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Chapter 1

Introduction

1.1 Introduction

The traditional view of robotics has been to develop one large expensive robot ca-
pable of achieving a task. Unfortunately this approach has many weaknesses. For
autonomous control, what happens when this robot has an accident or stops respond-
ing? For missions in a local laboratory, this is not a problem, since the researcher can
simply reset and rerun the test. Unfortunately if this robot runs into problems and is
in a remote location, this is a huge problem. Issues like this and others have led robot
researchers to consider large groups of simple coordinated robots. If the controllers
are decentralized then even if robots fail the remainder can still accomplish the task.

Designing multiagent systems (swarms) as decentralized entities is a challenging
research field. The idea is to program the behavior of an individual robot and then
put many of these robots together and witness the emergent behavior. In this thesis,

we focus on creating two new swarm controllers to accomplish coverage tasks.

1.2 Task

The coverage task being addressed is to sweep a large group of mobile robots through

a long bounded region. This could be a swath of land, a corridor in a building, a city



sector, or an underground passageway/tunnel. The goal of the robots is to perform
a search, requiring maximum coverage. This search might be for enemy mines (de-
mining), survivors of a collapsed building or, alternatively, the robots might act as
sentries by patrolling the area. All of these different examples require the robot to
search the entire region to guarantee detection. The most researched coverage tasks
include vacuuming and lawn mowing. In these coverage tasks the goal is the same:
they both require maximum coverage.

We want simple, inexpensive robots, so we assume the robots have a limited sens-
ing range for detecting other robots or objects, though all robots can sense the global
direction to move (e.g., with light sensors). These robots need to avoid obstacles of
any size, possibly the size of buildings. With limited sensors, robots on one side of
large obstacles cannot visually /explicitly communicate with robots on the other side.

We assume that the robots need to keep moving because there are not enough of
them to simultaneously view the entire length of the region. The robots in our task
begin at one end of a corridor for example, the entrance of a subway tunnel and then
move to the opposite end of the corridor (considered the “goal direction”). We define
this movement as a sweep, and consider a sweep finished once all robots have reached
the goal.

The primary objective of the robots is to maximize the coverage for one sweep,
while the second objective is to minimize the sweep time. We believe gases are
excellent at achieving this task. The following properties of gases convinced us to
choose them as a model for our algorithms for this task: they are easily deformed,

they are capable of rejoining after parting around an object, and gases fill volumes.



1.3 What is Coverage?

While we have defined our task in terms of coverage, we have not yet defined what
coverage is. We are concerned with two primary forms of coverage: spatial coverage,

and temporal coverage.

1.3.1 Spatial Coverage

There are two forms of spatial coverage: longitudinal (in the goal direction) and lateral
(orthogonal to the goal direction). Longitudinal coverage can be achieved by moving
the swarm as a whole and lateral coverage is achieved by a uniform distribution of
the robots between the side walls of the corridor. Recall the corridor defined for the
task. As robots move towards the goal they increase longitudinal coverage, and as

robots move orthogonal to the goal, they increase lateral coverage.

1.3.2 Temporal Coverage

Temporal coverage is determined by the time spent performing a sweep of the corridor.
The longer it takes the swarm to perform a sweep, the worse the temporal coverage.
For example, the worse the coverage the easier an intruder can slip by undetected.

Greater temporal coverage can be achieved by increasing the average agent speed.

1.4 Preview

In this chapter we discussed the task that we will reference throughout this thesis. In
Chapter 2, we will explore alternative and state—of-the-art methods to solving our
coverage task. Chapters 3 and 4 are devoted to developing our new control algorithms.

The next section examines the success of our new algorithms. In Chapter 5

we cover theoretical foundations of the algorithms presented in Chapters 3 and 4.



In Chapter 6, we provide the baseline and state—of-the—art algorithms to compare
against the performance of our algorithms. Chapter 7 contains a summary of our

work and future plans.



Chapter 2

Related Work

2.1 Introduction

The task presented in Chapter 1 has been studied extensively for many different
applications. There is also extensive research attempting to derive different types
of robotic controllers. The following chapter discusses different approaches adopted
by researchers not only to solve coverage tasks, but also to control large groups of
autonomous agents.

We break the chapter into the following sections. First we investigate behavior—
based control, a popular approach to designing swarms. We then discuss the most
relevant work, which utilizes bzomimetics — or robots that mimic life. Following that
is cell decompositions and then approaches utilizing physics methods for control.
Finally, we look at a similar task — ad—hoc sensor networks, and different approaches

to solving this related problem.

2.2 Behavior-based Swarm Control

Behavior-based swarm control algorithms draw their inspiration from biology. They
involve developing a suite of behaviors — i.e., different methods to interact with the

environment that are combined with other behaviors in a bottom up fashion. Different



behaviors can subsume other behaviors; i.e. obstacle avoidance can overtake a path
planning behavior when an obstacle collision is eminent. How to combine behaviors
effectively has attracted many researchers. Brooks (1986) defined this behavior-based
control framework using a layered control system where behaviors at a higher level
can subsume lower level behaviors. This architecture allows the user to add more
behaviors without directly affecting the behaviors at a lower level. Arkin (1989)
created a similar framework structure based on schemas and draws its inspiration
more from the brain and psychology than biology.

Other research has progressed in determining what are the proper sets of behav-
iors to complete certain tasks (Matari¢ 1995). Goldberg and Matari¢ (2002) have
shown that the behavior-based controllers are able to solve “collection” tasks very
well. Swarms used to solve the collection tasks had to find objects and return them to
a home base. Goldberg and Matari¢ develop a set of behaviors to solve the task and
evaluated the controllers based on time and interference metrics. Other researchers
used the behavior-based model for combining behaviors in order to generate robotic
formations (Balch and Hybinette 2000; Fredslund and Matari¢ 2002; Balch and Arkin
1998). This is accomplished by adding a behavior that maintains the currently se-
lected formation to the basis set of behaviors. Although this work shows that the
formations generated by the robotic teams are able to navigate small obstacle courses,
no results are presented indicating how coverage was affected by these formations.

Robotics researchers have explored many different algorithms that are able to solve
search tasks where the environment is unknown to the robot. Balch and Arkin (1993)
worked on a behavior-based approach for robots to avoid box canyons. Figure 2.1
shows a box canyon with several robots unable to reach the goal. Box canyons
require backtracking in order to successfully continue to navigate to the goal. Box

canyons were explored because they provide an attractive local minimum for goal-



oriented robots. Simulation results show that the controllers developed were successful
at navigating out of box canyons. As an extension to Balch’s and Arkin’s work
Ranganathan and Koenig (2003) provide a reactive on-line planner to the behavior-
based work. They are able to experimentally show that the paths taken by the robot
controlled with their architecture is shorter than the controller developed by Balch
and Arkin. Lee and Arkin also improve on box-canyon avoidance by using a method
described as “learning momentum.” This approach allows the robot to modify system
parameters at run time. Typically if the robot is successfully moving towards the goal,
the parameters are left alone. As the robot encounters difficulty, it must then modify

parameters in an attempt to rectify the situation.

[e0D
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Figure 2.1: Box canyon.

Gage (1992) explored many different facets of multirobot coordination. He dis-
cusses different behaviors necessary for coverage, and even introduces the notion of a
sweep behavior. This behavior is analogous to a row of soldiers forming a line from
one side to the other of the search area. They then march in step to the goal, searching
along the way. Although he argues that this achieves excellent coverage, he does not
present experimental results. Other work by Gage (1993) explores random behaviors
versus coordinated search for a de-mining task. He explores the idea of detecting

mines with imperfect sensors, i.e. less than 100% probability of detection. Because of



this, any algorithm guaranteeing complete coverage cannot guarantee that all mines
would be detected. He then shows that as the probability of detection decreases, so
does the advantage of coordinated search.

Bruemmer et al. utilize the potential fields method in order to generate large—scale
swarm formations (Bruemmer, Dudenhoeffer, McKay, and Anderson 2002; Dudenho-
effer, Bruemmer, Anderson, and McKay 2001) . Reif et al. (1999) first used potential
fields as a control algorithm for swarms. The work is considered physics-based and
we will discuss this more later, but essentially they used virtual forces to control the
behavior of the swarm. Bruemmer et al. show that the potential field method alone
is not an optimal algorithm for their spill finding task. They introduce ways to tune
behaviors in order to be more successful via online learning. They also show that as
the number of robots increase the coverage time decreases dramatically, but they find
a crossover point where the work done by each robot also decreases once the search
area has been saturated with robots. Although this work provides an algorithm able
to perform their spill finding task, it provides no formal arguments of completeness,
i.e. guarantees of complete coverage.

The work by Zelinsky et al. utilizes a map of the environment in order to determine
the robots’ desired paths (1993). The map provided of the environment divides the
world into equally sized cells, or small regions of the environment. Zelinsky et al.
define a new metric called obstacle discomfort, which is a measure of the discomfort
of moving too close to an obstacle. The map then propagates a wave front which is
a weighted sum of the distance and the obstacle discomfort. This measurement for
each cell is called the “path transform.” Since distance to the goal is included as part
of the measurement, the values stored by the path transform will always decrease as
the distance to the goal decreases. Utilizing this map, a robot can then traverse from

a start cell to a goal cell, guaranteeing complete coverage. This is accomplished by



maintaining an internal representation of the world and what cells have been visited.
Instead of following a path that leads directly to the goal, the robot follows a path
visiting all cells that have a larger or equal path transform value. Once all cells with
a larger or equal path transform value have been covered, the algorithm chooses a
cell with a smaller path transform value and continues searching. This work has been
demonstrated successfully on robots.

Another approach that requires a global map of the environment is given by
de Carvalho et al. (1997). This work utilizes a priori information combined with
templates in order to cover the area completely. Templates are sets of low—level
behaviors that when combined perform a specific higher-level behavior, i.e. combining
a forward behavior with a U-turn behavior to generate a sweeping behavior. The work
describes the new sets of templates and how they can combine these templates in order
to get complete coverage. The work described is also able to deal with small dynamic
obstacles at run time. Finally, the work by Bayazit et al. (2002) attempts to combine
both behavior-based models and global road maps. This work successfully navigates
the world, but assumes global information known a prior: and does not discuss the

coverage aspect of the algorithm.

2.3 Biomimetic Swarm Control

As an extension to behavior—based approaches, biomimetic control more closely re-
sembles biological creatures and communication techniques. Examples of this design
principle include finding router policies for network traffic based on ant foraging. By
leaving pheromone trails ants are able to determine the shortest paths to food sources.
Routing software takes advantage of this fact in order to route traffic as quickly as

possible. The biomimetic research that solves the task of coverage has also been based
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on the behaviors of ants.

Koenig et al. (2001) have studied this problem for several years. The goal of
their research is to design an ant robot capable of leaving short term traces on the
environment also known as stigmergy. These traces then mark where the ant has
been and inform itself and other ants that that area has been covered. By using this
method, the robots need only limited computational resources and limited sensing
capabilities. Koenig et al. have investigated different value update rules and created
theoretical results showing that the ants are capable of achieving complete coverage.
These results utilize proofs similar to those of A* (Koenig and Liu 2001; Koenig,
Szymanski, and Liu 2001). Other experiments show that the results scale as more
robots are added, complete coverage occurs even when robots are moved to new areas
without realizing it, and coverage is achieved in time polynomial in the number of
cells. Finally, these results have been strengthened with demonstrations shown on
actual robots (Svennebring and Koenig 2003; Svennebring and Koenig 2002).

Work done by Wagner and Bruckstein (1995, 1998, 1999) is very similar to that
of Koenig et al.. They both explore the usefulness of pheromone traces for ant-
robots exploring an unknown environment. The algorithm presented in (Wagner
and Bruckstein 1995) is then extended in (Wagner, Lindenbaum, and Bruckstein
1996). Here Wagner et al. present several new algorithms based on ant pheromone
trails. Both algorithms divide the world into discrete cells. Upon executing the
algorithm, the robot determines its next move by selecting the cell least visited from
its surrounding neighbors. During the move, the robot deposits pheromone in the
position it came from. An algorithm is presented that extends the basic algorithm
by removing redundant exploration, based on a multilevel depth-first search. If the
robot is presented with a section that is completely explored, it will back itself out

along the same entrance route until it finds unexplored areas. Wagner et al. also
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show that a single ant can cover a graph in time O(nd) where n is the number of
vertices and d is the diameter of the graph.

Vaughan et al. (2000) created a robotic controller based on the trail following be-
havior of ants and the waggle dance of honey bees. Rather than leaving pheromone
trails explicitly as other research has done, this research seeks to pass this informa-
tion via a shared localization space, i.e. a global map. This shared space can be
achieved, for example, with the Global Positioning System (GPS). The robots’ task
is to navigate an environment from a start position to a goal position. The robots
are transferring objects from the goal to the start positions. The performance metric
is how many objects can be moved in a predetermined time. The ant algorithm uses
pheromone trails in the shared space, but only updates this shared space when the
goal is found. This updating resembles the waggle dance of honey bees. Experimental
results show that given difficult obstacle courses where gradient searching fails, this
robotic control algorithm performs well.

Later we will compare our new physics—based control algorithm with that of
Koenig et al.. The primary difference between the work presented above and the
work to follow is that all information is passed between robots by leaving traces on
the environment. In the work by Vaughan et al. this trace is not explicit, but it does
exist. We attempt to design a control algorithm that does not need such traces in

order to generate sufficient coverage.

2.4 Cell Decompositions

Another classic approach to solving the coverage problem utilizes different decompo-
sitions of the corridor. In these decompositions, space is separated into cells that can

be covered by sweeping back and forth. Once the world has been decomposed into
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cells the robots just need to visit each cell and perform the sweep of that cell. An
example of the decomposition method can be seen in Figure 2.2. By creating simple
cell decompositions many of these approaches guarantee complete coverage. We will

explore each of the decompositions in more detail.

Figure 2.2: Decomposition schematic.

2.4.1 Trapezoidal Decomposition

One popular decomposition is the trapezoidal decomposition (Latombe 1991) (also
known as the slab method (Preparata and Shamos 1985)). This process works by
sweeping a line across the corridor. When this line encounters an obstacle boundary,
a cell boundary is created. Upon completion of this method we are left with cells
that are either trapezoidal or triangular as long as the obstacles within the corridor
are also polygonal. In order to cover the decomposition, they create an adjacency

relation between the cells.
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2.4.2 Boustrophedon Decomposition

Probably the most popular decomposition, the boustrophedon decomposition is an
extension to the trapezoidal decomposition. The benefit of the boustrophedon de-
composition is that it requires fewer cells than the trapezoidal decomposition and
doesn’t require the obstacles in the environment to be polygonal. Choset and Pignon
first explored the boustrophedon cellular decomposition (Choset and Pignon 1997;
Choset 2000). By merging cells from the trapezoidal decomposition this decomposi-
tion reduces the number of back and forth sweeping motions needed. Once the robot
created the decomposition, it can then plan a path to guarantee complete coverage.

Because of the need for a priori information, Rekleitis et al. (2004) expanded this
decomposition to multi-robot team coverage. By utilizing a multi-robot approach
they are able to construct a decomposition while performing sensor based coverage
(see Fig. 2.3). They even restrict the robots to line of sight communication. Using
this approach the team is able to guarantee complete coverage of the environment
while also guaranteeing minimum times an area is covered.

e

" Explorer Top

®—— Coverers Target Cell

wa Explorer Bottom

i
|
=
ey

iy, /j—b
X -

Figure 2.3: Multi-Robot team decomposition coverage. Figure source (Rekleitis, Lee,
Shue, New, and Choset 2004).

2.4.3 Slice Decomposition

Another decomposition called a “slice decomposition” was created by Wong and Mac-

Donald (2004). This decomposition is an online algorithm in which obstacles can be
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either polygonal or curved. Sweep lines slice the world into segments, which are then
used to determine critical points. This decomposition algorithm maintains a list of
active obstacle and free space cells. Robots update the list when they encounter crit-
ical points. In order to guarantee coverage the robot must visit all of the free space

cells.

2.4.4 Rectilinear Decomposition

Butler et al. (2000, 1999), show that the world can also be decomposed into rectilinear
environments by incrementally constructing the decomposition of the environment.
Rules are generated to handle “interesting” (critical) points, which are the z-values
that determine the vertical boundary segments. The critical points and decomposition
pattern can be seen in Fig. 2.4. They are then able to guarantee complete coverage
by generating a finite state machine representing all the ways the environment can
evolve. By showing that this FSM does not have any infinite loops and only terminates
when it has attained complete coverage, Butler et al. are able to guarantee coverage.
They are also able to guarantee complete coverage when using multiple cooperative

robots (Butler, Rizzi, and Hollis 1999).

seed—sowing path

w

interesting
points

X

Figure 2.4: Rectilinear decomposition. The interesting points and cell coverage algo-
rithm are highlighted. Figure source (Butler, Rizzi, and Hollis 1999).
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2.4.5 Other Decompositions

Choset et al. (2000) show that there are many different compositions that yield com-
plete coverage besides the boustrophedon and trapezoidal decompositions. They con-
sider different shapes of slices instead of direct lines. By examining different slices
they are able to achieve different tasks and ensure provable guarantees.

Wong and MacDonald (2003) present an online method of complete coverage by
using a topological map of the world as opposed to a spatial map. The algorithm
is implemented as a finite state machine with three states. The states are normal,
boundary, and travel. The algorithm updates a topological map as it moves through
the world. By using this topological map the robot requires much less storage space
and can still guarantee coverage.

Seop Oh et al. (2004) propose a triangular cell based map. This approach guar-
antees complete coverage by building a map of the corridor as the robot explores the
environment. This is accomplished by combining template programming (i.e. differ-
ent behaviors based on sensor readings) and a triangular-cell-based decomposition of
the world. While maintaining the minimum distances to uncovered area for each cell
during exploration.

Most of these solutions require the robots to maintain an internal representation
as well as perform localization. Some approaches go so far as to require the structure
of the corridor a priori. We do not require any of these robot constraints with our

approach, since it is assumed that they have limited sensors and computational power.

2.5 Physicomimetic Swarm Control

Another reactive robotic swarm strategy rooted in physics (as opposed to biology) has

been termed “physicomimetics” and provides not only excellent control of swarms,
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but also theoretical foundations for predicting the behavior of the swarms. Two
different lines of related research use physics—based force laws to control swarms
of agents (Reif and Wang 1999; Spears and Gordon 1999; Spears, Gordon-Spears,
Hamann, and Heil 2004). Our work is an extension of the framework provided by
Spears et al. This framework is discussed more thoroughly in Chapter 3. Other
research based on physicomimetics determines the proper settings for a swarm to
maintain its formation and navigate an obstacle course (Hettiarachchi and Spears
2005).

Other physics—based approaches to modeling fluid behavior besides our own are
extremely rare. One exception is the work by Decuyper and Keymeulen (1991). Their
work shows that the fluid model is capable of controlling robots. They use a path
generation algorithm taken from fluid dynamics, and is described via a factory floor.
The floor space is divided into grid cells and either is fluid or contains a piece of
the wall. It models at the start position a pump and at the goal an outlet. Fluid
particles are then pumped through the system until stability is reached. At this point
the robots can do a gradient descent in order to reach the goal by way of a short
path. This approach needs the global map and has to be updated real time when
changes occur in the building. This is acceptable for a factory environment, but we
would like a robot control algorithm that is able to cover unknown environments.

Jantz et al. worked with universal metrics for robotics (Jantz and Doty 1997; Jantz
1998), using behaviors from statistical mechanics to mimic ideal gas laws. They then
use fluid theory in order to make predictions about the behavior of the swarm and
the effusion of robots through a small opening, mean collision time, and the collision
frequency of the robots. This work is in response to the need for evaluation tools
for swarm robotics, and is very similar to our work, but our work extends the results

found by Jantz et al. and applies more realistic kinetic theory behaviors to the robots.
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2.6 Sensor Networks

Other work in this area deals with creating ad hoc sensor networks that achieve com-
plete coverage. Batalin and Sukhatme (2002) created control algorithms to maximize
coverage by increasing inter-agent distances. Each robot moves away from the other
robots until coverage is maximized. Using this approach each robot maximizes the
space covered by its sensors, but no results are shown when there are not enough
robots to cover the entire environment.

The work by Howard et al. describes an incremental approach to maximize cover-
age by a mobile sensor network (2002). As robots are introduced into the environment,
they attempt to maximize placement by utilizing the information from prior robots
and also are guided by heuristics. The work is successful at maximizing coverage, but
again assumes that there are enough robots to cover the area.

Megerian et al.(2005) utilize theoretical graph proofs to guarantee complete cov-
erage for several approaches. Other research looks at the network sensor coverage
problems (Cortes, Martinez, Karatas, and Francesco 2002; Horling, Vincent, Mailer,
and Shen 2001; Kadrovach and Lamont 2002). These problems also implicitly assume

enough robots for complete coverage without sweeping.

2.7 Conclusion

We have described a multitude of different approaches to the coverage problem pre-
sented in Chapter 1. Each had limitations that our new algorithms will attempt
to overcome. The work in behavior-based was mostly heuristics or required global
knowledge known a priori. The heuristic approaches suffer because they cannot
guarantee anything and global knowledge approaches cannot adapt well to unknown

environments. The biomimetic approaches required robots with the ability to leave
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traces on the environment. These approaches suffer from sabotage by unfriendly
robots because the traces left on the environment can be detected and altered by
any robot with the sensors. This approach also requires special sensors that may
or may not currently exist. Although decomposition methods are able to guarantee
complete coverage, only one algorithm addresses the need for dynamic, unknown en-
vironments. This approach requires heterogeneous sets of robots and the robots must
maintain an internal representation of the world. This also requires the robots to
perform localization which is an expensive and challenging computation. Our work
is an extension of the physicomimetic research. Finally, the sensor network research
implicitly assumes that there are enough robots to cover the the area. We do not
assume sufficient numbers of robots, in fact, our work requires a sweeping behavior
since there are not enough robots. The research based on the artificial physics ap-
proach has primarily been concerned with structured formations, whereas our work
deals with a gas behavior. In fact, our work requires a sweeping behavior since there

are not enough robots.



Chapter 3

Artificial Physics

3.1 Introduction

Spears and Gordon (1999) created an “artificial physics” (AP) framework that con-
trols groups of autonomous agents or robots through local interaction only. Using
simple and elegant formulas they are able to demonstrate that AP is predictable.
Utilizing these same ideas we set out to design a multiagent control algorithm that
was able to solve the coverage tasks described in Chapter 1. Before we discuss our

new algorithm, we first provide the background of AP and how it works.

3.2 Artificial Physics

Spears and Gordon (Spears and Gordon 1999; Spears, Gordon-Spears, Hamann, and
Heil 2004) have provided a technique called physicomimetics (artificial physics) for
controlling large groups of agents (modeled as particles), using virtual physics-based
forces to move the agents into a desired formation, e.g., a hexagonal lattice. This
technique scales well to large groups of agents and uses only local interactions. Using
physicomimetics, agent swarms do well at staying in formation and avoiding obsta-
cles, without the need for active communication, long-range sensing, or prespecified

roles (Spears, Gordon-Spears, Hamann, and Heil 2004). Nevertheless, a problem still
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exists when the agents encounter a very large obstacle, e.g., a building in a city. As the
agents move around the obstacle, they are unable to detect the agents moving on the
other side of the obstacle. Because of this, they are never able to regroup, and they
leave an exposed and uncovered area downstream of the obstacle (see Fig. 3.1). The
problem is that physicomimetics has traditionally been run in a mode that mimics
the behavior of a crystalline solid. Yet solids are rigid and do not expand to fill/cover

a region. This is the reason for investigating a gas approach to physicomimetics.

3.3 AP Solid

Creating a robotic control algorithm capable of mimicking a crystalline solid is useful
in that the ordered structure is important for distributed sensing. Agents are able
to act as a large distributed sensing network that is fault-tolerant, scalable, self-
organizing, and capable of self-repair. This section describes how we are able to
create formations resembling crystalline solids.

In AP, agents are controlled via forces. These forces, which are based on Newto-
nian physics, do not really exist in a physical sense, but the agents react to them as
if they were real. The system acts as a molecular dynamics (ﬁ = ma) simulation.
In the original AP system, Newton’s gravitational force was used as the force law.

Therefore forces are calculated using

Gmlmg
=12
rp

Where (mq,ms) are the masses of the agents, G is a user defined constant, r is the
distance between the agents, and p is a user-defined parameter.
Each agent is described by a position vector ¥ and a velocity vector ¢. Time

is maintained with the scalar variable t. The simulation can be run in either 2D
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or 3D (to model swarms of micro-air vehicles). Agents in the system update their
position, &, in discrete time steps, At. At each time step, each agent updates its
velocity, 7, based on the vector sum (resultant) of all forces exerted on it by the
environment, which includes other agents within visibility range. This velocity, ¥,
determines AZ, i.e. the next move of the agent. In particular, at each time step, the
position of each particle undergoes a perturbation AZ. This perturbation depends on
the current velocity, i.e. AZ = vAt. The velocity of each particle at each time step
also changes by Av. The change in velocity is controlled by the force on the particle,
i.e. AT = FAt/m, where m is the mass of that particle and F is the force on that
particle. Note that this is the standard, Newtonian F = mad equation. The goal of
AP is reducing the potential energy of a system.

By setting system parameters in AP, we can mimic solid, liquid, or gas states,
as well as phase transitions between these states (Gordon-Spears and Spears 2002).
To generate a hexagonal lattice with ordered structure, each agent in the system
experiences a repulsive force from other agents that are too close, and an attractive
force from other agents that are too far away. Spears explains this in (Spears, Gordon-

Spears, Hamann, and Heil 2004):

At first blush, creating hexagons appears to be somewhat complicated,
requiring sensors that can calculate distance, the number of neighbors,
their angles, ets. However, only distance and bearing information is re-
quired. To understand this, recall an old high-school geometry lesson in
which six circles of radius R can be drawn on the perimeter of a central
circle of radius R. Figure 3.2 illustrates this construction. If the particles
(shown as small circular spots) are deposited at the intersections of the

circles they form a hexagon with a particle in the middle.
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Figure 3.1: AP in solid form performs a sweep.
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This result is then mapped to a force law, using R as the desired distances. Particles
repel other particles closer than R and attract particles farther than R. Exploring
the force law for AP, one notices that as the agents get close together, the force
experienced grows incredibly fast. In order to counter this, the force is scaled to a

user defined parameter F},, ..

Figure 3.2: How circles can create hexagons.

3.4 AP Gas

Converting the AP crystalline control algorithm to an algorithm that mimics gas
behavior involves converting forces. For AP solid there is a desired radius that allows
that agent to attract other agents that are farther and repulse other agents that are
closer. Recall Figure 3.2. When creating the AP gas algorithm we disabled any forces
that are attractive. Most gas research has determined that the hard-sphere model
works really well when modeling a gas. This hard sphere model provides agents with
collisions when they get too close, much like the repulsive force used in AP gas. Again
we only allow the force to get as large as F},,,. Besides being repulsed from all other
agents within its sphere of influence, the agent is repulsed from all obstacles and
boundaries. Anything that can be sensed by the agent exerts a repulsive force on the

agent.
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Figure 3.3: AP in gas form performs a sweep.

As discussed previously, this type of gas coverage works well for distributed sensor
coverage. In order to achieve good coverage on a corridor, we need to add one force
that is attractive. This force comes from the goal direction. The strength of the goal

force is left constant for all of our experimental data.
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3.5 Robot Port

Simulated robots as seen in Figure 3.3 share a known coordinate system and have
perfect sensing. In order to overcome this, we ported the particle algorithm defined
in the previous simulator to a robot—faithful simulator. In this simulator each robot
contains a ring of 24 sonars positioned every 15°. Forces are then determined from
the sonar readings. The goal sensor provides a bearing to the goal, and is also able to
determine if the goal has been reached. This is analogous to a light sensor determining

it is at the most intense point of light. This new algorithm can be seen in Fig. 3.4.
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float distance, turn, vx, Vvy;
float delta t = 1.0f;

float VMAX = 5.0f;

float FMAX = 1.5f;

float G = 240.0f;

float R = 24.0f;

float goalForce = 0.9f;

void move ()
float[] force = findForce();
float[] goal = goalForce();
float sum fx = force[0] + goallO];
float sum fy = force[1] + goall1];
float deltavx = delta_t * sum_fx;
float deltavy = delta_t * sum fy;
vx = distance + deltavx;
vy = deltavy;
float deltax = vx * delta t;
float deltay = vy * delta t;
distance = sqrt(deltax*deltax + deltay*deltay);
if (distance > VMAX) distance = VMAX;
turn = atan2(deltay, deltax);

float[] findForce()
Read Sonar Sensors
float[] distances = sonar.getDistances();
float[] bearings = sonar.getBearings();
for i=0 to Number of Sonar
float theta = bearings[0];
float r = distances[0];
float F = 0;
if (r <= R)
F = -G/ (r*r);
if (F < -FMAX) F = -FMAX;
sum[0] += F*cos(theta);
sum[1] += F*sin(theta);
return sum;

float[] goalforce()
Read Goal Sensor (Light Sensor)
float bearing = sensor.getBearing();
force[0] = goalForcexcos(bearing);
force[1] = goalForce*sin(bearing);
return force;

Figure 3.4: AP gas psuedocode.



Chapter 4

Kinetic Theory

4.1 Introduction

Chapter 2 provided the background needed to understand why we are looking to
develop a new control algorithm. Most of the previous research focused on solving
coverage tasks primarily used stigmergy in order to make predictions about the suc-
cess of each algorithm. By allowing the robots to modify the environment several
algorithms were able to guarantee complete coverage. Other attempts to solve the
coverage tasks were mostly heuristic and provided no formal guarantees about the
system.

The question remains though as to whether we can design an algorithm that
is able to achieve good coverage without stigmergy and still has formal assurances.
Stigmergy is undesirable since the traces left by those algorithms can be duplicated
and used to deceive the algorithms. Chapter 3 then provided an introduction to
“physicomimetics” and the benefits of designing distributed agent control algorithms
with a solid physics foundation. This chapter discusses our new algorithm based on

the physics of fluids.
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4.2 Fluid Physics

Both liquids and gases are considered fluids, but this research focuses on gases.
Gases offer excellent coverage, unpredictability of particle locations, and they can
be bounded. In general, fluids (gases and liquids) are able to take the shape of their
container and therefore are well suited to avoiding obstacles. Fluids are also capa-
ble of squeezing through narrow passages and then resuming full coverage when the
passage expands. With gases, if we model a container, the gas will eventually diffuse
throughout the container until it reaches an asymptotic state. Because gases have
this property but liquids do not, gases are a more natural way to think of how to get
particles around an obstacle, and why we chose to model a gas. Once the particles
have moved around an obstacle, fluids have the ability to regroup. For example, con-
sider releasing a gas from a container at the top of a room with obstacles. The gas
inside the container is slightly heavier than the surrounding air. As the gas slowly
falls to the ground, it separates around obstacles and diffuses - by either laminar or
turbulent processes - to cover areas under the obstacles.

Agents capable of mimicking fluid flow will be successful at avoiding obstacles and
moving around them quickly. By mimicking gas flow in particular, the agents will
be able to distribute themselves throughout the volume once they have navigated

around the obstacle, which will also increase coverage.

4.3 Kinetic Theory

There are two main methods for modeling fluids: the Eulerian approach, which models
the fluid from the perspective of a finite volume fixed in space through which the fluid
flows (typically the method of computational fluid dynamics), and the Lagrangian

approach, in which the frame of reference moves with the fluid volume (typically the
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kinetic theory approach) (Anderson 1995). Because we are constructing a model from
the perspective of the agents, we choose the latter. Kinetic theory (KT) is typically
applied to plasmas or gases, and here we model a gas. This overview of KT borrows
heavily from Garcia (2000).

When modeling a gas, the number of particles is problematic, i.e., in a gas at stan-
dard temperature and pressure there are 2.687 x 10'? particles in a cubic centimeter.
Utilizing today’s computational power, we are unable to model a gas deterministi-
cally. Therefore, a typical solution is to employ a stochastic model that calculates and
updates the probabilities of the positions and velocities of the particles, also known
as a Monte Carlo simulation. This is the basis of KT. One advantage of this model is
that it enables us to make stochastic predictions, such as the average behavior of the
ensemble. The second advantage is that with real robots, we can implement this with
probabilistic robot actions, thereby avoiding predictability of the individual agent.

KT has a rich history of research and any attempt to cover all aspects of K'T is
too ambitious. In response to this, we only touch on the areas of KT relevant to our
research. In KT, particles are treated as possessing no potential energy (i.e., an ideal
gas), and collisions with other particles are modeled as purely elastic collisions that
maintain conservation of momentum.

Using some of the formulas for kinetic theory, we can obtain useful properties of
the system. If we allow k to be Boltzmann’s constant, such that k = 1.38 x 1023
J/K, m to be the mass of the particle, T' to be the temperature of the system, and

v = |¥|, then we can define the average speed of any given particle (in 3D) as,

_ 22 kT

(U):/Ooovf(v)dv =\

where f(v) is the probability density function for speed.



30

Another property we can define for KT is the average kinetic energy of the parti-

cles:

4.4 Algorithm

A useful benefit of fluids is their ability to flow. By modeling our multiagent control
algorithm as a fluid we are able to model different types of fluid flow. For the design
of our algorithm we assume that we will treat the particles as being in a 2D Couette
flow. The original algorithm for this one-sided Couette flow was provided by Garcia
(2000). Figure 4.1 shows a schematic for this one-sided Couette flow, where we have
a fluid moving between two walls — one wall moving with velocity vy, and the other
stationary. Because the fluid is a Newtonian fluid and has viscosity, we see a linear
velocity profile across the system. Fluid deformation occurs because of the shear stress
7, and the wall velocity is transferred because of molecular friction on the particles
that strike the wall. On the other hand, the particles that strike the non-moving
wall will transfer some of their velocity to it. This does not cause the wall to move,
since in a Couette flow the walls are assumed to have infinite length and depth and
therefore infinite mass. We chose a Couette flow so that we can introduce energy into

the system and give the particles a direction to move. We created a 2D simulation

Viall

<

v=0

Figure 4.1: Schematic for a Couette flow.

world with a pair of corridor walls (which can be considered Couette walls), obstacles,



31

and agents (modeled as gas particles). The fluid flow is unsteady with no turbulence,
i.e., an unsteady laminar flow.

Our KT approach models a modified (two-sided) Couette flow in which both
Couette walls are moving in the same direction with the same speed. We invented
this variant as a means of propelling all agents in a desired general direction, i.e., the
large-scale fluid motion becomes that of the walls. Particle velocities start randomly
and remain constant, unless collisions occur. (Note that with actual robots, collisions
would be virtual, i.e., they would be considered to occur when the agents get too
close. Wall motion would also be virtual.) The system updates the world in discrete
time steps, At. We choose these time steps to occur on the order of the mean collision
time for any given agent. Each agent can be described by a position vector Z and
a velocity vector v. At each time step, the position of every agent is reset based on

how far it could move in the given time step and its current velocity:

T+ T+ TAL .

When updating the position, a check is performed to see if the movement would
cause an agent-wall collision. If a collision would occur, then the agent’s velocity is
reset and its new position is determined. The agent’s velocity is sampled from a biased
Maxwellian distribution in the z-direction /—log(1 — U) where U is a uniformly
random sample. The agent’s velocity is sampled from a Gaussian distribution in the
y-direction (Garcia 2000). The agent’s new position is determined based on where
the agent would collide with the wall and how far the agent would have been able to
move if the wall were not there. If the agent is about to strike a moving wall, then
some of the energy from the wall is transferred to the agent. Once the agent has

updated its position, the inter-agent collisions are then processed. The number of
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Figure 4.2: KT controllers perform a sweep.

collisions in any given region is a stochastic function of the number of agents in that
region (Garcia 2000). This process continues until a desired state is achieved. Note
that our algorithm performs a bucket sorting routine, which is not directly applicable
to actual robots in the real world. Therefore, a variant of this algorithm is needed

that is more robot-faithful.
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4.5 Robot Port

In order to realize the potential of the KT algorithm, we decided to convert the
original, shared-axes simulated algorithm into a purely local algorithm capable of
being ported to robots. Our new KT robot algorithm is a distributed algorithm that
allows each robot to act independently of the other robots. At each time step, ¢, every
agent needs to determine an angle #; to turn, and a distance s; to move. Each of
these values derives from two types of collisions. Note that all collisions are virtual.
The first set of collisions processed is those with walls. When this is complete, the
robot has a desired velocity vector. The second set of collisions is between robots,
which results in another velocity vector. If collisions do not occur, the robot will
maintain its current heading and speed. Otherwise, the robot will combine the two
new velocity vectors into one final resultant velocity vector. From this final vector,
the robot is able to determine its new heading, #;, and speed, s;.

All sensor data is collected before decision-making. The goal direction is the
pivotal piece of information and is needed for solving the task. Therefore, the bearing
to the goal is sensed first. If the robots are presently at the goal (e.g., based on light
intensity), then they have completed the task. Otherwise, the robots sense other
information, such as whether a collision is imminent. A robot processes wall collisions
as long as there is not another robot currently along its heading. Robot collisions are
processed for every time step. Figure 4.3 contains the pseudo code for the primary
algorithm. Following this section, we describe wall collisions first, then inter-robot

collisions.
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float distance, turn, vx, Vvy;
float mpv = 1.11777f; (T=0.0030)
float stdev = 0.79038f;

float wall = 2.0f;

float safe 15.01f;

float VMAX 5.0f;

boolean[] col;

int[] timeCounter;

void move ()
vx = distance; vy = 0;
incrementCollisionCounters();
Read Goal Sensor (Light Sensor)
float bearing = sensor.getBearing();
Read Trilaterative Sensor
int[] robotIds = trilaterative.getRobotIds();
float[] robotDistances = trilaterative.getDistances();
float[] robotBearings = trilaterative.getBearings();
Read Sonar Sensors
float[] sonarDistances = sonar.getDistances();
float[] sonarBearings = sonar.getBearings();
if ( !robotDirectlyInFront() )
updateForWalls(bearing, sonarBearings, sonarDistances);
updateForRobots(robotIds, robotDistances, robotBearings) ;
distance = sqrt(v*v+ vy*vy);
if (distance > VMAX) distance = VMAX;
turn = atan2(deltay, deltax);

Figure 4.3: KT base pseudocode.
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4.5.1 Wall Collisions

When (virtually) colliding with a wall, a robot must determine its post-collision ve-
locity vector. This new velocity depends on the speed and orientation of the wall with
which the robot collided. A Couette wall is assumed to be in motion. Because robots
cannot distinguish Couette walls from obstacle walls that are parallel to them, they
assume that any wall parallel to the Couette walls (also parallel to the goal direction)
is a wall in motion. Therefore, the first portion of our algorithm addressed here is the
determination of the angle of the wall that the robot has collided with, in relation to
the goal direction. If the wall is determined to be approximately parallel to the goal
direction, then the robot assumes that this wall is in motion. For simplicity, in this
subsection we call any wall that is parallel to the goal direction, and is therefore vir-
tually considered to be in motion, a “Couette wall.” Couette wall velocity, of course,
affects the new velocity that is adopted by the robot after its collision. Furthermore,
in the original K'T' algorithm, robots reset their velocities based on a shared coordi-
nate system. For our new algorithm, each velocity is converted to a local coordinate

system with a shared point of interest, namely the goal.

Heading
X
90° 270°
< - {A)- - >
%
1800y

Figure 4.4: Diagram of robot.

For the following description of our algorithm, assume that robot A is the current
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robot doing the processing. In order to determine if A has collided with a wall, it
checks the values of three of its sensors. These primary sensors are along the robot’s
current heading and orthogonal to the heading as seen in Fig. 4.4. The robot will
process a collision with a wall if any of these sensors detect less than a predefined
safe distance. We require that the robot check the orthogonal sensors as a safety
precaution — to prevent the robot from moving almost parallel to a wall and clipping
that wall (because the front sensor never processes the collision). We chose this
approach as opposed to increasing the safe distance for the heading sensor. Fig. 4.5
shows a collision with a wall occurring.

To determine if a wall is a Couette wall, the robot has to find the orientation
of the wall with respect to the goal direction. For this calculation the robot is only
concerned with the sonar sensors between —45° to 45°, since this is the direction that
the robot is facing (see Fig. 4.5). First, the robot identifies the essential endpoints,
which allow the robot to determine the corresponding plane of the wall. The essential
endpoints are the endpoints of the wall as defined by the robot and will be used to
determine the orientation of the wall. To determine the first of these two endpoints,
A begins at 45° and moves through the sensors looking for a reading that is closer
than the maximum range for the sonar sensors. The second endpoint moves positively
through the sensors beginning at —45°. The essential endpoints are at 45° and —45°
in Fig. 4.5. The wall is then defined as a line between these two endpoints. Although
this process of determining the corresponding line is error prone, it performs quite
well in simulation.

Now that the robot has identified two endpoints for the wall, it creates a virtual line
through these endpoints. When determining the orientation of the wall, A intersects
this line with a second virtual line from itself to the goal (the direction to the goal

is sensed). If the lines do not intersect, then we know that the wall must be parallel,
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or at least close to parallel, to the goal direction. Otherwise, since our orientation

algorithm is imperfect, A must calculate the intersection angle.

Sensor
Range

Figure 4.5: The sonar information used to determine the orientation of a wall. The
sonar at 0° represents the robot’s current heading.

(0,0)
Robot
a
(XW,yW)
b
c
a
(Xi,¥i)

Figure 4.6: The information used to determine the correct angle of the wall relative
to the goal.

At this point, three known endpoints aid robot A in determining the wall’s orienta-
tion. Let (zy,, ¥w) be one of the essential endpoints, and let (z;,y;) be the intersection
between the virtual goal line and the wall line. Robot A’s position is always (0, 0)
with respect to the other points. Using this information, A can create a triangle
as seen in Fig. 4.6. The robot calculates the angle between the wall and the goal

direction to find the orientation. If this angle is within a predefined error amount,
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the wall is assumed to be a Couette wall; otherwise it is considered to be a stationary

wall. The Cosine Law is used to calculate the angle a:

cos-! b+ — a?
o= T
2bc

Robot A defines all walls with @« = 0°+¢ or @ = 180° — ¢ as parallel walls, where ¢
is a user defined error parameter based on the type of obstacles the robot expects to
encounter. The pseudocode for this portion of the algorithm can be seen in Fig. 4.7.

Now that the robot has determined the orientation of the wall with respect to the
goal direction, it needs to determine how to reset its velocity, if it has changed due to
a collision with the wall. Ideally, in a global coordinate system, the velocity is reset
in the z-direction to be a biased Maxwellian distributed velocity, and in y-direction
to be a Gaussian distributed velocity. In the event of a collision with a Couette wall,
the wall velocity v,q; is added to the y-direction.

These ideal (i.e., in global coordinates) velocities need to be converted into real
(i.e., in local coordinates) velocities. First, robot A determines the speed s and angle
(1 of the ideal velocity, where (; is the amount needed to turn in a global coordinate
system. To determine the velocity in local coordinates, A translates the ideal (; to
the local 3 using the angle of the goal 6,. With the information shown in Fig. 4.6, the
robot is able to determine its new local velocity from its ideal velocity and bearing
to goal. The first step is to figure out the angle between the ideal velocity vector and

the robot’s current heading:

B = 0,—90+¢

With angle g, the robot can now reset its (local) velocity based on the previously
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float collisionParallel(sonarDistances, goalBearing)
// Sonar i represents 15%i degrees off of the heading.
// Find essential endpoint eel

theta = 45;
for (i = 0; i < numSonars; ++i, theta -= 15)
if (sonarDistances[i] = sonar.MAX)
continue;

eelx = sonarDistances[i]*cos(theta);
eely = sonarDistances[i]*sin(theta);

break;
// Find essential endpoint ee2
theta = -45
for (i = 0; i < numSonars; ++i, theta += 15)
if (sonarDistances[i] = sonar.MAX)
continue;

ee2x = sonarDistances[i]*cos(theta);
ee2y = sonarDistances[i]*sin(theta);
break;
// Find goal endpoint
goalx = sonar.MAX*cos(goalBearing) ;
goaly = sonar.MAX*sin(goalBearing) ;
Find intersection point
(intx, inty) = intersects(eelx, eely, ee2x, ee2y, 0, 0, goalx, goaly)
if ( noIntesectionPoint(intx, inty) )
a2 = eelx*eelx + eely*eely;
b2 = intx*intx + inty*inty;
c2 = (eelx-intx)*(eelx-intx) + (eely-inty)*(eely-inty);
top = b2 + c2 - a2;
bottom = 2*sqrt(b2)*sqrt(c2);
return acos(top/bottom) ;
return 0;

Figure 4.7: K'T wall processing pseudocode.
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Direction 2

Figure 4.8: The information locally used to determine the correct angle to turn when
recalculating velocity.

determined speed, s, and :

vy = S§Xcospf

vy, = sxsinf

This concludes the collision processing for walls. The robot now has a new desired
velocity vector, in its own local coordinate system that will direct it away from the

wall. The pseudocode to generate this velocity vector can be seen in Fig. 4.9.

4.5.2 Robot Collisions

The second part of the algorithm consists of processing (virtual) collisions with other
robots. By using our trilaterative localization algorithm, a robot can sense the dis-
tance and bearing to all other robots within sensing range. As stated before, collisions
between robots require a communication module. The communication ensures that
only one robot processes the collision, which is needed because of the random com-

ponent inherent in KT.
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void updateForWalls(goalBearing, bearings, distances)
// Sonar i represents 15%i degrees off of the heading.
if (distances[0] > safe and distances[6] > 2 and distances[18] > 2)
return;

thetaCollision = collisionParallel(distances, goalBearing) ;

if (thetaCollision < 45 and thetaCollision > -45)
parallel = true;

if (thetaCollision > 135 and thetaCollision < 225)
parallel = true;

idealVx = sqrt(-log(l-random()))*mpv;

idealVy = randomGaussian()*stdev;

d = sqrt(idealVx*idealVx + idealVy*idealVy);

xi = atan2(idealVy, idealVx);

beta = goalBearing - 90 + xi;

vx = d*cos(beta);

vy = dxsin(beta);

if ( parallel )
vx += wallxcos(goalBearing) ;
vy += wall*sin(goalBearing) ;

Figure 4.9: K'T wall processing pseudocode.

A robot begins processing collisions by checking for messages from other robots.
These messages contain pre-processed collision information. The structure for the
messages will be apparent later, but for now assume that the robot has enough in-
formation for processing. Once the robot has completed the messages, it can begin
determining if there are any other unprocessed robots left to collide with. One issue
for the algorithm is that velocities are reset using a random collision angle; there-
fore, robots could collide repeatedly. To counter this situation, collisions can only be
processed again for a pair of robots after a predetermined number of time steps have
occurred.

Let us walk through the inter-robot collision algorithm in detail. We will refer

to the current robot as A, and the robot that A collides with as B. Therefore, A is
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currently processing this inter-robot collision. Again, there is some predefined safe
distance that allows robots to determine whether a collision has occurred. In order
for A to be processing this collision, it has determined that B is closer than the safe
distance. There is no requirement that states that the robots must have velocity
vectors that will cause a collision in order for the collision to be processed.

Assume that robot B has not already processed this collision. Robot A requests
the bearing from B to A, called the reverse bearing, 64, and the current speed of
B, namely sg. Using this information, A can determine the velocity of B relative to
A. Since robot A always moves along its z-axis, its velocity is straightforward. De-
termining the relative velocity of robot B is not simple. Fig. 4.10 shows the available
information and all of the cases, and provides a good reference for understanding the

final equation.

E LIJAB ',‘ eAB \',‘ e’m 180{2

g
C. Case ITI. £ > 180° and & < 270° D. Case IV. £ > 270° and £ < 360°

Figure 4.10: Cases for determining robot B’s velocity in robot A’s coordinate system.

Beginning with Case 1. we utilize the known information to derive our final equa-
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Continuing with Case II we again utilize the known information to derive the final

equation:

VBa
180

180
180

3

180 — Opa

180 — &+ 045 + Ypa

180 — £+ Oap + 180 — O 4
§—0ap +0pa

180+ 025 — Opa

Case III uses similar information for the derivation:

Van
180

180
180

£

180 — 043

§— 180+ vYap +0pa

E— 180+ 180 — 0,5 + Opa
§—0ap +0Ba

180 + 045 — Opa
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Finally, we conclude with the derivation of Case IV.

Ypa = 360 —0pa

180 = —&+ 6045 +YBa

180 = —&+0ap + 360 — O
€ = 180+ Oap — Oua

As we have shown, for each case it is possible to derive that the angle of the

velocity vector for B in robot A’s coordinate system as:

§ =180+ 04p — Opa (4.1)

where 04p is the bearing to robot B from robot A obtained from the trilaterative
localization algorithm and 6p,4 is the bearing to robot A from robot B obtained
through the communication module. Using this &, A calculates the velocity of robot

B in its local coordinate system by:

8
I

vy = spcosé

= spgsiné

B
UZU

A then begins the kinetic theory portion of processing the collision utilizing B’s

velocity. A first calculates the relative speed of the two robots as

5 = /WP — )2+ (0 — )2

and then it calculates the average velocity, v., of the two robots. Once it has these two
quantities, it then chooses the colliding angle ¢ randomly from a uniform distribution.

This colliding angle is the angle from the center that the two robots collide on. Using
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this ¢, A determines the relative velocity, v,, from the relative speed and the colliding
angle, ¢.
There are now two velocities to assign to the two robots, from the following

equation:

Once A has determined what velocities to assign each robot, by avoiding future col-
lisions, it transmits the information to robot B. In order for robot B to understand
the new velocity, A first translates the velocity vector into local polar coordinates.
A then transmits three pieces of information to robot B for processing. It sends the
bearing, 645, so that B knows the reverse angle to A, as well as the new speed of
B, and finally the turn in robot A’s coordinate system that B should move along.
Combining these three pieces of information, B is able to determine its new velocity
in its own coordinate system by using Equation 4.1.

This collision process is repeated for all robots within A’s safe distance that have
not already processed the collision. The final resultant velocity of each robot is a
vector sum of all the new velocities from every collision. Figure 4.11 contains the

pseudocode for the robot collision processing.

4.5.3 Finishing

Executing the new velocity requires turning and then moving. Robots use tan™! of
their new velocity to determine the turn, and always move with a predefined speed.
We assume that the robots have low-level routines that prevent actual collisions. In

the event that a robot cannot move at maximum speed, it moves as far as possible.
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void updateForRobots(ids, bearings, distances)

if ( noRobotsClose() )
return;

for (i = 0; i < numRobotsClose; ++i)
if ( distanceToRobot(i) > safe ) continue;
if ( alreadyCollided(i) ) continue;
if ( receivedCollisionInfo(i) )

calculateNewVelocity();

processCollision();

Figure 4.11: KT wall processing pseudocode.




Chapter 5

Theoretical Properties of Physics Systems

5.1 Introduction

One of the key benefits of using a physics-based multiagent system is that extensive
theoretical (formal) analysis tools already exist for making predictions and guarantees
about the behavior of the system. Furthermore, such analyses have the added benefit
that their results can be used for setting system parameters for achieving desired mul-
tiagent behavior. The advantages of this are enormous — one can transition directly
from theory to a successful robot demo, without all the usual parameter tweaking. For
an example of such a success (using AP solid), see (Spears, Gordon-Spears, Hamann,
and Heil 2004). To demonstrate the feasibility of applying physics-based analysis
techniques to physics-based systems, we make predictions that support some of our
claims regarding the suitability of gas models for our coverage task.

Recall that our objectives are to sweep a corridor and to avoid obstacles along
the way. A third objective for the swarm of agents is that of coverage. We utilize
our previous definitions of spatial coverage: longitudinal (in the goal direction) and
lateral (orthogonal to the goal direction). Longitudinal coverage can be achieved by
movement of the swarm in the goal direction; lateral coverage can be achieved by
a uniform spatial distribution of the robots between the side walls. The objective

of the coverage task is to maximize both longitudinal and lateral coverage in the
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minimum possible time (maximize temporal coverage). The number of particles,
initial distribution of particles, and termination criterion are determined individually
for each experiment, based on earlier studies.

To measure how well the robots achieve the task objective, we observe:

1. The distribution of velocities of all agents in the corridor. This is a
measure of both temporal and spatial coverage (i.e., a wide distri-
bution typically implies greater coverage of the corridor length and
width).

2. The degree to which the spatial distribution of the robots matches
a uniform distribution. This is a measure of lateral coverage of the

corridor

3. The average agent speed (averaged over all agents in the corridor).

This is a measure of spatial and temporal coverage.

Before describing the experiments, let us first present the metric used for mea-
suring error between the theoretical predictions and the simulation results. Relative

error is used, which is defined as:

| theoretical — actual |

theoretical

The theory and experiments presented in this section assume a 2D environment. The
theoretical formulas assume no obstacles.

We ran two sets of experiments. The first set of experiments explicitly tests the
theory versus experimental results, to see how predictive the theory is. For each exper-
iment, one parameter was perturbed (eight different values of the affected parameter

were chosen). For each parameter value, 20 different runs through the simulator were
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executed, each with different random initial agent positions and velocities. The av-
erage relative error (over the 20 runs) and the standard deviation from the average
were determined from this sample.

The second set methodically adds obstacles to the environment to determine how
well the theory predicts as its assumptions are increasingly violated for KT only.
Explanations for why AP is not considered in these experiments are handled in the
experimental sections.

Again for each of the second set of experiments, one parameter was perturbed
(eight different values of the affected parameter were chosen). For each parameter
value, 20 different runs through the simulator were executed, each with different
random initial agent positions and velocities. The average relative error (over the 20
runs) and the standard deviation from the average were determined from this sample.
An obstacle generator places obstacles into the world in randomly-chosen locations.
This was repeated five times, for five obstacle densities ranging from 10% to 50%
resulting in five curves.

Measurement of each of these three aspects of the system (velocity distribution,
spatial distribution, average speed) corresponds to each of our three experiments.
Recall (above) that for each experiment, we vary the value of one parameter. The
reason for varying such parameter values is to allow a system designer to optimize the
design — by understanding the trade-offs involved. In other words, we have observed
that there is a trade-off between the degrees of longitudinal coverage, lateral coverage,
and temporal coverage — greater satisfaction of one can lead to reduced satisfaction of
the others, making this a Pareto-optimization task. By varying parameter values and
showing the resulting velocity and spatial distributions and average speed, a system
designer can choose the parameter values that yield desired system performance.

Finally, why show both theory and simulation results for each experiment and each
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parameter value? Our rationale is that it is far easier for a system designer to work
with the theory when deciding what parameter values to choose for the system. The
designer can do this if the theory is predictive of the system. In our experimental
results below, we show that the theory is indeed predictive of experimental results
using our simulation.

For the first experiment, the agents are placed uniformly along the beginning of a
long corridor and allowed to perform one sweep. In the second experiment, the agents
are placed in a square container in an initially tight Gaussian distribution and allowed
to diffuse to an asymptotic state. For the final experiment, the agents are placed at
the beginning of a long corridor once again, and allowed to run for a predetermined
number of time steps, after which the average speed is measured. In the second and
third experiments, there is no goal force or wall movement, and therefore there is no

directed bulk movement (transport) of the swarm.

5.2 Experiment 1: Velocity Distribution

The first theoretical prediction for our system is devoted to longitudinal coverage
and sweep speed via movement. The theory predicts the velocity distribution for
each of the approaches, AP and KT. It is assumed that fluid flow is in the y-direction
(downward toward the goal), as in Fig. 5.1. Obstacles are not added to the AP system
because of the challenge of balancing the forces needed to keep the AP particles from
moving through obstacles. In order to test the theory of AP, we do not apply any
friction and we do not limit the maximum speed of the particles in the system.
Because of this particles are not able to stop before moving through an obstacle. In
one case we can keep the AP particles from moving through obstacles by stopping

them if they attempt it, but this causes a loss of energy in the system and will make
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Figure 5.1: Fluid flow simulation diagram.

the theory grossly incorrect.

5.2.1 AP Theory

Recall that the AP approach is an implementation of F = ma. Assuming F, = g,
where ¢ is the magnitude of the goal force, which is constant for all particles and is
strictly in the goal direction, and assuming m = 1 (which is assumed throughout this
thesis), we have the following derivation (where v, is the magnitude of the velocity

in the y-direction, and v, is assumed to be 0):

dv,
7 a
g-dt = dv,
g/dt = /dvy
g-t = 1y
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Figure 5.2: Relative Error for AP Velocity Distribution.

This shows that the velocity in the direction of the goal is just the force of the goal

times the amount of time that has elapsed.

5.2.2 AP Experimental Results

We set up an experiment using this theoretical formula to determine the relative
error for our experiments. The experiment placed 500 agents in the simulator and
terminated in 100 time steps, since by this time the agents reach the maximum
velocity that can be achieved on real robots. The parameter being varied is the goal

force. The results are plotted in Fig. 5.2, and the relative error is roughly 1%.

5.2.3 KT Theory

For KT, a traditional one-sided Couette drives the bulk swarm movement. The
complete derivation for the velocity profile of a Couette flow can be found in (Anderson
1995) (pages 417-420), but here we present a more concise version.

For steady, 2D flow with no external forces, there is a classical “Governing Equa-
tion” that predicts the y-direction momentum of the fluid. This Governing Equation

1s:



93

9 9 oP or, o,
P L gt = = S
Y X

where p is the fluid density, v, and v, are the z- and y-components of velocity, P is
the fluid pressure, and 7,, and 7,, are the normal and shear stresses, respectively. We
can use this equation for momentum to derive the velocity. However, first we need
to specialize the equation for our particular situation. We assume that we have a
Newtonian fluid, parallel flow, and zero pressure gradient, therefore for Couette flow,

the equation becomes:
o, ov
0=~ (u="?
ox (1 ox )

where p is the fluid viscosity. Assuming an incompressible, constant temperature flow

with constant viscosity, this becomes:

vy
or2

(5.1)

Equation 5.1 is the Governing Equation for steady, 2D, incompressible, constant

temperature Couette flow. Integrating twice with respect to z to find v,, we get:

Uy =C1T + ¢ (5.2)

We can solve for ¢; and ¢y from the boundary conditions. In particular, at the
stationary Couette wall (z = 0), v, = 0, which implies that ¢, = 0 from Equation 5.2.
At the moving wall (z = D), vy = Vyau, where D is the Couette width and v, is
the velocity of the moving wall, which is in the y-direction (toward the goal). Then

€1 = Uyau/D from Equation 5.2.
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Substituting these values for ¢; and ¢y back into Equation 5.2, we get:

Uy _ i
Vwall D
X

Vy = 5 Vwall

This is a linear profile.

5.2.4 KT Experimental Results

We set up an experiment to measure the relative error generated by our simulation,
with each particle behaving as if it were part of a one-sided Couette flow. Each exper-
iment contained 3,000 particles, and ran for 50,000 time steps. When determining the
error, we divided the world into seven discrete cells. For each cell, we determined the
average velocity of the particles located in that cell. The relative error was averaged
across all cells and plotted in Fig. 5.3(A) for eight different wall speeds. One can
see that the error is below 20%, with a reduction in error for KT as the wall speed
is increased. Note that the original algorithms from Garcia (Garcia 2000) also have
error between theory and simulation that is slightly below 20%. Reasons for this
discrepancy between theory and simulation are elaborated later. When determining
the longitudinal coverage via swarm movement, we are able to predict very accurately
for both algorithms in the simple scenario, except at slow wall speeds for KT.

The second set of experiments contained 500 particles, and ran for 5,000 time steps.
To determine the error, we divided the world into eight discrete columns. For each
column, we determined the average velocity of the particles located in that column.
The relative error was averaged across all columns and plotted in Fig. 5.3(B) for

eight different wall speeds and five different obstacle percentages. The error increases
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dramatically as obstacles are added, with a reduction in error as the wall speed is
increased.

Why is there a discrepancy between the theory and experimental results in our
second set of experiments? The reason is that theory predicts a linear velocity profile,
but assumes that particles never move backwards (back up the corridor). In the
experiments, on the other hand, particles do move backwards, regardless of whether or
not there are obstacles. In fact, as obstacles are introduced into the simulated world,
the frequency of backward moving particles increases substantially. This phenomenon
accounts for the significant discrepancy between theory and experiment.

Upon inspection of the graph, we noticed that between 0% and 10% obstacles,
at wall speed 1.0, our predictions are actually better for 10% obstacles. This is an
interesting observation that warranted further investigation. We formed the following
hypothesis to explain the reason for this phenomenon. Recall that we expect a linear
velocity profile. KT essentially models collisions between walls and other particles.
When a particle collides with a Couette wall, then that particle receives an increase
in its goal velocity. In order to recreate the linear velocity profile, this velocity is
transfered across the system through inter-particle collisions. At a low (1.0) wall
velocity, inter-particle collisions play a larger role in maintaining the correct velocity
profile than the wall speed does. With a low wall speed, horizontal movement is more
predominant than vertical movement for the agents/particles. Recall that collisions
only occur locally — between particles in the same cell. Unfortunately, with low wall
speed and no obstacles these collisions are too infrequent to generate the desired linear
velocity profile. On the other hand, once we introduce a few obstacles, the obstacles
cause the particles to collide more frequently, thereby increasing the linearity of the
velocity profile and reducing the error between theory and simulation.

To test this hypothesis, we created a second experiment. The experiment tested



o6

the belief that at lower speeds, inter-particle collisions were the primary distributing
force for the velocity profile. In order to accomplish this we disregarded the y-position
of the particles when determining inter-particle collisions. So, given the right con-
ditions particles within the same column could collide, thus increasing the number
of inter-particle collisions. This experiment more closely simulates Garcia’s (Garcia
2000) initial model. When we ran the experiment to verify the hypothesis, the results
confirmed what we believed. We saw that we can predict the velocity distribution for
0% obstacles with relative error at roughly 16%, confirming our hypothesis about the
role of both the inter-particle collisions and the placement of the obstacles.

In conclusion, without obstacles, the theory becomes highly predictive as the wall
velocity increases. Furthermore, this very predictive theoretical formula can also
be used to achieve a desired swarm velocity distribution, i.e., to control the swarm —
simply set the value of v, the virtual wall speed, to achieve the desired distribution,
using the formula.

On the other hand, with an increasing number of obstacles, the predictiveness of
the theory is increasingly reduced. Therefore, future work will focus on increasing the
sophistication of the theory for predicting the swarm velocity distribution in situations

with obstacles present.

5.3 Experiment 2: Spatial Distribution

For the second experiment, we predict the lateral coverage via the spatial distribution.
During the experiment, there is not a goal direction and obstacles are only added for

KT. The agents’ task is to diffuse throughout the system.
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Figure 5.3: Relative Error for KT Velocity Distribution.

5.3.1 Theory

Regardless of the approach a gas model predicts a uniform distribution throughout
the system. For the experimental performance metrics, we measured the distance
from the uniform distribution once the gas reached an asymptotic state. This was
accomplished by dividing the system into discrete cells and counted the number of
particles in each cell. Theory predicts that the number of particles in each cell should
be n/c, where n is the total number of particles and c is the total number of grid cells
that cover our system.

Our experimental system serves as a simple container to hold a gas. The gas should
diffuse within the container until it reaches an asymptotic state and contains equal
numbers of particles in each cell. We allowed the system several thousand time steps,
starting from a tight Gaussian distribution about the center of the container, to reach
this state and then measured the number of particles in each cell. This measurement
was averaged over many time steps, since particles were still moving through the
system and diffusion did not imply particles ceased to move. Both experiments were

the same for AP and KT.
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Figure 5.4: Relative Error for AP Spatial Distribution.

5.3.2 AP Experimental Results

There is a noticeable downward trend for the relative error in the AP system as more
particles are added to the system. Recall that in AP we use forces to affect other
particles as well as forces from the walls to keep the particles inside the simulation.
This requires that particles have a desired radius such that when another particle
enters this radius, it is repelled away. As more particles are added to the simulation,
the space is filled with particles that are constantly pushing each other away and
moving into the only formation that will allow them all to fit, which is a uniform

distribution.

5.3.3 KT Experimental Results

The results can be found in Fig. 5.5. The results for KT show that we are able to
predict the spatial distribution of the particles in the system with a relative error
of 20%. Note that despite the introduction of as much as a 50% particle regional
coverage, we are able to predict the spatial distribution with a relative error of less

than 20%, which is excellent.
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Figure 5.5: Relative Error for KT Spatial Distribution.

5.4 Experiment 3: Average Speed

For the third experiment, we predict the average speed of the particles in the system.
The average speed of the particles serves as a measure of how well the system will
be able to achieve complete coverage, because higher speed implies greater coverage.
Again for this experiment we do not include obstacles in the corridor. The reasons
are similar to the reasons provided for the first experiment. We do not provide a
maximum speed for the AP particles and therefore keeping them from moving into
obstacles becomes a very challenging problem. In one time step at maximum speed
from the theory they could move through the entire obstacle without even registering

ever noticing it.

5.4.1 AP Theory

The derivation for AP’s prediction of average speed begins with a theoretical formula
for AP system potential energy (PE) from (Spears, Spears, and Heil 2004). This
theory assumes that the particles start in a cluster of radius 0. There are two different

situations, depending on the radial extent to which F,,, dominates the force law
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F = ma. Recall that agents use Fj,., when F' > F,,,,. This occurs when % > Pz

or, equivalently, r < \/ﬁ = R'. The first situation is when F,,,; is used only
at close distances, i.e., when 0 < R’ < 1.5R. The second situation occurs when
R' > 1.5R. Here we assume the first situation, i.e., a low value of G is used such that
G < Faz(1.5R)?, and F,,,, is only used at close distances. Because we are using
AP gas, there is no friction and all forces are repulsive. We begin with a two-particle
system. In this case, the formula is the sum of two integrals. The first represents
the force felt by one particle as it approaches another, from a distance of 1.5R to R'.
The second is the force F,,, that is experienced when 0 < r < R'. Then, using R’
as defined above, with r the inter-agent distance, we have (V' is the standard symbol

for PE):

PE =V
R L5R (3
= / Frozdr + —ZdT
0 R r
1.5R

= FhwR + G r2dr
RI
= FpaR + G(—r Y|~
1 1

= Fmaa:Rl G <_ )
* 15R R

FmaCC 1 G
= VGFuu + G( o - 15R> because R' = B

G
= \/GFmaz + \/GFmaz - (ﬁ)

G
= %/GF,.., — [——
G Frmaa (15R>

Now we generalize V' to N particles. Vy is our abbreviation for total potential energy,

and
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= N(N -1
VNZZZ'V=7V (2 )
1=0

Note that all the potential energy transforms into kinetic energy (since there is no
friction energy dissipation), i.e., Vy — KFE. Also, the total kinetic energy, KE, is
equal to £ 327 (v(i))?, assuming m=1 and v(i) is the speed of particle 7. This formula
for KE is equal to 5 (v?), where (v?) is the average of the particle speeds squared.

Setting Viy = KE, we get:

VN(N-1) N

Substituting for V we get

() = V(N-1) = (N-1) [2\/@_ (%)]

From (Stark and Woods 1986), we know that the relationship between (v) and (v?)

is the following:

W = ) —o?

where o? is the variance of the velocity distribution. However, because the variance
of the velocity distribution is not typically available when making a theoretical pre-
diction, one approximation (which is an upper bound on the true theoretical formula

because it assumes ( variance) that we can use is:

0 =) = =) 2§~ (150)]
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Figure 5.6: Relative Error for AP Average Speed.

5.4.2 AP Experimental Results

Using this equation for AP, we ran through the experiments (starting with the par-
ticles in a tight cluster to match the theory), allowed the gas to reach an asymptotic
state, and measured the relative error. For each experiment, there were 100 agents in
the system. The total number of time steps required to reach this asymptotic state is
different for each value of G since it requires that the agents are no longer interacting
with each other. This terminating state can be found when all the agents have ceased
to change their velocity. The parameter being varied is the gravitational force, G. As
seen in Fig. 5.6, the error is less than 6%. Furthermore, if the system designer has
any clue as to what variance to expect in speeds, the theoretical prediction will be
greatly improved.

In addition to verifying the formula for (v), we also verified the predictiveness of
the formula above for (v?), which is precise because it does not involve variance. The
relative error in this case is less than 0.07% for all values of G, which is extremely

low.
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5.4.3 KT Theory

We next show how we derive a KT formula for average speed by modifying the
derivation for 3D (v) in (Garcia 2000) to a 2D formula for (v) (so it applies to our
simulation). Assuming a system in thermodynamic equilibrium (since there is no
bulk transport), with velocity components within the ranges v, + dv, and v, + dv,,
and k is Boltzmann’s constant, m is the particle mass, v is the magnitude of the
particle velocity (i.e., the particle speed), and T is the initial system temperature
(a simple, settable system parameter), then the probability, f(vs,v,)dv,dv,, that a
particle has velocity components in these ranges is proportional to el=mv?/ sz)dvmde.

In particular, we have:

f(vg, vy)dvgdo, = Ap(~mv”/2kT) dv,dv,

_ Ae(—m“m2/2kT)e(_mv"’z/%T)dUzdvy

because v* = wv,? + v,%, and A is a normalization constant that is fixed by the
requirement that the integral of the probability over all possible states must be equal

to 1, i.e.,

/oof(vw,vy)dedvy =1
0

Therefore,

1
T [0 o(cmua/2KT) gy [0 p(—mv,? [2KT) gy
fO T f() y

A

To simplify the expression for A, we can use the fact (from pages 40-46 of (Feyn-
man, Leighton, and Sands 1963)) that:
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m

/oo (=M 2KT) gy,
0

and then do likewise for v,. Therefore:

f(q)w’vy)dvxdfuy = ( m )(6(_m(vm2+m’2)/2kT))d’l)zd?)y

2nkT

m_
where kT 18 A.
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Note, however, that f(v,,v,)dv,dv, is a probability for a velocity vector, but we

want average speed. To get average speed, the math is easier if we go from Cartesian

to polar coordinates. In particular, to go from velocity to speed, we integrate over all

angles.

In polar coordinates, 2mrvdv is the area of extension (annulus) due to Av. In other

words, the area of an annulus whose inner radius is v and outer radius is v + dv is

2nvdv. Then the Maxwell-Boltzmann distribution of speeds, f(v)dv, is obtained by

integrating the velocity distribution, f(vy,v,)dvydv,, over all angles from 0 to 2.

This integration yields:

fw)dv = 27ﬂ)( m )(e(m”2/2kT))dv
2k

Canceling terms, the right-hand side becomes:

_ m (—mw? /2kT)
! (kT) (e Jdv

Because (v) is an expected value,

) = [Tof@dr = T [T ey

kT
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From (Reif 1965)(page 609), we know that [ e *’z2dz = iﬁa’%. Substituting

v for z and 7% for a, we get:

0 = (i) = 5

5.4.4 KT Experimental Results

Once again, we set up an experiment to measure the actual average speed of the
particles in the system. We allowed the system to converge to an asymptotic state for
50,000 time steps measuring the average speed. For each of the 500 particles in the
system, we found the average speed, (v), which we used to find the relative error for
the system. Since temperature drives changes in speed, we varied the temperature.
Note that by setting 7', a system designer can easily achieve desired behavior. The
results can be found in Fig. 5.7(A) for the different temperatures. Our ability to
predict the average speed of the particles is shown, by errors less than 10%.

For the second set of experiments we compare this theoretical formula with the
actual average speed of the particles in the system, averaged over all 100 particles.
We allowed the system to converge to an asymptotic state for 10,000 time steps,
then measured the average speed, (v). Since temperature drives changes in speed, we
again varied the temperature. The results can be found in Fig. 5.7(B). The results
are striking. Our ability to predict the average speed of the particles is less than
10% error, which is outstanding considering that as much as a 50% obstacle coverage
has been introduced. Finally, note that we can use our theory to not only predict
behavior, but also to control the swarm behavior. In particular, by setting T, a

system designer can easily achieve desired behavior.
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Figure 5.7: Relative Error for KT Average Speed.

5.5 Conclusions

We are capable of predicting three different properties of the system, all of which
affect coverage, with an accuracy of less than 20% error, and most with error less
than 10%. A 10% error is low for a theoretical prediction.

By looking at the relative error graphs of both the AP and KT approaches, one
notices that the AP error is always lower than that of KT (except in the case of
(v), where the AP formula is a rough approximation). In fact, only KT gets 20%
errors — AP errors are always substantially lower than 20%. Our rationale for AP
having lower errors between theory and simulation is that AP uses a deterministic
agent-positioning algorithm, whereas KT uses a stochastic algorithm for updating
particle positions. Therefore, AP predictions are precise, whereas KT predictions are
only approximate. Furthermore, as stated in (Garcia 2000), Monte Carlo simulations
such as KT need very long runs and huge numbers of particles to acquire enough
statistical data to produce accurate (theoretically predictable) results. We cannot
guarantee this, since we are developing control algorithms for robotic swarms with a

few to a few thousand robots. Therefore, our experiments show a higher error than
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desired for a Monte Carlo method but they are realistic for real-world swarms.

As we can see, our prediction for the velocity distribution performs very poorly
when obstacles are increased, but our other predictions appear to be independent
of the number of obstacles in the world. We are capable of predicting two different
properties of the system, all of which affect coverage, with an accuracy of less than
10% error, which is very low for a theoretical prediction.

In conclusion, there appears to be a trade-off. AP systems are more predictable —
both on the macroscopic swarm level and on the level of individual agents. Therefore,
if swarm predictability is a higher priority, then AP is preferable. On the other hand,
if it is important that individual agents not be predictable (e.g., to an enemy), then

3

KT is preferable.



Chapter 6

Performance Evaluation

6.1 Introduction

This chapter is dedicated to showing the performance of our new controllers on the
coverage task described in Chapter 1. In order to provide a baseline and an up-
perbound, we have implemented several other algorithms. The Random controller
is our baseline and represents the minimal behavior needed for the controller task.
The FSM controller allows a genetic algorithm to learn a better approach than our
AP and KT approaches. The final controller is the Ant controller, used as an upper

bound since it is known to be complete and able to guarantee complete coverage.

6.2 Evaluation Algorithms

6.2.1 Random

The first algorithm we compared against is a baseline random controller. Although
we call this a random controller it still attempts to exploit known information about
searching “shadow” areas — regions just downstream (w.r.t. goal direction movement)
of obstacles. The robots used to compare are the exact duplicates of the robots used
by the KT controller. The primary difference is that the random robot only has eight

possible moves available to it. These moves are selected in 45° increments as shown
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in Fig. 6.1). The controller weights each move as more or less desirable based on the
information known to the robot. Specific weights are given to maintaining the same
direction, moving towards the goal, and exploiting shadow areas. We designed the
Random algorithm in this fashion since the shadow areas represent the hardest areas

to explore.

2 (A 6
Lo Ty

Figure 6.1: Random Controller Choices.

The first portion of the algorithm needs to determine the available moves by
sensing the environment. The robot assigns a weight to each available move, and
then decides to continue along the same path 80% of the time if the move is available.
It then divides the remaining weight into three parts. Two of the three parts go to
shadow areas (see Figure 6.2) if they are available. Then the remaining one third is
again split two ways. Half of this weight goes to the goal direction and the other half
is divided evenly between all the open moves. The sum of these weights is equal to
one. Once this is accomplished, the robot randomly selects a number between zero
and one from a uniform distribution. The position of the number inside our weighted
choices determines the next move for the robot. The pseudocode for the Random

algorithm can be seen in Fig. 6.3.
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Figure 6.2: Shadow preferences for the Random controller. The gray robot represents
the preferred choice.

6.2.2 Trained Finite—State Machine

This work is a continuation of the Spears’ research on strategies for protecting re-
sources. Most of the presented work was derived from their implementation and
attempts to solve a different problem using the same techniques (Spears and Gordon-
Spears 2002). We attempt to train a finite-state machine (FSM) to be capable of
achieving perfect coverage when presented with random obstacle-laden corridors. A
FSM is a model of computation composed of states, actions, and transitions. The
FSM maintains two transition functions. The first function determines the next state
of the FSM given the current state and the current input. The second function deter-
mines the desired action of the FSM given the current state and current input. We
will use a genetic algorithm (GA) in order to train or FSM. A genetic algorithm mim-
ics natural evolution by maintaining a population of individuals. In our case these
individuals are represented as finite-state machines. Each individual is given a fitness
representing the likelihood of survival. Those individuals with the highest fitness are
then selected to survive and reproduce undergoing recombination and mutation. The
system then evolves through many generations searching for the desired solution.
Each robot is equipped with eight sensors, one located every 45°; thus we have

eight inputs into the system. The sensors are very primitive, and only capable of



71

float distance, turn;
float VMAX = 5.0f;

void move()
Read Goal Sensor (Light Sensor)
Read Robot Sensor (Trilateration)
Read Sonar Sensor
float bearing = goalSensor.getBearing() ;
int choice = randomAlgorithm();
turn = bearing + (45%*choice);

int randomAlgorithm( float goal )
min = 0.0; left = 0.0
previous = (goal / 45) == 8 7 0 : goal / 45;
if ( available(previous) )
weight (previous, min, 0.8)
min = 0.8; left = 0.2;

split = left / 3;

if ( available(2) and notAvailable(3) and notBlockedByRobot(3) )
weight (2, min, min+split)
min += split; left -= split;

if ( available(6) and notAvailable(5) and notBlockedByRobot(5) )
weight (6, min, min+split)
min += split; left -= split;

split = left / 2;

if ( available(0) )
weight (0, min, min+split)
min += split; left -= split;

totalAvailable = countAvailable();
split = left / totalAvailable;
for (int j = 0; j < 9; ++j)
if ( available(j) )
weight(j, min, min+split)
min += split; left -= split;
return makeRandomWeightedChoice();

Figure 6.3: Random pseudocode.
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seeing a distance equal to the speed of our robots. Each sensor can only detect if an
object is blocking the path or if the path is clear, so each sensor can only have two
states. Because the sensors can only see a limited distance in every direction, the
world becomes a discretized version of the real world. Therefore we have 2% possible

inputs.

Representation We chose to represent the FSM in a tabular arrangement, the
same as (Spears and Gordon-Spears 2002), the efficiency gain again being primary
motivation for this method. For each state s; and input z;, the table entry (i, j)
contains the next state of the FSM, 0(s;, z;), and the action a to take. The number
of states S will be variable, but initial tests will be performed on S = 8. As discussed
above the number of different possible inputs is 256. The size of our table is S x 256.

The initial state of our world is state 0.

Initialization The goal is to allow the GA to generalize a strategy that yields good
results regardless of the number of obstacles and the size of the obstacles. Therefore,
we introduce as few biases as possible. When initializing the elements of the table,
we choose a state from a uniform distribution between 0 and S. When initializing the
action we are careful to choose only from those actions that are allowed for a given
input. If the sensor has detected a wall or obstacle then the action that would take
us to that position is not allowed.

The only biases initially introduced attempt to ensure that the shadow areas are
searched fully. Figure 6.4 shows these sensor readings and the preferred directions
associated with them. We are attempting to train the FSM to search the backside of

obstacles when they have been detected.
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Options Options Options Options

Figure 6.4: Biases for the FSM. The options are shown as the gray scale. The center
square represents the current position of the robot. For each bias there are three
preferred moves.

Operators Modification of the table entries by the genetic algorithm is accom-
plished via mutation and recombination. In order to keep the GA simple we are
using uniform recombination with a probability of swapping alleles at p = 0.5. The
probability of recombination is set at 0.6 as standard from other research. Mutation
is performed the same as discussed in (Spears and Gordon-Spears 2002). Each allele

is chosen for mutation with probability

1

Pm =g 956

Since each allele represents a (state/action) pair, we flip a coin to determine whether
the state or the action is mutated. If the state is chosen for modification then we
choose a uniformly random state from the set of all states. If instead we choose the
action to mutate we choose a uniformly random action from the set of preferred or

available actions for the given input.

Fitness Evaluation In order to determine the fitness of an individual, we ran the
individual through our robotic simulator to measure its performance. This simulator

scales well to large numbers of agents and can represent an arbitrarily sized corridor.
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The corridor is then divided into discrete cells in order to determine coverage. The
evaluation consists of three parts. The first part measures the percent of complete
coverage in the world, p.. This is calculated by storing a two-dimensional array of
visited cells. If a particle enters a cell, then we clear that cell and assume that the
cell has been searched. The second part of the fitness comes from the “shadows,” as
discussed earlier. In our simulation we only use square obstacles; therefore we can
determine the cells that are directly behind the obstacles. The percentage of these
cells explored become the second measure of fitness, py. Since exploration time is
important, the agents are only allotted a certain number of time steps to explore the
world. The percentage of those agents that have finished the corridor in the allotted
time will act as a third measure of the fitness, p;.

Each FSM is allowed to run through several different obstacle courses with the
actual values for p., py, and p, averaged over these runs. To get one measure of the
fitness we combine these intermediate fitness values weighted with a constant defining

their importance. The final fitness function becomes

[ =(c1 xpp) + (ca X pc) + (c3 X pt)

where

01+CQ+63:1.0

The constants c¢1, co, and c3 serve as parameters for the user to tune in order to

achieve the desired behavior.

Selection and Termination We are using fitness proportional selection without
elitism. For a termination criterion we ran the GA a pre-defined number of generations

(200). Selection is accomplished using Baker’s stochastic universal sampling.
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Figure 6.5: Obstacle courses used for evaluation.

GA Results There is a trade-off when determining how to evaluate the fitness
for an individual. Ideally we would like to be able to run over all possible obstacle
courses to get a true measure of fitness. Since there are infinitely many different
obstacle courses, this is not possible. This poses an interesting problem. We need
to pick a representative subset of these courses. The challenge is to develop a small
number of obstacle courses that represent a very large number. Several attempts were
made at accomplishing this and can be seen in Fig 6.5.

The first attempt was to use a checkerboard course for evaluations. This course
contained a lot of shadow space and would really require the agents to learn to search
both the shadow space and the surrounding space. Once the GA had trained a FSM
individual, we realized that the GA had trained an individual that could excel at the
checkerboard course, but when the same controller ran through a random obstacle
course particles were stuck and performed very poorly at searching. Therefore, it was
determined that our GA was learning on a specific subset of the obstacle courses and

wasn’t generalizing.



76

The second attempt tried a different obstacle course based on what appeared to
be capturing the FSM in a trap. We will refer to this course as the “L” course. The
course can be seen in Fig 6.5(B). The GA was allowed to run and the best individual
produced was tested. Again, when the FSM was run on a random obstacle course
performance was very poor.

The final attempt took a combination of the previous attempts and added another
course. We ran the final GA on a combined three courses: checkerboard, “L”, and a
random obstacle course. All three courses can be viewed in Fig 6.5. The final fitness
for the individual is an average of the scores for each course. The FSM produced by
this appears more capable of generalizing than the other attempts.

Upon completion of the GA we have the best controller found, and we use this

FSM controller to compete with the other controllers.

6.2.3 Ant

To experimentally compare our algorithm against what appeared to be the best per-
forming and most appropriate alternative found in the literature, we duplicated the
algorithm designed by Koenig, Szymanski, and Liu (2001). The Ant algorithm de-
scribed by Koenig et al. employs graph theory to guarantee complete coverage. It
assumes stigmergy, i.e., robots that can detect and leave markings/traces on the en-
vironment. It is important to note that the Ant robot described has an explicit
advantage over our algorithms since it is able to mark its surroundings.

The Ant algorithm determines its next move by investigating the areas surround-
ing itself in four directions: North, East, South, and West. The four directions are
determined by the orientation of the goal, which is always the South direction. Each
direction is examined and the direction with the minimum covered (marked) value is

chosen as the direction to move. The robot then updates its current position before
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float distance, turn;
float VMAX = 5.0f;
boolean statel = false;
int stateTimer = 0;

void move()
Read Goal Sensor (Light Sensor)
float bearing = sensor.getBearing();
if (statel)
int choice = antAlgorithm();
turn = bearing + (90%*choice);
statel = false;
else
turn = 0;
if (++stateTimer == 3)
stateTimer = 0;
statel = true;

int antAlgorithm( float goal )
the direction of ul[i] is goal+(90%i)
Read Trail Values
int[] u = trail.getTrailValues();
for i=0 to 4
if (uli] < min)
minIndex = 1i;
min = ul[il;
else if (u[i] = min and rand() < 0.5)
minIndex = i;
min = ul[il;
return minIndex;

Figure 6.6: Ant pseudocode.

repeating the process. The value of the environment is incremented by one, based on
Node Counting as described in (Koenig and Liu 2001). The pseudocode for the Ant

algorithm can be seen in Fig. 6.6.
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6.3 Experiment Setup

To better understand the performance of our new algorithms, we ran two sets of
combinatorial experiments, varying the obstacle percentage in one set of experiments
and varying the number of robots in the second set of experiments. For all of the
combinatorial experiments we will be comparing our algorithms as well as the algo-
rithms discussed earlier. First, we formalize the problem for each of the experiments

and define how the parameters will be varied.

Measurements The simulated world is divided into 50 x 250 cells. We applied the

following performance metrics:

1. w, the sweep time, which measures the number of simulation time steps for all
agents to get to the goal location. These experiments assume only one sweep.

Sweep time is a measure of temporal coverage.

2. ¢, the total spatial coverage, which is the fraction of all cells that have been

visited at least once by at least one agent, counted over all time.

3. ¢, the shadow coverage. This is the same as c., except that we take this measure
over a small region downstream (w.r.t. the goal location) of the obstacles (see

Fig. 6.7). The shadow region is hardest to cover.

Experiment 1
e U a bounded 2D spatial corridor whose length is much greater than its width.
e [, a swarm of 25 simulated robots.

e A, a set of randomly placed obstacles, varying 0-40% coverage.
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Figure 6.7: Measurements taken by the simulation. Gray squares measure c;. Obsta-
cles are colored black. Free space is white.

We vary the percent of obstacles A, in order to determine how coverage is affected.
We generated 5 corridors for each obstacle percentage. Each individual experiment
consisted of 10 trials through each of the 5 corridors with random initial locations and
orientations of the robots. We chose to run through each corridor 10 times because
most of the algorithms are stochastic. The mean performance for each metric has
also been graphed. Since each algorithm is not guaranteed to have each robot finish

the obstacle course, we limit the total number of time steps to 150,000.

Experiment 2

e U, a bounded 2D spatial corridor whose length is much greater than its width.

e [') a swarm of n simulated robots, varying from five to thirty robots.

e A, a set of randomly placed obstacles at 30% coverage.

In the second set of combinatorial experiments we vary the number of robots in
order to see how coverage is affected when robots fail or are not available. Similar
to Experiment 1, we generated 5 corridors for each different number of robots n.
Each individual experiment consisted of 10 runs through each of the 5 corridors with
random initial locations and orientations of the robots. Again each corridor was run

10 times because most of the algorithms are stochastic and the mean performance is



80

Time Time
160000 160000
140000 | 140000 | FSM
120000 | 120000 P
& 100000 - 2 100000
) k)
(2] L (] L
o 80000 | > 80000
£ 60000 [/ £ 60000 | 4
40000 | 40000 | Ant |
KT
20000 20000
0 e 0 : ; ‘ Randorm
0 5 10 15 20 25 30 35 40 5 10 15 20 25 30
Obstacle Pct (%) Number of Robots (n)
A. Experiment 1 B. Experiment 2

Figure 6.8: Temporal Coverage.

graphed. Again to ensure the completion of the algorithms we limit the total time

steps to 150,000.

6.4 Experimental Results

In order to understand the results more fully we present them according to measure-
ment as opposed to combinatorial experiment. This allows us to look at different
variations of parameter settings for each algorithm and how these settings affect spe-

cific metrics.

6.4.1 Temporal Coverage (w) Results

The first form of coverage the experiments measured was temporal coverage w, also

known as the sweep time. The results can be seen in Figure 6.8.

KT KT is able to complete consistently in a short time. As obstacles are added
to our corridor W, KT begins to slow down. Although navigation becomes much

more tough KT’s temporal coverage performance degrades slowly. This leads to an
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emergent behavior of the KT system. Obstacle “wells” or box canyons appear to
affect most of the other controllers, but KT has an inherent behavior that allows it
to escape these wells rather quickly.

For the second set of experiments, robots are added and performance is monitored.
As robots are added to the corridors it appears that KT is able to continue to finish in
roughly the same time. This means that KT will finish in roughly the same number

of time steps regardless of the number of robots.

AP Regardless of the experiment AP’s performance isn’t optimal. When there are
no obstacles in the environment W, AP appears able to navigate as quickly as KT,
but its performance quickly drops. Why does this drop occur? When one of the trials
exceeds the amount of time allotted for a run, an image of the final robot positions
is used in order to figure out why the time was needed. AP consistently ran over
the allotted time and upon examining these images, we quickly realized that AP was
becoming stuck in the obstacle wells discussed previously. An example of this can be
seen in Figure 6.9.

Since the second set of combinatorial experiments were run on obstacle courses
with 30% obstacle coverage, the results for AP are very similar to the first set of
experiments. Note though that as more robots are added it doesn’t appear to affect

AP as much as changing the obstacle percentage.

Ant The ant algorithm is known to explore all areas. This causes the ant algorithm
to take much more time than the other algorithms. As obstacles are added to the
world W, it doesn’t appear to affect Ant. This is understandable since obstacles just
cover additional cells and Ant no longer needs to visit those cells.

An interesting result occurs when looking at Ant’s performance on the second
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Figure 6.9: Robot simulation showing AP controller stuck in obstacle wells. The gray
area is the goal and the direction the goal force is felt.

set of combinatorial experiments. As n is increased the time required for Ant to
complete actually decreases. Ant is the only algorithm studied that we observed this
phenomena. It is easily explained though by the Ant algorithm. The algorithm visits
those surrounding cells that have been visited the least. As more robots are added the
surrounding cells increase faster causing the individual robots to be able to explore

faster.
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FSM Our trained FSM algorithm performed very poorly even though the number
of robots finished was a measurement in the learning process. With extended learning
this may be able to overcome, but we can only comment on the current results. As
soon as obstacles are added to W, the FSM controlled algorithm is unable to finish
any runs. The obstacle wells that plagued AP appear to also affect FSM.

Since all of the second set of combinatorial experiments are run on obstacle courses
with obstacle coverage of 30%, the FSM controller is unable to finish in the alloted

time for all runs therefore achieving the worst possible temporal coverage.

Random Our baseline controller actually performed the best on temporal cover-
age up to a point. Once the obstacle percentage passed 40% the Random controller
quickly dropped in performance. At 40% obstacle coverage the courses generated
randomly are primarily obstacle wells and are difficult to navigate. By making purely
stochastic decisions that emphasize exploration under obstacles the Random algo-
rithm performs poorly.

The second set of experiments shows that as more robots are added to the Random
controller performance is unaffected. This is intuitive since the robots controlled by

the Random controller are unaffected by what other robots do.

6.4.2 Total Spatial Coverage (c.) Results

We have seen how the control algorithms perform with respect to temporal coverage.
The next two sections discuss how the algorithms fare with respect to two different
measurements of spatial coverage. The first measurement is the total spatial coverage.
It is important to note that although 100% coverage is expected, it cannot be achieved
in the current robot simulator. This is because the robots are shut down once they

pass the goal line. This means that there are areas behind the goal that may not be
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Figure 6.10: Total Spatial Coverage.

able to be explored. These spaces could be explored on a second sweep, but for our
experiments we are only concerned with a single sweep. The results for ¢, can be seen

in Figure 6.10.

KT Inspecting the graph found in Figure 6.10, we noticed that as the obstacle per-
cent is increased, KT actually performs better. It increases by several percent and
slowly tapers as the corridors reach 40% obstacle coverage. This can be explained
by the extra obstacles in the corridor. As the obstacle percentage is increased the
number of collisions with obstacles is also increased. This slows the robots longitudi-
nal movement (goal direction) and increases the lateral movement (orthogonal to the
goal). This increase in the lateral movement increases spatial coverage.

The second graph shows that as more robots added to the KT controller the
coverage increases. This is as expected and it is important to note that with 30
robots, KT is able to achieve roughly 90% coverage and close to the successes of the
Ant algorithm. This is even accomplished without the need for leaving traces on the

environment,.
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AP Spatial coverage challenged AP in much the same way as temporal coverage.
Different causes are believed to account for this problem. The first thought is that
regardless of the location of a robot controlled by AP it always feels a force towards
the goal. This leads to a very greedy robot and regardless of what other forces
are felt, eventually and rather quickly the goal force will control movement. This
lack of exploration shows up rather quickly since even without any obstacles in the
environment AP performs more poorly than even our baseline Random. This will be
explained later, but there is belief that implementation issues may also be a cause of
the problem.

The second set of experiments shows that with more robots AP’s performance
improves, but nothing significant and AP still defines our baseline for performance

on spatial coverage.

Ant Ant is known to be a complete solution to the task problem. Therefore, it was
no surprise to see that for both sets of experiments Ant set the standard and achieved
the best coverage. We discussed earlier that Ant would be unable to achieve complete

coverage since robots are turned off as the finish their task.

FSM The FSM performance is a bit of a surprise. The most important results
come from the corridors without obstacles. When watching the robots move through
the corridor, it appears that the GA learned a sweeping motion to increase coverage.
This sweeping motion can be seen in Figure 6.11. We notice that the FSM controller
actually performs the second best when there are no obstacles, but KT quickly regains
ground as soon as obstacles are added to the corridor. As more obstacles are added
to the environment FSM’s performance deteriorates until it performs roughly as well

as Random. It is also important to show the temporal coverage along with the spatial
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Figure 6.11: Learned FSM behavior.

coverage. The robots are only allowed 150,000 time steps in order to complete, yet
the FSM controller never finished as soon as obstacles were added to the environment.
This means that there must have been cycles that caught some of the robots. These
cycles will directly affect the amount of coverage that the FSM controller is able to
achieve. Future work will attempt to overcome the cycle problem by first adopting
the solution provided by Spears and Gordon—Spears (2002).

In the second set of experiments it is clear that performance for FSM increases as
more robots are added to the environment. Again, much the same as KT, this is not

a surprising results. More robots means more independent exploration.

Random Our final algorithm was supposed to show the baseline performance. The
Random controller attempts to combine greedy exploitation with exploration in a
hand crafted manner. This algorithm performs well covering roughly 45%), regardless
of the number of obstacles.

Again the second set of experiments provide no new insights for the Random

controller. The results improve linearly as more robots are added. Since the robots’
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Figure 6.12: Shadow Coverage.

decision making ability is independent of other robots, this isn’t surprising.

6.4.3 Shadow Coverage (c;) Results

The final measurement is shadow coverage. This is a measurement of how well the
controller is able to explore. If the controller goes directly towards to the goal always
it will achieve a 0% shadow coverage. If the controller is optimal at exploration
then the controller will achieve a 100% shadow coverage. The results can be seen in

Figure 6.12.

KT KT performed very well in the final measurement as can be seen in Figure 6.12.
Regardless of the number of obstacles KT appears able to get roughly 80% shadow
coverage. This implies that KT has a very good separation between exploitation and
exploration. Although KT performs very well at shadow coverage, this area is the
most important area to increase performance. Greater exploration will not only affect
the shadow coverage but also the total coverage.

As robots are added to the system, the performance of KT also increases. Implied

in this result, is that if robots begin to fail then the performance of KT will also
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degrade slowly, which is a nice result.

AP AP’s performance is about as bad as it can be in shadow coverage. At 40%
obstacles AP’s performance barely raises above 0% coverage. This occurs for several
reasons, but the primary reason was discussed earlier. At every time step all robots
controlled with the AP algorithm feel a force pulling them towards the goal. This
force allows for at most minimal exploration as demonstrated by the results seen in
Figure 6.12.

The results of the second set of experiments shows that even as more robots are

added exploration problems still occur for AP.

Ant The Ant controller performs exactly as designed and achieves 100% coverage
behind obstacles regardless of the number of robots or the number of obstacles in the

environment.

FSM The FSM’s performance degrades as more obstacles are added to the corridor.
There are several possible explanations for this event happening. The strategy for
the FSM learned by the GA may not be adept at searching shadow regions. Another
problem could be that the biases we introduced required the FSM to encounter certain
sensor states. With limited sensors these states are very rare even at 40% obstacle
coverage. Either of these problems could explain the degradation in performance as
more obstacles are added.

The results of the second set of experiments shows that as more robots are added,

the FSM controller is able to explore more shadow areas. This is expected.

Random Random provides us with a usable baseline. By random search we are able

to achieve roughly 20% shadow coverage. Clearly the other algorithms outperform
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random search.
Our baseline algorithm’s performance is increased when extra robots are added to

the environment. This is another expected result.

6.5 Conclusions

Most of the results in this chapter were unsurprising, but there were several important
results presented. The experiments show that Ant is superior in the spatial coverage
tasks. This superiority comes at a cost though. The cost is a much slower performance
time and susceptibility from adversary robots. Other than the Ant algorithm, no other
algorithm was able to compete with KT. These results show the applicability of KT
to the coverage task. Firstly, KT is able to show excellent coverage without leaving
traces on the environment. Secondly, if the coverage task requires multiple sweeps
KT clearly has the advantage, since temporally it was much faster than Ant. All of
the results for KT shown above were also shown to be statistically significant using
a Wilcoxon rank sum test with a p-value of 0.05 except for the initial total spatial
coverage at 0% and 10% corridor coverage.

While KT performed reliably for all of the performance metrics, AP appeared to
suffer at the coverage task. We have shown that the goal force could be responsible
for some of the problems associated with AP, but there is another possible problem.
The AP controller used in all of the experiments did not use the trilaterative system
discussed earlier. The robots in the simulation used 24 sonar sensors mounted all
around the robot. For each sensor the robot experienced a repulsive force if the
distance was less than a predefined distance. This means that upon encountering a
large obstacle that covered 7 sonar sensors, the robot felt i total forces. This possibly

created an abnormally strong repulsive force from any object that covered several
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sonar sensors. Although the results were not superior for AP, we can show that they
were statistically significant. Again we used a Wilcoxon rank sum test with a p-
value of 0.05 and all AP results are significant except temporal coverage comparisons
between Ant and AP.

This could be possibly remedied by taking the derivative of the sonar data received
in order to determine the starting and ending points of the object blocking the sonar.
Once these endpoints have been discovered the AP robot could then feel a repulsive
force from the center of the object. This would result in much softer turns, as opposed

the the hard turns seen in the simulator.



Chapter 7

Final Thoughts

7.1 Summary

We have successfully created two new controller algorithms for controlling large groups
of autonomous robots (Spears, Spears, Heil, Kerr, and Hettiarachchi 2004). Both
new algorithms only require limited sensors and communication between robots. This
provides a means to generate large numbers of inexpensive robots capable of achieving
our coverage task. The algorithms are also fault-tolerant, as robots fail the other
robots act independently of each other.

Both controllers provide behavioral assurances for controlling the swarm (Kerr,
Spears, Spears, and Thayer 2004; Spears and Kerr 2004). These assurances allow
system designers to omit trial and error and directly determine how to set system
parameters to achieve a desired effect. The robot controllers complement each other
since one is deterministic and the other is stochastic. If robot predictability is required
a system designer can choose to use AP; however if stealthy behavior is required they
can choose to use KT. KT has the advantage that its behavior is predictable in the
aggregate as opposed to the individual level.

Neither of the new algorithms are able to guarantee complete coverage, but KT is
able to achieve good coverage for our coverage task, confirming our belief that gases

are well suited to this task (Kerr and Spears 2005). AP suffers slightly more because
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it doesn’t explore as much as the KT controller. This provides AP with a faster

navigation of the environment, but at the cost of leaving unexplored areas.

7.2 Future Work

Robot Neither of the new algorithms presented have been ported to actual robots.
This is the highest priority of future work. Once the algorithms are implemented
on our laboratory robots, more experimental results would strengthen the results we
were able to achieve. The AP solid algorithm is already run on the UW Distributed
Laboratory robots (see Figure 7.1). These robots currently utilize IR sensors in or-
der to detect other robots within their range. They also use a light sensor in order
to detect the goal direction. This is all that is needed in order to port the AP gas
algorithm to those same robots. Unfortunately the KT algorithm requires some up-
grades to our existing robots. KT needs the trilaterative sensing algorithm presented
in (Heil 2004). This algorithm allows the robot to determine if what it has sensed
is a robot or an obstacle, something very important for the KT algorithm. Another
issue delaying the port is that there is currently no means for explicit communication
between robots. Because of these issues, we developed the detailed robotic simulator

and prepared the algorithms for that simulator.

Behavioral Assurance The theory presented shows that we can predict different
aspects of a swarm’s behavior. The theory for KT has shown that most of these
predictions scale when obstacles are added to corridors. Unfortunately we are unable
to provide similar data for AP gas. Not only does this provide an interesting study
of the behavior of AP gas, but it also provides insights to the theory and how it can
be expanded. This is something that needs to be accomplished to further guarantee

the behavior. The KT theory isn’t predictive for velocity distribution when obstacles
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Figure 7.1: Seven robots form a hexagon, and move towards a light source.

are added to the environment, so we need to extend the theory to be more predictive
of this behavior.

The theory presented affects the coverage for the swarm, but we are unable to
predict the actual coverage. This is another area that needs to be expanded with
future work. The Ant algorithm presented is able to guarantee complete coverage
and empirically we are able to compete with this Ant algorithm, but theoretical

guarantees would be beneficial.

Physics We have shown that the KT algorithm performance models a gas accu-
rately. Unfortunately the same cannot be said for the AP gas model provided. We
have provided reasons why this could be occurring, and these warrant further investi-
gation. This also may be accomplished by removing the goal force since it appears to
be overbearing. We understand that the K'T model accurately conserves momentum
in inter-robot collisions, but we haven’t fully studied the momentum transfer between
wall collisions and how it affects the energy of our system.

Our two new gas algorithms modified different types of fluid flow. The AP al-

gorithm resembled a pressure driven flow and the KT algorithm modeled a Couette
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flow. These two types of fluid flow are not encompassing. Future work will look at
how different types of flow affect performance. Our KT model resembles a low density
gas evacuated through a vacuum tube. Understanding the real particle physics of this
representation and the dynamics of mixed gases could lead to greater insight for our
KT algorithm and future gas models.

We also argued that gas behaviors were desired for the task, but we didn’t present
any empirical results for liquid behaviors. The primary reason for this is that not as
much is known about liquids as gases and therefore finding a good model of a liquid
is a challenging task.

KT is able to avoid box canyons. This emergent behavior was not witnessed on
the AP controllers. AP needs this behavior in order to increase the performance of
the algorithm. There are several different methods to accomplish this (Lee and Arkin

2001; Balch and Arkin 1993).

Environment All of our experiments were run in corridors much longer than wide
and the controllers were only allowed to make one sweep. Extensions to this work
could show that for a perimeter task a higher temporal coverage is desirable, since
it requires multiple sweeps. This surveillance task is similar to the task presented
in (Spears, Zarzhitsky, Hettiarachchi, and Kerr 2005). The goal for the robots is to
detect as many of the targets as possible in a given time. Rather than using a square
environment, the robots would be presented with a long corridor.

All of the obstacles presented have been rectangles. Rectangular obstacles have
desirable computational properties, i.e. determining shadow coverage, but the real
world is full of obstacles of many different shapes and sizes. These shouldn’t present
any large problems for the robot control algorithms, but empirical results have not

been presented. In addition to random obstacles we need to investigate randomly
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shaped and sized corridors. Emperical results need to be presented since straight

corridors tend to be rare.

Software Development Throughout the course of the project, different simulators
were generated to try out ideas and run experiments. Greater understanding and
preparation would have led to better design decisions and possibly less simulators.
From this a simulation framework could have been developed that allows both particle
(point-mass) simulations as well as robotic simulations. By providing both of these
abilities researchers would be able to transition from pure physics-based controllers

to robotic controllers much more easily.
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