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Abstract

Meltran V, a new biped robot with telescopic legs,

is introduced. For 3D walking control of the robot

we analyze the dynamics of a three-dimensional in-

verted pendulum in which motion is constrained to

move along an arbitrarily de�ned plane. From this

analysis we obtain simple linear dynamics, the Three-

Dimensional Linear Inverted Pendulum Mode (3D-

LIPM). Using a real-time control method based on 3D-

LIPM, the Meltran V robot successfully demonstrated

3D dynamic walking without the use of any prepared

trajectories.

1 Introduction

Research on humanoid robots and biped locomotion

is currently one of the most exciting topics in the �eld

of robotics and there exist many ongoing projects. Al-

though some of the research has already demonstrated

very reliable dynamic biped walking[5, 12], we believe

it is still important to understand the theoretical back-

ground of biped locomotion and to quantitatively eval-

uate experimental data to achieve further advances in

biped walking robots. For this reason, we developed a

new biped walking robot as the platform to evaluate

basic walking experiments.

The Meltran V robot has 12 joints that are su�-

cient for it to perform various walking maneuvers in

a 3D space. Its distinctive feature is that it has tele-

scopic legs which have some advantages over the legs

with knee joints. The advantages are explained in the

next section.

To get an insight into 3D walking control, we an-

alyzed the dynamics of a three-dimensional inverted

pendulum which has its motion constrained to move

along an arbitrarily de�ned plane. From this anal-

ysis, we obtain simple linear dynamics that describe

the horizontal motion of the inverted pendulum un-

der the applied constraint. The dynamics model, the

Three-Dimensional Linear Inverted Pendulum Mode

(3D-LIPM), is useful because it allows a separate con-

troller design for the sagittal (x-z) and the lateral (y-z)

motion.

Using 3D-LIPM as the nominal dynamics of the

Meltran V robot, we built a controller which could

generate a walking pattern in real-time without using

prepared joint trajectories. The results of our dynamic

walking experiments are shown at the end of this re-

port.

2 Meltran V the 12DOF biped robot

Figure 1: Meltran V

Meltran V is a 12DOF biped robot 1.4 m in height

and weighs 46 kg. Figures 1, 2 and Table 1 give an

overview of the robot. Each leg has 6DOF which is suf-

�cient for walking in a 3D space. The hip joints (roll,
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pitch, yaw) and the ankle joints (roll, pitch) are driven

by brushless DC servomotors and harmonic drives.

Meltran V does not have knee joints but instead has

prismatic joints driven by brushless DC servomotors

and ball screws. The prismatic joints can change the

distance between the hip and the ankle from 0.6 to

0.9 m and the stroke is long enough for walking up

typical stairs in ordinary buildings. Our ultimate goal

is to develop a robot which can maneuver in almost

all environments of our everyday life.

Figure 2: Joint con�gulation

There are two advantages of the telescopic legs.

First, they are good for walking in a complicated en-

vironment (e.g., a power plant). Compared with a hu-

manoid robot which bends its knees when walking, a

robot with telescopic legs sweeps a smaller area. This

can minimize collisions between the legs and the envi-

ronment. Moreover the calculation for detecting and

avoiding collisions is easy.

As the second advantage, it is easy to design a con-

troller. This is because telescopic legs do not have

singular points in the working space and have uniform

manipulability. In contrast, a humanoid robot with

knees su�ers from singularity near full extension. (For

this reason, a humanoid robot must bend its knees

deeply before it starts walking.)

In the history of biped research, there have been

many biped robots with telescopic legs[1, 3, 8, 11].

However, most of them were limited to two dimen-

sional walking. Raibert and his colleagues[9] devel-

oped one of the most famous 3D bipeds with tele-

scopic legs which demonstrated running and somer-

saults using powerful pneumatic actuators. Our in-

tention, however, is to control walking in an involved

environment using various sensors.

Each foot of Meltran V is equipped with a six-axis

force torque sensor to enable the robot to measure

all forces and moments acting from the oor. To mea-

sure the body posture and the angular velocities, three

rate gyros for roll, pitch and yaw rotation and three

accelerometers for x, y and z direction are embedded

in the body.

All sensors and encoders of the servomotors

are interfaced to an onboard computer (Pen-

tium 200 MHz) running Realtime Linux V1.2

(http://www.rtlinux.org). The robot has power sup-

ply cables and an Ethernet cable to communicate with

the host computer when we develop control programs

and do data analysis.

Table 1: Meltran V speci�cation

Height 1.4m

Weight 46kg

DOF 12DOF

Foot

size 0.12m � 0.08m

material rubber (Neopren)

6axis force sensor Nitta 67M25A 50-I40

Posture sensors

rate gyro Tokimec TFG-160D �3
accelerometer Tokimec TA-25D-05 �3

Actuators (Minimotor)

leg extention 3564K 012B (109W)

hip roll, pitch & yaw 3564K 048B (101W)

ankle roll & pitch 2444S 048B (37W)

3 Derivation of 3D Linear Inverted

Pendulum Mode

3.1 Motion equation of a 3D inverted
pendulum

When Meltran V is supporting its body on one leg,

its dominant dynamics can be represented by a single

inverted pendulum which connects the supporting foot

and the robot's center of gravity. Figure 3 depicts such

an inverted pendulum consisting of a point mass and

a massless telescopic leg. The position of the point

mass p = (x; y; z) is uniquely speci�ed by a set of

state variables q = (�r; �p; r).
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x = rSp (1)

y = �rSr (2)

z = rD (3)

Sr � sin �r; Sp � sin �p; D �
q
1� Sr

2 � Sp
2

Figure 3: 3D Pendulum

The minus sign in (2) is neccessary since we are

taking right-handed coordinate system.

Let (�r; �p; f) be the actuator torque and force asso-

ciated with the state variables (�r; �p; r). With these

inputs, the equation of motion of the 3D inverted pen-

dulum in Cartesian coordinates is given as follows.

m

0
@ �x

�y

�z

1
A = (JT)�1

0
@ �r

�p

f

1
A+

0
@ 0

0

�mg

1
A (4)

wherem is the mass of the pendulum and g is grav-

ity acceleration. The structure of the Jacobian J is

J =
@p

@q
=

0
@ 0 rCp Sp

�rCr 0 �Sr
�rCrSr=D �rCpSp=D D

1
A :

(5)

Cr � cos �r; Cp � cos �p

To erase the inversed Jacobian that appears in (4),

let us multiply the matrix JT from the left.

m

0
@ 0 �rCr �rCrSr=D

rCp 0 �rCpSp=D

Sp �Sr D

1
A
0
@ �x

�y

�z

1
A =

0
@ �r

�p

f

1
A�mg

0
@ �rCrSr

�rCpSp=D

D

1
A : (6)

Using the �rst row of this equation and multiplying

D=Cr we get

m(�rD�y � rSr�z) =
D

Cr

�r + rSrmg: (7)

By substituting kinematic relationship of equations

(2) and (3), we get a good-looking equation that de-

scribes the dynamics along the y-axis.

m(�z�y + y�z) =
D

Cr

�r �mgy (8)

A similar procedure for the second row of (6) yields

the equation for the dynamics along the x-axis.

m(z�x� x�z) =
D

Cp

�p +mgx (9)

3.2 3D Linear Inverted Pendulum Mode

Although the moving pattern of the pendulum has

vast possibilities, we wanted to select a class of motion

which would be suitable for walking. For this reason,

we apply constraints to limit the motion of the pendu-

lum. The �rst constraint limits the motion in a plane

with given normal vector (kx; ky;�1) and z intersec-

tion zc.

z = kxx+ kyy + zc (10)

For a walking robot, the normal vector should

match the slope of the ground and the z intersection

should be the average distance of the center of the

robot's mass from the ground. In further calculation,

we prepare the second derivatives of (10).

�z = kx�x+ ky�y (11)

Substituting these constraints into equations (8) and

(9), we will obtain the dynamics of the pendulum un-

der the constraints. From a straightforward calcula-

tion we obtain

�y =
g

zc
y � k1

zc
(x�y � �xy)� 1

mzc
ur (12)

�x =
g

zc
x+

k2

zc
(x�y � �xy) +

1

mzc
up (13)

where ur; up are new virtual inputs which are intro-

duced to compensate input nonlinearity.

�r =
Cr

D
ur (14)

�p =
Cp

D
up (15)
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In the case of the walking on a at plane, we can

set the horizontal constraint plane (kx = 0; ky = 0)

and we get

�y =
g

zc
y � 1

mzc
ur (16)

�x =
g

zc
x+

1

mzc
up: (17)

In the case of the walking on a slope or a stairs

where kx; ky 6= 0, we need another constraint. From

x�(12)+y�(13) we obtain

x�y � �xy =
�1
mz

(urx+ upy): (18)

Therefore, we obtain the dynamics of (16) and (17) in

the case of an inclined constraint plane by introducing

the following new constraint about the inputs.

urx+ upy = 0 (19)

Equations (16) and (17) are independent linear

equations. The only parameter which governs those

dynamics is zc, i.e., the z intersection of the constraint

plane and the inclination of the plane never a�ect the

horizontal motion. Note that the original dynamics

were nonlinear and we derived linear dynamics with-

out using any approximation.

Let us call this the Three-Dimensional Linear In-

verted Pendulum Mode (3D-LIPM). The �rst author

and Tani introduced a two-dimensional version of this

dynamics mode [6] and Hara, Yokokawa and Sadao ex-

tended it to three dimensions in the case of zero input

torque [4].

4 Control of lateral motion

The 3D-LIPM dynamics of equations (16) and (17)

enables us to design a simple real-time controller for

biped walking. In this paper, we treat a walking on

a at oor. This means that we do not have to take

account of the input constraint (19) and we can com-

pletely separate controllers for sagittal and lateral mo-

tions.

In this section, we will explain the method for

controlling stepping motion in the lateral plane (y-

direction).

4.1 Ideal stepping pattern

Figures 4 and 5 describe an ideal stepping motion

of a robot which follows the 3D-LIPM dynamics. We
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Figure 4: Position and velocity of a robot's center of

gravity when performing an ideal steady stepping mo-

tion. The stepping cycle is 2T , the width of a step

is 2s. Parameter �(0 < � < 1) speci�es the position

at the moment velocity changes its sign. The position

jumps the distance of the step length at each support

foot exchange, due to the change of origin shown in

Figure 5.

use 3D-LIPM (16) with zero input (ur = 0) both in

the right and the left support.

�y =
g

zc
y (20)

Given the above dynamics, a trajectory of a partic-

ular support phase with an initial condition of (yi; _yi)

at time ti can be calculated.

y(t) = yi cosh(
t� ti

Tc
) + Tc _yi sinh(

t� ti

Tc
) (21)

_y(t) =
yi

Tc
sinh(

t� ti

Tc
) + _yi cosh(

t� ti

Tc
) (22)

Tc �
p
zc=g

z
c
 

αs s 2s -2s -s - αs

z
c
 

y y 

Right support Left support 

Figure 5: Motion of the inverted pendulum correspond-

ing to Figure 4

In this stepping pattern, we assume that the ex-

change of the support leg occurs instantaneously, and
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the velocity of the center of gravity is passed without

loss from the end of last support to the start of new

support.

Let us derive the relationship between the cycle and

the geometry of the stepping motion. From the tra-

jectory in Figure 4 and (21), we get

s = �s cosh(
T

2Tc
): (23)

Solving this about T , we obtain the half cycle of

stepping motion.

T = 2Tc ln(
1 +

p
1� �2

�
) (24)

This equation describes that when the body swing

becomes small (� ! 1) the stepping period becomes

short (T ! 0). Conversely, when the body swing be-

comes large (�! 0) the stepping period becomes long

(T !1). This nature of stepping motion can be un-

derstood intuitively by imaging a boll rolling between

two potentials as shown in Figure 6.

α α 

1 1 

Figure 6: A ball rolling between two potentials

4.2 Lateral control of Meltran V

As the basic requirement for ideal stepping motion,

constraint control to a horizontal plane is applied to

Meltran V to realize 3D-LIPM dynamics, i.e., the con-

trol of the prismatic joint of the support leg so that

the center of the hip joint moves in a constraint plane.

At the same time, the body posture is also controlled

to keep the robot's body upright. We do not apply the

input constraint (19) since it is not neccessary when

we use the horizontal constraint plane.

We implemented these controls based on the re-

solved motion rate control [13] that uses an inverse Ja-

cobian to calculate joint speed references. With these

controls, we can expect to approximately realize the

3D-LIPM because Meltran V was designed to have

lightweight feet and good mass concentration around

the center of the hip joints.

Even the constraint control works well, though

there are still problems in realizing the ideal stepping

motion by the actual robot. First, the actual robot in

a single-support phase does not follow the ideal 3D-

LIPM of equation (20) unless proper feedback control

is applied, because there exist parameter errors and

the real robot has more complicated dynamics which

are not modeled by the 3D-LIPM. To clear these prob-

lems we introduce following feedback.

ur = sign( _y)kE(Eref �E) (25)

E � � g

2zc
y
2 +

1

2
_y2 (26)

Eref � �
g

2zc
(�s)2 (27)

The function sign(x) returns +1 or �1 depending

the sign of x. kE is a feedback gain taking a positive

value which should be tuned by experiments. A torque

feedback controller using a foot force sensor drives the

foot actuator to generate torque ur.

We call the quantity E the orbital energy because

it has a dimension of energy per unit mass. Di�eren-

tiating E by time we obtain

_E = � g

zc
y _y + _y�y: (28)

When we substitute the ideal dynamics of equation

(20) into this equation we obtain _E = 0. Therefore,

E will be kept constant as long as the robot's motion

is ideal. When we substitute the 3D-LIPM dynamics

of equation (16) and the control law of equation (25)

into equation (28) we see how the orbital energy will

behave under the proposed control law.

_E =
1

mzc
j _yjkE(Eref �E) (29)

From this equation we can see E will be controlled

to speci�ed constant value Eref . A similar control

method was proposed by Fujimoto and Kawamura to

control a humanoid robot in a computer simulation[2].

The second problem concerns the body speed at the

instant of support leg exchange. Although we assumed

the speed at the end of one cycle to be equal to the

initial speed of the new cycle in ideal stepping motion,

this does not happen in real-world circumstances. Due

to the complicated impact dynamics and internal vi-

bration of the mechanism, the initial speed just after

support exchange is di�cult to predict.

To cope with this uncertainty, we insert a double-

support state between successive support phases (Fig-

ure 7). After touchdown of the swing foot, the robot

body travels the distance 2�s keeping both feet on the
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Figure 7: For reliable support leg exchange, a double-

leg support phase was inserted. The robot body travels

the distance 2�s with both feet on the ground in the

period between each single-leg support phase.

ground, then starts a new support phase by lifting up

the previous support leg. We can control the body

speed of the robot in the double-support phase by a

simple torque control[10]. For the target speed of this

control, we use vex which is the speed at the support

leg exchange in ideal stepping motion. It is calculated

from (22).

vex =
�s

Tc
sinh(

T

2Tc
) (30)

To detect good timing for starting the next single-

support phase, the robot calculates the orbital en-

ergy E about the next support leg during the double-

support phase. At the moment E reaches Eref , the

robot starts the new single support motion by lifting

up the previous support leg. This way we can guaran-

tee that each single-support phase will start with the

speci�ed orbital energy Eref even the speed control in

the double-support period did not work well.

We applied above control algorithm to Meltran V

and it achieved a stepping motion of good reliability.

Figure 8 shows the data of position and velocity, and

Figure 9 shows the orbital energy and the roll moment

of the feet which corresponds to ur in equation (25).

In those plots, we placed the origin at the center of the

robot's body at all times instead of swapping the origin

on the supporting condition as in Figure 5. The body

center coordinate allows us to apply the leg control

consistently. When a foot is in the support phase, its

position (velocity) in the body coordinate corresponds

to the body position (velocity) with respect to the

support foot by reversing its sign.
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Figure 8: Experiment of steady stepping motion. The

vertical dotted lines indicate the time of the supporting

mode change. The upper plot is the position of the feet

with respect to the center of the body. The thin solid

line is the right foot, the dashed line is the left foot and

the thick line indicates the supporting foot. The robot

is in double-support phase when the thick line runs in

the middle of the feet trajectories. The lower plot is

the velocity of the feet with respect to the center of

the body. The thick line indicates the supporting foot

velocity which is associated with body speed. A Kalman

�lter was used to obtain smooth data by attenuating

high-frequency noise.
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Figure 9: Data of the same experiment shown in Fig-

ure 8. The upper plot is the moment around x-axis.

The lower plot is the orbital energy. The horizontal

dotted line shows the reference energy Eref . The ver-

tical dotted lines in both plots indicate the time of sup-

porting mode change.

min80
2304



5 Control of sagittal motion

Figure 10 illustrates successive steps in the sagittal

plane (x-direction). For the reference dynamics of each

support phase (B!D, D'!F), we adopt the 3D-LIPM

(17) with zero input as we did for the lateral motion.

�x =
g

zc
x (31)

Since the robot is controlled to continue a steady step-

ping motion whose support time is T , the initial body

state (x
(n)
i

; v
(n)
i

) and the �nal body state (x
(n)

f
; v

(n)

f
)

have the following relationship. 
x
(n)

f

v
(n)

f

!
=

�
CT TcST

ST =Tc CT

� 
x
(n)
i

v
(n)

i

!
(32)

CT � cosh(T=Tc); ST � sinh(T=Tc)

To change the walking speed, we must change the

foothold (point E) to modify the initial condition of

the support phase (D'!F). When the desired status

at the end of support (point F) is given as (xd; vd) we

can de�ne error norm with certain weight a; b > 0 as

N � a(xd � x
(2)

f
)2 + b(vd � v

(2)

f
)2:

By substituting (32) into this equation and calculating

the foothold of x
(2)
i

which minimize N , we obtain a

proper control law.

x
(2)
i

= (aCT (xd � STTcvd) + bST =Tc(vd �CT vf ))=DT

(33)

DT � aC
2
T
+ b(ST =Tc)

2

To determine the foothold E we also need the dis-

tance that body travels in the double support. The

distance is calculated as

d = v
(1)

f

2�s

vex
: (34)

The motion of the support leg is controlled to follow

the ideal trajectory of equation (31) using a simple PD

feedback law whose output is up in equation (15). The

motion of the swing leg is controlled to arrive at the

point E at the expected touchdown time (dashed curve

from A to E in Figure 10).

Figure 11 plots sagittal motion data of 3D walking

performed by the Meltran V robot. In this experi-

ment, the robot walked 6 steps forward. The period

of support was controlled to 0.55 s and the maximum

step length was 0.15 m.

A 

B

C 

D 

E 

F 

x 

z v
f
(1) = v

i
(2) v

i
(1) v

f
(2) 

x
i
(1) x

f
(1) x

i
(2) x

f
(2) d 

D' 

Figure 10: Two successive steps in the sagittal plane

are illustrated. The body travels from B to D in the

single-leg support phase, then moves from D to D' in

the double-leg support phase with constant speed v
(1)

f
,

and then travels D' to F in the second single-support

phase. While the body moves from B to D, the tip of

the swing leg travels from A to E (dashed curved line).

By changing the position of E we can control the �nal

body speed v
(2)

f
at the point F. Except for our inserted

double-support phase, this is the same idea proposed

by Miura and Shimoyama [7].

6 Summary and Conclusions

In this paper we introduced the Meltran V, our new

biped walking robot with telescopic legs. To control

the robot, we derived the Three-Dimensional Linear

Inverted Pendulum Mode (3D-LIPM) which is use-

ful for real-time walking control in a 3D space. We

discussed a method for controlling steady lateral step-

ping motion and explained our method of 3D walking

control. Meltran V could walk successfully with our

proposed algorithm.

In this paper we only demonstrated a walk on a at

oor, however the 3D-LIPM model can be used for

walking over rugged terrain. That will be the subject

of our next report.
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