 1990]. This could walk stably down gentle slopes without any

form of control, and could in theory be pumped to walk on the flat or on other terrain. This has

been taken further by Goswani and colleagues at INRIA in [Goswami et al., 1997] who looked

at passive walking with a very simple gait, and then at the mimicking of passive control with

an active mechanism to enlarge the natural basin of attraction of the passive limit cycles and

to create new gaits.

2.2.2 Central Pattern Generators

Much progress has also been made by neuroscientists studying rhythmical controllers. Follow-

ing on from the ideas of Central Control, during the 1970’s the idea grew that the motoneurones

(and hence rhythmical movements) in vertebrates were driven by central networks of interneu-

rones that generated the essential features of the motor pattern, but also that sensory feedback

signals played a crucial role in the control system, namely to turn a stereotyped unstable pat-

tern into the co-ordinated rhythm of the natural movement. The networks were referred to as

Central Pattern Generators (CPGs), and evidence showed that every part of the body which

makes cyclical movements has its own individual CPG [for a summary, seeDelcomyn, 1980].

Experimental evidence has recently proven this to be true in the lamprey [Wallén et al., 1992],

where neurophysiologists actually mapped out the neurones making up the CPG, and it is

accepted in other animals as well.

In vertebrates the spinal cord contains these neuronal networks. The CPGs, when stimulated,

have their own dynamics which set up oscillations in outputs between the neurones. When they

are connected to the motoneurones, these generate the characteristic rhythmical behaviour as-

sociated with the system. Central Pattern Generator is a general term: for instance, in walking

each muscle can be considered to have its own CPG, but opposing muscles CPGs can be con-

sidered collectively to form a joint CPG, and similarly for limb CPGs. Feedback from the mus-
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cles keeps the CPGs in phase with the limb, so the pattern does not break down. In the same

way, limb CPGs maintain the co-ordination between legs to generate the overall behaviour

(i.e.walking) by their cross connections. The system is self-correcting, so that if any part loses

synchronisation, the dynamics of the whole system forces it back into the original rhythm.

Without the cerebellum, movements are coarser and there are some problems with equilibrium

and co-ordination, but in essence the pattern remains unchanged; thus spinal mammals and

birds have been shown to make walking movements very similar to those of intact animals

[Grillner, 1985]. On the other hand, without proprioceptive feedback the pattern can break

down [Delcomyn, 1980], as it can be very important for adaptation to actual conditions. Even

with this feedback the rhythm can break down though if it is knocked too far from equilibrium,

as the movement now falls outside the basin of stability of the system.

As a result of work by Sten Grillner and his colleagues in examining and simulating CPGs in

the lamprey [Grillner et al., 1991, Wallén et al., 1992], a great deal is now known about their

structure and behaviour in this creature; however there is still much to be learnt in other animals

— of particular interest to us are legged vertebrates: we know that each muscle has its own

CPG and that this is essentially a very simple network, and that these are connected together

inside each leg to generate a stepping motion, and between legs to generate a stable rhythm,

and we also know that each of these rhythms (gaits) is stable over a certain range of speeds,

so as the legs speed up, the basin of stability for one gait shrinks until a bifurcation occurs and

that gait becomes unstable, and walking moves to a new gait with a different attractor [Kelso,

1995]. We also know that the cerebellum and other higher centres are highly connected to the

CPGs, receiving efference copies of the signals sent from the CPGs to the motoneurones, as

well as the afferent feedback from the muscles [Grillner, 1985], and that this allows fine-tuning

of the co-ordination without which the walking looks a bit rough and is more likely to break

down. However, we do not know the details of how the neurones are connected, either inside a

CPG or inside or between limbs, and certainly not how the cerebellum works (though theories

have been put forward [e.g.Miall et al., 1993]).

What we can deduce from this is that a low level dynamical system exists which links the

muscles to produce walking and which has a highly regular structure consisting of several

very similar neuronal networks (CPGs). These are strongly interconnected to maintain their

rhythm and are controlled in turn by higher centres to maintain their stability.
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Much of the discussion in this section has been about dynamical systems and it is the contri-

butions of researchers in this field that we shall discuss next.

2.2.3 Group theory, non-linear dynamics and co-ordination

Researchers from various areas of mathematics have studied walking. Collins and Stewart used

group theory to analyse the properties of various coupled non-linear oscillators. They predicted

that fixed CPGs should be capable of changing between gaits by varying very few parameters

[Collins and Stewart, 1993a,b]. Collins then went on to test this with a selection of CPG

models and found that it was generally possible to make simple CPGs produce different gaits

by varying only a few internal parameters whilst leaving the connectivity unchanged [Collins

and Richmond, 1994]. This was a simpler solution than many previously proposed which

suggested, for instance, that different co-ordinating neurones might be needed for different

gaits [Grillner, 1985].

There has also been work by non-linear dynamicists like Kelso. He has studied how walking

systems behave, what happens to the co-ordination between legs at gait transitions, and how

the system converges to its stable attractor (a particular gait). He particularly stresses that gaits

are selected (and are most stable) in animals when they are the most efficient for travelling at

the desired speed, though some hysteresis stops switching back and forth at transitional speeds

[Kelso, 1995]. He suggests that we should build this kind of nonlinearity and multistability

into robots to help eliminate problems with redundancy. He also points out that transitions

normally occur very smoothly, but in animals with their higher centres removed instability and

critical fluctuations occur and gaits switch back and forth near bifurcations.

Gallagher and Beer look directly at evolved locomotion controllers from a dynamical systems

perspective, examining controllers evolved to be reflex chains, central controllers (without

feedback) and CPGs [Gallagher and Beer, 1992]. They examine the basins of attraction of the

limit cycles and fixed points. They discover that the reflex chain controllers on their own have

no limit cycles, but rather whatever the current state of the system, it is attracted to a fixed point

forward in the walking cycle; this results in the whole (controller-body) system having a stable

walking limit cycle, but this will break down if the feedback is interrupted. This behaviour

is much like finite state machine walking controllers. The other two types of controllers both

have inherent limit cycles which correspond to walking in the whole system, but whereas the
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central controller has a crude limit cycle which cannot adapt, the CPG is entrained to the

frequency of the rhythmic feedback from the legs, so adaptation to different conditions does

not have to be learnt, but rather emerges from the dynamics of the controller-body system. In

a more heavily mathematical analysis,Cheng and Lin[1996] look at the stability of a biped

using a linearised Poincaré map and discuss the robustness of the locomotion.

2.2.4 Evolving robot controllers

As more people started to built legged robots, they began to look for ways to automate devel-

opment of the controller for them. The most popular method has been a form of simulated

evolution4.

As many different forms of evolution have been tried as there are researchers, but generally

they tend to evolve parameters for some kind of neural controller for the robot: normally the

strengths of connections, but sometimes other internal parameters of the neurons as well5. In

general this has proved a step backwards for the sophistication of walking controllers with

most of the controllers evolved being statically stable. However, a popular way of evolving

controllers is to simulate the robot concerned and evolve a controller for it on the computer,

and it is a very computer intensive process to model a robot dynamically, so it is possible that

this is partly to blame. If so, as computer power increases and since fast dynamic simulation

software is now available [e.g.McMillan, 1994], hopefully this problem will go away.

Lewis et al.[1992] evolved controllers for a hexapod robot (Rodney) which they had built.

The controller was evaluated on the real robot and learnt to walk with insect-like gaits after a

staged evolution where it was encouraged a bit at a time towards the final goal of walking.

Beer and Gallagher evolved the parameters of a dynamic neural network to control a (stati-

cally stable) insect walking in simulation [Beer and Gallagher, 1992]. They then went on in

[Gallagher et al., 1996] to evolve a statically stable controller for a simulated robot, and then

transferred the evolved controller onto a real robot with no problems.Spencer[1994] used

Genetic Programming6 to evolve the architecture as well as the parameters of a similar robot.

4 for a description of Genetic algorithms, seeGoldberg[1989].
5 for a general review of this, seeKodjabachian and Meyer[1995], but also see next chapter.
6 seeKoza[1992].
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Karl Sims, on the other hand, evolved dynamic controllers for robots whose morphologies

were evolved at the same time [Sims, 1994b]. This produced arbitrary shaped robots with

controllers which would allow them to perform behaviours like tumbling, sliding, jumping,

and swimming. They had the advantage of not having to remain balanced as is usual for

walking robots, and it is not clear how they would have performed if that had been what was

evolved; but they are the most visually impressive result of this general approach.

2.2.5 Vertebrate locomotion and development

Meanwhile, zoologists have been looking for common ground between different animals when

walking, examining which criteria appear to be being optimised, and how locomotion in ver-

tebrates has developed over time. They call this first problem the inverse optimality problem

— i.e.what was being optimised to produce this?

Alexander has written extensively about locomotion: in [Alexander, 1984] he looks at locomo-

tion in reptiles, birds and mammals. He concludes that locomotion with a similar Froude num-

ber (a dimensionless measure:speed2/(gravity ∗ hipheight)) produces dynamically similar

movements in general right across different species (0.1 walk, 1 trot/pace, 2-3 asymmetric).

He also looks at the inverse optimality problem, and concludes that for turtles displacement

(i.e. roll, etc.) is minimised, but humans minimise work. Tendon elasticity helps in this regard

by storing strain energy rather than allowing it to be dissipated as heat. In [Alexander, 1990]

he proposes the use of springs in robots to replace tendons in their job of minimising energy

loss, and also on the feet to soften impact slightly to reduce ‘chattering’ and hence improve

grip. In [Alexander, 1991] he looks at how energy is saved in terrestrial locomotion, through

tendons, but also through aligning joints to minimise the amount of work that has to be done

and the amount of conflict between muscles.

Eilam[1995] studies how movements change both across species and during ontogeny (devel-

opment in individuals of one species), and points out that there is the same consistent progres-

sion in each from simple lateral movements of the trunk, to use of limbs, through to vertical

movements of the trunk.

Work being done on development of locomotion includes that byVaal et al.[1995], who detail

a research agenda for studying human locomotion and gaining insights into its development.
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They claim that very little work has been done on the ontogeny of locomotion, and they want

to identify the crucial subsystems and their interactions, and how these develop to produce

an adult locomotory pattern. They discuss CPGs and the importance of feedback, and then

move on to the development of walking, starting with precursors like reflex stepping going

right through to integrated walking. Unlike most authors, they disapprove of the concept of

optimality criteria as they consider them arbitrary, and believe the introduction of functionality

constraints should be sufficient, namely that walking must work in a wide variety of situations.

They also mention the usefulness of using muscles when modelling locomotion, as they claim

that such models have inherently better stability properties than force control for joints.

van Soest and van Galen[1995] look at how animals reduce redundancy problems in multi-

joint movements by imposing constraints. They divide these into physical and self-imposed

constraints (they believe the latter are imposed specifically to help solve the problem). And

finally, Assaiante and Ambland[1995] look at the ontogeny of balance control.

2.2.6 Functional Neuromuscular Stimulation

One of the most exciting developments recently has been work done to restore the ability to

walk to paralysed patients by electrically stimulating their muscles [e.g.Marsolais and Kobetic,

1983]. Research done by Yamaguchi recently shows that generating the appropriate patterns

for walking is essential for optimal use of muscles which have been weakened by the paralysis,

and that ankles are a particular weak spot which might well benefit from some kind of orthosis

[Yamaguchi and Zajac, 1990].

2.3 Where are we now?

We have now looked at research up to the present day, and in this section we shall look at the

commercial products which have come out of this, and at what ongoing research uses legged

robots.
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2.3.1 Commercial robots

In recent years various projects have been proposed for which walking robots would be ‘in-

valuable’. However, the number which have actually been built and used for anything other

than walking research is much more limited.

Walking machines have long been proposed for travel over rough terrain that even a tracked

vehicle could not navigate, and for dangerous environments where human would be at risk.

To that end, Dante and Dante II were designed to descend into volcanoes to study conditions in

an environment too dangerous for humans and too rough for other robots [Wettergreen et al.,

1993]. They were not unqualified successes. Dante II was the more successful of the two. It

was an extremely stable eight legged robot which moved slowly down into Mount Spurr in

Alaska. Unfortunately on its way back the ground collapsed under it, and it was not able to

cope and had to be airlifted back out.

NERO was a climbing robot funded by Nuclear Electric in Britain and designed for work on a

nuclear reactor pressure vessel where humans have huge safety problems [Luk et al., 1994]. It

was designed to climb the outside walls of the pressure vessel and inspect its condition, clean

it or even install equipment on it, but was too light too do heavy work. It had drawbacks (it

travelled at a speed of 0.1 m/min, and had to be placed on the wall of the pressure vessel, it

couldn’t walk there), but it was successfully used for these purposes. Nuclear Electric together

with Electricit́e de France, CERN and the Italian electricity board then funded work on a next

generation of climbing robots which would be more versatile, stronger, and capable of walking

to the reactor vessel and performing the floor to wall transition itself [called Robug, seeLuk

et al., 1993], but there have been problems getting these to work to specification (for instance

Robug III is too heavy to support its own weight for long when climbing).

Other commercial robots include a “walking harvester” built by PlusTech Oy. in Finland (see

Plustech Oy., Finland). This robot has been built to replace wheeled vehicles for forestry work

as it doesn’t damage the ground and hence minimises the risk of soil erosion on steep slopes.

It also has a high and variable ground clearance and so can move over obstacles which would

block most other vehicles. It is driven by a driver in a cabin on top of the robot.

Much more recently some Japanese firms have come into the market. Honda recently revealed
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their biped robot (which they have been working on for many years). This can walk semi-

autonomously or be teleoperated and can carry out simple tasks (Honda Motor Company Ltd.,

Tokyo). This is a very impressive robot, and presumably further developments will come from

them in the future.

In a completely different field, Sony have now released their robot puppy, Aibo [Sony Cor-

poration, 1999], which is being marketed as a toy. This can perform a variety of stereotyped

actions like rolling over and standing on its hind legs and boxing the air, as well as being

remote controlled by its owner.

Some other fun robots, which are currently being finished, are the walking dinosaurs being

constructed for use in museums round Europe. The project is called Palaiomation and is funded

by the EU7.

2.3.2 Research Robotics

There is a lot of research currently studying the problems of coping with difficult terrain, and

avoiding falling and recovering afterwards. For instance, Boone and Hodgins have recently

been looking at how bipeds can recover from slipping or tripping [Boone and Hodgins, 1995,

1997] despite having little information about what is going wrong.Yoneda et al.[1996] have

built a robot (Titan VI) capable of travelling at a reasonable speed on flat ground (over 2 mph),

but which can move over obstacles, and of course Honda’s robot (Honda Motor Company Ltd.,

Tokyo) can walk up and down steps and avoid obstacles very effectively at a fairly slow speed.

2.3.3 Modelling humans and other animals

The other area where legged robots are being used is in modelling work, examining how ani-

mals move by modelling them in simulation (or sometimes on robots), and also just modelling

their behaviours to create impressive graphics for films.

Modelling roughly divides itself between creating computer graphics and simulating real lo-

comotion. In the former, animating robots, people and animals is becoming more involved

with simulation as the computational expense of doing the extra modelling becomes less im-

portant and techniques become more sophisticated. In the latter, simulating real animal and

7 Brite/Euram Craft CR 1651
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human locomotion helps us gain insight into how control of movement happens in the body

and provides a source of ideas for robot controllers.

Simulating human and animal locomotion

Roboticists have collaborated a great deal with zoologists looking at the energetics and com-

mon principles of locomotion, as well as with neuroscientists, and with ethologists studying

animal behaviour.

Grillner and colleagues did some very careful modelling of CPGs in lampreys to see whether

what they found could explain the behaviour they saw (it could). The simulation work is

described byEkeberg[1993]. Other work includes that by Cruse and others at Bielefeld in

modelling stick insects using a real robot [Cruse et al., 1995], and comparing its behaviour

to their neural network based model of the insect controller;Taga[1995] has looked at how

using a sufficiently sophisticated neural model can allow behaviour which can be quantitatively

compared to human locomotion to emerge on a simple simulated biped; andLewis [1996] has

looked at how the transition from swimming to primitive walking gaits may have occurred

using real and simulated robot models.

Research in Edinburgh has examined CPGs to see how well they can be modelled artificially

for controlling swimming movements [Ijspeert et al., 1997], and simulating a variety of legged

robots to see what general principles can be used to build controllers for them [Reeve, 1999b].

One new element may be work on Functional Neuromuscular Stimulation, where researchers

like Yamaguchi and Zajac[1990] admit that their current methods for selecting stimulation

patterns to create gaits in paraplegic subjects are definitely sub-optimal. It is quite possible that

this biomechanics work can be combined with artificial intelligence optimisation techniques,

which are already applied to designing controllers for walking robots, to improve the efficacy

of this technique.

Human modelling has become an attractive target, and several people have investigated it. For

example, Hodgins has simulated a 30 degrees of freedom humanoid figure, and got it to run in

a fairly biomechanically accurate fashion [Hodgins, 1996]. Playter has looked at gymnastics,

and has modelled different manoeuvres to see how stable they are, and explore the best way

of stabilising them [Playter, 1994]. He even managed to get a unpowered robot to do a layout
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somersault! Jalics and others at Ohio State University have started investigations into dancing

with a simple planar model of a biped, examining how to keep track of the rhythm of the music

and move the body in time with it [Jalics et al., 1997].

Modelling creature dynamics

This is moving more towards modelling for the fun of it, and much work has been done in this

field (Jurassic Park for instance!). Until recently most graphics for games and films were pro-

duced using kinematic techniques, and simulation has been largely ignored as a waste of time,

especially as the results were much cruder than could be achieved by kinematic techniques.

However, researchers are beginning to realise that it is no longer quite so time consuming,

and work has been done to combine the techniques, tuning gaits which were created in other

ways in a simulator so that they are dynamically plausible, with the expectation that this will

improve the appearance of the movement [e.g.van de Panne, 1996]. Work like [Ko and Badler,

1996] looks at how to generate the right movements to stay stable whilst also maintaining the

realistic gait produced by the animation, a crucial point as the gait produced must be perceived

as a normal walking pattern for it to be useful for their purposes.

2.4 Conclusions

There are many areas where an automated process for designing controllers for legged bodies

would be very useful. These include such diverse uses as producing believable walking in

computer graphics applications and virtual reality, modelling human locomotion to develop

activation patterns for Functional Neuromuscular Stimulation, as well as the more obvious ap-

plication of making the choice of using walking robots, for any task, that much more practical

and straightforward (consider that the designers of Dante II, who are planning on landing the

first private expedition on the Moon in the near future, have decided to use a wheeled robot for

the task). In the next chapter we will look at the methods which could be used to automatically

build such controllers.
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Chapter 3

Neural Networks

In the last chapter we looked at the history and state of the art in walking research, and we

concluded that a method for automatically generating low-level controllers for legged robots

would be very useful for the development of the field. Now we will examine the kind of

methods which are appropriate for this task.

3.1 Building controllers

We will look at what kind of controllers are appropriate for this problem and then at what gen-

eration methods may be feasible for these controllers; we will then assess a variety of systems

against the criteria we have produced and select those which seem the most appropriate for

further investigation.

3.1.1 Types of controllers

Generating controllers for legged robots is a difficult task, but several points are clear:

• There is a lot of symmetry in robot design, and identical joints are used in more than

one place on any given robot (e.g.the hindlimbs of a robot are almost invariably mirror

images of each other). Consequently an ideal controller is likely to be highly degenerate,

and any method for building controllers should take account of this.

• In vertebrates, control of the legs to generate a basic walking pattern is a function of

the spinal cord, where Central Pattern Generators actively alter the dynamics of the

25
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legs through the muscles to create a new dynamical system where walking is a stable

attractor [Grillner, 1985]; this creates a walking animal which is in turn controlled by

the higher centres in the brain. Because there is a detailed understanding of Central

pattern Generator (CPG) control of locomotion (see Section2.2.2), it would be possible

to transfer a lot of knowledge from neuroscience into a controller like this for walking

robots. A basic requirement for this is a basic building block with its own continuous

dynamics like neurones1 in animals.

• Artificial Neural Networks (NNs) are used for control in a broad range of walking robots

(see Section2.2.4 for examples), and indeed throughout robotics and even in control

engineering [e.g.Narendra and Parthasarathy, 1989]; because of this they are a very well

researched computational system and there are a large number of methods available for

training them. Although most neurons used in these fields do not have their own internal

dynamics, some are particularly designed with this is mind, and so would be appropriate

for this kind of task [e.g.Wallén et al., 1992, Taga et al., 1991, Beer and Gallagher, 1992,

Kodjabachian and Meyer, 1998]

For these reasons we will use Neural Networks as controllers for our walking robots. Two

issues now arise: what kind of neurons to use in the network, and how to train them.

3.1.2 Types of Neurons

Traditionally, neurons in Artificial Intelligence have been idealised for the sake of mathemati-

cal tractability to produce threshold and sigmoidal neurons, where the output of a neuronSi is

a simple function of its inputs; the sigmoidal neuron, for instance, is governed by the following

equation:

yi =
n∑

j=1

wjiSj (3.1)

Si =
1

1 + e−yi
(3.2)

where: wji is the weight connecting neuronj to neuroni, and
yi is the internal state of neuroni

1 I refer to biologicalneuronesand artificialneuronsthroughout this thesis.
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The analytical tractability of this model has made it particularly easy to train feedforward

networks using gradient descent algorithms like backpropagation [Rumelhart and McClelland,

1986] or more sophisticated ones such as conjugate gradient descent [Bishop, 1995, ch.7], and

indeed they have been used in the past for control of insect-like walking robots. However,

neural networks based on this have no internal state or continuous dynamics, and training

recurrent networks (which could offer some kind of memory indirectly) is much more difficult,

and so they may not be appropriate for the task of altering the dynamics of the legged robot to

make walking a stable attractor.

Many other neural models exist with continuous dynamics, however, and they are capable of

a much richer variety of activation patterns than these stateless neurons. For instance Con-

tinuous Time Recurrent Neural Networks (CTRNNs) were devised byBeer[1995] (although

they are based on the common leaky integrator model) for exactly this purpose, as controllers

for a (statically stable) walking robot; indeed, they were chosen for this by Beer precisely be-

cause they showed a much richer behaviour than discrete neurons — they are governed by the

following equations:

τi
dyi

dt
= −yi +

n∑
j=1

wjiSj (3.3)

Si =
1

1 + e(θi−yi)
(3.4)

where: θi is a bias term, and throughout these equations
τi is the adaptation rate of the neuron

This neural model is governed by a simple first order differential equation but is nonethe-

less capable of a surprisingly rich variety of behaviours when connected in a network (ibid.).

However, we can see that in the specfic case whereτi = 1/δt, δt being the timestep of the

integration, we get the same behaviour as for the sigmoidal neuron, and indeed in general these

are a continuous time version of the sigmoidal neurons above. More complicated models exist,

including this one fromTaga[1995]:

τi
dui

dt
= −ui − βimax(0, vi) +

∑
j 6=i

wjiSj + u0 (3.5)
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τ́i
dvi

dt
= −vi + Si (3.6)

Si = max(0, ui) (3.7)

where: ui andvi are the internal state of neuroni

Again this is a fairly simple neural model, governed by two coupled first order differential

equations (effectively a second order ODE, and so capable of more interesting behaviour like

oscillations), and again it has been used for control of a walking robot, this time a dynamically

stable but two dimensional biped; indeed, stable walking was achieved, so this seems to be a

promising model. Another step in this direction is a model byWallén et al.[1992], described

below:

τD
i

dξ+
i

dt
= −ξ+

i +
∑

j∈Ψ+

wjiSj (3.8)

τD
i

dξ−i
dt

= −ξ−i +
∑

j∈Ψ−

wjiSj (3.9)

τΛ
i

dθi

dt
= Si − θi (3.10)

Si = max(0, 1− e(Θi−ξ+
i )Γi − ξ−i − µiθi) (3.11)

where: ξ±i andθi are the internal state of neuroni, and
Ψ± is the set of all excitatory (inhibitory) inputs, and
Γi andµi are bias terms.

This is a third order model, and has an even richer behavioural repertoire, with individual

neurons being capable of a variety of different oscillatory responses to tonic excitation. Indeed

neurons of this type were successfully used to model the CPGs in a lamprey spinal cord in an

investigation of the neuronal networks controlling swimming (ibid.).

Many other increasingly sophisticated neural models exist, including extremely realistic multi-

compartmental models, but these are likely to be too computationally intensive for use in this

project. Overall, it is unclear which neural model will be the most effective: all except the last

have been used for this type of task before, but the ability of neurons to generate a greater range

of behaviours individually seems useful, and so we will investigate them all in our experiments.
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3.1.3 Methods for training Neural Network controllers

In order to make a NN controller, or indeed any other controller, we must first define how

the controlled system should behave. This means that we know in advance what we want

the NN to do, so we can use a supervised learning algorithm to teach it. In cases where we

knowquantitativelywhat is required we may be able to use inductive learning with a gradient-

descent type algorithm such as Backpropagation [Rumelhart and McClelland, 1986] which

will allow us to train the network very effectively. Unfortunately, for a task such as walking

there is no definitively correct answer for the question of how to walk (or at least not one that

we can determine), so we have to rely on more qualitative measures: for instance a robot might

be judged according to how far it travels whilst keeping its body off the ground, or how little

energy it expends to move a certain distance.

This more difficult problem requires a reward based approach, like Reinforcement Learning

where NNs are trained by allocating blame when something goes wrong, and rewarding correct

actions [Sutton and Barto, 1998]. One difficulty with this type of approach is to determine

which part of controller is doing well or badly, and hence which to reward or punish — this

is the Credit Assignment Problem (ibid.). There are many different solutions to this, but one

which is useful for particularly intractable cases are the family of reward based approaches

collectively known as Evolutionary Algorithms2. These avoid the credit assignment problem

altogether by dealing with populations of controllers, and rewarding or punishing individuals

as a whole rather than the more common approach of dealing with a single individual and

assigning credit to its components. They are by definition a cruder technique than than either

Inductive or Reinforcement Learning, but in this case they offer the only practical solution,

and so it is these which we shall use in our experiments.

Evolutionary Neural Networks

The common thread running through all of these methods is that they use Genetic Algorithms

(or a relative such as Genetic Programming) with some encoding of a NN as the genotype

to evolve the desired NN. These NNs are then tested for suitability and more individuals are

created from the most able genotypes whilst the least able are discarded.

2 seeGoldberg[1989], Koza[1992] for example.
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The genotypes can encode either or both of the architecture and the weights of the network.

Those that do not encode the weights have to learn them separately however, and since this

will require another learning technique, typically a gradient-descent type method, and since

we have already said that this is inappropriate for the problem we are tackling here, we will

only concern ourselves with those genotypes whichat leastencode the weights of the net-

work. Those that do not encode the architecture must rely on it being fixed, for instance as

a fully connected recurrent network, or as a specific hand-crafted layout. We will discuss the

advantages and disadvantages of this later.

3.1.4 Selection criteria

There are many criteria which should be considered in choosing an encoding for the NN con-

trollers:

Reusability As was mentioned above, it is clearly desirable for one leg of a robot to be con-

trolled in a similar or indeed identical fashion to another leg of the same robot, so it

should be possible for subnetworks to be reused in different parts of the controller to

avoid wasted effort building different subnetworks to achieve the same task.

Modularity In animals we know that CPGs are associated with individual muscles and joints

and limbs, and are tightly coupled to the sensors and muscles which they control. In

our robots it is reasonable that there should be more direct connections between sensors

and actuators on the same joint than with anything else. This can easily be achieved for

instance by assigning CPGs to joints and making more local connections (inside CPGs

and to local sensors and actuators) than distal connections (to other joints or limbs). This

might also be desirable in our controllers because it would tie in well with the previous

item, providing modules which can be easily reused.

Bias It is inevitable that any encoding will show bias towards certain types of network —

it should be possible to examine the kind of networks which are likely to be created

and eliminate or alter those encodings which tend to produce configurations which are

unlikely to succeed.

Chromosome SizeThe space to be explored increases exponentially with the size of the chro-

mosome, thus potentially making the problem much harder, so more compact encodings
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may be more desirable than larger ones.

CompletenessSome encoding schemes are not complete (i.e. there are networks which can-

not be encoded), and it is possible that the solution required is one of these networks, so

in the absence of other considerations this should be taken into account.

We will now examine a variety of encodings and consider how they stand up to these criteria.

3.2 Evolutionary Neural Networks

There are many ways of evolving neural networks, but the most significant difference between

different methods lies in how the NN is encoded into the genotype. There are basically two

ways of doing this — directly, so that every weight and connection in the NN is recorded ex-

plictly in the chromosome (and the subset of these where the network architecture is fixed, and

only the weights are recorded), and indirectly, where commonly some grammar or develop-

mental rules are used to translate from the chromosome to the NN. Many of these latter are pro-

duction rule systems where each rule describes what one symbol (the left hand side) becomes

after another developmental step (for instance two new symbols). This goes on, depending

on the system, until all the symbols are terminal symbols (i.e. neurons or connections), or for

a fixed number of steps, after which all the symbols are translated into terminals according

to some separate translation scheme. The latter encodings are often called L-systems, named

after Lindenmeyer, a biologist who first used them to describe the development of artificial

plants [Lindenmeyer, 1968].

Both types of encoding have problems — Direct encoding methods suffer for two main rea-

sons:

Modularity and Reusability Groups of neurons (subnetworks) which have a useful function

are likely to be spread across the whole chromosome, so crossover will tend to break

them up; also because each connection and weight is recorded separately, when a use-

ful subnetwork does form, there is usually no mechanism for duplicating it when the

problem is degenerate.

Chromosome SizeBecause every weight and connection is recorded separately, the chro-

mosomes become impractically long:n neurons requiren2 weights if they are fully
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connected, and these weights are often real numbers.

This first problem would be extremely serious for my purposes, because as we have said before,

these are primary considerations; also as we discussed in Section3.1.1, the solution is likely

to be highly degenerate. The chromosome size may also be a problem, due to practical time

constraints. If we are to use a direct encoding, we must therefore come up with a solution

which at least gets around these problems of modularity and reusability. Indirect encodings

tend to be designed specifically to avoid these problems (though some still suffer from the

first). As a result other problems occur:

CompletenessSome of the encoding schemes are not complete, and networks which are not

representable might be better than those which are.

Bias Even schemes which are complete bias the networks greatly in one direction or another:

after all they contain exactly the same information when they have been decoded as

the direct schemes, so there would be no advantage in using them if they did not do

something extra such as make it easier to encode modular networks. Generally the bias

is towards some kind of regular structure to the network, but whatever it is, it may be

just as damaging as incompleteness if the optimal structure becomes very difficult to

express.

These seem on the whole to be less serious problems, but it is clearly very important to choose

the right encoding scheme for the problem to be solved, since what is a good scheme for one

problem may make another impossible to solve.

3.2.1 Direct Encodings

Fixed Architectures

There are several, mostly old, experiments which have been done with fixed architectures.

They tend to try to solve very simple problems such as XOR and n-bit adders, for instance

those byWhitley and Hanson[1989]. An example of a fixed architecture encoding is shown in

Figure3.1. They were found to be faster than Backpropagation for large NN problems at that

time, but the architecture does have to be hand-coded, which is a problem. This seems to be a
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very primitive solution, and suffers from problems of reusability, modularity and chromosome

size, and bias towards massively interconnected networks in its most primitive form (a fully

connected network); however, if it were possible to automatically generate an appropriate

architecture there is no reason why this should not work. This transfers the problem to one

of generating a network architecture which is modular and involves reuse of subnets; we will

discuss this shortly.

Figure 3.1: A standard direct fixed architecture encoding

De Garis evolved controllers for a simulated legged robot (LIZZY) by designing control struc-

tures by hand, and then evolving the connections of small parts of them to achieve desired

subtasks [de Garis, 1990a,b]. This avoids a lot of the issues discussed here through detailed

hand design, but this would not be possible for a general purpose system for arbitrary robots.

One more sophisticated fixed architecture NN was developed by Lewis, Fagg and Solidum —

it was a controller for a real hexapod robot which was evolved by Staged Evolution [Lewis

et al., 1992]. Staged Evolution involves intermediate products being evolved on the way to the

desired goal: in this case first the weights for a 2-neuron oscillator were evolved, then one was

put on each joint of the robot, and then the inter-joint connections were evolved to make the leg

move correctly, and then the inter-leg connections were evolved to make the legs coordinate

properly. This was fine for the problem of generating a controller for this particular robot,

solving all of the problems mentioned above at a stroke, but it involved a detailed knowledge

of exactly how a joint or a leg should move, which will not be known in the general case.

The common thread among these more sophisticated solutions is that considerable work went

into hand-coding the architecture of the networks so that it would be possible to evolve the

appropriate controller. This is a fatal disadvantage for our task: it relies on work being carried

out on each robot to determine, usually by trial and error, what the best design for this particular

network would be; this is something we are explicitly trying to avoid, and so it will not provide
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the general purpose tool we desire.

However, it may be possible to take some of the ideas from this and put them into a more

general framework: what we require is knowledge about the robot itself to determine the

architecture for the network. This approach is used byKodjabachian and Meyer[1998], where

he uses information about the design of the robot to calculate on the structure of the network.

However, if we can extract this information from the description we are given of the robot

automatically (e.g. from the simulator description of a robot being modelled), then we may

be able to generate a network which reuses, for instance, the same subnetworks on each leg

of the robot, or only connects small groups of neurons to each sensor/actuator pair, without

requiring the user to have detailed knowledge of how the system works. This would potentially

eliminate the problems of reusability and modularity which we have discussed, and because

we would still be producing complete controllers, it would avoid problems we discussed with

staged evolution.

Variable Architectures

A lot of direct encodings with variable architectures only encode the architecture and not the

weights, in a very similar fashion to figure3.1 but using connection matrices with 0’s and

1’s for no connection and learnable connection respectively instead of weight matrices. For

instanceMiller et al. [1989] use a GA to evolve the architecture and then Backpropagation to

learn the weights. Unfortunately, as we have already said, we cannot use this, but there are

several which learn both architecture and weights (though many have a fixed network size).

Maniezzo[1994] manages a direct encoding of architecture and weights in the simplest way

possible by combining the two previous techniques (see Figure3.2) with each position on the

chromosome containing a connection bit to say whether the link exists as well as a weight for it

if it does. As with previous techniques there is no way for subnetworks to retain their integrity

or to be reused, and the network size is fixed. This a very similar case to the fixed architectures,

and suffers from the same problems. However, it may be possible to use the same technique of

automatically decomposing the problem to force reuse of components to avoid some of these

difficulties.

Torreele, on the other hand, has a relative connection structure which could allow reuse of
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Figure 3.2: Maniezzo’s weight and connection encoding
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subnets — the neurons are ordered on a grid and connections are allowed to a (prespecified)

set of neighbours [Torreele, 1991]. Each neuron has an associated bit string which determines

whether connections exist, and if so, whether they excite or inhibit. Because the addressing is

relative subnets can be reused by copying to a different position on the grid (although Toreele

has no mechanism for achieving this). However, there are strong restrictions on the connectiv-

ity imposed by the encoding — there can be no long distance connections — which may cause

problems. Although this seems superficially to be biased towards the kind of networks we are

interested in (locally connected neurons, some possibility of reuse of subnets), the impossibil-

ity of distal connections make it a very incomplete encoding, and as it is a distinct possibility

that some long distance connections may be very useful in locomotion (e.g. in bipeds it is

important not to bend one knee when the other leg is off the ground), this is too serious to

overlook.

Collins and Jefferson take another approach and treat the connection as the basic element rather

than the neuron, and directly encode them in the formFrom:a To:c Weight:-1, which they call

K connection descriptors [Collins and Jefferson, 1990]. This has the potential to be the first of

these techniques to have a variable number of neurons, by allowing the connections freedom

to mutate out from their original limits for instance; however, they do not take advantage

of this, and indeed even keep the number of connections fixed as well so that they can use

straightforward crossover. The result of these decisions is that the architecture is quite badly

constrained, but this is not necessary. An advantage of this encoding in general is that subnets

can be encoded in very short strings and thus are less likely to be broken up by crossover.

However, there are disadvantages — it is still not possible to reuse subnets, and because there

is no physical location on the chromosome for any particular neuron, it is likely that different

chromosomes will have the same nodes’ connections in different places, so even if a subnet

remains intact there is a much greater chance of interference with its operation during crossover

from other connections being added. This is caused partly by the massive redundancy in

the encoding which is on top of the competing conventions problem already inherent in NNs

(several different networks can have the same structure by just changing which node has which

name).

However, Wieland has evolved pole-balancing controllers (including multiple and jointed poles)

using exactly this technique, at least some of the time with considerable success [Wieland,
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1991]. He also considered the 2-legged walker as an extension of the jointed pole, but unfor-

tunately only had limited results.

Angeline uses a very different approach in [Angeline et al., 1993, Angeline, 1993] to evolve

recurrent neural networks. He uses mutation alone in a quasi-Simulated Annealing technique

he calls GNARL. Since only mutation is used encoding is almost irrelevant, because changes

are done all the time on the phenotype itself. Various different mutation operators are used

(weight change, connection addition/removal, node addition/removal), the severity of which

depends on the temperature which cools as the fitness increases. Some of the operators are

shown in Figure3.3. The technique is also closely related to constructive/destructive NN algo-

rithms but claims superiority over them because they are monotonic, only allowing 1 neuron

to be added or removed at a time, whereas his can do many — the advantage of this is that it

can get out of deeper local minima (in the same way as Simulated Annealing). It was found to

be effective on a variety of problems. Overall the technique avoids the problem of losing sub-

nets by not allowing crossover, and is complete with regard to network architectures, allowing

any number of nodes/connections (although you can bias the starting population), but again it

cannot reuse existing subnets. However, with the system discussed in section3.2.1to force

reuse of components, this could be very promising.

Figure 3.3: A network in the GNARL encoding and the effects of some mutation operators
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Utecht and Trint[1994] describe and compare a variety of other mutation operators which

could perhaps be used in this method to enhance it further.

3.2.2 Indirect Encodings

For the most part the indirect encodings contain both the architecture and the weights, but, as

with fixed encodings, some of them use Backpropagation to learn the weights; for instance

Harp, Samad and Guha use “Blueprints” in [Harp et al., 1989], and Boers and Kuiper use an

L-system to develop the architecture in [Boers and Kuiper, 1992, Boers et al., 1993].

However, most indirect encodings do encode both, using generally either a grammar or devel-

opmental encoding of some form. I shall go onto those after I have described another technique

which is less popular.

Fullmer and Miikulainen used a Marker-based encoding scheme [Fullmer and Miikulainen,

1991], loosely based on the marker structure of biological DNA. Each node has a key with

which it is associated, and a series of other keys which it is connected to (or the closest match

if that key is not present) — each of these keys has a weight associated with it; this allows

arbitrary networks to be described. The markers referred to are start and end markers on the

chromosomes which border the segments where neurons are defined. In other words there

is no fixed point where the neuron definitions are, and there is even unused genetic material

between end and start markers.

The rest of the encoding can however be separated from these markers, and Michel and Biondi

have done just that in proposing a very similar scheme with a more straightforward chro-

mosomal representation [Michel and Biondi, 1995a,b] which is inspired by protein synthesis

regulation. Each node now has a set of signals with which it is associated and inhibitor and

activator signals which will connect to it if they are produced. The connection weights are

now only±1 and neurons can have a greater variety of inputs as they can have more than one

input signal, but otherwise it is very similar. Neither of these methods have any possibility

of reusing subnets because the keys/signals would all have to be changed if the new network

were to not interfere with the old.

These two techniques have exactly the same expressive powers as GNARL, described in the

previous section, but are much more complicated. The advantages they claim are in robustness
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under crossover, which GNARL does not employ, but it is unclear whether their results justify

the increased effort in using them.

A successor of this approach which is at the same time very different is the symbiotic evolution

approach by Moriarty and Miikulainen called SANE — Symbiotic Adaptive Neuro-Evolution

[Moriarty and Miikulainen, 1994]. Here labels (keys again) determine the connectivity, but

each chromosome represents only one neuron, and collections of chromosomes are put to-

gether at random to form a network to be tested for fitness. This very cleverly stops conver-

gence on the gene pool, since diversity is essential as a variety of different neurons are needed

to make an effective neural network. However, the experiments done with it were on feedfor-

ward NNs with only one hidden layer, so individual neurons could realistically have separate

domains of expertise; it is difficult to see how the experiment could be expanded to multi-layer

or recurrent neural nets as it stands because few neurons in these nets can be of any use in and

of themselves.

Development encodings and grammars

Mjolsness et al.[1987] and Kitano [1990] came up independently with similar L-system

schemes: each symbol produces a2 ∗ 2 matrix of symbols. This is iterated a number of times

until there is a2n ∗ 2n matrix which is then translated by a separate mechanism into a weight

matrix. Kitano calls this a graph L-system. This scheme tends to produce extremely regular

NN structures, and thus constrains the network a lot, although, if there are enough symbols,

the scheme could theoretically be complete. The process is also highly epistatic and changing

any of the rules is likely to change the fitness significantly, because symbols which appear

early control the eventual shape of very large sections of the NN, and ones which occur late

are likely to appear in a lot of places, and thus again change a large section of the networks.

Both Mjolsness and Sharp, and Kitano have since moved on from this to much more compli-

cated methods, both involving very sophisticated development schemes. The former [Sharp

et al., 1991] is still in this field, and involves a cell division process which eventually produces

neurons with individual state vectors which are much like the keys above, and must be matched

to make connections, but the latter [Kitano, 1995] is more computational neuroscience, with

cell division occurring according to how high the metabolic rate is in the cell, axon growth

determined by Nerve Growth Factors, and many other equally complex effects.
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These are all interesting ideas, although none of them produce bias in exactly the direction

desired for this control problem, they do solve problems of modularity and reuse, and so it

is entirely possible that a different L-system based grammar would be capable of generating

controllers for legged robots.

Gruau has a grammar scheme based on Genetic Programming rather than GAs which he calls

cellular encoding since the rewriting process happens to cells rather than symbols [Gruau,

1994a,b], and which he uses for feedforward boolean3 neural networks. In the model each cell

has a copy of the chromosome which codes the process, and reads it from a different position.

The chromosome is a tree with ordered branches whose nodes are labelled with instructions.

The instructions act on a cell or an input to the cell. Each step in the process involves a cell

reading an instruction and moving down the tree to the next node. The instructions can be for

instance to divide, change its links, or become a neuron. For example when a cell is given the

instruction S — sequential division — it divides, with the first child getting the input links, and

the second getting the output links from the mother cell, with a connection between them. The

nodes have 0, 1 or 2 branches depending on whether the command was to make a neuron, to

alter an existing cell, or to divide into two cells, the branches being followed by the new cells.

In this fashion branches of the tree form mostly separate subnetworks and crossover can move

them about. Gruau also proposed using Koza’s ADFs [Koza, 1994] to reuse useful subnets.

This seems a very ingenious system, but its tree structure makes it difficult to see how to get

it to cope with recurrent neural networks, and it is unclear that a boolean network will suffice

for this problem. This work is currently being extended byRotaru-Varga[1999] to allow more

modularity in the networks.

Nolfi and Parisi also produce feedforward networks with their encoding method, but it would

be possible to make the system recurrent. It is based around neurons which are physically

situated in two dimensions, and which then grow axons to connect to other neurons which

branch and lengthen all according to the instructions on the chromosome [Nolfi and Parisi,

1992, 1993, Nolfi et al., 1994a,b, Nolfi and Parisi, 1995]. In [Nolfi et al., 1994a] they evolve

controllers using this for autonomous (wheeled) robots first in simulation and then on the actual

robots with marked success. They have also added a developmental encoding to this as well

[Cangelosi et al., 1994], which allows the cells to divide and migrate about the space whilst

3 Connection weights are±1



3.2. EVOLUTIONARY NEURAL NETWORKS 41

altering their parameters (e.g.axon shape and weights). This system is probably complete, and

biases towards local connections. In its original form it did not allow the possibility of reuse

of subnets, because the position of every node would have to be altered; however, with the

developmental encoding this is now possible as a split of the original node which produced the

subnet will produce two identical ones physically removed from each other. Unfortunately it is

an extremely complex scheme, but it could potentially be altered to generate desirable network

structures.

Very recently work has been carried out byKodjabachian and Meyer[1998] which extends

Gruau’s work to allow cells to grow in a space similar to Nolfi and Parisi’s. This is a promising

approach, and has been used to control statically stable walking in two dimensions as well as

higher level control including gradient following and obstacle avoidance. However, it would

be very interesting to see how this approach could deal with the much more difficult problem

of dynamically stable walking.

Finally Karl Sims had a more complicated development process which he used to evolve vari-

ous robots and their nervous systems [Sims, 1994a,b] to do jobs like walking, swimming and

jumping. This process evolved the morphology of the robot as well as the controller, and pro-

duced very impressive simulation of robots crawling, swimming, and walking, with the bodies

being more snake-like for swimming, and legged for walking,etc.. The nervous system was

not in fact a straightforward neural network, but rather contained a variety of different nodes

including thresholds, integrators, and oscillators amongst others. Each body part has a piece

of the nervous system associated with it so that changes in the morphology of the robot change

the controller as well. This technique worked well, and some very entertaining virtual robots

were evolved; although none of them were very conventional walkers (they tended to tumble

and roll, since this is easier to evolve), this provided a very impressive example of what should

be possible.

This kind of coevolutionary approach, whilst interesting, is not directly applicable to the prob-

lems being solved here as we have fixed robots we wish to build controllers for. However the

idea of associating a part of the controller with each joint is one which accords well with our

thinking on CPGs, and could be incorporated into the system for automatically decomposing

the problem which we have discussed before. As we have said before this is the kind of ap-

proach used byKodjabachian and Meyer[1998], though in that paper the adaptation to the
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specific robot was done manually.

3.3 Summary

Because of constraints on the amount we know about the details of walking, the most appropri-

ate method for training controllers for legged robots is a reward based approach, and we have

chosen to use evolutionary algorithms to evolve neural networks. There are many different

encodings, but the most appropriate to test seem to be:

• A simple direct encoding of weights, both fully connected and with the network ar-

chitecture determined by an automatic analysis of the structure of the robot (which is

described in Section5.2).

• A direct encoding of the weights and architecture similar to above, but allowing the

connectivity to vary, perhaps favouring denser local connections and sparser distal con-

nections.

• An encoding similar toAngeline et al.[1993], adapted to allow reuse of subnetworks

as above. This will be useful as it is a complete encoding which will allow us to see

what kind of structures are useful so that we can consider designing a more indirect

encoding to produce these structures automatically. Its weakness of not allowing reuse

of subnetworks is overcome by the automatic symmetry which will be built into the

system by the analysis of the robot.

We will also investigate a variety of different neural models to see which seem most appropriate

for this task.



Chapter 4

Architecture

In order to evolve the networks described in the last chapter it was necessary to measure how

well they were capable of controlling legged robots. There are two possible approaches to

this — either run the controllers on a real robot and evaluate their effectivenessin situ [as was

done byLewis et al., 1992], or build a simulator which will mimic the behaviour of real or

putative robots, and evaluate the performance of the simulants in the expectation that this will

approximate to that of the real robots [as was done byNolfi et al., 1994a]. There are drawbacks

to both positions — for instance:

• Simulated robots can never be the exactly the same as real robots, so you never get a

truly accurate picture of how your controllers would behave in the real world.

But:

• Real robots are expensive and fragile, needing constant maintenance and supervision,

whereas simulations can run indefinitely with neither.

• There is an upper limit (in terms of both time and cost) on the number of different real

robots it is possible to experiment with, but there are less problems with computers to

run simulations on.

This last point was crucial — since the aim is to build a system capable of generating con-

trollers for an arbitrary walking robot, it would be impossible to test this using actual physical

robots, as only a very small number could be examined, whereas as many computer models
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as necessary can be devised. It is nonetheless a serious issue that simulated robots cannot

guarantee to behave in the same fashion as a real robot should. However work byNolfi et al.

[1994a] and more recently byPerkins[1999] amongst others shows that controllers evolved in

simulation can run effectively on real robots; Nolfi compares this transition to nothing more

than a change in environment for the robot.

As a result it was determined that a full three dimensional dynamic simulator should be built

with the ability to model as wide a range of legged robots as possible. Together with this it was

necessary to create a neural simulator capable of modelling the behaviour of recurrent dynamic

neural networks, and an evolutionary engine to evolve the networks. These then formed the

basis for all of the research in this thesis, and this chapter will describe the system which was

built and such details of the implementation as are necessary.

4.1 Design Criteria

The most important part of the system from a computational viewpoint is the mechanical

simulator; it was obvious from the very beginning that the vast majority of the processor time

would be spent here, so optimising this was a first priority.

4.1.1 Mechanical simulator

Initially many different simulators were tested, from our own [Reeve, 1994, Reeve and Hal-

lam, 1995], which was implemented for another project based on work done in Edinburgh

by Featherstone[1984], to various other simulators written by other robotics researchers and

available on the web. However none of them were sufficiently robust or efficient for our pur-

poses. It soon became apparent that there were several key criteria would have to be satisfied.

The dynamical simulator would have to:

• be a full three dimensional dynamic simulator. Otherwise real robots could not be sim-

ulated effectively in the computer.

• be capable of easy extension to incorporate any elements which might be present on a

robot it was decided to model (e.g.a new type of joint motor).
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• work as efficiently as possible — since this module would do the bulk of the processing

in the final program, the faster it could run the more experiments it would be possible to

carry out.

• allow easy designing of and switching between different robot bodies.

Eventually the framework for a simulator based on the PhD work ofMcMillan [1994] was

found, called DynaMechs. This satisfied all of the criteria as it could model an arbitrary tree

shaped robot (i.e. no closed loops, see Figure4.1 for examples) much faster than any other

system tested. It was also modular, easily extensible and free. Work was done to incorporate a

new simple joint motor and sensor design into the framework, and it was packaged in a simple

interface which would allow it to be replaced easily with a different simulator at a later date if

this proved desirable (for instance for modelling humans1). The simple language which was

used to describe robots was also expanded to allow further information to be entered about the

robot (an example file is shown in AppendixD.1).

Figure 4.1: Tree shaped robots

The new motor was direct drive, offering torque or force control depending on the joint. A

parameter in the motor definition in the robot description file determined the maximum torque

1 See section8.2for details
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(or force) individual motors could generate, and the motor was controlled by a single input

between +1 and -1, for maximum forward drive and maximum reverse respectively. This made

control by the neural networks less complicated as they would not have to generate different

ranges of values for different motors.

The new sensors were equally simple, producing outputs proportional to the joint angles of

the robots, but scaled to between +1 and -1 again, which were the front and back joint limits

respectively. This simplified the inputs to the neural networks, as the inputs would vary over

a simple range similar to that of the neurons themselves, so weights could be uniform across

all connections. A further set of sensor connections, provided for joints on the legs, gated the

first sensor readings depending on whether the foot on that leg was touching the ground or

not (producing a normal reading if they were, and 0 if not). This was provided to give some

information about foot contact.

The interface, which was implemented as a C++ superclass of the mechanical and neural sim-

ulator classes, specified a set of methods which allowed the details of the specific simulator to

be ignored. These are detailed in AppendixC.

4.1.2 Neural Simulator

The neural simulator was always an easier problem, but some factors were important — it

should:

• be modular to allow experimentation with a variety of different neural models.

• permit easy replacement of one network configuration with another for repeated experi-

ments.

• be as efficient as possible.

Examination of a few available neural network simulators showed that they tended to be too

general purpose for my needs, so a simple one was built, and packaged in the same interface

used for the mechanical simulator, allowing new neural types to be easily plugged in, but was

otherwise as uncomplicated as possible.
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4.1.3 Evolutionary Algorithm

As far as the Evolutionary Algorithm was concerned, the constraints were very straightfor-

ward. It should be as unrestrictive as possible, allowing any kind of population (e.g.panmictic,

island, finegrained), selection criteria (e.g.tournament, proportional,etc.), and crossover and

mutation operators that might be desirable.

This proved very easy to satisfy as the Edinburgh Parallel Computing Centre had just created

exactly such a system, called RPL2. This had a built-in Basic-like language in which repro-

ductive plans were written, and libraries could be easily added to the language to add new

encodings or operators as desired.

This then completed the design of the system, which is detailed in figure4.2.

Figure 4.2: The basic program architecture
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4.2 Verification

It was important to ensure that all of the components of the system were working as required.

This was done by testing each component separately and then in combination.

4.2.1 Mechanics

The mechanical simulator was difficult to validate as the calculations it was performing were

extremely complex, so two approaches were taken:

1. Simple objects (e.g.cubes) were dropped and thrown in the simulated world and calcu-

lations were made to see what their trajectories should be. These were then compared.

2. More complex segmented objects (e.g. snakes and legged robots) were dropped and

shaken, and visual observations were made to judge whether the simulated behaviour

looked like the behaviour one would expect in the real world.

Although the latter seems a fairly unsatisfactory test, humans are in fact extremely good at

distinguishing natural behaviour from artificial, and it was surprisingly easy to spot problems

with the simulator when adding new components by this method.

4.2.2 Neurons

The neural simulator was relatively simple by comparison, and it was possible to construct

simple neural networks and send them to the simulator and compare the neural activity to

those generated by other methods. It is also the case that there was less need for accuracy

in these tests as it was sufficient that the networks produced similar types of activations and

that these were consistent between runs, as the layout of the neurons should be altered by the

genetic algorithm to whatever was specifically required so long as they were capable of the

right sorts of behaviour.

4.2.3 Evolution

Little testing was required here as RPL2 is now a commercial product, and validation was

largely an excuse to familiarise ourselves with the software by running a variety of standard
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optimisation problems and checking that RPL2 was capable of evolving solutions to them.

4.2.4 In Concert

Connecting up the various parts and testing them together involved writing the first neural

encodings for the GA. In fact, the most validation work (which carried on right through the

experiments) went into checking the individual encodings and their respective mutation and

crossover operators and genotype to phenotype mappings. This was done by examining in-

dividual chromosomes and checking that the decoding of them into networks for the neural

simulator was correct, and that crossover and mutation were creating children that were de-

rived correctly from their parents. An example of what information is passed back and forth

in a typical experiment is shown in AppendixD.2.

Having done this, it was possible to carry out simple GA runs, first examining single chro-

mosomes, checking that the GA had extracted the correct information about the robot to build

appropriate controllers (e.g.number of actuated joints, sensors,etc.), checking that the neu-

ral simulator was building the correct networks, and then checking that the communication

between the mechanical simulator and the neural simulator was working correctly, with the

outputs from the neurons activating the motors and the feedback from the joints coming back

into the network as input.

Finally, the first experiments were carried out to check that the fitness of the phenotypes was

being measured correctly and the GA was carrying out the selection and breeding correctly to

produce offspring from the fitter adults in the population. Regrettably these were not spectac-

ularly successful at evolving walking controllers.

4.3 Summary

The simulation environment was constructed and validated to satisfy the following constraints:

• The mechanical simulator should be capable of accurately modelling the three dimen-

sional dynamically stable movement of arbitrary legged robot (this is provided by the

DynaMechs simulation code)
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• It should be easy to transfer new robots to the simulation environment (a simple mod-

elling language is used to describe robot in terms of its components, which is designed

to be fairly intuitive).

• It should be possible to expand the simulation environment to allow for new motors,

sensors, and types of neurons,etc.if a new robot requires it (this is built into DynaMechs

and the neural simulator).

• Having put a new robot into the simulator, it should be trivial to evolve controllers for it

(this is ensured by the GA and the neural simulator querying the mechanical simulator

directly for information about the robot instead of asking the user).

• It should be possible to replace any component of the environment fairly painlessly if this

is necessary, for instance to simulate a different type of environment (all components are

connected by a simple interface which should be easy to implement on any replacement

component).



Chapter 5

Symmetric controllers and neural
models

In Chapter3 we discussed the necessity of having degenerate controllers in our robots, so

now we will consider how this will be implemented, and check that it really is effective by

comparing results with those of a simpler implementation which does not take advantage of

symmetries in the robots.

We also discussed the variety of different neural models which it is possible to implement, and

we will investigate these thoroughly to determine which will be the most appropriate for the

rest of our experiments.

5.1 Experimental design and results

All of the experiments in this thesis are evolutionary runs and as such the results are stochastic

in nature. Consequently many repetitions of each experiment have to be carried out to get

an accurate estimate of the effectiveness of any particular experimental setup. One of the

main factors limiting the number of repetitions of each experiment was the amount of time

available. Because of the complexity of the algorithms involved, the dynamic and neural

simulators could only run at 60-80% of real time (i.e. taking 1.2 to 1.7 seconds to generate 1

second of simulation). This was almost entirely due to the mechanical simulator, although for

very large heavily interconnected networks, the neural simulator did begin to have a marginal

effect. Experiments were set up with 50 individuals per generation and 100 generations per

experiment, and it was determined by trial and error that about 5 seconds of simulated time was
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the minimum necessary to determine whether the simulant was performing satisfactorily — if

less time was allowed it was difficult to distinguish robots which had just thrown themselves

forward in a single movement from those which had actually developed a repeating pattern of

some kind. Likewise 50 individuals and 100 generations were the minimum found necessary

to generally evolve as good controller as possible from the population. This was determined by

the fact that the fittest member of the population stopped improving significantly for a number

of generations, and while this is not conclusive, it indicated at least that further improvements

were likely to take prohibitively long. Even stopping at 100 generations meant that each trial

took almost 10 simulated hours, or between 12 and 17 cpu hours. This severely limited the

number of trials that were possible for each experiment.

It was calculated during the experiments that 50 repetitions of each were sufficient to give

statistically significant results in comparisons between most experiments whilst not being pro-

hibitively slow (taking 25 to 35 cpu days). However, from a practical point of view it is clear

that this would be too long for an end user of the system to wait for results, so a comparison

was made between expected results from only 4 and 9 repetitions, which could be calculated

with some confidence based on our larger sample. These numbers of repetitions were chosen

as the80th and90th percentiles respectively in a uniformly distributed set of 50 trials, but in

the end as the distributions were highly non-uniform (being generally unimodal but with sig-

nificant tails and occasionally skewed as well — see Figures5.5and5.9 for example), it was

necessary to estimate these values directly by repeated subsampling from our population of

results. A more detailed analysis of the statistical techniques used is to be found in Appendix

B.

In fact, this proved to be a very satisfactory way of comparing different experiments, as al-

though it is possible to compare expected mean or median performance of the evolutionary

algorithm on a single trial or the best found across all runs, neither are usually a useful mea-

sure due to the stochastic nature of evolutionary algorithms; the former because the variability

of individual trials means that more than one repetition is always done, and the latter because

comparing the best trials achieved over the whole 50 runs opens up the possibility of having

purely by chance succeeded in finding an abnormally good result in one of the experiments.

Also there is no measure for the standard error of the best result and so no way of expressing

confidence in the results obtained, and the standard error for the mean or median is generally
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larger than for a best of four or best of nine sample, so results are less likely to be significant.

Consequently all experiments are compared by considering their estimated best performance

over 4 and 9 trials, and using the standard errors of those figures to determine whether the

results were significant. However, other measures will be mentioned when they are seen to be

important.

5.2 Degenerate controllers

It seems intuitively obvious that controllers for symmetric legs should be the same, but it is

less obvious what exactly we might wish to class as symmetric in this context. However, as we

said in Section4.3, it is important for it to be easy to implement new robot models (otherwise

the system will not be used), so if the controller is to be broken down into symmetric parts,

this should mostly be done automatically from an analysis of the robot, and not require expert

intervention from the user.

It is theoretically possible to analyse the actual structure of the leg models and determine

whether they are identical (or mirror images of each other), and so require identical controllers,

but it is prohibitively difficult to implement this in practice, and also might not achieve the

desired effect (e.g.arms and legs could be designed the same for simplicity, but would still

need different controllers). A much simpler scheme was therefore implemented where each

articulation from the main body is described as a leg or part of the body (arm, head,etc.), and

then the side of the body it is on is described (Left, Right, Centre), and then whether it is the

same as any other legs is indicated by grouping them by number. The four legs on a simple

quadruped are described as follows for example:

Leg Left 1

Leg Right 1

Leg Left 2

Leg Right 2

Indicating that the first two (fore) limbs are the same, as are the last two (hind) limbs. It

would have been equally possible to define all four legs as the same, but the fore and hind

limbs on this robot were sufficiently different that this was not appropriate. This is all the
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information that is used by the evolutionary algorithm to generate the degenerate controllers:

it just uses topological information about the number of articulations (or limbs) — 4 here —

the number of unique articulations (2), and how the sensors and actuators are distributed in the

articulations. No information about physical dimensions of the robot is used. This is discussed

in more detail in AppendixD.2.

In a degenerate controller, the neurons and connections are defined for only one articulation

of each group, and are then duplicated in the others. In Figure5.1, we see Leg Left 1 has one

neuron on its shoulder joint (n1), with two connections (c1, c2). Consequently, Leg Right 1 has

an identical neuron (n1’) on its shoulder with two matching connections (c1’, c2’). Similarly

Leg Left 2 has 2 neurons (n2, n3) with a connection between them (c3), so Leg Right 2 has a

matching set (n2’, n3’, c3’).

Figure 5.1: Replication of neurons and connections in a quadruped
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The initial experiments were carried out with a very simple encoding where every joint had

the same number of neurons and every neuron was connected to every other neuron and ev-

ery sensor and actuator (the network isfully connected). In this case all possible neurons and

connections always exist, so only the weights on the connections are being replicated between

symmetric neurons (so the weight on the c1 connection is the same as that on the c1’ connec-

tion). See Figure5.2 for a simple example of this connectivity (only one sensor per actuator

is shown). In the encodings in Chapter6 on the other hand, the existence of connections and

even neurons will be duplicated in the same way.

Figure 5.2: Connectivity of neurons in a simple example

The non-degenerate controller is also fully connected, but symmetries are disregarded and so

separate weights are encoded for neurons in each of the robot’s articulations.

Full details of the setup of the Genetic Algorithm which remains the same throughout this

chapter are in Table5.1, and the robot is shown in Figure5.3. The fitness measure used

throughout this chapter is the simplest imaginable — just the average speed of the robot along

its principal axis; we will investigate the usefulness of more sophisticated fitness measures in

subsequent chapters.

Robot model: quadruped with two hinge joints per leg
with knees bending inwards

Fitness measure: speed along principal axis (ms−1)
Population size: 50
Generations: 100
Selection type: Tournament
Tournament size: 3
Prob. crossover: 0.8
Crossover type: 1 point
Mutation rate: 0.1

Table 5.1: Details of Genetic Algorithm parameters for this Chapter
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Figure 5.3: Simple quadruped with two hinge joints on each leg, knees bending inwards

Both experiments were repeated 50 times, both used the third order neural model described

in more detail in Section5.3.4because this was a model which had not been used before for

this class of problem (walking control), and it was our expectation that more sophisticated

models might perform better; also every actuator was given 6 neurons; that is to say that there

are 48 neurons in all, as there are 8 actuators. In this encoding there is no significance to the

neurons being related to individual actuators, but in more sophisticated encodings in Chapter

6 the association will determine which connections can be made by the neuron. An example

of this connectivity on a simpler robot was shown in Figure5.2. Closer analysis later in the

chapter will show these were reasonable parameters to get good results from the system. The

results can be seen in Figures5.4and5.5, and more discussion of the statistical techniques is

found in AppendixB.

There was a very large difference between the two experiments, with the degenerate controllers

being significantly better even at the 0.1% level.

As we can see from Figure5.5, the highest probability density for the non-degenerate con-

troller is around a fitness of 0.5(ms−1) or roughly3.5m travelled — this is generally a result

of the robot learning to throw itself forward a couple of metres and then not moving again.

Sometimes it did continue to move, but the legs tended to act independently and indeed no
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Figure 5.4: Expected values of best of n trials with 95% confidence intervals

Figure 5.5: Bootstrapped probability density function of controller fitness estimated from re-
sults



58 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

controller learnt to use all of its legs. The best of them is shown in Figure5.6, the only one to

keep a fairly stable rhythm going, and it still only uses 2 1/2 legs to do it.

The degenerate controllers, on the other hand, produced repeating patterns with all four of their

legs over 90% of the time, with the mode around a fitness of 1.1(ms−1), or about 8 metres

travelled in an average run. Many of these patterns were recognizable as stable mammalian

gaits — Figure5.7for example shows a robot using an ambling gait, albeit mostly on its knees.

5.2.1 Discussion

Building symmetry into the controllers had an enormous effect on the fitness of the controllers

evolved by the system. It was to be expected that it would allow legs with the same controllers

to perform similar tasks, thus helping to avoid the possibility of only three legs learning useful

functions for instance, but what was not so obvious is that it also allowed the robots to coor-

dinate much better between legs to develop stable gaits. This in itself is a significant result as

we are not aware of any other evolutionary system evolving dynamically stable gaits in three

dimensions; it seems to be a consequence of the symmetrical cross-connections between legs

building up, so that a neuron activating the near forelimb of the robot when the near hindlimb

is fully extended, will make its symmetrical partner do the same on the off side, for instance,

and just a few of these types of connections will build up a simple rhythm between the legs.

It was nonetheless surprising both how bad the asymmetric and how good the symmetric con-

trollers were. It is possible that allowing the asymmetric controllers to evolve for longer would

have produced better results as the genome had more degrees of freedom to explore, but it is

not clear that this would have helped as the evolution had stopped at local minima which the

system would then have to have broken out of, and in any event time constraints were imposed

on the problem which necessitated stopping when it did.

The other significant feature of these runs was that the majority of the degenerate controllers

moved at least partially on their knees and lower limbs. In retrospect this is not very surprising,

as it is undoubtedly easier to balance when closer to the ground (children learn to crawl before

they walk, for example), and using feet, which were otherwise absent from the model, also

helps stability — since there was no penalty for doing this, it is in retrospect reasonable to find

them using what were initially perceived as parts of the leg as modified feet.
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Figure 5.6: The best robot with a non-degenerate controller (viewed left to right, then top to
bottom)
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Figure 5.7: One of many stable robots with a degenerate controller (left to right, top to bottom)
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It would be interesting to be able to examine how the neurons in these networks are controlling

the walking behaviour of the robot, but unfortunately the large number of neurons (48), all of

which are fully connected to all of the other neurons and all of the sensors and actuators, make

it impossible to see any patterns in the neural oscillations. This is very frustrating, and affects

the usefulness of the results, as it is impossible to show how reliable the network is. However,

a robot model from a later chapter (Quadsame from Section7.1.1) was sufficiently simple

that it was possible to do a limited amount of analysis, and this is shown in AppendixA.

5.3 Neural models

Section3.1.2discussed a variety of different types of neurons which might be appropriate as

a basis for a NN controller for legged robots. This section will now briefly recap each neural

model, and then test its efficacy thoroughly in order to determine which model should be used

for the rest of our experiments.

5.3.1 Sigmoidal

The sigmoidal neuron is by far the best known of all neural models used in Artificial Intelli-

gence and many techniques exist for training it because of its mathematical tractability. There

is however a strong drawback in using it here — it is not a continuous time model — and

since this is a continuous time dynamic system we are trying to control, it seems likely that a

network which can entrain to the frequency of the movements will be able to control it better

than one which has its rhythm imposed from without.

However, it is the simplest neural model available, so we will investigate it first. The equations

used are exactly as seen before, withyi being the internal state of neuroni, andSi being the

output.

yi =
n∑

j=1

wjiSj (5.1)

Si =
1

1 + e−yi

I investigated a range of sizes of neural network, making sure to investigate enough to deter-
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mine the optimal value assuming there was only a single peak in the values produced. The

same technique was used throughout these experiments. In this case it was necessary to look

at 6, 8, 10 and 12 neurons per actuator. The results are shown in Figures5.8and5.9, and are

compared with those from the 3rd order neuron examined in the previous section.

Figure 5.8: Results showing expected fitness with 95% confidence intervals for sigmoidal
neurons

All of these results are significantly worse than the 3rd order neuron at the 0.1% level, and in-

deed the modal fitness is around 0.4 which is even below that of the non-degenerate controller

examined before. However, the distribution is strongly skewed, with a few very fit specimens,

and so the expected values of the best of 4 and best of 9 trials are better than might be antic-

ipated. Though the difference is not significant, 10 neurons per actuator seems to be the best

size of network for this type of neuron. Looking at individual controllers, many of them are

learning repetitive movements, but the vast majority of these are not effective as gaits, consist-

ing of dragging movements with one pair of legs, or some similar action. Only a very few in

the upper tail of the distribution evolve any kind of recognizable gait, and even these do not

seem to be very stable.

I will leave further discussion until we have examined all of the neural models.
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Figure 5.9: Bootstrapped probability density function of sigmoidal neuron fitness
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5.3.2 First order

The next model is the CTRNN model ofBeer[1995], which is a continuous time version of

the sigmoidal neuron. Equation5.2describes the model, exactly as used by Beer.

τi
dyi

dt
= −yi +

n∑
j=1

wjiSj (5.2)

Si =
1

1 + e(θi−yi)

where: θi is a bias term,
τi is the adaptation rate of the neuron, and
yi is the internal state of the neuron.

This time there are parametersθi andτi for each neuron, for which Beer suggests values based

on his studies of the dynamic behaviour of the neurons (ibid.): θi = −2 andτi = 1. First

we will compare the behaviour of the neurons with fixedθi andτi with the behaviour when

co-evolving them with the weights, and then we will look at the number of neurons which

produce the best controllers in this model.

Figure 5.10: Testing co-evolved against fixed parameters for first order neurons
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The co-evolved parameters in Figure5.10prove to be significantly better than the fixed param-

eters at the 5% level for both 6 and 8 neurons per actuator, so we will now examine co-evolving

the parameters more fully in Figures5.11and5.12.

Figure 5.11: Comparison of different network sizes for first order neurons

Surprisingly the1st order neural models do significantly worse than even the worst sigmoidal

neuron. The best size for the networks remains 10 neurons per actuator, but the results are

significantly worse even at the 1% level. However, as before the distribution of results shows

that even the best sigmoidal neuron leaves something to be desired. The modal fitness for all of

the1st order neurons is at least as good as that for the best sigmoidal one, and, as can be seen

from the cumulative probability distribution, the medians are all roughly the same; again it is

the skewed distribution of the sigmoidal neurons which makes it better in practice. Examining

the first order controllers in detail, it is clear that very few of them even learn a repetitive

movement, and those that succeed do not necessarily learn inherently stable ones — like that

in Figure5.13! It is entirely possible that a more sophisticated fitness function or encoding

might have made a difference here, but this was not investigated.
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Figure 5.12: Bootstrapped probability density and cumulative probability density of first order
neuron fitness

5.3.3 Second order

The second order neural model is that ofTaga[1995]. It is governed by two coupled first order

differential equations (5.3 and5.4), which have been modified very slightly to simplify their

use in this system.

τi
dyi

dt
= −yi − βimax(0, y′i) +

n∑
j=1

wjiSj + ki (5.3)

τ́i
dy′i
dt

= −y′i + Si (5.4)

Si = min(max(0, yi), 1)

where: ki andβi are constants

We have allowed self connections, set a maximum output of 1, and Taga’s global constantu0

is now a per-neuron constantki. Again Taga provides a set of values forτi, τ́i, βi andki (1, 1,

2.5 and 1), so we will begin by testing these values against co-evolving the parameters.
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Figure 5.13: One of the more enterprising first order controllers!
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Figure 5.14: Testing co-evolved against fixed parameters for second order neurons

The co-evolved parameters in Figure5.14prove to be significantly better than the fixed pa-

rameters even at the 1% level for both 6 and 8 neurons per actuator, so we will now investigate

co-evolving the parameters more fully.

The results of using second order neurons in Figures5.15and5.16are more equivocal. The

best number of neurons to use seems to be 8, but the result is not significant. Looking at

the best of four trials, the second order neurons seem to lie in the middle of the sigmoidal

results. The best sigmoidal result is slightly better and the worst is slightly worse than all of

the second order results, but again the result is not significant. However, looking at the best of

nine trials, all of the sigmoidal results are better than the second order ones, although this is

only significant for the best of them. Overall, the second order neurons are significantly better

than the first order neurons, but are probably slightly worse than the sigmoidal neurons for

practical purposes (looking at the distribution in Figure5.16it should be no surprise that the

mean, median and modal values of all of the second order neurons are significantly better than

the best sigmoidal one, but this is not really relevant). Examining the controllers individually,

it is immediately obvious that even the worst controller has learnt some kind of repeating



5.3. NEURAL MODELS 69

Figure 5.15: Comparison of different network sizes for second order neurons

Figure 5.16: Bootstrapped probability density of second order neuron fitness
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movement, albeit a dragging one, and indeed every controller seems to have evolved some kind

of dragging or tumbling motion (like that in5.13), although some of these are too unstable to

continue indefinitely. However, none have learnt any recognizable gait.

5.3.4 Third order

We have already seen in Section5.2 that these neurons can produce controllers significantly

better than anything else that we have seen so far, but we will now look at them in more

detail. They are based on work done in modelling neurones in a lamprey spinal cord, and

are described in [Wallén et al., 1992]. Again there are some very small modifications to their

equations which are shown in Equations5.5to 5.7.

τD
i

dy+
i

dt
= −y+

i +
∑

j∈Ψ+

wjiSj (5.5)

τD
i

dy−i
dt

= −y−i +
∑

j∈Ψ−

wjiSj (5.6)

τΛ
i

dýi

dt
= Si − ýi (5.7)

Si = G±
i min(max(0, 1− e(θi−y+

i )Γi − y−i − µiýi), 1)

where: G±
i is±1 depending on whether the neuron is excitatory or inhibitory, and

Ψ± is the set of all excitatory (inhibitory) inputs, and
Γi andµi are bias terms.

The neurons now have a maximum output of 1, and whether they are excitatory or inhibitory is

now explicitly stated in the equations instead of being defined indirectly through what weights

the neurons are allowed to have.Wallén et al. also describe a set of parameters for four

different types of neurons, which are listed in Table5.2.

θ Γ τD µ τΛ G±

-0.2 1.8 0.030 0.3 0.400 1
0.1 0.3 0.020 0.0 0.0 1
0.5 1.0 0.020 0.3 0.200 -1
8.0 0.5 0.050 0.0 0.0 -1

Table 5.2: Parameters for four different lamprey neurons
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First we compare these parameters (choosing each neural type with a probability of 0.25) with

co-evolved parameters.

Figure 5.17: Testing co-evolved against fixed parameters for third order neurons

Surprisingly the co-evolved parameters in Figure5.17proved to be significantly worse than

the fixed parameters even at the 1% level for both 6 and 8 neurons per actuator, so we will now

investigate the third order neurons with the fixed parameters fromWallén et al.[1992] more

fully in Figure5.18.

All of these results are significantly better than any of the sigmoidal, first or second order

results, and the best number of neurons per actuators has come down to 4, although this result

is not quite significant at the 5% level. The controllers themselves all seem to induce some

kind of oscillatory motion in the robots, though for the less fit individuals this tends to only be

enough to catapult them onto their backs where they lie with their legs waving in the air. As the

robots get fitter, gaits begin to appear, first dragging and tumbling moves we have seen before,

and then with increasing fitness hops and more recognizable ambles and trots, and some even

stranger (and faster) gaits like that in Figure5.19which moved the robot along at 2.5ms−1.
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Figure 5.18: Comparison of different network sizes for third order neurons

5.3.5 Discussion

Amongst the continuous neural models there was a clear progression from the simple first order

models performing very badly to the complex third order models performing very well — one

noticeable feature of the models is that with the first order model it is not at all easy to generate

oscillations between less than three neurons, although it is theoretically possible with only two;

with the second order model it is much easier, and with the third order it is hard to avoid, and

indeed it is possible to set up an oscillation with only one neuron. This is reflected in the

behaviour of the controllers, with very few repeated movements being seen in the first order

robots, a lot coming in the second order though not much oscillatory behaviour, and nearly

every single robot in the final set producing oscillatory movements; understandably this seems

to help enormously in the generation of gaits, which are after all in their simplest form just a

set of stable oscillations. It is difficult to say whether this is the main factor, as more complex

neurons may be able to entrain better to the dynamics of the robot, but it is certainly true

that the more complex neurons ofWallén et al.[1992] are the best for this task by far. Other
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Figure 5.19: A typical third order controller
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experimenters have got good results with first order neurons [e.g.Kodjabachian and Meyer,

1998], so it is clearly possible. One possible explanation for this is that such simple fitness

measures and network encodings were not good enough, and a more sophisticated approach

might have done better, however it is noticeable that most of these experiments were done in

two dimensions which is an easier problem which does not require dynamic stability. It is

nonetheless significant that it was possible to get such good results with such a simple fitness

function and network architecture with the higher order neural models.

Looking at the optimal number of neurons for different neural models, we see that it comes

down with increasing complexity of neurons, from 10 for the sigmoidal and first order neu-

rons to 8 for the second order, and only 4 for the third order. This approximately matches

up with the complexity of the neurons themselves, suggesting that the increased complexity

of the higher order neurons allows them to replace a few simpler neurons, and indeed do a

better job at the same time. Note that we might expect more neurons to be optimal for the first

order neural model, but in fact increasing the number of neurons being used seems to make it

more difficult to evolve the best solution: the number of weights increases with the square of

the number of neurons in a fully connected network and it seems likely that the evolutionary

algorithm will begin to struggle to cope with the number of parameters it is evolving simul-

taneously, producing more and more suboptimal solutions even if they could be potentially

better at that network size. Attempting to solve this by perhaps increasing the population size

or the generations over which the GA is run would only result in even slower evolutionary runs

which are already taking 17 hours at this size, and so would be impractical. However there are

results which suggest that this might help if time were not an issue [e.g.Ackley and Littman,

1992].

It is also interesting to note that parameters suggested for the first and second order neurons,

chosen after after careful mathematical examination of the dynamics of the neurons at least

in the former case [Beer, 1995], proved to be less effective than just evolving the parameters

along with the weights of the connections. It seems likely that the simple reason for this is that

the criteria used to select these parameter values were inappropriate for this situation, which is

unfortunate since bothBeerandTagain [Taga, 1995] were envisaging using their neurons for

exactly this kind of work. Perhaps what was lacking was diversity in the neurons, needing a

variety of different types for different purposes in the network. Either way quite the opposite
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was true for the third order neurons, and the set parameters for these were significantly better

than evolved ones; it seems likely that it is significant that these parameter values were chosen

because they matched real neurones controlling locomotion in a genuine vertebrate (albeit a

fish), rather than satisfying perceived criteria seen from outside the problem. It is also possible

that having a variety of different sets of values helped bring diversity to the neural network.

The other issue raised by these experiments is the results from the sigmoidal controllers. These

were mostly worse than even the first order neurons but around 10% did much better, with a few

even learning rudimentary gaits. This seems strange since the first order controllers showed

no such tendency, but closer examination of the algorithms showed that the first order neurons

had been evolving their adaptation rates at around the 1 second mark (τi = 1 in Equation

5.2), which would allow them potentially to entrain to the dynamics of the mechanical system,

whereas the sigmoidal neurons were updating every 0.001s (the stepsize of integration of the

robot simulator), which was effectively their adaptation rate. It seems possible therefore that

most were failing for understandable reasons but a few were actually learning to match specific

input patterns and generate appropriate output patterns on the actuators as we ordinarily expect

when training sigmoidal neurons. While it is interesting that they had some success in doing

this, it seems unlikely to be a profitable approach to controlling walking in general because

stability becomes so much more complicated when approached like this — the controller will

have to learn every possible way of becoming unstable, and the apropriate outputs to rectify

this, which is just too difficult in the general case. The approach also proved to be significantly

worse than entraining the complex neurons to alter the dynamics of the system, and so it is not

pursued any further.

5.4 Summary

The results in this chapter have been promising:

• Taking advantage of symmetries in the robot is essential in building a good controller —

in the 50 experiments with an asymmetric controller only one succeeded in generating

a repeating gait of any sort and that was extremely defective (using only 2 1/2 legs),

whereas more than half of the degenerate controllers were acceptable and many pro-

duced recognizably stable gaits. Achieving a dynamically stable walking gait so quickly
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is very pleasing as it is a first using an evolutionary algorithm in three dimensions.

• Of the three continuous time neural models there was a clear progression with the more

complex models being more suited to the control tasks given to them, both in producing

more repeating gaits and in those gaits being more likely to be stable. This may be

related to the increasing ease with which the more complex neurons produce oscillatory

movements, and also the simplicity of evolving the fewer weights necessary in their

increasing small networks.

• It seems significant that the actual parameter values taken from neurones in locomotory

CPGs in a lamprey [Wallén et al., 1992, from] were significantly better than evolved pa-

rameters for this task, unlike the simpler models, where the values chosen by researchers

using perfectly plausible criteria proved to be less effective than allowing them to evolve

with the connections.

• Little analysis is possible of the networks as they are large and fully connected to them-

selves and the 16 sensors and 8 actuators. This is frustrating as it hinders understanding

of how the networks are operating, however in a subsequent chapter a controller is built

for a robot which is sufficiently small that it is amenible to some analysis, and this is

shown in AppendixA.

Now this system will be used as a basis for exploring further ways of improving the controllers

generated.



Chapter 6

Encodings and fitness measures

The last chapter described experiments which allowed us to set up the basic platform for the

rest of the thesis. Throughout all of the remaining experiments in this chapter and the next we

will be using symmetric controllers and a third order neural model with the same robot as in

the previous chapter. Now we will investigate the use of more sophisticated encodings than

the current simplistic fully connected model to create the kind of connectivity which will make

more useful controllers easier to evolve, and then we will look at the use of different and more

complicated fitness functions and see how they can help evolve better walking behaviours.

These tasks are made difficult by the surprisingly high quality of the controllers generated

in the last chapter by the third order models. Whilst the other models generated movements

which at best merely satisfied the simple fitness requirement of moving forward, the third order

models were extremely effective at generating genuine stable gaits, and it will be difficult to

do better than this in these experiments.

6.1 Encodings

We discussed a variety of different possible encodings in Section3.2, and it was decided that

the encodings most likely to be useful for this task were:

• A simple direct encoding of weights, both fully connected and with the network archi-

tecture determined by an automatic analysis of the structure of the robot.

• A direct encoding of the weights and architecture similar to above, but allowing the

77



78 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

connectivity to vary, perhaps favouring denser local connections and sparser distal con-

nections.

• An encoding similar toAngeline et al.[1993], adapted to allow reuse of subnetworks.

The first (and simplest) encoding, which will now be referred to as the Full encoding, was

implemented in the last chapter, and we will now look at how it compares with the other

encodings.

6.1.1 The OneMotor encoding

From observations of connectivity in vertebrate CPGs used for control of locomotion [e.g.

Wallén et al., 1992], we know that neurones tend to be collected in small groups which are

heavily interconnected, with fewer connections between the groups (these groups are the CPGs

in fact); the CPGs are generally associated with a single muscle or group of muscles as they

receive sensory signals from and output motor commands to only those muscles. It seems

reasonable that this would be a good place to start in looking for ways to bias the networks

being created by the genetic algorithm.

Consequently the first encoding examined here, called OneMotor, is a simple fully connected

network, but one in which each neuron is associated with a specific joint, and can only send

commands to the motor in that joint; it is also connected to the sensors associated with that

joint, although there is a small possibility of connection to a distal sensor. This is one of the

simplest possible encodings which has the correct kind of connectivity, and a typical example

of connections generated by this encoding is shown in Figure6.1. Details of what topological

information is extracted from the robot model to allow the evolutionary algorithm to produce

the symmetries in the encoding is found in AppendixD.2.

We used the same experimental setup as in the previous chapter (detailed in Table5.1), except

for using elitism1 in creating new generations. This was seen to be useful as there was a

tendency for good individuals to be lost during evolution, as can be seen from the dropping

of fitness of the best individual in Figure6.2 (the median run from best size — 4 neurons per

actuator — of third order neural controller).

1 putting the best of each generation directly into the next
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Figure 6.1: Typical connectivity of one CPG in OneMotor encoding with 4 neurons per actua-
tor

Figure 6.2: Typical evolutionary run for third order neurons without elitism



80 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

Running the experiments in Section5.3.4again with elitism produces significantly better re-

sults, and the median run from the best size network (now 6 or 8 neurons per actuator) can

now be seen in Figure6.3.

Figure 6.3: Typical evolutionary run for third order neurons with elitism

All the third order neuron experiments were rerun so that there could be a proper baseline

against which to compare new results, and the expected results of that and the OneMotor

experiments in the best of nine trials are shown in Figure6.4. All experiments were run on the

same robot with the same fitness function as in the previous chapter, as they are until we look

at fitness functions in detail, and the same robot is used through the whole chapter.

Perhaps surprisingly the Full encoding (fully connected neurons) proves to be easily better than

the OneMotor encoding, with the best OneMotor encoding being significantly worse than the

worst Full encoding even at the1% level. The same was also true when comparing expected

results from the best of four trials. Although it is true that more neurons per effector could

have been tested as no maximum had been found, it was felt that the results were so bad it

wouldn’t be effective use of the limited computing resources to study this simple encoding in
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Figure 6.4: Comparison of Full and OneMotor encodings

any more detail. These results will be discussed further at the end of the section.

6.1.2 The LocalSparse encoding

Allowing the neurons to connect only to their local motors was not successful on its own, but

in the LocalSparse encoding the connections between neurons is also changed so that distal

neurons are less likely to be connected that nearby ones. This would make the connectivity

more like that seen in real CPGs. Specifically, incomplete connectivity was allowed between

the neurons, with local connections (to neurons in the same CPG, and the sensors and effectors

associated with it) being made with a higher probability than distal ones (to other sensors and

neurons). This encoding produces connectivity much like the OneMotor encoding but with

much fewer interCPG and slightly fewer intraCPG connections (see Figure6.5). The results

can be seen in Figure6.6.

These experiments show no significant improvement over the OneMotor encoding, even when

looking at higher numbers of neurons per actuator; this was done here because it was felt that

with the greatly reduced number of connections present in this encoding, it might be possible

to evolve larger networks. However the results were still very significantly worse than the Full
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Figure 6.5: Typical connectivity of one CPG in LocalSparse encoding with 4 neurons per
actuator

Figure 6.6: Comparison of results using LocalSparse encoding
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encoding.

6.1.3 The LocalGNARL encoding

The LocalSparse encoding has some similarities with the GNARL encoding ofAngeline et al.

[1993] described in Section3.2.1, allowing mutations of connections and their weights, but has

a fixed number of neurons instead of allowing mutation to change this as well, a bias towards

local connections instead of a uniform probability of connectivity, and symmetry built into the

system, which is absent from Angeline’s work as it was unnecessary for the problems he was

trying to solve. Also LocalSparse allows crossover unlike GNARL which had only mutation.

The LocalGNARL encoding is a compromise between the two, by allowing the number of

neurons to vary. The crossover operator is also removed as it was not clear how to preserve

connections during crossover in a network with varying numbers of neurons on each CPG,

thus making the encoding even more like GNARL; this allowed addition and deletion of con-

nections and changing their weights (which is already possible in the LocalSparse encoding),

and also the addition and deletion of neurons. The number of neurons in each CPG is initially

allowed to vary betweenn − 1 andn + 1 wheren is the standard “number of neurons per

effector” parameter used in other encodings, but after that is allowed to vary at will.

Two experiments were done here with the LocalGNARL encoding, the first as described above,

and the second using a fitness proportionate mutation operator as described by Angeline (ibid.).

This operator has a higher initial mutation rate, but this decreases for fitter individuals — fitter

individuals take smaller mutation steps, and this makes them “slow” as they approach the

summits of hills in fitness space. As usual an optimal network size was found for the initial

population in each experiment, and Figure6.7 shows how these optimal solutions compared

with other encodings.

Fitness proportionate mutation seemed to make almost no difference with the results being

nearly identical with or without it. Overall, however, the LocalGNARL encoding was slightly

worse than the LocalSparse encoding, though the result was not significant.
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Figure 6.7: Comparison of results using LocalGNARL encoding

6.1.4 The SymGNARL encoding

The local connections were stripped out of the LocalGNARL encoding to produce an encod-

ing even more similar to the GNARL encoding ofAngeline et al.[1993], allowing connections

with equal probability to all sensors, actuators and neurons, but still using the symmetrical con-

trollers of Section5.2. This (SymGNARL) encoding was then compared with LocalGNARL

and the original Full encoding, and the results are shown in Figure6.8.

Clearly these results are very significantly better than LocalGNARL, and indeed LocalSparse,

even at the1% level, but they are still slightly worse than the Full encoding, and this is signif-

icant at the5% level for the best of 9 result.

6.1.5 The SymSparse encoding

The same was done to the LocalSparse encoding as to the LocalGNARL encoding, simplifying

it so as to not differentiate between local and distal connections. The results are shown in

Figure6.9.
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Figure 6.8: Comparison of results using SymGNARL encoding

Figure 6.9: Comparison of results using SymSparse encoding
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The results are almost identical to the original SymGNARL encoding.

6.1.6 Discussion

It would have been nice to be able to discuss here what kind connectivity is best suited to this

problem, and indeed it was originally intended to create a more sophisticated encoding based

on information gleaned from these experiments, which would generate as close as possible to

the ideal network configurations. However the results of this section have been very disap-

pointing, showing, as they do, that it is very difficult to improve on the most basic encoding.

Two possible reasons offer themselves:

1. The Full encoding is the best possible.

2. The wrong types of encodings were tried.

It is difficult to accept either of these, however, so we will look first at the individual results to

see what the evidence shows.

Elitism

The results for the third order neurons were significantly better using elitism; this is usually a

useful device for populations where most children are very unfit — even those of fit parents

— as it allows the best member to survive until it can breed true. As we can see from Figures

6.2and6.3 the mean in the population is relatively low and stays there, and the worst usually

has a fitness near 0, so it is unsurprising in retrospect that elitism is useful. It is also noticeable

the best number of neurons per effector increases from 4 to 8 with elitism switched on, though

in both cases 6 is not significantly worse; this is probably because size 4 networks previously

bred truer and so benefited less from elitism (indeed there is very little improvement for this

size of network), whereas larger networks benefited more.

Local connections

None of the three encodings with denser local connections were even close to being as good

as the Full encoding, and the ability to vary the connectivity or even the number of neurons on
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each actuator made no significant difference. The LocalSparse encoding was slightly better, as

might be expected as it allowed greater flexibility in the connections made, but LocalGNARL

was worse, even though it allowed even more flexibility; it is likely this is because crossover

was a slightly more effective operator than mutation alone, so its removal affected the GA

more than the encoding did. It is also interesting that the fitness proportionate mutation had

no effect on the results, which was also unexpected, but perhaps the fitness landscape is so

epistatic2 that it made very little difference; this seems plausible after our results with elitism,

which also indicate that there is a rough fitness landscape which causes a lot of unfit individuals

to be generated.

Since full connectivity of the neurons (in OneMotor) and sparse connectivity (in LocalSparse

and LocalGNARL) were both tried with no significant difference in the results, and in the

latter two it was possible to have many connections from other sensors, again without any

improvement, it seems certain that the ability for individual neurons to connect to more than

one actuator is the significant factor here. It was assumed that the ability to connect freely to

neurons in other CPGs which would then connect to the actuators could replace this, as happens

in vertebrates for instance, but this is clearly not the case. The reasoning behind having more

local connections was based on comparisons with vertebrate locomotor CPGs, but in retrospect

it seems plausible that some other factor may drive this, such as physical separation of the

muscles (and hence their associated CPGs) perhaps; indeed, physical separation of neurons is

looked at in work byKodjabachian and Meyer[1998], which shows that it can affect network

development.

Whatever the reason, in this problem local connectivity is not useful for building walking

controllers.

Sparse connections

In order to try to recover something from these poor results, the encodings were altered to

remove their local connectivity, making them much more like standard encodings seen often

before (although still with their symmetries). These were the SymSparse and SymGNARL

encodings, and here the results were much better.

2 small or few changes in parameters have large effects on fitness — causes a spiky fitness landscape
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Neither encoding was quite as good as the best Full encoding, and this was significant for the

best of nine result, but they were certainly of a comparable quality, with the best being better

than many network sizes of the Full encoding. Their failure to improve on the simpler encoding

may be because the optimal connection density was very high, at which point the encodings

were less efficient than the Full encoding, as they had to encode both the connection’s existence

as well as its weight instead of just the latter. Consequently, the GA struggled to evolve

appropriate networks (as it did with larger networks with Full encoding).

The SymSparse encoding was slightly better than the SymGNARL encoding, although the re-

sult was again not significant (as with the LocalSparse and LocalGNARL). This was slightly

counterintuitive as the greater freedom allowed by the SymGNARL encoding seemed like

it ought to help evolve better controllers. To test the hypothesis mentioned earlier that the

GNARL encodings were worse simply because of the lack of crossover, the SymSparse en-

coding was rerun without the crossover operator, and SymGNARL now significantly outper-

formed SymSparse at the5% level. However since no adequate crossover operator could be

devised for SymGNARL this is of little comfort.

A variety of different initial connection densities was also tried for the SymSparse encoding

to see if this could be optimised, but none of them outperformed the Full encoding, the one

shown being a typical result (this had an initial connection density of 50%).

Conclusions

From the results in this section it seems that the best networks for controlling walking on this

robot are densely connected with no real concept of neurons being local to any particular joint.

This is unfortunate as it makes it very difficult to analyse the way the robot is being controlled,

and thus generate confidence about the long term stability of the controller.

It would be possible to make an indirect encoding which could generate similarly complex net-

works, and indeed one was designed for this purpose, but it was never implemented as there

was no evidence that biases inherent in this or any other indirect encoding would not act to

make it worse than the simple Full encoding, just as the biases in all of the above encodings

have already done. Although it might have been possible to get useful information for the indi-

rect encoding by looking at the very densely connected SymSparse networks and seeing which
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connections were being removed, unfortunately the fitness of these was significantly lower the

the Full encoding, so it was not clear that the correct connections were being removed!

In the end it is clear that the Full encoding with its simple built in symmetries is better at

generating the kind of connectivity required for this task than any of the other encodings, and

extensive research into a variety of possibilities failed to uncover any indication of what might

be a better encoding.

6.2 Fitness Measures

Little attention has been paid so far to which fitness measure to use in evolving controllers.

Certainly the extremely simple “average speed over 5 seconds” fitness function (Speed5) has

been surprisingly effective, but we will now look at other more complicated measures which

look at other concerns in controlling a physical robot and see whether they help. The simplest

way to judge the controllers better is to see how they move over a much longer period of time,

but because of simulation time limitations mentioned earlier it is not possible to examine the

robots for longer in the standard fitness function.

Consequently we will examine different fitness functions to see how much they can help in

evolving controllers which can walk for long periods of time, while still only testing them over

short periods. We will do this by comparing the best evolved solutions directly over a much

longer period of time (say 20 seconds), using the simple average speed fitness function.

First we will look at the original Speed5 fitness measure and see how controllers evolved for

that do at the Speed20 fitness function. The results are shown in Figure6.10.

The larger networks performed significantly worse over the longer timeframes, but the rest

were roughly the same with a network size of 6 now slightly better than 8, although the result

was not significant. This is roughly as we would expect since the 5 second evaluation time was

chosen in Section5.1as just sufficient to judge whether the controller could keep a repeating

pattern going. However, as we can see from the bootstrapped probability density functions

in Figure6.11, although the better controllers are still just as good, many of the worse ones

clearly could not generate repeating gaits and their fitness consequently dropped a great deal.

What might help a robot keep moving over a long period of time then? Many possibilities
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Figure 6.10: Comparison of fitness using evolved and extended fitness functions

exist, for instance:

• Keeping the centre of gravity high.

• Not allowing the body the touch the ground.

• Making sure the legs oscillate.

• Making sure the neurons are active/oscillate.

• Minimising energy expenditure.

• Minimising ground forces.

• Putting more weight on the last couple of seconds than the first in the evaluation.

There are obviously many others. The first two are fairly straightforward, and are obviously

related — if the robot’s body is too low or touches the ground there is a significant danger of

it tripping up. The second two are the kind of fitness functions often used in building legged

robots in staged evolution experiments [e.g.Lewis et al., 1992], and are felt to be useful as
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Figure 6.11: Prob. density of fitness of size 6 controllers using Speed5 and Speed20
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they are staging posts along the way to a good walking controller. The next two are fitness

functions which appear to be driving forces in nature, the former to help endurance, and the

latter perhaps to avoid damaging oneself. The last is a purely practical consideration — since

the robot starts from standing still, it would be better to look at it after a couple of seconds

when it had got into its rhythm, rather than straight away.

Measuring energy expenditure was eliminated as too computationally expensive (although

keeping the body flat was tried unsuccessfully in an attempt to minimise unnecessary move-

ment instead). Minimising ground forces was also eliminated as it was not clear how useful it

would be, at least for the simulated robot we have at present. All of the other fitness measures

were tried, individually and jointly. There were, however, far too many combinations to look

at them all in depth, so I have selected a thread through them, adding one after another to find

the most effective fitness measure. We will look at:

FND (forward not down) Average speed minus average distance of CoG below starting height.

DFND (decay FND) As above, but using an exponential decay of the fitness over the 5 sec-

onds.

DFNDF (DFND or fall) As above, but with exceptional punishment if part of the body touches

the ground.

DFNDFA (DFNDF active) As above, but making sure that the neurons and legs are active

(i.e. the neurons are not full on or off and the legs are not locked against end stops.

DFNDFO (DFNDF oscillate) As DFNDF, but making sure that the legs and neurons oscil-

late.

Many other combinations were tried, but these were representative of them, and included all

of the best results.

6.2.1 FND

This fitness measure was a simple extension of the Speed5 measure, punishing the robot for

allowing its centre of gravity to drop too far as well. The results shown in Figure6.12show
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how it compares with the Speed5 fitness measure when its controllers are re-evaluated using

the standard Speed20 fitness measure.

Figure 6.12: Comparison of results using the FND fitness measure

The FND fitness measure proves to be possibly slightly worse at generating good controllers,

although the result is not at all significant. This was typical of many of the additional fitness

functions on their own, including the “no falling” measure, but as we shall see later, they work

well together. The size 4 and 6 networks are equally good here, with the size 8 slightly worse.

6.2.2 DFND

This next fitness function simply decays the previous one over time. The half-life of the fitness

is about 2.4 seconds (the actual decay is0.75t), so the very first fitness measure has roughly

1/4 the weight of the last. The results of using this are shown in Figure6.13.

This seems to be an improvement on the previous fitness measures, although the result is not

quite significant at the5% level. The size 4 network seems to be the best here, with the size 6

slightly worse, and the size 8 significantly behind.
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Figure 6.13: Comparison of results using the DFND fitness measure

6.2.3 DFNDF

This fitness measure is like the previous DFND, but with an additional penalty if part of the

robot touches the ground, proportional to the length of time in contact (the parts of the robot

defined as the body are detailed in the robot description). The results of this measure re-

evaluated using the Speed20 fitness measure are shown in Figure6.14.

This is a very significant improvement, both over the original Speed5 measure at the1% level,

and the DFND measure at the5% level. Interestingly this fitness measure on its own and with

the “not down” measure showed a similar performance to FND and Speed5, and it was only

with the decaying fitness measure that this huge improvement was noticed. The best size of

network for this measure seems to be 6 but 4 is not significantly worse.
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Figure 6.14: Comparison of results using the DFNDF fitness measure
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6.2.4 DFNDFA

This and the following fitness function are the only two that try to look at the detail of what is

going on and specify directly what should be happening. In this case we take the best (DFNDF)

fitness measure so far, and add to it a measure of how active the neurons and legs are. This

was measured by penalising inactive (output 0) and totally overloaded (output±1) neurons

and by penalising legs which are jammed up against their limits (sensors at±1), which we

saw frequently in the last chapter.

Figure 6.15: Three different functions used in DFNDFA

The fitness measures can be seen in Figure6.15: the neural fitness measure is (c), and two

different joint fitness were tried, (a) and (b), where (a) penalises being close to the joint limits,

but (b) only penalises being pressed right up against them. They were both tried and are

referred to as DFNDFAa and DFNDFAb respectively. The results are shown in Figure6.16.

There is very little difference between these two fitness functions and the previous one which

had no detailed neural and joint measure, one being an insignificant amount better, and the

other worse. The optimal network size is 4 in both.
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Figure 6.16: Comparison of results using the DFNDFAa and b fitness measures
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6.2.5 DFNDFO

Another feature often used in evolving controllers is that the neurons and joints should oscillate

[e.g. Lewis et al., 1992, Ijspeert et al., 1997], so here we replace the previous measure of

activity in the neurons and joints with a simple measure of variance. Again this is combined

with the DFNDF fitness measure, and the results are shown in Figure6.17.

Figure 6.17: Comparison of results using the DFNDFO fitness measure

These results are worse than the DFNDF and DFNDFA results, although not significantly, with

the best network size now being 4 or 6.

Many other combinations of fitness functions could have been shown here, but these results are

typical of those found. Different fitness functions were not tried because other, simple func-

tions like “not down” and “not fall” and “average speed” could not be found, the biologically

plausible ones seemed either too complicated or not obviously useful, and the more detailed

ones seemed not to help.
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6.2.6 Discussion

Overall the simpler fitness measures (like “decay” and “not fall”) worked well and the more

complex (like “oscillate”) which claimed to judge the internals of the robot and controller

performed badly; however, the results were not quite that simple.

Neither “not down” nor “not fall” worked well on their own, but needed “decay” to produce

good results. This seems reasonable, because many controllers early in evolutionary runs were

unstable for the first second or two when they started moving, and so were penalised badly

when no decaying of the fitness was included. That meant that it was difficult for evolution to

start, so there was a tendency not to evolve as far or spend too much time optimising the first

two seconds of motion and not enough time on the stable gait.

The more complicated fitness measures, “active” and “oscillate”, used intuitive measures of

what should be going on inside the robot and its controller to help guide the evolution. Unfor-

tunately these did not turn out to be very useful — although DFNDFAa was very marginally

better that DFNDF, the other two were marginally worse. Fundamentally these were based

on the flawed premise that we should know what is the best behaviour inside the controllers

should be, just as in the last chapter we found that choosing the parameters for the 1st and 2nd

order neural models based on assumptions about the kind of behaviour neurons should exhibit

was flawed.

In conclusion, when building fitness functions for this task at least, it is perfectly adequate to

state the goals which we want to achieve and not try to prescribe the way to achieve them,

either through staged evolution or more complex fitness functions as we tried here.

6.3 Conclusions

The results from this Chapter were not as clearcut as those from the last. Other encodings from

the simple Full (symmetrical) encoding were tried, but with little success, but more complex

fitness functions did improve the ability of the robots to move at speed. In conclusion:

• Sparse distal and dense local connectivity, although found universally in CPGs in verte-

brates, was not useful in controlling these robots; indeed the ability for a single neuron to
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output to more than one actuator was crucial to building good neural controllers. Taking

inspiration from nature is clearly risky when the “reasons” behind natural designs are

not known. In this case, perhaps other factors drive the sparse distal connectivity such

as actual physical separation of muscles, which causes separation of CPGs in the spine,

and hence difficulties in actually making the distal connections as well as time delays in

the signals being passed, neither of which are modelled here.

• Because the Full encoding proved to be better than all of the non-fully connected en-

codings which were tried, and the closer the encoding came to the Full encoding, the

better it did, it was decided that there was no point in implementing the indirect encod-

ing which had been designed, there being no reason to believe that the biases in it would

be more desirable than those in a fully connected network.

• Simple additions to the fitness functions such as a decay term to eliminate problems

at the beginning of the simulation, and penalties for the body of the robot hitting the

ground, or the robot lowering its centre of gravity, worked well to increase its ability

to move at speed over longer periods of time than the 5 seconds allowed for fitness

evaluations.

• More complex fitness functions to determine whether the neurons or joints were doing

precisely the “right” thing were not very successful, as anticipated in Section3.2.1, when

we decided against staged evolution because it was impossible to tell what was the right

behaviour for an arbitrary neuron in an arbitrary robot was.

The common thread between the results in this chapter and the last is that we have discovered

again that having a seemingly reasonable feeling (say that we want the legs to oscillate) does

not necessarily mean that it will be useful in practice, and we should stick instead to the goals

we wish to achieve — if we want a robot to move forwards without falling over, then it is

perfectly possible to specify just that and the evolutionary algorithm will take care of the rest.

It is reassuring and somewhat surprising however that this simple approach does work.



Chapter 7

Testing the system

In the last two chapters a system has been developed which can repeatably generate low level

controllers for our target quadruped, allowing it to walk or run in a straight line and at a

constant speed. In this chapter we will examine whether the system is as general purpose as is

claimed, and whether it is fit for purpose as part of an active walking mechanism which can be

controlled by a simple higher level controller.

7.1 A selection of robots

To test whether the system is sufficiently general purpose to use on arbitrary legged robots,

a series of different designs were created, and the best evolutionary setup from the previous

chapters was taken and used directly on the new design with no modifications. The details

of this setup are shown in Table7.1 (the GA parameters are the same as used in the previous

Chapters).

Neuron type: Third order
Neurons per effector: 6
Encoding: Full
Fitness measure: DFNDF

Table 7.1: Details of setup of experiments for this Chapter

The robot designs broke down into three categories:

• Other quadrupedal robots

101
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• The original quadruped in different environments (e.g.low friction, low gravity)

• Robots with different numbers of legs

It was one of the design criteria of the system that it should be possible to encode other robot

designs, but it is an significant extra that the environment can also be modified like this as it

is a feature which is not investigated in other similar research [e.g.Kodjabachian and Meyer,

1998]. We will look at the variations in the robot designs in the order given above.

7.1.1 Quadrupeds

The first new robot was similar to the original (Quadin), but with all of the knees bending

in the same direction (see Figure7.1), and was called Quadsame. This meant that all of the

legs could be given the same controller, and I experimented with this as well as with separate

front and back leg controllers. With different controllers for front and back legs, it was very

similar to the Quadin robot, producing some fast if slightly unconventional gaits; but with

only one controller duplicated across all of them it easily outperformed them, producing some

very good controllers using fast trotting gaits, one of which is shown in Figure7.1.

Figure 7.1: A fast controller for the Quadsame robot

All of the speeds for the quadrupeds (measured using the standard Speed20 fitness measure) are
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shown in Figure7.2, though it should be noted that as different robots have different maximum

speeds, no strong conclusions can be drawn from them.

Figure 7.2: Average speed of best of 9 runs for each quadrupedal robot

A robot was then built with free movements of all of its joints, so that each could move through

360◦ (although not beyond±180◦ in any direction), called Quadfull. A huge variety of dif-

ferent gaits evolved, as might be imagined, some of which are shown in Figure7.3, though in

general it was slightly slower than Quadin.

The next robot tested had prismatic (sliding) joints instead of hinge joints at the knees, and

again all of its legs were given the same controllers. It was called Quadprism, and again

easily outperformed Quadin. Most of the robots evolved to walk on their knees, using only a

small amount of their lower limbs to give them a slightly longer reach at the beginning of their

stride (see Figure7.4).

Finally an extra joint was added to the original robot to give it feet, and the new robot was

called Quadfoot. Mostly the robot evolved to use one set of feet and not the other, as is seen

in Figure7.5, though running backwards as this one does was quite unusual. Generally, the

robot was much slower than any of the previous ones.

One other experiment was done, penalising the robot for walking on its knee joints, by extend-
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Figure 7.3: A variety of gaits for the Quadfull robot

Figure 7.4: Quadprism: a quadruped with prismatic knee joints
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Figure 7.5: One of many controllers for the Quadfoot robot
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ing the definition of what was part of the body of the robot (touching the body on the ground

was already penalised). The robot did learn to walk on its feet, but it was considerably slower

than it was when walking on its knees. All of these results will be discussed further at the end

of this section.

7.1.2 Different environments

The Quadin robot was then put into a low friction and a low gravity environment and evolved

to see whether it was able to deal with these changes. The results are shown in Figure7.6.

Figure 7.6: Average speed of best of 9 runs for different environments

The low friction environment made it easier for the robot to move, apparently because it did

not have to worry about tripping up any longer, and skidding did not worry it at all — indeed

many of the faster controllers start like a car starting a race with a great deal of skidding until

the robot gets up to a fast enough speed. The low gravity on the other hand was much more

problematic, with most of the robots falling over after a few steps, and having trouble adapting
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to the necessarily slow pace of walking in such conditions. This may well be simply because

of a lack of time spent changing time constants or the strengths of the muscles however, which

would allow the new robots to move more slowly.

7.1.3 Triped and Biped robots

Two final robots were built to test the ability of the system further, a triped and a biped (a

hexapod was also acquired, but a design error and time pressure made it impossible to run

experiments with it). Neither moved very fast (see Figure7.7 for details), but the biped was

very poor. Only a very few managed to develop any kind of gait, and none of these were at all

satisfactory, nearly all falling onto their arms for support, and none alternating their legs in a

sensible fashion. One of the few bipeds to stay on its feet is shown in Figure7.8, and it is clear

that this is not a useful gait to have learnt (it uses the momentum from swinging its arms to help

it hop very slowly) — even here it fell over after a few hops. Some recent experiments done by

Reil [1999] on a biped have shown that bipeds can learn to walk with a similar experimental

setup, so it is likely that some parameters such as actuator strength just needed to be adjusted.

The triped on the other hand was successful, but just not physically capable of moving at a

great speed — a typical example of the triped is the bound shown in Figure7.9, which the

robot could keep up indefinitely. The robot was in general slightly more prone to falling over

than others, but that is understandable given its design, and apart from that the system worked

well at generating gaits for it.

7.1.4 Discussion

Most of the robots moved well, with some of them significantly outperforming the original

design. Of course such comparisons are largely meaningless as some robots can inherently

move faster than others because of their limb configurations and strengths, but it is nonetheless

an indication that the system is not specifically tailored to the original robot and can adapt to

different ones.

Penalising the robots for going down onto their knees also succeeded in getting the models

to walk on their feet more, though generally at some expense in speed. However this speed

reduction may indicate that design problems with the original robot made it better able to move
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Figure 7.7: Average speed of best of 9 runs for triped and biped
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Figure 7.8: One of the better biped controllers!
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Figure 7.9: A typical triped
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on its knees than its feet, particularly when it is considered that the fastest robot (which had all

of its knee joints bending the same way) learnt to run on its feet without any penalties at all.

The only robot which really disappointed was the biped which, although it did generate re-

peating gaits which enabled the robot to move along, certainly couldn’t be considered to have

succeeded in generating useful walking gaits. There are two possibilities here - either the sys-

tem broke down on the biped, or the biped was not itself well designed for walking (again).

It is fair to say that the system did break down, and perhaps more work needs to be done to

make control of bipeds easier, as they constitute a much more difficult balancing problem than

quadrupeds, and extra features may have to be incorporated into the fitness evaluation. How-

ever, since occasional evolutionary runs in this thesis have accidentally generated bipedal or

mostly bipedal gaits like knuckle walking in the Quadin quadruped, I believe that it is likely

that there is also a problem with the design of the robot, but that this is certainly not an insuper-

able problem. Indeed, it is entirely possible that a better designed biped would be capable of

walking using just this system, and this is backed up by the very similar results which have just

been obtained byReil [1999]. Unfortunately an alternative biped which was tried caused prob-

lems for DynaMechs due to the stiffness of the integration, so it was not possible to investigate

this further.

One further experiment was tried which involved changing the conditions that the robot oper-

ated in. Changing the friction coefficient of the ground made very little difference, with the

robot able to cope quite easily although it did slide a lot. However, changing the gravity to

3ms−2 did make it very difficult for the robot. Some gaits were evolved, but generally they

were quite unsuccessful. Watching the robot, it was clear that it had trouble adapting to con-

ditions in which it could push itself clear of the ground completely, and although moderating

the strength of the motors did help, the legs still seemed to be moving too fast — perhaps

the adaptation rate of the neurons needed to be lower in these conditions, but since we were

using the fixed lamprey neuron parameters, it was decided not to investigate this any further

at this point. This would seem in fact to be a case where the addition of a fitness function like

minimising ground forces mentioning in Section6.2might be of practical value.

In general though, the system succeeded in generating a variety of gaits for the robots with

which it was presented, with the fastest exceeding 10mph, a very reasonable speed. More

research ought to be done using more realistic robot models however, and we will discuss this
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further in Section8.2.

7.2 Active mechanisms and higher level controllers

The final test of the system is to see how easy it is to build high level controllers on top of

it. In vertebrates, as we said in the introduction, simple signals can be passed down the spinal

cord to the CPGs to change the speed or direction of movement, and we will try to add control

signals which induce a turning movement or acceleration in the robot. More complicated tasks

such as recovering from tripping up, or increasing stability when changing gaits require more

sophisticated controllers, and so will be left for now. However in principle there is no problem

in doing this — instead of simply adding more connections to the existing neurons, more

neurons would be added to the network as well.

The best Quadin controller was taken as the basis for all of these experiments, and connections

were evolved from the control inputs to all of the neurons in the controller.

7.2.1 Steering

Two control inputs were used for this, with the connections being symmetrical so that the

connections from the first input to the left of the body were the same as the connections from

the second to the right and vice-versa. The connections for one CPG are shown in Figure7.10.

Since there were very few parameters being evolved (only 1 per neuron after symmetries have

been taken into account, which makes 48 in total) the population and number of generations

of the genetic algorithm were halved to 25 and 50 respectively. The fitness function was the

integral of the product of the radial and angular velocities, to ensure that the robot continued

to move forward as well as turning. Ten runs of the GA were carried out to see whether it

was possible to evolve a steering controller, and nine of them succeeded. The best is shown in

Figure7.11.

The robot can now be steered left (with inputs+x and 0) and right (0 and+x) at will, with

higher x causing faster turns. In fact giving a signal to both inputs slows down the robot

slightly by shortening the step length, so the inputs appear to be slowing one side of the robot

or the other.
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Figure 7.10: Additional connections for steering control on a joint
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Figure 7.11: Turning left
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7.2.2 Slowing down

Since the fitness evaluations so far have all included a “maximise speed” element, it seemed

unlikely that a control signal could be included which would speed up the robot any further, so

it was decided to try to add a signal which would slow it down instead. The important feature

here was that the robot should not fall over (a very effective way of slowing down!), so the

fitness function used penalised moving forward above half the speed it managed without the

control input, but penalised falling down much more heavily. The hope was the this would

allow a control signal to specifically learn to reduce the speed of the robot but not stop it, and

using a lower control input would allow variation between the two speeds achieved.

Stopping the robot was not attempted because it was felt that this would require a different

low-level controller than that which had been evolved for walking, as standing still could use

the muscles to keep the joint angles constant for instance, which would require a very different

controller from walking slowly. This is in contrast to previous experiments such as that done

by Kodjabachian and Meyer[1998] where walking slowly and stopping were very similar

because the experiment was in 2-D which meant no balancing was required.

Again ten runs of the GA were performed with half the population and number of generations.

With only one control input, and the connections symmetrical so that a weight to a neuron

on the left was the same as the weight to the same neuron on the right, there were only 24

parameters to be evolved. This time all of the evolutionary runs succeeded in producing speed

controllers, with most of them able to slow the robot down by about1/5 and some up to1/3

whilst maintaining a stable gait. Although this is not as much as might be expected, it seemed

likely that more was possible, with perhaps more thought put into the fitness function, since

many solutions involved slowing down the robot by the maximum1/2 for the first 5 seconds

that the evaluation ran over, and then slowly speeding up thereafter.

7.2.3 Combining controllers

A final experiment was carried out combining the best steering controller with the best speed

controller on the same underlying neural network. This was possible because in both cases the

connections were evolved as additions to the same network. The controllers combined easily

on a single system, and the robot’s direction and speed were then controllable together.
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7.2.4 Discussion

The addition of higher level controllers to drive the active mechanism were very successful,

with almost every single evolutionary run creating a successful controller. This was an excel-

lent result, and quite unexpected; even more so was the ability to combine simple higher level

controllers to make more sophisticated ones.

The controllers evolved were only simple ones to control speed and direction of locomotion,

but the results strongly backed up the original contention that higher level control is easier to

implement on a walking robot than a basic legged one, so much so indeed that they do not

need any additional neurons to carry out its function. This may be because the basic walking

behaviour is stable and so can be pushed easily by control inputs in a variety of directions (such

as to allow turning or speed changes) without it becoming unstable. Some more sophisticated

controllers, such as ones which could carry out transitions from walking to standing or running

for instance, might require more complicated controllers, as indeed they do in vertebrates, but

investigation into this more sophisticated kind of control is a subject for further research.

7.3 Conclusions

The system created in this thesis for evolving low level neural controllers for arbitrary walking

robots works well, with some minor reservations concerning bipedal robots. Furthermore,

attempts to add higher level controllers to the system in the form of a speed and a steering

controller were successful on the first attempt, with only the simplest possible controllers being

necessary to achieve the aims set out.

This opens up the possibility of further work to investigate how to improve the low level

controller for bipeds, and to make more sophisticated high level controllers. This will be

discussed further in Section8.2.
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Conclusions

8.1 Summary of contributions

This thesis proposes a new control methodology for walking robots. Currently robots are

controlled either by having springs and dampers built into the physical robot to produce an

excellent walking robot, which is easily controlled but with little of the general purpose ability

to climb over obstacles or manoeuvre which makes walking robots desirable, or having mono-

lithic controllers designed for specific robots, which is a very difficult problem, not easily

generalisable and thus very time consuming for each new robot.

Instead this thesis proposes simulating the springs and dampers of the passive robot through

the motors to produce an active mechanism which is a walking robot in its own right. This

eliminates the problem of the lack of multifunctionality of the passive robots, by allowing the

active mechanism to be switched off or altered to cope with different conditions, but avoids

the higher level controller having to “compensate for the limitations of a poorly designed

mechanism” (Raibert, ISToMM’93), thus greatly simplifying the control task.

This control model is implemented using neural networks to provide the low level dynamic

control of the motors, and a simple genetic algorithm to evolve the connections of the net-

works. It is shown that these tools allow simple active walking (and running) mechanisms to

be built for a variety of robots very easily, and that adding higher level controllers for speed

and direction using the same tools is very easy, as predicted in the introduction.

The thesis also investigates a number of issues in evolutionary neural networks. It finds that

more sophisticated (and biologically plausible) neural models are significantly better at this

117
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kind of control task than the simpler models usually used. It is suggested that this could be a

result of the greater richness of behaviour of individual neurons; this means that fewer neurons

are needed for a given problem, which in turn simplifies the search for a solution.

A variety of neural encodings are also investigated to discover which connectivity patterns are

best for this problem, with the expectation that connectivity somewhat like CPGs in vertebrates

may turn out to be useful. However, results indicate that the best controllers have very dense

intra- and inter-joint connectivity, and indeed that the ability of neurons to connect to more than

one effector is very useful in building effective controllers; both of these results are unexpected,

and perhaps hint that other factors such as simple physical separation and consequent time

delays in signals may perhaps drive the connectivity patterns found in CPGs.

Finally an analysis is made of different types of fitness functions to determine which kind of

fitness measures help in the development of active mechanisms. It is found that, despite their

extensive use in the field, there is no evidence that fitness measures relating to the internal

workings of neurons and joints are helpful in the design of good walkers. It is suggested

that this is because we simply don’t know what these neurons and joints ought to be doing

in a good walking gait, but instead it is sufficient to specify broad outlines of the task, such

as maximising speed whilst keeping the body off the ground, and that such simple fitness

measures can produce the desired results on their own.

8.2 Future Directions

The experiments done in this thesis were of necessity exploratory, and some elements were

only touched on. In particular little energy was expended on optimising the evolutionary al-

gorithm, and it would undoubtedly be useful to examine this in more depth. A more serious

consideration is that the robot models used were made up on the spur of the moment to rep-

resent real or imagined generic classes of robots (the triped will sadly probably never make

it onto a production line!). It would be extremely instructive to try out the system on a real

robot, as it was obvious in retrospect that many of the robots were poorly designed. This was

not practical during the thesis for a number of reasons — the lack of a legged robot to use as

a model, the complicated nature of real robots, for which inertia matrices and the like have to

be computed for the simulator, and the modelling of the motors which would be difficult and
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entirely unrelated to the research being carried out. However, it is the purpose of the control

model to be used on a real robot, so it would be very interesting to see how it coped, and

whether the controller could pass across from simulation onto the actual robot.

It would also be a useful extension to the work to see how easily other, more complicated,

higher level controllers could be added to the system, to increase the stability of the system for

instance, or to allow transitions from one gait to another.

Finally it would be a very interesting project to try modelling a real vertebrate, perhaps a large

cat or even a human, using anatomical information and sophisticated muscle models which are

easily available (far more so than for robots), and to see if gaits similar to those found in nature

could be duplicated on the simulant. There is every reason to believe they would, given the

similarity of many of the gaits found in the quadrupeds studied here to natural ones. If this was

successful further work could investigate which optimisation criteria produced which gaits in

which animals, providing insights which could then be used in zoological research such as

the inverse optimality problem discussed in Section2.2.5. Information could also be gathered

directly from the simulant for instance as to the energy efficiency of various gaits which can

only be roughly estimated on real animals.
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Appendix A

Controller breakdown

Unfortunately the neural networks used in most of the experiments were too big to analyse,
being from 50 to 100 neurons all fully connected to each other. However, the controller used
in Section7.2was small network, as all of the legs had the same controller and there were only
6 neurons per actuator. This meant that there were 48 neurons, but only 12 unique ones. The
experiment was using the Quadsame robot described in Section7.1.1. This Appendix will
briefly look at the kind of behaviour this network exhibited, and will show how it responded
to various degradations (such as sensors or neurons being removed).

A.1 Unmodified network behaviour

When the robot is allowed to walk normally without any alteration to network or the sensors,
walking starts smoothly and continues very stably at roughly4.3ms−1. The four sets of twelve
neurons all behave identically with pairs almost perfectly synchonized, and each pair in an-
tiphase to the other. This results in a diagonal trot, with the near forelimb and the off hindlimb
in phase, and the near hind and off fore in antiphase. For example FigureA.1 shows two sec-
onds recording of the third neuron in each set of twelve (as we have said in describing the third
order neurons in Section5.3.4, all the neurons have an output which varies either between 0
and 1 or 0 and -1).

Only two signals can be readily distinguished, but all four can be seen in the enlargement of
FigureA.2. The differences are insignificant however, and vary from step to step, though they
seem to decrease over time.

Looking at a whole set of twelve neurons in FigureA.3 we immediately see that only five
of them are active, and this leads us to believe that perhaps the other seven neurons are not
useful. However if we look at the first second when the robot sets off from its initial stationary
pose, three other neurons are also active (FigureA.4). We shall see later that these are also
important. However four of the neurons are completely inactive, and it seems likely these
could be removed with no detrimental effect.
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Figure A.1: Recording of all four neuron 3 signals

Figure A.2: Detail of 0.2s of neuron 3 signal
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Figure A.3: Behaviour of a maximal unique set of neurons

Figure A.4: Starting behaviour of set of neurons
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A.2 Killing neurons

The first experiments to degrade the network were to remove individual neurons from it while
the robot was already trotting (it was allowed to run for 2 seconds before the neurons were
killed) and analyse the behaviour. The results are shown in TableA.1.

Neuron Effect on locomotion for each neuron group

1 + + ++
2 + + ++
3 −−−−
4 + + ++
5 ±+ +±
6 + + ++
7 −−−−
8 −−−−
9 + + ++
10 + + ++
11 −−−−
12 + + ++
where+ indicates continued movement,− stopped, and± indi-
cates a marked effect, such as slewing to one side.

Table A.1: Result of removal of neurons on continued movement

It is clear from the results that four of the neurons in each group are crucial for the generating
a normal locomotion pattern, with a typical movement pattern for a robot deprived of one of
these neurons being to fall unsteadily onto one leg, and then stop moving completely. There
seemed to be no correlation between the group of the neuron removed and the leg that was
fallen onto, however. Unsurprisingly these are four of the five neurons which oscillated ordi-
narily during movement; the other was neuron 5, and removing this seriously affected the walk
in two cases where the robot swung heavily to one side and limped slightly. There was very
little effect on neural behaviour outside the group the neurons were in, but inside the group
the output from neuron 3 reduced dramatically, as can be seen in FigureA.5 — similar neural
behaviour was seen in all four cases, although in only two of them was there a visible effect
on the locomotion. In the undamaged network the two neurons were in phase, and there was
a strong excitatory connection from 5 to 3, which would explain the diminution in the output
from that neuron. It is possible that the effects on the two neurons cancelled each other out to
some extent.

The next experiment was to remove groups of neurons to see whether there was some cumula-
tive effect, but there was very little — unsurpisingly all of the neurons inactive during walking
(numbers 1, 2, 4, 6, 9, 10, and 12 in each set) could be removed simultaneously without affect-
ing the movement at all, leaving only 20 neurons stably controlling the locomotion. The four
“Neuron 5”s could not be removed simultaneously, however sometimes 2 could be removed
without the walking pattern braking down.

After this the experiment was changed slightly to investigate the effect of removing neurons
on locomotion from a standing start, as this is what is done in the evolutionary runs. Exactly
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Figure A.5: Effect on a group of neurons of removing Neuron 5

the same experiments were done, except that the neurons were killed immediately. The results
are shown in TableA.2.

Nine extra neurons became critical now, with three others making initialising walking very
unstable. Four of the neurons in each group (6, 9, 10 and 12) still have no effect under any cir-
cumstances, meaning that 16 neurons are completely unused by the controller. These neurons
are never seen to be active, and can all be removed simultaneously with no adverse effects. Of
the remaining neurons which were not fatal to locomotion before, more than half now are. In
all of the experiments so far the robot has started with the near fore and off hind limb back
slightly and the others forward; reversing this starting position now reverses the effects of neu-
ron 4 — the neurons from the first and third groups are now crucial whereas those from the
second and fourth are not (note that the order of the legs is off hind, near hind, near fore, off
fore, so 1 and 2 are the hind limbs, 1 and 3 is one diagonal pair and 2 and 4 is the other). On
the other hand that had no effect on neurons 1 and 2, which seemed to only be important for
the forelimbs. Trying further initial orientations of limbs (near side forward, off back,etc.),
showed that all of the Neuron 4 neurons could be important depending on the initial position
of the limbs, as could the remaining Neuron 5, but Neurons 1 and 2 in the first two groups
were very rarely useful. Indeed generally the unimportant Neurons 1 and 2 and all of 6, 9, 10
and 12 could be removed with only some instability, but it was often difficult to remove any of
Neurons 4 or 5 with any others without the robot failing to set off.

A.2.1 Summary

Four of the twelve unique neurons (6, 9, 10 and 12) served absolutely no purpose in any group,
two (1 and 2) were essential for starting (though not for continuing) in only two groups, but
helped initial stability in the other groups; one (4) other was essential for starting in all groups
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Neuron Effect on locomotion for each neuron group

1 ±+−−
2 ±+−−
3 −−−−
4 +−+−
5 ±−−−
6 + + ++
7 −−−−
8 −−−−
9 + + ++
10 + + ++
11 −−−−
12 + + ++
where+ indicates continued movement,− stopped, and± indi-
cates a marked effect, such as an unstable start.

Table A.2: Result of removal of neurons on initiating movement

depending on what the initial position of the robot was, but unimportant for continuing; another
(5) was essential for starting, and helped stability when moving normally, and the remaining
four (3, 7, 8 and 11) were essential to create a gait at all.

A.3 Killing Sensors

As a further experiment the sensors were killed one by one to see whether they affected the
ability of the robot to set off or continue walking (for setting off, we looked at two different
starting positions). The results are shown in TableA.3.

The sensors detecting the orientation of the robot had no noticeable effect on the walking,
presumably because they varied very little compared to the other sensors. The sensor for the
height of the robot off the ground (number 6) was crucial, perhaps because it was acting as
a constant excitatory input to the network. Of the other inputs, which were all sensors on
the legs, in general the gated inputs (which were gated by whether the foot of that limb was
touching the ground) helped to stabilise the locomotion, but very few of them were essential
(one of the two forelimb shin angles was needed for starting depending on the initial position
of the robot, but nothing else). On the other hand nearly all of the ungated inputs were essential
for starting, with the particular ones needed depending on the initial configuration of the legs;
when already walking generally the shin angles were very important, as were the thigh angles
of the hind limbs, but the forelimb thigh angles were not important. Interestingly, if starting
from stationary the hind thigh angles were less important, but this may perhaps be a feature of
the fact that the robot is going faster when it starts with no injuries than when it starts already
damaged, and it cannot cope with the speed when injured and so trips up. Another point that
was noticed is that the robot often slightly drags the leg which it cannot sense properly.

Interestingly, looking at the neural activity when some of the sensors have been removed,
neurons which were not previously active become active (see FigureA.6, for example). The
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Sensor Effect on starting Effect on continuing

Orientation of robot
1 + +
2 + +
3 + +

Position of robot
Sensors 4 and 5 would have been the x and y co-
ordinates of the robot but were not passed to the
neurons

6 − −
Off hind thigh angle, ungated and gated

7 ∓ −
8 + +

Off hind shin angle, ungated and gated
9 − −
10 + +

Near hind
11 ± −
12 + +
13 − −
14 + +

Near fore
15 ∓ +
16 + +
17 − +
18 ± +

Off fore
19 ± +
20 + +
21 − −
22 ∓ +

where+ indicates success,− failure, and± or∓
indicates that it is sometimes required

Table A.3: Result of removal of sensors on initiating and continuing movement
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extra active neuron here turns out to be one of those which is ordinarily only active when setting
off, and as the sensors are progressively damaged, it appears that they can help to alleviate the
damage. For instance if two sensors are removed, say the two near forelimb ungated thigh and
shin sensors, and we then try continuing to move, the robot manages to keep going with a lot
of extra neural activity (FigureA.7), but if these neurons normally only active when setting off
are removed as well, then the robot fails to maintain a rhythm.

Figure A.6: Extra neural activity when sensor 15 is removed during locomotion

Further investigation of the damage that can be done to the sensors showed that all of the gated
inputs and the orientation sensors could be removed simultaneously and the robot would still
be able to walk, but removing two of the ungated inputs could only be done if (they were not
ones which were crucial anyway and) the extra neurons were present.

A.3.1 Summary

The controller is robust to some damage being done to the sensors, particularly the gated
inputs, but the ungated inputs are very important to maintaining a stable gait. However the
neurons which are normally only active when setting off from a stationary pose were found to
be active and to some extent to replace lost sensors, albeit not perfectly.

A.4 Damaging the actuators

The final experiment that was carried out was to damage or remove one of the actuators on the
robot to see the effect it had. There were very few to damage and the results were quite simple
— the hind limbs could not be altered by more than about 30% without the robot failing to set
off and only one joint could be damaged that much at a time, but when affected by less than
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Figure A.7: More activity when sensors 15 and 17 are removed during locomotion

that the robot would just limp slightly; with the forelimbs on the other hand two joints could
be damaged by that much, or one by as much as 50% before the robot would trip over or fail
to set off, otherwise it would just limp as before. Damaging the sensors associated with the
damaged leg or the neurons themselves seemed to have little, if any, additional effect.

A.5 Conclusions

This Appendix necessarily only scratches the surface of the behaviour of the controllers. This
is largely because most of the networks were too complicated to analyse at all, which is a fail-
ing of the type of controllers chosen. Generally there were over 20 and sometimes as many as
50 unique neurons in the controllers, and twice that many actual ones. This made any analysis
of them a serious research task in and of itself, if not entirely impossible. Consequently this
one fairly small controller was looked at in as much detail as was possible. A few other con-
trollers were looked at briefly, but no significant differences were seen with this one, though the
numbers of neurons which seemed to be active for locomotion and setting off varied slightly.

The analysis showed that the controller can be damaged in many ways without failing, and
indeed it can lose over half of its sensors and neurons and still continue, but unfortunately these
have to be carefully chosen! It is not robust to damage done to the other half of the neurons and
sensors, which are crucial to the proper functioning of the neural network. Interestingly some
neurons seem to be dedicated to starting the robot off, but are not used in normal locomotion;
these were also found to be active when the sensors were damaged, perhaps indicating that their
purpose at the start is to simulate the correct sensory inputs to the other neurons so that they
can then set the robot moving. Damaging the actuators caused more serious problems, with no
joint being dispensible; however they could all be damaged slightly — the hind limbs could
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survive less injury, perhaps because they are behind the centre of gravity and thus generate
more of the forward force, however all joints could be damaged slightly and created a limp in
that leg as one might intuitively expect.

From a technical point of view the controller did not act as a Central Pattern Generator as no
walking behaviour could be seen when all of the afferent inputs had been removed, and so
it behaved more like a reflex chain (see Section2.1.3), and this is a shame from the point of
view of where this research started, but it is inevitable when you consider that there was no
evolutionary pressure to be able to generate rhythmical motion without the sensory feedback.

However it was robust to some damage to the neurons, sensory inputs and actuators, and per-
haps the ways in which the network failed could suggest possible changes to the evolutionary
regime. For instance the controller could be evolved further after something which can walk
has been produced, with random damage inflicted on it before each evaluation to try to breed a
more robust controller, as clearly this one had some way to go to achieve that end. At any rate
some pruning of the network could certainly take place after the evolutionary run has finished
to get rid of the neurons and connections which are permanently inactive. It is certainly unfor-
tunate that controllers which were analysable were only found at the very end of the thesis, as
otherwise some of these insights could have been profitably been used to improve the results
further.
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Statistical techniques

B.1 Why Use Computer Intensive Tests?

Chapters5, 6 and7 make extensive use of non-parametric and computationally intensive sta-
tistical tests to analyse data instead of using more traditional statistical techniques. These tests
are described in detail in [Rosner, 1982, Koopman, 1987, Gunter, 1991, Cohen, 1995, for in-
stance], but since they are a little less commonly used than the more usual parametric tests,
this appendix gives a brief overview1.

Computer intensive statistical tests can be used to derive similar quantities to standard para-
metric tests (such as Student’s t-test), including confidence intervals and significance levels.
They have several advantages over such tests however:

• Parametric tests typically assume that the distributions they are dealing with are nor-
mally distributed, or that sample sizes are sufficiently large that the central limit theo-
rem applies. These tests can generate errors if used on skewed distributions. Computer
intensive tests work with any kind of distribution — they are as powerful as parametric
tests on normal distributions, and more powerful on non-normal distributions.

• Certain quantities, such as confidence intervals on the median, cannot be derived analyt-
ically, and computer intensive tests provide the only way of obtaining these quantities.

• Despite the name, computer intensive tests can be run to a sufficient degree of accuracy
for moderate sample sizes in a matter of seconds on modern computers.

B.2 Resampling to calculate confidence intervals

Suppose we want to estimate some statistical parameter, such as the mean, for a particular
(unknown) population. Call the true meanµ. The usual procedure is to take some sample
{x1, x2, . . . , xN} of sizeN and measure its meanx. Our best guess is thatµ = x. Of course
in practice we will be slightly wrong. How can we estimate how wrong we are?

1 Some of this overview comes from [Perkins, 1999]
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Analytical sampling theory tells us that if the population we are sampling from is normally
distributed then the standard deviation of the sample mean (or ‘standard error’) is:

σx =
σ√
N

whereσ is the true population standard deviation. In practice of course we don’t know that, so
we substitute it with the estimated population standard deviation obtained from the samples:

σ̂x =
s√
N

The 95% confidence interval on the estimated value of the mean is then simplyx± 1.96σ̂x.

To obtain the same answer in a computer intensive way we perform a resampling (or a boot-
strap). The procedure is to assume that the sample we see is representative of the population it
was drawn from. Therefore we can simulate drawing samples from the true population simply
by drawing fresh samples of sizeN with replacement from our original sample. If we measure
the mean of each of the new samples there will be some variability in this value. Under the
assumptions of the bootstrap, this variability will be exactly the true variability of means of
samples drawn from the true population, which is just what we’re after.

However suppose now that we want to know the mean and standard error for the “best ofn
samples” taken from the original population. The standard approach would be to take a sample
{x11, x12, . . . , x1n, x21, . . . , xNn} of sizeN ∗ n, measure the “best ofn” for each subsample
to produce{b1, b2, . . . , bN}, and then continue as before.

This would require a much larger set of samples to get a good estimate of the mean and
particularly the standard error. Instead, if we are constrained as to the number of samples
we can draw from the original population, we can take a sample of sizeN >> n which we
assume is representative of the population it was drawn from, and then we can draw samples of
sizen from the new population with replacement to produce new “best ofn” values at almost
no expense.

Consequently we can draw arbitrarily many of these values and calculate exactly the mean and
standard error for the best ofn values drawn from the original sample of sizeN . Assuming
that the original sample is representative of the population from which it was drawn, we have
calculated the mean and standard error we were looking for, but with far fewer samples from
the original population than would have been necessary traditionally.

These are the calculations carried out in this thesis to estimate the mean and the 95% confi-
dence intervals on that estimate (x± 1.96σ̂x).

To directly compare two different populations to see whether the “best ofn” samples taken
from one are better than those taken from the other, we can simply resample both together,
taking the difference of the two best ofns and calculating the mean and standard error for this
difference, and then we can see whether the difference differs from 0 with 95% confidence.
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Interface

The interface for the neural and mechanical simulators was implemented as a C++ superclass
called Simulant, and specified a set of methods which allowed the details of the specific sim-
ulator to be ignored. All aspects of communicating with the simulators is dealt with at this
level except the loading of new structures (of robot or network), which had to be dealt with at
a lower level due to the inherent differences between the programs.

class Simulant
{
public:

Simulant();
virtual ˜Simulant();

// Inter-Simulant communication functions:

// Write current state of Simulant to array, and return size.
virtual int getState(Float *store)=0;
// Read current state of Simulant from array.
virtual void setState(Float *store)=0;
// Put current outputs from Simulant into array, and return number.
virtual int getOutputs(Float *store) { return getState(store); }
// Get current inputs to Simulant from array.
virtual int setInputs(Float *store)=0;

// simulant-world communication functions:

// Define save level (eg don’t save, save outputs, save state)
inline void saveLevel(RepLevel rep_level) { _save_level = rep_level; }
// Define save filename
int saveTo(char *filename);
// Define load filename
int loadFrom(char *filename);
// Save current state to file
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virtual void save(Float save_time)=0;
// Load current state from file
virtual int load(Float *load_time)=0;
// Stop save.
void closeSave();
// Stop save.
void closeLoad();

// simulation functions:

// Initialize simulation variables (ie set up arrays to store state, etc.)
virtual void initSimVars()=0;
// Reload simulation variables (eg after new network installed)
virtual void reloadSimVars()=0;
// Test whether SimVars are initialised
virtual int isReadyToSim()=0;
// Set integration type (Newton Euler, Runge Kutta, etc.)
inline void simulationType(SimType sim_type) { _simulation_type = sim_type; }
// Run an integration step.
virtual int simulate(Float idt)=0;

// rendering functions:

// Initialise drawing (for gui).
virtual void drawInit()=0;
// Draw current state.
virtual void draw()=0;

// fitness evaluations:

// Set current fitness measure
virtual void setFitnessMeasure(FitnessMeasure fm);
// Reset fitness measure
virtual void resetFitness();
// Return current fitness
virtual Float getFitness();

protected:

// Update current fitness (called by simulate).
virtual int updateFitness(Float idt);

// File terminator for saving and loading (eg .NNsave for neural sim)
char* _file_terminator;
// Save file stream
ofstream* _save_stream;
// Load file stream
ifstream* _load_stream;
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// Is save active?
int _save_active;

// Current Save and Load levels
RepLevel _save_level, _load_level;

// If structure varies and can be loaded on the fly these should both be
// instantiated, otherwise both should be left blank
virtual void saveStructure() {}
virtual void loadStructure() {}

// Simulation type
SimType _simulation_type;

// Current fitness measure
FitnessMeasure _fitness_measure;
// Current fitness
Float _fitness;

};



144 APPENDIX C. INTERFACE



Appendix D

Example Robot

D.1 Robot Configuration File

This is the configuration file for the robot shown in FigureD.1.

Figure D.1: An example bipedal robot

# A bipedal robot with feet

Graphics_Models {
Number_Graphics_Models 4 # Number of different graphical objects used
# filename for each graphical object, with size and offset of CoG
"/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube_centre.zan"

0.5 0.5 0.15 0.0 0.0 0.0
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"/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube_centre.zan"
0.3 0.1 0.1 0.15 0.0 0.0

"/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube_centre.zan"
0.3 0.08 0.08 0.15 0.0 0.0

"/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube_centre.zan"
0.2 0.02 0.08 -0.06 0.01 0.0

}
System { # Robot

DynamicRefMember { # Reference member - first piece of robot, part of body
# which articulations (legs) are attached to

Graphics_Model_Index 0 # First graphical object

Mass 25.0 # Mass of body (kg)
Shape 0 # Cuboid (other options are cylinder, sphere, or arbitrary

# where other parameters (eg inertia matrix) are required)
Size 0.5 0.5 0.15 # Size in metres (x,y,z)
Center_of_Gravity 0.0 0.0 0.0 # Position of centre of gravity

# relative to origin

Number_of_Contact_Points 8 # Ground contact is only detected
# at specified points on the body

Contact_Locations 0.25 0.25 -0.1 # Contact points are 8 corners of cube
0.25 -0.25 -0.1

-0.25 0.25 -0.1
-0.25 -0.25 -0.1

0.25 0.25 0.1
0.25 -0.25 0.1

-0.25 0.25 0.1
-0.25 -0.25 0.1

Position 10.0 10.0 0.62 # Initial position of body
Pose 0.0 0.0 0.0 # Euler angles (phi,theta,psi)
Velocity 0.0 0.0 0.0 0.0 0.0 0.0 # Initial velocity of body

}

Articulation { Leg Left 1 # First articulation off body
# This is a leg, on the left of the robot
# First set of articulations

RevoluteLink { Body # A hinge joint connects this to the reference member
# This object counts as part of the body for the
# purposes of penalising the robot if it falls onto it
# Other options are Prismatic (sliding) and
# Ball and Socket joints.

Graphics_Model_Index 1 # Second graphical object

Mass 4 # 4 kg
Shape 0
Size 0.3 0.1 0.1
Center_of_Gravity 0.15 0.0 0.0 # Displacement of Centre of Gravity

# from joint origin

Number_of_Contact_Points 1 # One contact point (on knee)
Contact_Locations 0.3 0.0 0.0
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# Modified Denavit-Hartenburg coordinates are used to get from the origin
# of the previous object (the reference member in this instance) to the
# location of the joint (also the origin) connecting to this object.
MDH_Parameters 0.0 -1.5707963 0.15 1.7207963
Initial_Joint_Velocity 0 # Initial velocity of this joint (radians/s)
Joint_Limits 0.1 3.041592653 # Joint end stops
Joint_Limit_Spring_Constant 10000.0 # restoring spring on endstop
Joint_Limit_Damper_Constant 1000.0 #damper on joint endstop

Actuator_Type 2 # New direct drive motor
Joint_Friction 10.0 # Friction in joint
Max_Torque 80.0 # Maximum torque motor can apply

}

RevoluteLink { Leg # Another hinge joint connects this
# to the previous object. This is part of the leg

Graphics_Model_Index 2

Mass 2
Shape 0
Size 0.3 0.08 0.08
Center_of_Gravity 0.15 0.0 0.0

Number_of_Contact_Points 0

MDH_Parameters 0.3 0.0 0.0 -0.05
Initial_Joint_Velocity 0.0
Joint_Limits -2.0 0.1
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator_Type 2
Joint_Friction 5.0
Max_Torque 40.0

}

RevoluteLink { Foot # Another hinge joint, this object is a foot
# This means that contact with the ground
# is used to gate some of the sensor readings

Graphics_Model_Index 3

Mass 1
Shape 0
Size 0.2 0.02 0.08
Center_of_Gravity -0.06 0.01 0.0

Number_of_Contact_Points 4
Contact_Locations 0.04 0.02 -0.04 # Four corner of base of foot

0.04 0.02 0.04
-0.16 0.02 -0.04
-0.16 0.02 0.04

MDH_Parameters 0.3 0.0 0.0 -1.6707963
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Initial_Joint_Velocity 0.0
Joint_Limits -3.1415927 -0.8
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator_Type 2
Joint_Friction 2.5
Max_Torque 20.0

}
} # End of Articulation

Articulation { Leg Right 1 # New articulation is a leg on the
# right of the body, also in the first set
# of articulations (ie identical to previous one)

RevoluteLink { Body
Graphics_Model_Index 1

Mass 4
Shape 0
Size 0.3 0.1 0.1
Center_of_Gravity 0.15 0.0 0.0

Number_of_Contact_Points 1
Contact_Locations 0.3 0.0 0.0

MDH_Parameters 0.0 -1.5707963 -0.15 1.4207963
Initial_Joint_Velocity 0
Joint_Limits 0.1 3.041592653
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator_Type 2
Joint_Friction 10.0
Max_Torque 80.0

}

RevoluteLink { Leg
Graphics_Model_Index 2

Mass 2
Shape 0
Size 0.3 0.08 0.08
Center_of_Gravity 0.15 0.0 0.0

Number_of_Contact_Points 0

MDH_Parameters 0.3 0.0 0.0 -0.05
Initial_Joint_Velocity 0.0
Joint_Limits -2.0 0.1
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator_Type 2
Joint_Friction 5.0
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Max_Torque 40.0
}

RevoluteLink { Foot
Graphics_Model_Index 3

Mass 1
Shape 0
Size 0.2 0.02 0.08
Center_of_Gravity -0.06 0.01 0.0

Number_of_Contact_Points 4
Contact_Locations 0.04 0.02 -0.04

0.04 0.02 0.04
-0.16 0.02 -0.04
-0.16 0.02 0.04

MDH_Parameters 0.3 0.0 0.0 -1.3707963
Initial_Joint_Velocity 0.0
Joint_Limits -3.1415927 -0.8
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator_Type 2
Joint_Friction 2.5
Max_Torque 20.0

}
}

}

D.2 Communication

Most of the information in this file is used exclusively by the robot simulator, but some is
passed on to the neural simulator, and the evolutionary algorithm.

The neural simulator needs to know:

• The number of sensors.

• The number of actuators.

These are extracted from the number and types of joints, and whether those joints are on legs or
part of the body (on legs there is a sensor which is gated by contact of the foot on the ground).
It uses this information to check that neural networks it is given are of an appropriate structure
to work on the robot currently being used.

The evolutionary algorithm needs far more information:

• The number of articulations (2 in the above example).
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• The number of distinct articulations (1 above).

• The order in which the articulations appear in the sensor/actuator lists.

• What side of the robot the actuator is on (for building steering controllers).

• The number of sensors and actuators.

• How the sensors and actuators match up inside the articulations.

This information comes from the first line of each new object and is purely topological in
nature:

Articulation Leg Left 1
RevoluteLink Body
RevoluteLink Leg
RevoluteLink Foot

Articulation Leg Right 1
RevoluteLink Body
RevoluteLink Leg
RevoluteLink Foot

After the first loading of the robot, there is no further communication of structural informa-
tion between the mechanical simulator and the other parts of the software, and all remaining
communications are new neural structures being sent to the neural simulator, and requests for
fitness evaluations for them, as well as constant exchange of inputs and outputs between the
neural and mechanical simulators (see FigureD.2).

Figure D.2: Communications between different parts of the system


	Abstract
	Acknowledgements
	Declaration
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Summary of Achievements
	Organisation of this thesis

	Walking research
	Early research
	Studies of gait
	Automata
	Peripheral vs. Central Control
	Early Robots

	Recent developments
	First steps with dynamic stability
	Central Pattern Generators
	Group theory, non-linear dynamics and co-ordination
	Evolving robot controllers
	Vertebrate locomotion and development
	Functional Neuromuscular Stimulation

	Where are we now?
	Commercial robots
	Research Robotics
	Modelling humans and other animals

	Conclusions

	Neural Networks
	Building controllers
	Types of controllers
	Types of Neurons
	Methods for training Neural Network controllers
	Selection criteria

	Evolutionary Neural Networks
	Direct Encodings
	Indirect Encodings

	Summary

	Architecture
	Design Criteria
	Mechanical simulator
	Neural Simulator
	Evolutionary Algorithm

	Verification
	Mechanics
	Neurons
	Evolution
	In Concert

	Summary

	Symmetric controllers and neural models
	Experimental design and results
	Degenerate controllers
	Discussion

	Neural models
	Sigmoidal
	First order
	Second order
	Third order
	Discussion

	Summary

	Encodings and fitness measures
	Encodings
	The OneMotor encoding
	The LocalSparse encoding
	The LocalGNARL encoding
	The SymGNARL encoding
	The SymSparse encoding
	Discussion

	Fitness Measures
	FND
	DFND
	DFNDF
	DFNDFA
	DFNDFO
	Discussion

	Conclusions

	Testing the system
	A selection of robots
	Quadrupeds
	Different environments
	Triped and Biped robots
	Discussion

	Active mechanisms and higher level controllers
	Steering
	Slowing down
	Combining controllers
	Discussion

	Conclusions

	Conclusions
	Summary of contributions
	Future Directions

	Bibliography
	Controller breakdown
	Unmodified network behaviour
	Killing neurons
	Summary

	Killing Sensors
	Summary

	Damaging the actuators
	Conclusions

	Statistical techniques
	Why Use Computer Intensive Tests?
	Resampling to calculate confidence intervals

	Interface
	Example Robot
	Robot Configuration File
	Communication


