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Abstract

In several species of ants, workers cooperate to retrieve large prey. Usually, one ant

�nds a prey item, tries to move it, and, when unsuccessful for some time, recruits

nestmates through direct contact or chemical marking. When a group of ants tries

to move large prey, the ants change position and alignment until the prey can be

moved toward the nest. A robotic implementation of this phenomenon is described.

Although the robotic system may not appear to be very eÆcient, it is an interesting

example of decentralized problem-solving by a group of robots, and it provides the

�rst formalized model of cooperative transport in ants.

1 Introduction

Social insect societies �ants, bees, termites and wasps� are distributed sys-
tems in which colony-level behavior emerges out of interactions among individ-

ual insects [4]. In addition to being a decentralized system, a colony of insects

exhibits 
exibility and robustness, two features that would be desirable in an

arti�cial system. A recent trend in both Arti�cial Intelligence and Operations

Research consists of viewing the social insect metaphor as a new paradigm for
designing arti�cial problem-solving devices and optimization algorithms [3].

In Autonomous Robotics, swarm-based robotics relies on the same metaphor

for the design of distributed control algorithms for swarms of robots.

There has been an upsurge of interest in swarm-based robotics in recent years
[9] as it provides an interesting alternative to more classical approaches in

robotics. Some tasks may be inherently too complex or impossible for a sin-

gle robot to perform. For example, in the case study described in this paper,
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pushing a box requires the \coordinated" e�orts of at least two individuals.

Speed up can result from using several robots. Designing, building, and us-

ing several simple robots may be easier than designing, building and using

a single complex robot. It may also be cheaper because of the robots' sim-

plicity. A swarm of simple robots may also be more 
exible without the need

to reprogram the robots, and more reliable and fault-tolerant because one

or several robots may fail without a�ecting task completion. Furthermore,

theories of self-organization teach us that randomness or 
uctuations in in-

dividual behavior, far from being harmful, may in fact greatly enhance the

system's ability to explore new behaviors and �nd new solutions. In addition,

self-organization and decentralization, together with the idea that interactions

among agents need not be direct but can rather take place through the en-

vironment, point to the possibility of signi�cantly reducing communications

between robots: explicit robot-to-robot communications rapidly become a big
issue when the number of robots increases; this issue can be to a large extent

eliminated by suppressing such communications! Also, central control is usu-
ally not well suited to dealing with a large number of agents, not only because

of the need for robot-to-controller-and-back communications, but also because
failure of the controller implies failure of the whole system.

The current success of collective robotics is the result of several factors:

(1) The relative failure of the Arti�cial Intelligence program, which classi-

cal robotics relied upon, has forced many computer scientists and roboticists
to reconsider their fundamental paradigm. This paradigm shift has led to

the advent of connectionism, and to the view that sensori-motor intelligence
is as important as reasoning and other higher-level components of cognition.
Swarm-based robotics relies on the anti-classical-AI idea that a group of robots

may be able to perform tasks without explicit representations of the environ-
ment and of the other robots and that planning may be replaced by reactivity.

(2) The remarkable progress of mobile robotics during the last decade has

allowed many researchers to experiment with mobile robots, which have not

only become more eÆcient and capable of performing many di�erent tasks,

but also cheap(er).

(3) The �eld of Arti�cial Life, where the concept of emergent behavior is

emphasized as being essential to the understanding fundamental properties

of the living, has done much to propagate ideas about collective behavior

in biological systems, particularly social insects; facts and theories that were
unknown to roboticists reached them.

Using a swarm of robots has some drawbacks. For example, stagnation is
one: because of the lack of a global knowledge, a group of robots may �nd

itself in a deadlock, where it cannot make any progress. Another problem is
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to determine how these so-called \simple" robots should be programmed to

perform user-designed tasks. The pathways to solutions are usually not pre-

de�ned but emergent, and solving a problem amounts to �nding a trajectory

for the system and its environment so that the states of both the system and

the environment constitute the solution to the problem: although appealing,

this formulation does not lend itself to easy programming. Until now, we im-

plicitly assumed that all robots were identical units: the situation becomes

more complicated when the robots have di�erent characteristics, respond to

di�erent stimuli, or respond di�erently to the same stimuli, and so forth; if

the body of theory that roboticists can use for homogeneous groups of robots

is limited, there is virtually no theoretical guideline for the emergent design

and control of heterogeneous swarms.

Many potential applications of swarm-based robotics require miniaturization.
Very small robots, micro- and nano-robots, which will by construction have

severely limited sensing and computation, may need to operate in very large

groups or swarms to a�ect the macroworld [34]. Approaches directly inspired

or derived from swarm intelligence may be the only way to control and manage
such groups of small robots. As the reader will perhaps be disappointed by
the simplicity of the tasks performed by state-of-the-art swarm-based robotic

systems such as the one presented in this paper, let us remind her that it
is in the perspective of miniaturization that swarm-based robotics becomes
meaningful. In view of the great many potential applications of swarm-based

robotics, it seems urgent to work at the fundamental level of what algorithms
should be put into these robots: understanding the nature of coordination in

groups of simple agents is a �rst step toward implementing useful multirobot
systems.

In swarm-based robotics, cooperative transport|particularly cooperative box-
pushing|has been an important benchmark for testing new types of robotic
architecture. One of the swarm-based robotic implementations of cooperative

transport is so closely inspired by cooperative prey retrieval in social insects

that it is a genuine model of the phenomenon, thereby providing a unique

example of a truly bidirectional exchange between biology and robotics. Ants
of various species are capable of collectively retrieving large prey that are im-

possible for a single ant to retrieve. Usually, a single ant �nds a prey item

and tries to move it alone; when successful, the ant moves the item back to

the nest. When unsuccessful, the ant recruits nestmates through direct con-

tact or trail laying. If a group of ants is still unable to move the prey item
for a certain time, specialized workers with large mandibles may be recruited

in some species to cut the prey into smaller pieces. Although this scenario

seems to be fairly well understood in the species where it has been studied,

the mechanisms underlying cooperative transport|that is, when and how a

group of ants move a large prey item to the nest|remain unclear. No formal

description of the biological phenomenon has been developed, and, surpris-
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ingly, roboticists went further than biologists in trying to model cooperative

transport: perhaps the only convincing model so far is one that has been in-

troduced and studied by roboticists [31] and, although this model was not

aimed at describing the behavior of real ants, it is biologically plausible. This

paper �rst describes empirical observations of cooperative transport in ants,

and then describes the work of Kube and Zhang [27{29,31].

2 Cooperative Prey Retrieval in Ants 3

A small prey or food item is easily carried by a single ant. But how can ants

\cooperate" to carry a large item? Cooperative prey (or large food item) re-

trieval and transport has been reported in several species of ants [46,42,50]:
weaver ants Oecophylla smaragdina [25] and Oecophylla longinoda [23,54],

army ants Eciton burchelli [18] African driver ants Dorylus [20,36], and other
species such as Pheidole crassinoda [45],Myrmica rubra [47], Formica lugubris

[47], Lasius neoniger [49], the desert ants Aphaenogaster (ex-Novomessor)
cockerelli and Aphaenogaster albisetosus [24,32], Pheidologeton diversus [36],
Pheidole pallidula [13,14], Formica polyctena [10,11,35,51], Formica schau-

fussi [42,41,50] and the ponerine ants Ectatomma ruidum [39] and possibly
Paraponera clavata [6]. This cooperative behavior can be quite impressive. For

example, Mo�ett [36] reports that a group of about 100 ants Pheidologeton
diversus was able to transport a 10-cm earthworm weighing 1.92 g (more than
5000 times as much as a single 0.3-mg to 0.4-mg minor worker) at 0.41 cm/s

on level ground. By comparison, ants engaged in solitary transport of food
items on the same trail were carrying burdens weighing at most 5 times their
body weight at about 1 cm/s: this means that ants engaged in the cooperative

transport of the earthworm were holding at least 10 times more weight than
did solitary transporters, with only a modest loss in velocity [36].

We believe that the phenomenon of cooperative transport is much more com-
mon in ants than these few studies suggest: to the best of our knowledge, these

studies are the only ones that report detailed observations of cooperative prey

transport. This phenomenon involves several di�erent aspects:

(1) Is there an advantage to group transport as opposed to solitary transport?
Is worker behavior in group transport di�erent than in solitary transport?

(2) When and how does an ant know that it cannot carry an item alone

because it is either too large or too heavy?

(3) How are nestmates recruited when help is needed?

(4) How do several ants cooperate and coordinate their actions to actually
transport the item?

3 Portions of section 2 have been modi�ed from [3].
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(5) How do ants ensure that there is the right number of individuals involved

in carrying the item?

(6) How does a group of transporting ants handle deadlocks and, more gener-

ally, situations where the item to be transported is stuck, either because

of antagonistic forces or because of the presence of an obstacle or hetero-

geneities in the susbtrate?

All these questions, that have been more or less satisfactorily dealt with in

the above-mentioned studies, are of enormous interest in view of implementing

a decentralized cooperative robotic system to transport objects the locations

and sizes of which are unknown.

2.1 Solitary Transport Versus Group Transport

In Pheidologeton diversus, single worker ants usually carry burdens (grasp-

ing them between their mandibles, lifting them from the ground and holding
them ahead as they walk forward) rather than drag them [36]. By contrast,

in cooperative transport, one or both forelegs are placed on the burden to aid
in lifting it, mandibles are open and usually lay against the burden without
grasping it. The movement patterns of group-transporting ants corresponding

to their positions around the perimeter of a burden with reference to the di-
rection of transport are also di�erent than those of ants engaged in solitary

transport: workers at the forward margin walk backward, pulling the burden,
while those along the trailing margin walk forward, apparently pushing the
burden; ants along the sides of the burden shu�e their legs sideways and slant

their bodies in the direction of transport [36].

By contrast, Sudd [45,47] observes that individual Pheidole crassinoda, Myr-

mica rubra, and Myrmica lugubris ants appear to exhibit the same behavioral

patterns in solitary and group transport: in group transport, all three species

used the same method as when they work alone, including realignment and
repositioning. This, however, does not exclude cooperative behavior: group

transport in these species is particularly interesting because the same individ-
ual behavior is functional either in isolation or in group, and may even lead to

increasing returns (up to a maximum group size: see section 2.2) despite the

lack of direct response of individuals to the presence of their nestmates.

In general, whether ants behave similarly or di�erently when engaged in soli-

tary and group transport, group transport is more eÆcient than solitary trans-

port for large prey. Ants can dismantle a large food item into small enough

pieces to be carried by individual ant workers. Mo�ett [36] observed that a
large piece of cereal, which would have required 498 solitary Pheidologeton

diversus transporters if broken down into small enough pieces, could be trans-
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ported collectively by only 14 ants. More generally, he observed that the weight

carried by ant increases with group size: the total weight carried by a group

of N workers increases as W / N
2:044, which means that the weight carried

by each ant increases on average as N1:044. Franks [18] made similar observa-

tions on Eciton burchelli : let Wi be the dry weight of transported items and

Wa the total dry weight of the group of transporting ants, the relationship

between both is Wi / W
1:377
a , which, assuming that Wa is proportional to N ,

implies that the dry weight carried by ant increases as N0:377. Franks [18] also

observed that items were always retrieved at a standard speed, relatively inde-

pendent of group size: he hypothesized that the increased eÆciency of group

transport with group size results from the group's ability to overcome the

rotational forces necessary to balance a food item. Along the same lines, we

already mentioned Mo�ett's [36] experiment in which he showed that group-

transporting ants could carry more than 10 times more weight than did soli-
tary transporters at a speed only divided by 2. He found that the velocity

of transport decreases as a function of the number of Pheidologeton diversus

carriers, but decreases signi�cantly only for large group sizes (>12 carriers).

The transport eÆciency per ant, measured by the product of burden weight
by transport velocity divided by the number of carriers, increases with group
size up to a maximum for groups of 8 to 10 ants, and then declines [36].

As emphasized by Traniello and Robson [50], transport eÆciency may not be
the only and primary reason for group transport in ants. In Aphaenogaster

cockerelli group retrieval of prey decreases interference competition with sym-
patric species [24,32], and in Lasius neoniger the rapid formation of a cooper-
ative retrieval group is crucial to foraging success [49].

2.2 From Solitary to Group Transport

All reports of how the decision is made to switch from solitary to group trans-

port describe variants of the same phenomenon. A single ant �rst tries to carry

the item, and then, if the item resists motion, to drag it (although dragging
is rare in Pheidologeton diversus). Resistance to transport seems to determine

whether the item should be carried or dragged [13,14,45,47]. The ant spends

a few seconds testing the resistance of the item to dragging before realigning

the orientation of its body without releasing the item: modifying the direc-

tion of the applied force may be suÆcient to actually move the item. In case
realignment is not suÆcient, the ant releases the item and �nds another posi-

tion to grasp the item. If several repositioning attempts are unsuccessful, the

ant eventually recruits nestmates. Recruitment per se is examined in the next

section. Sudd [47] reports that the time spent attempting to move the item de-

creases with the item's weight: for example, an ant may spend up to 4 minutes

for items less than 100 mg, but only up to 1 minute for items more than 300

6



mg. Detrain and Deneubourg [13,14] have shown that in Pheidole pallidula,

it is indeed resistance to traction, and not directly prey size, that triggers

recruitment of nestmates, including majors, to cut the prey: they studied re-

cruitment through individual trail laying for prey of di�erent sizes (fruit 
ies

versus cockroaches), or of the same size but with di�erent levels of retrievabil-

ity (free fruit 
ies versus fruit 
ies covered by a net). A slow recruitment to

free fruit 
ies was observed, in connection to weak individual trail laying; in

contrast, strong recruitment and intense individual trail laying were observed

when large prey or small but irretrievable prey were o�ered. It is therefore the

ability or inability of an individual or a group that governs recruitment.

2.3 Recruitment of Nestmates

H�olldobler et al. [23] studied recruitment in the context of cooperative prey
retrieval in two Aphaenogaster (ex-Novomessor) species: Aphaenogaster al-

bisetosus and Aphaenogaster cockerelli. They show that recruitment for col-
lective transport falls within two categories: short-range recruitment (SRR)

and long-range recruitment (LRR). In SRR, a scout releases a poison gland
secretion in the air immediately after discovering a large prey item; nestmates
already in the vicinity are attracted from up to 2 m. If SRR does not attract

enough nestmates, a scout lays a chemical trail with a poison gland secretion
from the prey to the nest: nestmates are stimulated by the pheromone alone
(no direct stimulation necessary) to leave the nest and follow the trail toward

the prey.

H�olldobler [25] reports short-range, and more rarely long-range (rectal gland-

based), recruitment in Oecophylla smaragdina in the context of prey retrieval,
during which secretions from the terminal sternal gland and alarm pheromones
from the mandibular glands interact. This short-term recruitment attracts

nestmates located in the vicinity, which quickly converge toward the intruder

or prey item, which is retrieved into the nest when dead. In a series of experi-

ments with 20 freshly killed cockroaches placed at randomly selected locations

in a colony's territory, the prey were discovered within several minutes (aver-
age: 8.05 min.); ants in the vicinity were attracted by short-range recruitment

signals; 5 to 8 ants grasped the prey item and held it on the spot for several

minutes (average: 11.6 min.) before jointly retrieving it to the nest. This last

phase involved 5.3 ants on average. In Oecophylla longinoda, even when the

prey were pinned to the ground and the ants were unable to retrieve it, long-
range recruitment was not used [23]. By contrast, long-range recruitment was

observed in Oecophylla smaragdina when the cockroaches were pinned to the

substrate and several workers had attempted without success to remove the
prey: recruiting ants moved back to the nearest leaf nest (although there was

only one queen, as is usual in this species, the nest of the considered colony
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was composed of 19 separate leaf nests, which is also common in the species)

where they recruit nestmates which soon moved out of the leaf nest toward the

prey. From 25 to 59 could be recruited, whereas between 9 and 19 ants were

involved in actually retrieving the prey to the nest once the prey were eventu-

ally retrieved. This indicates that the ants do not estimate the size or weight

of the prey but rather adapt their group sizes to the diÆculty encountered

in �rst moving the prey. H�olldobler [25] reports that the recruited ants were

gathering around the prey, seeking to get access, and sometimes grasped nest-

mates that were already working at the prey, thereby forming a pulling chain,

a common behavior in weaver ants. The prey were usually �rst transported to

the leaf nest from which helpers had been recruited.

2.4 Coordination in Collective Transport

Coordination in collective transport seems to occur through the item being

transported: a movement of one ant engaged in group transport is likely to
modify the stimuli perceived by the other group members, possibly producing,
in turn, orientational or positional changes in these ants. This is an example

of stigmergy [22], the coordination of activities through indirect interactions.
Here, stigmergy is a promising step toward a robotic implementation, because
it suggests that a group of robots can cooperate in group transport without

direct communication among robots; moreover, robots do not have to change
their behaviors depending on whether or not other robots are engaged in the

task of carrying (or dragging, or pulling, or pushing) the item. The coordina-
tion mechanism used by ants in cooperative transport is not well understood,
and has never really been modeled. The swarm of robots described in section

3 is just such a model, which shows that the biology of social insects and
swarm-based robotics can both bene�t from each other.

2.5 Number of Ants Engaged in Group Transport

Apparently, the number of ants engaged in transporting an item is an increas-

ing function of the item's weight, which indicates that group size is adapted to
the item's characteristics. For example, Mo�et [36] reports how the number of

Pheidologeton diversus carriers varies with burden weight. Inverting the rela-

tionship described in section 2.1, we obtain N / W
0:489. The �t to the data is

remarkable, suggesting that the adaptation of group size is accurate. Using the

same notations as in section 2.1, Franks [18] �nds thatWa / W
0:726
i for Eciton

burchelli. However, as mentioned in the previous section, H�olldobler's [25] ob-
servations suggest that the ants adapt group size to the diÆculty encountered

in �rst moving prey: decisions rely on how diÆcult it is to carry the prey, and
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not simply on weight. A prey item that resists (either actively or passively)

stimulates the ant(s) to recruit other ants. Success in carrying a prey item in

one direction is followed by another attempt in the same direction. Finally, re-

cruitment ceases as soon as a group of ants can carry the prey in a well-de�ned

direction: in that way, group size is adapted to prey size.

In addition to the size of the cooperative transport group, it seems that the

composition of the group is not random: for example, in army ants (Eciton

burchelli), groups have a speci�c distribution of submajors that comprise a spe-

cialized transport caste [18]. Of course the situation is less clear in monomor-

phic species, that is, species in which there is a single physical worker caste,

but some individuals may be specialized in group transport.

2.6 Deadlock and Stagnation Recovery

Sometimes, the item's motion can no longer progress either because forces

are applied by ants in opposite directions and cancel one another, or because
the group has encountered an obstacle or any signi�cant heterogeneity on the
substrate. We have already mentioned that a single ant, who �rst discovers a

food item, tries to transport it alone: the ant �rst tries to carry it, then to
drag it; an unsuccessful ant tries another direction and/or another position and
then, if still unsuccessful, gives up the prey temporarily to recruit nestmates.

The same phenomenon occurs when ants are engaged in group transport: if,
for any reason, the item is stuck, ants exhibit realigning and repositioning

behaviors [45,47]. The frequency of spatial rearrangements, which may result
from the ants' response to the reactive forces communicated through the item
being transported [47], increases with time, and so does the rate of transport.

As is the case for solitary transporters, realignments tend to occur before, and
are much frequent than, repositionings: only when realignment is not suÆcient

do ants try to �nd other slots around the prey.

Along the same lines, Mo�ett [36] reports that ants (Pheidologeton diversus)

gather around food items at the site of their discovery, gnawing on them and

pulling them; during the �rst ten minutes or so, the item is moved about
slowly in shifting directions, before ants \sort out" their actions and actual

transport can begin. During these ten minutes, a lot of spatial rearrangements

take place.

Personal observations of weaver ants Oecophylla longinoda con�rm the exis-

tence of such spatial rearrangements in this species too.

Van Damme and Deneubourg [51] studied cooperative transport of Tenebrio

molitor 's larvae (a worm) in the ant Formica polyctena, and found that after

a period of unsuccessful attempts to transport the larvae individually or in
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Fig. 1. Distance over which a larva of Tenebrio molitor has been transported by

Formica polyctena ants as a function of time. Eight experiments are shown. After

Van Damme and Deneubourg [51], reprinted by permission.

group, transport suddenly becomes successful, one possible reason being that

the forces applied by the various individuals engaged in cooperative trans-
port become aligned. Figure 1 shows the distance over which a larva has been
transported as a function of the time elapsed since the larva was discovered.

Distance is positive when progress has been made toward the nest and neg-
ative otherwise. It can be clearly seen that a \phase transition" occurs at

some point (which, however, cannot be predicted: it varies from experiment
to experiment), when group transport suddenly becomes successful. After that
transition, transport proceeds smoothly until the larva reaches the nest.

3 Cooperative Transport by Robots

From the previous section, we understand better, although not perfectly, how

ants cooperate in collective prey transport. In this section we introduce co-

operative transport by robots, more precisely cooperative box-pushing. Box-
pushing requires a cooperative e�ort from at least two robots to move a box

along some trajectory [8,37,15,27,38,44,33]. Of the multi-robot tasks including
foraging and formation marching, box-pushing has generally used a combina-

tion of centralized planning and con
ict resolution with explicit communica-

tion between robots to coordinate their actions.

In the following sections we describe a series of work, by Kube and Zhang

[27{29,31] and Kube [30], consistent in its ant-based approach to the problem
of cooperative transport by a group of robots. The initial task under study

was undirected box-pushing, in which a group of robots found a box and
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pushed it in a direction that was dependent upon the initial con�guration.

The task evolved into directed box-pushing, with the robots pushing the box

from an initial position towards a �xed goal position. Finally, the transport

task, a variant of the directed box-pushing task in which multiple goals were

sequenced, is presented in which the robots to push the box from one location

to the next.

The initial simulation model was implemented in a group of �ve physical

robots [27]. Then, inspired by Sudd's observations of group prey retrieval [45,47],

stagnation recovery behaviors were added [29] and an approach to task mod-

eling [31]. Currently the system consists of a group of homogeneous robots

capable of transporting large boxes between arbitrary goal positions.

3.1 From Social Insects to Robots

Social insects are nature's proof-by-example of a decentralized multiagent sys-

tem whose control is achieved through locally sensed information, as Section
2 clearly suggests. In earlier work, we began with a simple simulation of a

swarm of robots designed to locate and push a box and then implemented a
subset of the behaviors in �ve physical robots [27,28].

A robot's box-pushing controller was modeled as three sensors connected to
two actuators through a set of �ve behaviors. A goal sensor was used to locate

the box while a robot sensor provided information on the closest robot and
an obstacle sensor warned of objects in close proximity. Left and right wheel

motors used for steering were the two actuators. A modi�ed �xed priority
subsumption architecture [7] for behavior arbitration was used with the �ve
behaviors, listed in ascending order:

(1) Find is the default motion behavior moving the robot forward along a

gradual arc.
(2) Follow causes the robot to follow the closest robot within view.

(3) Slow switches the two speed wheel motors from medium to low.
(4) Goal moves the robot towards the box.

(5) Avoid moves the robot away from an obstacle.

A simple taxis-based stimulus-response mechanism maps sensors to actuators.
Inspired by Braitenberg's Vehicles [5] and observations of social insects, sensors

provide input to behaviors which map primitive discrete motion commands to

left and right wheel motors.

In a single simulation timestep, each behavior takes its connected sensors and

calculates an appropriate motor response with the highest priority behavior

taking e�ect. The result is a controller with the Follow and Goal behaviors
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A

A

A

Fig. 2. A Follow and Goal behavior produce coordinated motion towards a box.

While the Avoid behaviour causes robot \A" to disperse around the box until an

empty spot is found.

producing coordinated motion toward the box and theAvoid behavior causing

robots to disperse around its perimeter (see Figure 2).

Keeping robots together using a Follow behavior had an advantage, in the

nondirected box-pushing task, of distributing the robots around the same half
of the box. Behavior preferences allowed a behavior to narrow an attached
sensor's �eld-of-view. For example, the initial setting of the robot-sensor al-

lowed the robot to see in a forward facing hemisphere. This setting resulted
in robots breaking from a swarm when they sensed a closer robot who may

happen to be moving in the opposite direction. By narrowing the view of the
sensor while in the following state passing robots are ignored. In this way a
behavior could adapt its sensings to suit the immediate purpose.

Based on the simulation results �ve physical robots were built with controllers
containing two behaviors: Avoid andGoal. The behaviors were implemented

as combinational logic which mapped a left and right obstacle sensor to left

and right wheel motors respectively, causing the robot to move away from ob-
stacles. Left and right box sensors were mapped to right and left wheel motors

causing the robot to turn towards a brightly lit box. The resulting controllers
allowed the robots to locate the box, converge and push in a number of di-

rections depending on the number of robots per side. The box was weighted

such that at least two robots were required to move the box as it was pushed
toward the edge of the test area.

The coordination demonstrated was possible by using a common goal and
behaving using a simple \noninterference principle" [40]. The result demon-

strated a simple cooperation without direct communication, although indirect

communication occurs through stigmergy (see [21]).

Further simulation results showed that the success rate for nondirected box-
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pushing 4 increases as a function of the number of robots up to a point that

appeared dependent on the size of the box. However, the system would stag-

nate or deadlock when an equal number of pushing robots surrounded the box

resulting in an even distribution of box forces. To solve the stagnation problem

we turned our attention back to cooperative prey retrieval by ants.

4 Stagnation Recovery and Mass E�ect

A detailed study of cooperative prey retrieval in ants by Sudd uncovered sev-

eral strategies used to combat stagnation [45,47]. If during transport the food

item becomes stuck ants will realign their body orientation without releasing
their grasp, as was described in more detail in Section 2. This has the e�ect

of changing the direction of the pulling or pushing forces and was often suf-
�cient to resume motion. If after several minutes realignment fails, the ant

will release their prey and reposition themselves along the perimeter. Repo-
sitioning seems to result in larger cummulative changes in the forces acting
on the transport item and was often successful in resuming motion. Could

realignment and repositioning behaviors be used for stagnation recovery in
box-pushing robots?

Our simulation experiments compared box-pushing controllers which included
stagnation recovery behaviors [29]. The results demonstrated that the appli-

cation of random pushing motions by either realigning the pushing angle or
repositioning the pushing force was an e�ective technique against stagnation
(see Figures 3 and 4). The results also showed that the task success rate and

eÆciency improved as a function of the number of robots. However, eÆciency
measured as the number of simulation timesteps, improved to a point that

appeared dependent on the number of robots able to �t along the box.

The realignment behavior produced a small random change in pushing angle

while the reposition behavior caused the robot to change the point of contact

with the box. The box would translate or rotate if the resultant force or torque
exceeded a threshold. Stagnation was detected by a robot if it was in contact

with the box after an elapsed period without also detecting forward motion.

Ordering of the realignment and reposition behaviors was accomplished with

timeout thresholds. For example, realignment became active at tc +X where

tc is the time the robot contacted the box. Reposition became active at tc+4X

with tc reset each time the robot moved.

4 Where success was de�ned as pushing the box 200 units in 2000 simulated

timesteps.
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of 25 trials with percentage successful shown as a function of the number of robots.

Reprinted with permission c
IEEE.

Figure 4 and 3 show the success percentage (reliability) and execution time
(eÆciency) of the controllers as a function of group size for the four di�erent

strategies: (1) Without stagnation recovery; (2) Realignment only; (3) Reposi-
tion only; and (4) Realignment & Reposition behaviors. Controller reliability

was improved by including stagnation recovery. For small group size strategy

(2) is best while (3) is more successful when the group size is large. Strategy

(4) falls between (2) and (3) as expected since (2) then (3) are activated in

sequence. Figure 4 compares controller eÆciency as a function of simulated

time. When the group size is small strategy (1) is best provided it is success-

ful. When the group size is large strategy (4) is both the fastest and most

successful with (2) and (3) having intermediate performance.

What do we learn from these results for real ants, assuming that this is a good

model of cooperative transport in ants? There are two interesting results for

biologists:

1. Although adding one or two mechanisms for stagnation recovery increases

retrieval time, it also increases the probability of success. In species for which
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competition with other colonies or other species is not a critical factor, the
probability of success should be favored: we expect stagnation recovery mech-

anisms in such species. On the other hand, if retrieval time is crucial, for
example because of competition, then reliability is less critical but the speed
of retrieval is essential: in species facing strong competition, we expect a less

sophisticated or even no stagnation recovery mechanism. This prediction can

be tested.

2. The probability of success in retrieving the prey depends on group size,

which itself depends on prey size (see Section 2). What the results tell us is

that we might observe realignment only for small prey (small groups) and
both realignment and repositioning for larger prey (larger groups). It is also

possible that both realignment and repositioning may be observed for all group

sizes, but it is unlikely that repositioning only could be observed because it is
signi�cantly less reliable for small group sizes. These predictions, again, can

be tested.

15



5 A Task Model for Directed Box-Pushing

The directed box-pushing task required a new approach to task modeling. In

undirected box-pushing the state of the robot's controller was determined by

selecting the highest priority behavior from a small select set. As a goal direc-

tion to push the box was added, it became apparent that accomplishing the

task would involve a series of phases or steps often executed in a repetitive

manner. Success would rely on the redundancy of mass e�ect. In each step,

some of the previous behaviors would not be useful and could cause inter-

ference. For example, if a robot was correctly positioned for pushing the box

towards the goal, then obstacle avoidance was not needed and if accidently

triggered would cause the progression to halt.

A termites nest, with its well de�ned mushroom shape, is constructed through

a series of building steps. Each construction phase is thought to be governed by
a building program with step transition speci�ed as stimulus cues. In fact, this
communication through the environment is the basis of Grass�e's Stigmergy

Theory [21]. Thus describing a task as a series of steps with the transition
between the steps speci�ed as locally sensed cues formed the basis of our

approach to task modelling [31].

In this section we brie
y describe the directed box-pushing model and present
new results of experiments using four di�erent box types transported between

two goal positions.

5.1 Coherent Behavior

In order to get coherent behavior from a group a robots each robot has an

identical task controller which is composed of subtask controllers designed to

accomplish each step of the task. The controllers are �nite state machines
(Q-machines) with state transition speci�ed using binary sensing predicates,

which we call perceptual cues.

The transport task is de�ned by three states: Find-box, Move-to-box and

Push-to-goal. Each state is implemented as a subtask controller designed to

accomplish a single function. The two perceptual cues used to determine the
state of the transport system are ?Box-detect (BD) and ?Box-contact

(BC). The states are shown in Table 1.

Each substask controller is a �nite state machine with states represented as
primitive actuation (PA) behaviors. PA behaviors use motion primitives to

move the robot. Each of the three subtask controllers are speci�ed using states

as shown in Tables 2 - 4.
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Transport Controller

Perceptual Cue (Input) Task State (Output)

BD BC Subtask Controller

0 X Find-box

1 0 Move-to-box

1 1 Push-to-goal

Table 1

Task execution state is determined by two perceptual cues: ?Box-detect (BD)

and ?Box-contact (BC).

FIND-BOX Subtask Controller

Perceptual Cue (Input) Behavior State (Output)

?TOUCH ?CONTACT- ?AVOID- PA Behavior

0 0 0 random-walk

0 0 1 avoid

0 1 X contact

1 X X back-off

Table 2

The FIND-BOX Q-machine is the subtask controller used to lo cate the box to

be manipulated. Input is from the listed perceptual cues which de�ne the output

behaviour state speci�ed as a primitive actuation (PA) behaviour. The \X" in the

input table indicates a don't care term. The perceptual cues corresponding to the

dashed labels are: ?contact-detect; ?avoid-detect.

5.2 Perceptual Cues for Box-Pushing

Transporting a box from an unknown initial position towards a �nal goal des-
tination was modeled using three types of perceptual cues. Obstacle avoidance
cues were used to detect an obstacle and trigger avoidance behaviors. Box de-

tection cues were used to locate and track a moving box, as well as, to control

state transitions among the task step controllers. And a goal detection cue
was used to indicate proper robot orientation, with respect to the goal, for

a pushing behavior. The cues are designed with a given set of motor actions
in mind. The design and implementation of each perceptual cue involve the

following steps:

(1) Sensor Placement Given a sensor type, determine the position, orien-

tation and number of sensors to be used in the sensor system.
(2) Data Collection For a given environment, collect data from the sensor

that represents the condition under which the task is performed.
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MOVE-TO-BOX Subtask Controller

Perceptual Cue (Input) Behavior State (Output)

?TOUCH ?CONTACT- ?AVOID- ?BOX- PA Behavior

0 0 0 1 seek-box

0 0 1 X avoid

0 1 X X contact

1 X X X back-off

Table 3

The MOVE-TO-BOX Q-machine is the subtask controller that moves the robot

towards any side of the brightly lit box to be manipulated. Input is from the listed

perceptual cues which de�ne the output behavior state speci�ed as a primitive

actuation (PA) behavior. The \X" in the input table indicates a don't care term.

The perceptual cues corresponding to the dashed labels are: ?contact-detect;

?avoid-detect; and ?box-detect.

PUSH-TO-GOAL Subtask Controller

Perceptual Cue (Input) Behavior State (Output)

?SEE-GOAL PA Behavior

0 reposition

1 push-box

Table 4

The PUSH-TO-GOAL Q-machine is the subtask controller that either pushes the

box towards a goal destination or repositions the robot on another position of the

box to be manipulated. Input from the ?see-goal perceptual cue, which determines

pushing angles, can vary the acceptable pushing angles.

(3) Data Analysis Determine what features of the data may be used to
meet the perceptual cue's speci�cation.

(4) Algorithm Design Design an algorithm to extract the desired feature.

(5) AlgorithmVeri�cation Specify the tests to verify that the cue performs
as designed.

5.2.1 Obstacle Detection Cues

The purpose of the obstacle detection cues are to provide obstacle distance
information to the robot. Three discrete thresholds are used corresponding to

the distances of: less than 25 cm, less than 12.5 cm, and in physical contact

with the robot. Active infrared emitter/detector pairs are used to provide non-
contact obstacle information for the left and right front of the robot. Contact

obstacle detection is determined using a single bit contact switch. The obstacle
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detection cues are de�ned as: 5

?obstacle Return right and left true 
ags indicating the corresponding ob-

stacle sensor has exceeded the input threshold.

?touch Return a true 
ag if the front contact switch is pressed.

5.2.2 Box Detection Cues

Three perceptual cues are used for box detection:

?box-direction Return right and left true 
ags indicating the corresponding

box sensor has exceeded the input threshold.

?box-detect Return a true 
ag if either left or right box sensors exceed a

given input threshold.
?box-contact Return a true 
ag if ?touch is true and either right or left
box sensors exceed a given input threshold.

Box detection is simpli�ed by using a bright light placed at the center of

the box. The box detection cue asks the question: Can the robot see the
box-light? The answer depends on the robot's distance from the box and

the orientation of its two forward pointing sensors with respect to the box.
An adjustable threshold varies the range at which the box-light is detectable
and is dynamically determined as a function of ambient light. Recognizing

physical contact with the box is a combination of two di�erent types of sensing,
touch and light intensity. This combination of stimulus is unique in the task's
environment simplifying box recognition.

5.2.3 Goal Detection Cue

The goal detection cue asks the question: Can the robot see the goal? The

answer is a function of the robot's orientation with respect to the goal indi-

cator, which in this instance is a spotlight placed near the ceiling. The goal

detection cue is de�ned as:

?see-goal Return a true 
ag if a signal peak greater than the input threshold

is detected within the user de�ned �eld-of-view.

The �nal design consists of a narrow �eld-of-view sensor which is swept by
a motor in an upward pointing arc. If a signal peak occurs, caused by the

spotlight, within an adjustable window the goal is detected. The box detection

sensors which face horizontally are shielded from light sources above the robot,

5 Perceptual cues will be identi�ed by their leading question mark.
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while the goal detection sensors face upward and therefore the goal-light does

not interfere with the box-light.

At any given moment a robot is controlled by a single PA behavior. These

behaviors issue discrete actions which a�ects the robot's orientation. As in

the simulated robots, orientation is based on a taxis mechanism.

5.3 Taxis-based Discrete Action

Jander de�nes insect orientation as \the capacity and activity of controling

location and attitude in space and time with the help of external and internal

references i.e. stimuli." [26]. In insects the behavioral act of orientation is con-

trolled either externally, and results in a directional orientation using a taxis

mechanism, or internally under kinesthetic control. Taxis is de�ned by Web-
ster's as a re
ex translational or orientational movement by a freely motile
organism in relation to a source of stimulation [52]. Inspired by Braitenberg's

Vehicles [5] robot actions are based on taxis orientation or kinesthetic orien-
tation as �xed motion patterns. The resulting action is used to create motor

behaviors used in a reactive controller. The only required knowledge about the
perception side of the robot is that it corresponds to a left and right division
of the mobility system used to produce the actions. In other words, the input

to the action model is a stimulus as measured by a sensor and does not depend
on either the stimuli's modality or magnitude.

In box-pushing motion is restricted to translation and rotation in two dimen-

sions. All robot motor actions, therefore, result in changes in position and
orientation with respect to a given coordinate frame. To facilitate a quick re-
sponse to changes in sensor data, a reactive control system is used for motor

actions.

A mobility base was built and used di�erential steering as its means for achiev-

ing changes in translation and rotation. Discrete motion primitives were de-

veloped to be used as the underlying mechanism for all actions taken by the

system. Perceptual processes are designed independently, but rely on the taxis

model and its di�erential steering method for mobility.

Primitive actuation behaviors are classi�ed into three groups: positive taxis

or goal driven, which provide a change in orientation or translation towards a
stimulus; negative taxis or avoidance driven, which e�ect a change in orien-

tation or translation away from a stimulus; and kinesthetically driven, which

execute a �xed action sequence in response to stagnating or deadlock condi-

tions.

A wheel motor is controlled using two parameters: speed and direction of ro-
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Positive and Negative Taxis Mappings

Stimulus Negative Taxis Positive Taxis

L R avoid contact seek-box

0 0 null null null

0 1 left-turn left-rotate right-turn

1 0 right-turn right-rotate left-turn

1 1 right-turn right-rotate forward

Table 5

The positive and negative taxis behavior mappings. Behaviors that cause directional

changes based on external stimuli expect a stimulus from the left and right sides of

the robot similar to stimulus sensing found in insects. The \null" output means the

behavior doesn't produce a motion command.

tation. Speed is proportional to the applied input voltage and a �xed speed
setting is used in all motion commands except while applying a pushing force.

Continuous motion is accomplished by issuing a series of discrete motion com-
mands, each of which moves the robot a small incremental amount. The com-

mands have the general form: begin(action), wait �t, end(action).

A positive taxis or goal driven behavior moves the robot towards a given exter-
nal stimulus. Input to the behavior takes the form of a left and right divided
stimulus pair which may correspond to left and right sensors on the robot.

The input variables to the behavior are boolean and indicate the presence or
absence of the stimulus within a given range and �eld-of-view. Output from

the behavior is a motion command selected from a set of four commands rep-
resenting the possible number of input combinations. In the case of a behavior
with a single input variable, 0 is mapped to the null motion command and 1

is mapped to the forward command. For the box-pushing task two goal driven

behaviours are:

� seek-box - moves the robot towards a box.

� push-box - pushes the box by increasing motor voltage.

In the same manner negative taxis or avoidance driven behavior repels a robot

from a given stimulus. For the box-pushing task the two avoidance driven

behaviors are:

� avoid - turns the robot away from obstacles.
� contact - rotates the robot away from obstacles.

The motor behaviours which cause changes in orientation are summarized in

Table 5.
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Kinesthetic orientation is used to produce motion in the absence of external

stimuli and for stagnation recovery movements. In the case of both positive and

negative taxis, orientation of the robot is under control of external stimuli. At

any time the motor behavior relies on an external stimulus to decide the correct

response in orientation. However, many behavioral acts in both insects and

robots lack the external stimulus needed to guide the orientation mechanism.

Rather a correct behavioral response might simply be a �xed pattern of motor

activity stored in memory and released under suitable conditions. For example,

a spider can return to a given location by \remembering and kinesthetically

controlling its movements," a skill also found in bees and ants [26].

In the absence of stimuli, a �xed pattern of motor activity can serve as a

strategy while foraging for food or searching for a goal. For instance, when

an ant leaves its nest to search for food it leaves in a straight line until it
encounters either food or an odor trail which it then follows using a positive
odor-taxis mechanism [53]. In box-pushing, a search strategy called random-

walk is used which keeps the robot moving in a forward direction by issuing a
sequence of motion primitives Continuous motion by the robot in the absence
of any external stimulus is thus accomplished.

Recovery from deadlock or stagnation is the second use of kinesthetic orienta-
tion. During the execution of a task by robots using reactive control strategies,

the absence of a plan can result in a condition in which the execution of the
task gets stuck or is said to stagnate. For example, a dead end is reached
by a robot trying to navigate to a given goal as in Arkin's box canyon prob-

lem [12]. The problem is similar to �nding a local maximum, encountered
by hill-climbing algorithms, when the goal is to �nd the global maximum. In
nondirected box-pushing the net force applied by the robots may equal zero if

the robots are evenly distributed around the perimeter of the box. In such a
case, a robot might attempt inde�nitely to push the box unsuccessfully. Kines-

thetic orientation, in the form of �xed action sequences and triggered by either
the presence or absence of a controlling stimulus, is one solution suitable to

the stagnating conditions in the box-pushing task.

6 Group Size in Cooperative Transport

Stigmergy, a term coined by French biologist P. Grass�e, which means to incite

work by the e�ect of previous work [21] is a principle �nding its way from the
�eld of social insects to collective robotics [2,48]. With their limited repertoire

of behavioral acts social insects display an amazing competence in building
nest structures. >From the simple nests produced by the blind bulldozing of

ants [19] to the termite homes that stand over a meter tall [46] all of which

result from common task coordination that does not appear to depend on
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interaction between the agents, but rather on the object they act upon. In

this section, the results are presented for the integrated models of the previous

sections. This global action is demonstrated in the collective transport task.

Global action is the e�ect produced when a set of identical mobile robots

execute the common task of pushing an object towards an arbitrarily speci-

�ed goal position. Coordination is achieved without resort to direct inter-robot

communication or robot di�erentiation. Instead, context sensitive subtask con-

trollers decompose the box transport task into three phases. The phases de-

scribe what is to be achieved, in terms of the externally observable events

described by box position, without specifying how the task is to be accom-

plished by way of a unique path.

6.1 Experimental System

The experimental setup used to gather the data presented in the sequel con-
sisted of a robot environment, in which various boxes were placed along with

two spotlights used to indicate �nal goal positions, and a set of identical mo-
bile robots complete with sensors and Q-machine task controllers. In total over

100 box-pushing trials were run using from one to 11 robots, four di�erent box
types and in three di�erent venues. The �nal set of experiments were recorded
on over four hours of video tape with an individual trial lasting between 30

seconds and �ve minutes. Described brie
y is both the robot environment and
hardware used.

6.1.1 Robot Environment

The ideal test environment would be a large open space without walls leaving
the robots free to push the box along any desired path. Since this environment

was not available a smaller and more restrictive area de�ned by walls was used.
A permanent space large enough in which to conduct experiments was often

diÆcult to �nd, resulting in the creation of a portable testing environment
consisting of: 11 robots, two spotlights on stands for goal position indicators,

the box to be manipulated, and a video camera to record the results. How-

ever, the majority of the experiments were conducted in the area depicted in
Figure 5 which became available towards the end of this study.

6.2 Robot Hardware

The system is composed of a set of homogeneous two-wheeled robots, each

weighing 1.3 kilograms and measuring approximately 18 centimeters in height
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Fig. 5. In each trial the box was placed at initial position three meters from the goal

line and the robots were placed at one of the indicated starting positions labelled

P1 - P5. After Kube and Zhang [31]. Reprinted by permission c
Kluwer Academic

Publishers.

and diameter as shown in Figure 6. A battery allows for 45 minutes of op-
eration with a 10 minute recharge time. A Motorola 68HC11 microcontroller

with 8K of RAM and programmed in Forth is used to map sensor output to
one of nine motion primitives. A minimum number of sensors (6) was sought
in implementing the perceptual cues. Additional sensors would allow a more

omnidirectional �eld-of-view in the case of obstacle and box sensing and better
pushing orientation in the case of box contact sensing, but the objective was
to determine what could be accomplished with the minimal number of sensing

bits. The hardware proved to be robust with few breakdowns.

6.2.1 Directed Box-Pushing

Increasing the number of robots from two to six did not a�ect the success-

ful outcome of the transport experiments. This is an analogous result to the
simulation results (shown in Figure 10) in which successful task completion

remained high despite an increase in the number of robots. However, no claim

is being made that task completion time is not a�ected, since completion times
were found to vary as the number of robots increased and were dependent on

available resources. In each of the 58 successful trials recorded the box was
pushed from an initial starting position, located approximately in the center of

a �ve by four meter area, towards the goal area indicated in Figure 5 and end-

ing in quadrant I at a distance of at least 2.5 meters. The robots were started

in each trial from positions P1 to P5in quadrants II-IV shown in Figure 5.

Successful trials would run between 32 and 214 seconds and were executed in

three phases.

24



Fig. 6. Each of the robots are equipped with two forward pointing infrared obstacle

sensors, one touch sensor, two CdS box-tracking photocells, and a destination sensor,

all mounted on a di�erentially steered base.

The �rst phase began when the robots were powered on, the box-light was o�
and the goal-light was on. System initialization consists of taking ambient light
readings used to set the box-detection threshold. The robots began executing

FIND-BOX and quickly dispersed themselves in the area. Shortly thereafter,
the box-light was turned on and those robots that were facing the box and
suÆciently close would move towards and make contact with a boxside using

the MOVE-TO-BOX controller. Depending on an individual robot's posi-
tion, with respect to the box when box-detection occurred, the distribution

of robots around the box would vary and mark the beginning of the second
phase.

In the second phase, some of the robots incorrectly positioned for pushing,
as determined by the PUSH-TO-GOAL controller, began moving counter-

clockwise around the box perimeter searching for an open spot on a correct

side. This behavior is the result of several cycles through the transport Q-
machine consisting of in turn FIND-BOX, MOVE-TO-BOX and PUSH-

TO-GOAL subtask controllers and can be explained as follows. Once contact
is made with a boxside the ?see-goal perceptual cue determines that the

robot is on the wrong side for pushing. The PUSH-TO-GOAL controller

then executes the reposition behavior which moves the robot away from
the box in a counterclockwise direction. If the box is within view, determined

by the ?box-detect cue, MOVE-TO-BOX brings the robot into contact
with a new position on the box providing it is unoccupied. The obstacle avoid-

ance behaviors keep a robot away from occupied positions on a boxside. If the

box is not within view then FIND-BOX executes and searches for the box.
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The PUSH-TO-GOAL controller evaluates the new position and the cycle

repeats.

The third and �nal phase is characterized by the box moving towards the goal

position. Once a net force suÆcient to move the box occurs the box begins

to translate and possibly rotate. During the box movement phase a robot

continuously determines if it remains on the correct side for pushing using

the ?see-goal cue. A robot located at the edge of the pushing swarm may

suddenly lose site of the goal and begin repositioning. The resulting drop in

pushing force may be suÆcient to halt the box movement until another robot

joins the group e�ort. The dynamics of both the box and robots is such that

the path taken by the box towards the goal is seldom straight. Rather, box

movement can be said to converge towards the goal since its trajectory is the

net result of several force vectors applied by individual robots. A typical box

path might begin at position P0 proceed towards P6 and then move to P7 as
illustrated in Figure 5.

6.2.2 Pushing Di�erent Box Types

To evaluate the controller's sensitivity to object geometry, 38 successful tri-

als were performed using six robots and four di�erent box types. The initial
box, box a, tested was 42 centimeters square and large enough for two 18

centimeter robots on a side. A second 84 centimeter square box, box c, was
built by extending the initial box with a second frame. This increased the box
dimensions, but used the same base on which the box slid along the 
oor. A

third 84 centimeter box, box b, was built on a new base which increased the
number of points in contact with the 
oor and therefore its sliding friction.
The fourth box, box d, was round with a diameter of 84 centimeters and the

results of the 39 trials can be summarized as follows:

� box a. A total of 10 trials were successful in pushing box a from the initial
position to the goal positions in quadrant I (see Figure 9). The robots started

from positions P1�5. In general as the number of robots increased the task
took longer to complete as the robot interference was high since the limited

box side space created competition among the robots.

� box b. A total of eight trials were successful in transporting box b from
its initial position using 6 robots starting from position P4 and ending at

positions P5�7.
� box c. A total of seven successful trials were recorded in which box c was

moved to the goal area by six robots starting from positions P2�4. This box

had the highest failure rate among the four boxes used and was due to a

robot getting caught on the frame.

� box d. A total of 14 trials using a round box, box d, and four to six

robots were successful in moving the box between two goal positions. The
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round box was the last box built and experienced the most success of the

four types tested. The lack of corners provided the robots with a uniform

contact surface to push against unlike the square boxes which had sharp

points at its corners.

6.2.3 Changes in Goal Position

The initial success of the directed box-pushing task led to the following ex-

tension which increased the task diÆculty. Pictured in Figure 7 are two goal

positions labelled PA and PB. The robots begin from position P4 and a goal-

light at position PA is illuminated causing the robots to push the box towards

PA. Once reached the goal-light at PA is turned o� and the goal-light at PB

is switched on. The robots reposition around the box and begin pushing to-
wards the goal at PB. Figure 8 is a sequence of three images taken from a

video segment in which two goals were used. A total of eight successful trials
using three di�erent goal positions were recorded using a single box.

4 m
eters

P
B

dia.82 cm
(box 3)

A
P

5 meters

dia.18cm
(robot)

STEP 1

STEP 2

∆Τ1

∆Τ2

Transport Task

Fig. 7. A schematic of the lab environment used to test the transport of a round

box between two goal positions. Shown are the initial positions of the �ve robots

and the box. The �rst step is to move the box from its initial position to the goal

located at PA. The second step moves the box from PA to position PB . The goal

positions are indicated with a bright spotlight positioned at a height of 2.5 meters.

To sequence the task steps the spotlight at position PA is turned o� and the light

at PB is turn on when the box reaches PA.

In the following discussion some interesting secondary results are presented

which compare execution times as a function of system size in the �rst exper-

iment and as a function of object geometry in the second experiment along

with the following caveat. In experiments involving physical mobile robots,

holding the many system variables invariant is near impossible making com-

parisons based on execution runtimes tenuous at best. In this experimental-
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Fig. 8. Shown are �ve robots pushing a round box from its initial position �rst

towards a goal-light in the right of the picture and then towards a goal-light on the

left of the picture. The mpeg video from which this sequence was taken is available

at http://www.cs.ualberta.ca/�kube/

ist approach to robotics \things change" is axiomatic. CoeÆcients of friction

change because the 
oor gets dusty, force is reduced because batteries run

down, motors wear reducing repeatability, wheels slip in response to changes
in load and the list goes on. However, in general there still seems to be a trend

in the data making it worth presenting.

6.2.4 System Size

The mean execution time for moving the smaller 42 centimeter square box

from its initial position to the goal positions were compared for two to six
robots as shown in Figure 9. Starting positions for the robots were varied and
included P1;3�5 with the �nal end position of the box recorded for timing to

be P5;7. Indicated in each plot are the number of trials used to compute the
mean. The large variance in runtimes was due to robot start positions P1;5

which could result in long repositioning phases 6 . In general, execution times

increased as a function of the number of robots due to the increase in robot
interference competing for the limited box space. A much larger number of

trials is needed for any statistical conclusions.

6.2.5 Convex Object Geometry

Our previous simulation study had shown that in a box-pushing task perfor-

mance, as measured by completion time or success rate, 7 could be improved

if stagnation recovery behaviors were added to the controller to avoid deadlock
from occurring when the robots applied an equal distribution of forces to the

box [29]. What was also noted was the sudden drop in performance as the

6 Both the maximums indicated in the case of three and �ve robots occurred from

P5.
7 Success was de�ned to be the movement of the box by 200 units in under 2000

simulation timesteps.
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Fig. 9. The mean execution time of moving a 422 centimeter box 2.5 meters towards

a goal position (P5, P6, P7) as a function of the number of robots. For each plot

the number of trials as well as the minimum and maximum run times are indicated.

A boxside is approximately twice the robot's diameter and increasing the number

of robots increases the robot interference as they compete for the limited space

available.
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Fig. 10. The e�ects of doubling box contact space on the task success rate. The

results from two simulation experiments in which the only parameter changed was

the robot's diameter, with the size of the box side �xed at 90 units. Robot diameters

of 20 and 10 were compared for a task in which a box was moved 200 units from

its initial position. Each data point is the average of 25 simulation runs each with

a di�erent random initial con�guration.

size of the system grew for controllers without stagnation recovery. This was

conjectured to be due to the number of robots able to �t on a box side. To test

this hypothesis, simulations were run for the same behavior controller and the
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Fig. 11. The e�ects of doubling box contact space on execution time. The results

from two simulation experiments showing execution time versus system size. The

only parameter varied was the size of the robot; the size of the box side was held

constant at 90 units.

robot diameter (RD) was tested for RD = 10 and compared with the results

using RD = 20. The results are shown in Figures 10 and 11. If the diameter
of the robots were reduced, for a �xed box side, the performance increases,
which leads to the conjecture that for a given task, performance is dependent

on some yet to be determined task density function.

In Figure 12 the mean execution times were compared for the four box types
and six robots starting from the same initial position. In general, it appears

that as the available contact space increases more robots are able to participate
in pushing at the same time reducing the time taken to complete the task.
However, due to the sparseness of the data additional experiments would allow

statistical conclusions.

7 Discussion: From Ants to Robots and Back

Visualize a room in which a group of robots sit in one corner and a large box
sits approximately center with a spotlight placed in another corner. The robots

begin moving and soon disperse into the room. Soon after the box-light comes

on the robots begin moving towards it and eventually come into contact with
a side. Then some of the robots beginning to reposition themselves by moving

around the box in a counterclockwise fashion, while others which are correctly
positioned begin to push the box towards the spotlight. The box begins to

move in the direction of the lit corner of the room, but the path is not quite

straight and veers to the right and the box movement stops. Again some of the
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Fig. 12. The mean execution time of moving a box towards the goal as a function

of box type. Box A is a 42 centimeter square box, Box B and C are 84 centimeter

square boxes with B having a higher sliding friction than Box C, Box D is an 84

centimeter diameter round box. All box types are approximately the same weight

and can be pushed by at least two robots. For each plot the number of trials as well

as the minimum and maximum run times are indicated. All trials used six robots.

Robot interference is minimized by increasing the available contact space around

the box.

robots begin their counterclockwise repositioning and assume a new position
more correctly oriented for pushing. Finally, the box begins to move in a

new direction towards the goal-light. The dynamics of the swarm of robots is
very reminiscent of the dynamics of ants represented in Figure 1: given that
the implementation of individual robot behavior is based on ant behavior, it

is encouraging that the robotic model produces the same kind of emergent
collective behavior as ants, and it suggests that the robotic implementation

constitutes a plausible model of cooperative transport in (some species of)

ants.

Once the box reaches the goal position the spotlight turns o� and a second
goal light on the opposite corner of the room is illuminated. Now all the robots

begin repositioning, eventually making it to the opposite side and begin to

once again push the box towards the new goal destination. Robots leave the
task, seemingly at random, and wander o� only to return and join the group

e�ort in transporting the box towards its goal. The experiments are repeated,
this time with boxes of di�erent shapes and sizes and the number of robots

in a group are varied. Our video recordings shows, and those that have seen

them agree, that the robots make a coordinated e�ort in pushing the box in
a direction that converges towards the indicated goal position.

The results show in the many successful trials of directed box-pushing that
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a coordinated group e�ort is possible without use of direct communication or

robot di�erentiation. Rather a form of indirect communication takes place

through the environment by way of the object being manipulated. For di-

rected box-pushing, the control strategy was shown to be insensitive to system

size, some convex object geometries and changing goal positions. The results

of experiments with physical robots presented here, adds support to Arkin's

simulation studies which showed that cooperation in some tasks are possible

without direct communication [1].

The data presented here also agrees in certain aspects with other studies in

which stigmergy is used as the task coordinating mechanism. Stigmergy as pro-

posed by Grass�e is a model used to explain the regulation of building behavior

in termites [21]. Stigmergy theory holds that transitions between a sequence

of construction steps is regulated by the e�ect of previous steps. In more gen-
eral terms, the theory has been used to explain and describe the process by

which task activity can be regulated using only local perception and indirect
communication through the environment as applied to algorithms for coordi-

nating distributed building behaviour [48] and foraging tasks by multi-robot
systems [2]. In the box-pushing task the results support the use of indirect
communication through the environment as proposed by stigmergy theory.

However, Downing and Jeanne found that stigmergy theory does not explain
the use of additional cues, not dependent on previous steps, in regulating task
execution in nest construction by paper wasps [16]. For collective robotics this

means that perceptual cues can also be formed from stimuli other than that
which are immediately available from the task itself. For example, in directed

box-pushing the box-detection cues are adaptive to the ambient light level of
the environment by specifying box-detection as a multiple of the ambient light
level.

Coherent behavior from a collective system of robots must also account for
task resource management. Coordination improves by minimizing antagonistic

actions that can result from con
icts over limited resources. In box-pushing an-

tagonistic forces are mitigated by increasing the available boxside space while

enforcing a noninterference behavior. The data on transporting small boxes
versus large boxes by the same number of robots con�rms the observations

made during task execution. For box-pushing, this result implies that group

size is important for a �xed resource size in a given task and agrees with the

result obtained by Beckers et al. [2] for a foraging task in which one to �ve

robots were used to gather 81 objects randomly distributed in their environ-
ment then placing them into one large pile. Their study showed that group size

was a critical factor in determining task eÆciency and that increasing the num-

ber of robots used without increasing the available task resources increased

task execution time due to the increase in inter-robot interference. In general,

increasing task resources minimizes inter-robot interference. Thus, reducing

robot interference increases group coordination and consequently leads to a
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more eÆcient coherence as demonstrated by the decreasing execution times.

The coherent behavior displayed for the transport task can also be attributed

to the common goal shared by the individual robots along with an identical set

of interaction rules. This is the same e�ect noted by Seeley while considering

the collective decision making in honey bees [43]. As an explanation for how

a swarm of honey bees could reach the same decision on the pro�tability of

several food sources, Seeley hypothesized that each bee's nervous system was

calibrated in a similar manner. Since all members of the colony share the same

rules for adjusting response thresholds, the bees can operate independently

yet generate a collective response to various nectar sources. Thus common

goals and common rules of interaction allow a decentralized decision making

process to produce a coherent global response. By way of the social insects,

nature is showing us how to build decentralized and distributed systems that
are autonomous and capable of accomplishing tasks through the interaction
of many simple and highly redundant agents. From their local perception to

the mass e�ect that results in a global action these biological systems serve
to elucidate the mechanisms thought to be at the heart of self-organizing

behavior.

In return, the robotic system described in this paper tells us a lot about
cooperative transport in ants. We have seen that the model makes predictions

about the kind of stagnation recovery mechanism (if any) to be expected
depending on ecological conditions. At a more fundamental level, because

the model is able to reproduce many of the collective features of cooperative
transport in ants and because it is based on plausible assumptions, it suggests
that these assumptions may be suÆcient to explain the behavior observed in

ants. Many of the predictions of the model can now be tested empirically.
Of course it can be argued that the actual robotic implementation was not
needed: simulations were just as good. This is only partially true because the

robotic implementation shows that the assumptions the model is based on can

produce the expected behavior in the real world, that is, with real constraints,

a result that is far from obvious as many factors (friction, heterogeneity, etc.)

play a role in cooperative transport.
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