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34. Motion Control of Wheeled Mobile Robots

Pascal Morin, Claude Samson

This chapter may be seen as a follow up to Chap. 17,
devoted to the classification and modeling of ba-
sic wheeled mobile robot (WMR) structures, and
a natural complement to Chap. 35, which surveys
motion planning methods for WMRs. A typical out-
put of these methods is a feasible (or admissible)
reference state trajectory for a given mobile robot,
and a question which then arises is how to make
the physical mobile robot track this reference tra-
jectory via the control of the actuators with which
the vehicle is equipped. The object of the present
chapter is to bring elements of the answer to this
question based on simple and effective control
strategies. A first approach would consist in ap-
plying open-loop steering control laws like those
developed in Chap. 35. However, it is well known
that this type of control is not robust to model-
ing errors (the sources of which are numerous) and
that it cannot guarantee that the mobile robot will
move along the desired trajectory as planned. This
is why the methods here presented are based on
feedback control. Their implementation supposes
that one is able to measure the variables involved
in the control loop (typically the position and ori-
entation of the mobile robot with respect to either
a fixed frame or a path that the vehicle should fol-
low). Throughout this chapter we will assume that
these measurements are available continuously in
time and that they are not corrupted by noise. In
a general manner, robustness considerations will
not be discussed in detail, one reason being that,
beyond imposed space limitations, a large part
of the presented approaches are based on linear
control theory. The feedback control laws then in-
herit the strong robustness properties associated
with stable linear systems.
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800 Part E Mobile and Distributed Robotics

34.1 Background

The control of wheeled mobile robots has been, and

still is, the subject of numerous research studies. In par-

ticular, nonholonomy constraints associated with these

systems have motivated the development of highly

nonlinear control techniques. These approaches are ad-

dressed in the present chapter, but their exposition is

deliberately limited in order to give priority to more

classical techniques whose bases, both practical and

theoretical, are better established.

For the sake of simplicity, the control methods are

developed mainly for unicycle-type and car-like mobile

robots, which correspond respectively to the types (2, 0)

and (1, 1) in the classification proposed in Chap. 17.

Most of the results can in fact be extended/adapted to

other mobile robots, in particular to systems with trail-

ers. We will mention the cases where such extensions

are straightforward. All reported simulation results, il-

lustrating various control problems and solutions, are

carried out for a car-like vehicle, whose kinematics

is slightly more complex than that of unicycle-type

vehicles.

Recall (Fig. 34.1) that:

1. A unicycle-type mobile robot is schematically com-

posed of two independent actuated wheels on

a common axle whose direction is rigidly linked to

the robot chassis, and one or several passively ori-

entable – or caster – wheels, which are not controlled

and serve for sustentation purposes.

2. A (rear-drive) car-like mobile robot is composed of

a motorized wheeled axle at the rear of the chas-

sis, and one (or a pair of) orientable front steering

wheel(s).

Note also, as illustrated by the diagram below

(Fig. 34.2), that a car-like mobile robot can be viewed

(at least kinematically) as a unicycle-type mobile robot

to which a trailer is attached.

Three generic control problems are studied in this

chapter, as described below.

Fig. 34.1 Unicycle-type (left) and car-like (right) mobile

robots

34.1.1 Path Following

Given a curve C on the plane, a (nonzero) longitudinal

velocity v0 for the robot chassis, and a point P attached

to the chassis, the goal is to have the point P follow

the curve C when the robot moves with the velocity v0.

The variable that one has to stabilize at zero is thus the

distance between the point P and the curve (i. e., the dis-

tance between P and the closest pointM onC). This type

of problem typically corresponds to driving on a road

while trying tomaintain the distance between the vehicle

chassis and the side of the road constant. Automatic wall

following is another possible application.

34.1.2 Stabilization of Trajectories

This problemdiffers from the previous one in that the ve-

hicle’s longitudinal velocity is no longer predetermined

because one also aims tomonitor the distance gone along

the curve C. This objective supposes that the geometric

curve C is complemented with a time schedule, i. e., that

it is parameterized with the time variable t. This boils

down to defining a trajectory t 7−→ (xr(t), yr(t)) with

respect to a reference frame F0. Then the goal is to sta-

bilize the position error vector (x(t)− xr(t), y(t)− yr(t))

at zero, with (x(t), y(t)) denoting the coordinates of

point P in F0 at time t. The problem may also be for-

mulated as one of controlling the vehicle in order to

track a reference vehicle whose trajectory is given by

t 7−→ (xr(t), yr(t)). Note that perfect tracking is achiev-

able only if the reference trajectory is feasible for the

physical vehicle, and that a trajectory which is feasible

for a unicycle-type vehicle is not necessarily feasible

for a car-like vehicle. Also, in addition to monitoring

the position (x(t), y(t)) of the robot, one may be will-

ing to control the chassis orientation θ(t) at a desired

reference value θr(t) associated with the orientation of

the reference vehicle. For a nonholonomic unicycle-type

robot, a reference trajectory (xr(t), yr(t), θr(t)) is feasi-

ble if it is produced by a reference vehicle which has the

φ φ

Fig. 34.2 Analogy car/unicycle with trailer
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Motion Control of Wheeled Mobile Robots 34.2 Control Models 801

same kinematic limitations as the physical robot. For

instance, most trajectories produced by an omnidirec-

tional vehicle (omnibile vehicle in the terminology of

Chap. 17) are not feasible for a nonholonomic mobile

robot. However, nonfeasibility does not imply that the

reference trajectory cannot be tracked in an approximate

manner, i. e., with small (although nonzero) tracking er-

rors. This justifies the introduction of the concept of

practical stabilization, as opposed to asymptotic stabi-

lization when the tracking errors converge to zero. The

last part of this chapter will be devoted to a recent,

and still prospective, control approach for the practi-

cal stabilization of trajectories which are not necessarily

feasible.

34.1.3 Stabilization of Fixed Postures

Let F1 denote a frame attached to the robot chassis. In

this chapter, we call a robot posture (or situation) the

association of the position of a point P located on the

robot chassis with the orientation θ(t) of F1 with respect

to a fixed frame F0 in the plane of motion. For this last

problem, the objective is to stabilize at zero the posture

vector ξ(t) = (x(t), y(t), θ(t)), with (x(t), y(t)) denoting

the position of P expressed in F0. Although a fixed de-

sired (or reference) posture is obviously a particular case

of a feasible trajectory, this problem cannot be solved

by classical control methods.

The chapter is organized as follows. Section 34.2

is devoted to the choice of control models and the de-

termination of modeling equations associated with the

path-following control problem. In Sect. 34.3, the prob-

lems of path following and trajectory stabilization in

position are studied under an assumption upon the lo-

cation of the point P chosen on the robot chassis. This

assumption implies that the motion of this point is not

constrained. It greatly simplifies the resolution of the

considered problems. However, a counterpart of this

simplification is that the stability of the robot’s ori-

entation is not always guaranteed, in particular during

phases when the sign of the robot’s longitudinal velocity

is not constant. The assumption upon P is removed in

Sect. 34.4, and both problems are reconsidered, together

with the problem of stabilizing a fixed posture. At the

end of this section, a certain number of shortcomings

and limitations inherent to the objective of asymptotic

stabilization are pointed out. They can be circumvented

by considering an objective of practical stabilization in-

stead. Some elements of a recent, and still prospective,

control approach developed with this point of view –

based on the use of so-called transverse functions – are

presented in the Sect. 34.4.6. Finally, a few complemen-

tary issues on the feedback control of mobile robots are

briefly discussed in the concluding Sect. 34.5, with a list

of commented references for further reading on WMRs

motion control.

34.2 Control Models

34.2.1 Kinematics Versus Dynamics

Relation (17.29) in Chap. 17 provides a general config-

uration dynamic model for WMRs. Its particularization

to the case of unicycle-type and car-like mobile robots

gives

H(q)u̇+ F(q, u)u = Γ (φ)τ (34.1)

with q denoting a robot’s configuration vector, u a vec-

tor of independent velocity variables associated with the

robot’s degrees of freedom, H(q) a reduced inertia ma-

trix (which is invertible for any q), F(q, u)u a vector

of forces combining the contribution of Coriolis and

wheel–ground contact forces, φ the orientation angle of

the car’s steering wheel, Γ an invertible control matrix

(which is constant in the case of a unicycle-type vehicle),

and τ a vector of independent motor torques (whose di-

mension is equal to the number of degrees of freedom

in the case of full actuation, i. e., equal to two for the

vehicles considered herein). In the case of a unicycle-

type vehicle, a configuration vector is composed of the

components of the chassis posture vector ξ and the ori-

entation angles of the castor wheels (with respect to the

chassis). In the case of a car-like vehicle, a configura-

tion vector is composed of the components of ξ and the

steering wheel angle φ.

To be complete, this dynamic model must be com-

plemented with kinematic equations in the form (the

relation (17.30))

q̇ = S(q)u (34.2)

from which one can extract a reduced kinematic model

(the relation (17.33))

ż = B(z)u (34.3)

with z = ξ , in the case of a unicycle-type vehicle, and

z = (ξ, φ) in the case of a car-like vehicle.
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802 Part E Mobile and Distributed Robotics

In the automatic control terminology, the complete

dynamic model (34.1–34.2) forms a control system

which can be written as Ẋ = f (X, τ) with X = (q, u)

denoting the state vector of this system, and τ the vec-

tor of control inputs. The kinematic models (34.2) and

(34.3) are also control systems with respective state

vectors q and z and control vector u. Any of these

models can be used for control design and analysis

purposes. In the remainder of this chapter, we have

chosen to work with the kinematic model (34.3). By

analogy with the motion control of manipulator arms,

this boils down to using a model with velocity con-

trol inputs, rather than a model with torque control

inputs. The main reasons for this choice are the fol-

lowing:

1. The kinematic model is simpler than the dynamic

one. In particular, it does not involve a certain

number of matrix-valued functions whose precise

determination relies on the knowledge of numerous

parameters associated with the vehicle and its actu-

ators (geometric repartition of constitutive bodies,

masses and mass moments of inertia, coefficients of

reduction in the transmission of torques produced

by the motors, etc.). For many applications, it is not

necessary to know all these terms precisely.

2. In the case of robots actuated with electrical motors,

these motors are frequently supplied with low-level

velocity control loops which take a desired angular

velocity as input and stabilize the motor angular vel-

ocity at this value. If the regulation loop is efficient,

the difference between the desired and actual veloci-

ties remains small, even when the desired velocity

and the motor load vary continuously (at least within

a certain range). This type of robustness allows in

turn to view the desired velocity as a free control

variable. Many controllers supplied with industrial

manipulator arms are based on this principle.

φ

θ

O

y

j

ix x

Pm θPm

Fig. 34.3 Configuration variables

3. If the servo loops evoked above, whose role is to

decouple the kinematics from the dynamics of the

vehicle, are not present, one can design them and

even improve their performance by using the infor-

mation that one has of the terms involved in the

dynamic equation (34.1). For instance, assume that

the torques produced by the actuators can be used

as control inputs, a simple way to proceed (at least

theoretically) consists in applying the so-called com-

puted torque method. The idea is to linearize the

dynamic equation by setting

τ = Γ (φ)−1[H(q)w+ F(q, u)u] .

This yields the simple decoupled linear control sys-

tem u̇ = w with the variable w, homogeneous to

a vector of accelerations, playing the role of a new

control input vector. This latter equation indicates

that the problem of controlling the vehicle with

motor torques can be brought back to a problem

with acceleration control inputs. It is usually not dif-

ficult to deduce a control solution to this problem

from a velocity control solution devised by using

a kinematic model. For instance,

w = −k(u−u∗(z, t))

+
∂u∗

∂z
(z, t)B(z)u+

∂u∗

∂t
(z, t)

with k > 0 is a solution if u∗ is a differentiable

kinematic solution and

u = u∗(z, t)+ (u(0)−u∗(z0, 0))e
−kt

is also a solution.

For the unicycle-type mobile robot, the kinematic model

(34.3) used from now on is














ẋ = u1 cos θ ,

ẏ = u1 sin θ ,

θ̇ = u2 ,

(34.4)

where (x, y) represents the coordinates of the point

Pm located at mid-distance of the actuated wheels,

and the angle θ characterizes the robot’s chassis ori-

entation (Fig. 34.3). In this equation, u1 represents the

intensity of the vehicle’s longitudinal velocity, and u2

is the chassis instantaneous velocity of rotation. The

variables u1 and u2 are themselves related to the angu-

lar velocity of the actuated wheels via the one-to-one

relations

u1 =
r

2
(ψ̇r + ψ̇ℓ)

u2 =
r

2R
(ψ̇r − ψ̇ℓ)
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Motion Control of Wheeled Mobile Robots 34.2 Control Models 803

with r thewheels’ radius, R the distance between the two

actuated wheels, and ψ̇r (resp. ψ̇ℓ) the angular velocity

of the right (resp. left) rear wheel.

For the car-like mobile robot, the kinematic model

(34.3) used from now on is



























ẋ = u1 cos θ ,

ẏ = u1 sin θ ,

θ̇ = u1
L

tanφ ,

φ̇ = u2 ,

(34.5)

where φ represents the vehicle’s steering wheel angle,

and L is the distance between the rear and front wheels’

axles. In all forthcoming simulations, L is set equal to

1.2m.

34.2.2 Modeling in a Frénet Frame

The object of this subsection is to generalize the previous

kinematic equationswhen the reference frame is a Frénet

frame. This generalization will be used later on when

addressing the path following problem.

Let us consider a curve C in the plane of motion, as

illustrated on Fig. 34.4, and let us define three framesF0,

Fm, and Fs, as follows. F0 = {0, i, j} is a fixed frame,

Fm = {Pm, im, jm} is a frame attached to the mobile

robot with its origin – the point Pm – located on the rear

wheels axle, at the mid-distance of the wheels, and Fs =

{Ps, is, js}, which is indexed by the curve’s curvilinear

abscissa s, is such that the unit vector is tangents C.

Consider now a point P attached to the robot chassis,

and let (l1, l2) denote the coordinates of P expressed in

the basis of Fm. To determine the equations of motion

of P with respect to the curve C let us introduce three

variables s, d, and θe, defined as follows.

• s is the curvilinear abscissa at the point Ps obtained

by projecting P orthogonally on C. This point exists

and is unique if the point P is close enough to the

curve. More precisely, it suffices that the distance

between P and the curve be smaller than the lower

bound of the curve radii. We will assume that this

condition is satisfied.

• d is the ordinate of P in the frame Fs; its absolute

value is also the distance between P and the curve.

• θe = θ −θs is the angle characterizing the orientation

of the robot chassis with respect to the frame Fs.

Let us now determine ṡ, ḋ, and θ̇e. By definition of

the curvature c(s) of C at Ps, i. e., c(s) = ∂θs/∂s, one

θs

O

j

i

d

C

isjs

im
jm

θe

Ps

s

Pm

P

Fig. 34.4 Representation in a Frénet frame

deduces from (34.4) that

θ̇e = u2 − ṡc(s) . (34.6)

Since PsP = d js, by using the equality dOPs/dt = ṡis
it first emerges that

∂OP

∂t
=

∂OPs

∂t
+ ḋ js −dc(s)ṡis

= ṡ(1−dc(s))is + ḋ js . (34.7)

One also has PmP = l1im + l2 jm. Since dOPm/dt =

u1im, one gets

∂OP

∂t
=

∂OPm

∂t
+ l1u2 jm − l2u2im

= (u1 − l2u2)im + l1u2 jm

= (u1 − l2u2)(cos θeis + sin θe js)

+ l1u2(− sin θeis + cos θe js)

= [(u1 − l2u2) cos θe − l1u2 sin θe]is

+[(u1 − l2u2) sin θe + l1u2 cos θe] js .

(34.8)

By forming the scalar products of the vectors in (34.7)

and (34.8) with is and js, and by using (34.6), one finally

obtains the following system of equations:















ṡ = 1
1−dc(s)

[(u1 − l2u2) cos θe − l1u2 sin θe] ,

ḋ = (u1 − l2u2) sin θe + l1u2 cos θe ,

θ̇e = u2 − ṡc(s) .

(34.9)

These equations are a generalization of (34.4). To verify

this, it suffices to take P as the origin of the frame Fm

(i. e., l1 = l2 = 0) and identify the axis (O, i) of the frame

F0 with the curve C. Then s = x, c(s) = 0 (∀s), and, by

setting y ≡ d and θ ≡ θe, one recovers (34.4) exactly.

P
a
rt
E

3
4
.2



804 Part E Mobile and Distributed Robotics

For car-like vehicles, one easily verifies, by using

(34.5), that the system (34.9) becomes































ṡ = u1
1−dc(s)

[

cos θe −
tanφ

L
(l2 cos θe + l1 sin θe)

]

,

ḋ = u1

[

sin θe +
tanφ

L
(l1 cos θe − l2 sin θe)

]

,

θ̇e = u1
L

tanφ− ṡc(s) ,

φ̇ = u2 , (34.10)

(it suffices to replace u2 = θ̇ in (34.9) by the new value

of θ̇: (u1 tanφ)/L). To summarize, we have shown the

following result.

Proposition 34.1

The kinematic equations of unicycle-type and car-like

vehicles, expressed with respect to a Frénet frame, are

given by the systems (34.9) and (34.10), respectively.

34.3 Adaptation of Control Methods for Holonomic Systems

We address in this section the problems of trajectory

stabilization and path following. When we defined these

problems in the introduction, we considered a reference

point P attached to the robot chassis. It turns out that

the choice of this point is important. Indeed, consider

for instance the equations (34.9) for a unicycle point P

when C is the axis (O, i). Then, s = xP, d = yP, and

θe = θ represent the robot’s posture with respect to the

fixed reference frame F0. There are two possible cases

depending on whether P is, or is not, located on the

actuated wheels axle. Let us consider the first case, for

which l1 = 0. From the first two equations of (34.9), one

has

ẋP = (u1 − l2u2) cos θ , ẏP = (u1 − l2u2) sin θ .

These relations indicate that P can move only in the

direction of the vector (cos θ, sin θ). This is a direct con-

sequence of the nonholonomy constraint to which the

vehicle is subjected. Now, if P is not located on the

wheels axle, then
(

ẋP

ẏP

)

=

(

cos θ −l1 sin θ

sin θ l1 cos θ

)(

1 −l2

0 1

)(

u1

u2

)

.

(34.11)

The fact that the two square matrices in the right-hand

side of this equality are invertible indicates that ẋP and

ẏP can take any values, and thus that the motion of P is

not constrained. By analogy with holonomic manipula-

tor arms, this means that P may be seen as the extremity

of a two-degree-of-freedom (2-DOF) manipulator, and

thus that it can be controlled by applying the same con-

trol laws as those used for manipulators. In this section,

we assume that the point P, used to characterize the

robot’s position, is chosen away from the rear wheels

axle. In this case we will see that the problems of trajec-

tory stabilization and path following can be solved very

simply. However, as shown in the subsequent section,

choosing P on the wheels axle may also be of interest in

order to better control the vehicle’s orientation.

34.3.1 Stabilization of Trajectories
for a Nonconstrained Point

Unicycle
Consider a differentiable reference trajectory t 7−→

(xr(t), yr(t)) in the plane. Let e = (xP − xr, yP − yr) de-

note the tracking error in position. The control objective

is to asymptotically stabilize this error at zero. In view

of (34.11), the error equations are

ė =

(

cos θ −l1 sin θ

sin θ l1 cos θ

) (

u1 − l2u2

u2

)

−

(

ẋr

ẏr

)

.

(34.12)

Introducing new control variables (v1, v2) defined by
(

v1

v2

)

=

(

cos θ −l1 sin θ

sin θ l1 cos θ

)(

u1 − l2u2

u2

)

(34.13)

the equations (34.12) become simply

ė =

(

v1

v2

)

−

(

ẋr

ẏr

)

.

The classical techniques of stabilization for linear sys-

tems can then be used. For instance, one may consider

a proportional feedback control with precompensation

such as

v1 = ẋr − k1e1 = ẋr − k1(xP − xr) , (k1 > 0) ,

v2 = ẏr − k2e2 = ẏr − k2(yP − yr) , (k2 > 0) ,

which yields the closed-loop equation ė = −Ke. Of

course, this control can be rewritten for the initial con-

trol variables u, since the mapping (u1, u2) 7−→ (v1, v2)

is bijective.
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Motion Control of Wheeled Mobile Robots 34.3 Adaptation of Control Methods for Holonomic Systems 805

Unicycle with Trailers
The previous technique extends directly to the case of

a unicycle-type vehicle to which one or several trailers

are hooked, provided that the point P is chosen away

from the actuated wheels axle and on the side opposite

to the trailers. Besides, it is preferable in practice that the

robot’s longitudinal velocity u1 remains positive all the

time in order to prevent the relative orientations between

all vehicles (i. e., the non-actively controlled variables

involved in the system’s zero dynamics) to take overly

large values (the jackknife effect). This issue will be

discussed further in Sect. 34.4.

Car
This technique also extends to car-like vehicles by

choosing a point P attached to the steering wheel frame

and not located on the steering wheel axle.

34.3.2 Path Following
with No Orientation Control

Unicycle
Let us adopt the notation of Fig. 34.4 to address the

problem of following a path associated with a curve C

in the plane. The control objective is to stabilize the

distance d at zero. From (34.9), one has

ḋ = u1 sin θe +u2(−l2 sin θe + l1 cos θe) . (34.14)

Recall that in this case the vehicle’s longitudinal velocity

u1 is either imposed or prespecified. We will assume

that the product l1u1 is positive, i. e., the position of

the point P with respect to the actuated wheels axle is

chosen in relation to the sign of u1. This assumption

will be removed in Sect. 34.4. To simplify, we will also

assume that l2 = 0, i. e., the point P is located on the axis

(Pm, im). Let us then consider the following feedback

control law

u2 = −
u1

l1 cos θe
sin θe −

u1

cos θe
k(d, θe)d (34.15)

with k a continuous, strictly positive, function on

R× (−π/2, π/2) such that k(d, ±π/2) = 0. Since l2 = 0,

applying the control (34.15) to (34.14) gives

ḋ = −l1u1k(d, θe)d .

Since l1u1 and k are strictly positive, this relation im-

plies that |d| is nonincreasing along any trajectory of

the controlled system. For convergence of d to zero, it

suffices that

1. the sign of u1 remains the same,

2. π/2−|θe(t)| > ǫ > 0 for all t, and

3.

t
∫

0

|u1(s)|ds −→ +∞ when t −→ +∞ .

This latter condition is satisfied, for instance, when u1

is constant. In this case, d converges to zero expo-

nentially. There just remains to examine the conditions

under which u2, as given by (34.15), is always defined.

Since the function in the right-hand side of (34.15) is

not defined when cos θe = 0, we are going to determine

conditions on the system parameters and the initial state

values the satisfaction of which implies that cos θe can-

not approach zero. To this purpose, let us consider the

limit value of θ̇e when θe tends toπ/2 (resp.−π/2) from

below (resp. from above). By using (34.9), (34.15), and

the fact that l2 = 0, a simple calculation shows that

θ̇e = u1

[

−
c(s)

1−dc(s)
cos θe

−

(

1+
l1c(s)

1−dc(s)
sin θe

)

×

(

tan θe

l1
+

k(d, θe)d

cos θe

)]

.

Let us assume first that θe tends to π/2 from below.

Then the sign of θ̇e is given, in the limit, by the sign of

−u1

(

1+
l1c(s)

1−dc(s)

)

1

l1
.

To prevent θe from reaching π/2 it suffices that this sign

be negative. It is so if

∣

∣

∣

∣

l1c(s)

1−dc(s)

∣

∣

∣

∣

< 1 . (34.16)

Now, if θe tends to −π/2 from above, the sign of θ̇e is

given, in the limit, by the sign of

−u1

(

1−
l1c(s)

1−dc(s)

) (

−1

l1

)

.

To prevent θe from reaching −π/2 it suffices that this

sign be positive, and such is the case if (34.16) is true.

From this analysis one obtains the following proposi-

tion.

Proposition 34.2

Consider the path following problem for a unicycle-type

mobile robot with
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806 Part E Mobile and Distributed Robotics

• [A.] a strictly positive, or strictly negative, longitu-

dinal velocity u1.

• [B.] a reference point P of coordinates (l1, 0) in the

vehicle’s chassis frame, with l1u1 > 0.

Let k denote a continuous function, strictly positive

on R× (−π/2, π/2), and such that k(d, ±π/2) = 0 for

every d (for instance, k(d, θe) = k0 cos θe). Then, for any

initial conditions (s(0), d(0), θe(0)) such that

θe(0) ∈
(

−
π

2
,
π

2

)

,
l1cmax

1−|d(0)|cmax
< 1

with cmax = maxs|c(s)|, the feedback control

u2 = −
u1 tan θe

l1
−u1

k(d, θe)d

cos θe

makes the distance |d| between P and the curve nonin-

creasing, and makes it converge to zero if
t

∫

0

|u1(s)|ds −→ +∞ when t −→ +∞ .

Unicycle with Trailers
The above result applies also to this system, except that

u1 has to be positive in order to avoid jackknife effects

which otherwise may (will, if u1 is kept negative long

enough) occur because the orientation angles between

the vehicles are not actively monitored.

Car
This control technique thus also applies to this case by

considering a point P attached to the steering wheel

frame, with u1 positive.

34.4 Methods Specific to Nonholonomic Systems

The control technique presented in the previous section

has the advantage of being simple. However, it is not

well suited for all control purposes. One of its main

limitations is that it relies on the invariance of the sign

of the robot’s longitudinal velocity (see the assump-

tions in Proposition 34.2). For systems with trailers, this

velocity is further required to be positive. This condi-

tion/restriction is related to the fact that the orientation

variables are not actively monitored. To understand its

nature better, let us consider the control solution given in

Proposition 34.2 for u1 > 0, and assume that this control

is applied with u1 negative (and constant, for instance),

with the point P being unchanged. Figure 34.5 illus-

trates a possible scenario. The chosen curve is a simple

straight line and we assume that, at time t = 0, P is al-

ready on this curve (i. e., d = 0). If u1 is negative, while

t = 1 t = 0

P

u1

P
u1

Fig. 34.5 Path-following instability with reverse longitu-

dinal velocity

P is bound to stay on the line, the magnitude |θe| of the

robot’s orientation angle increases rapidly. The angle θe

reaches −π/2 at t = 1. At this time the control expres-

sion is no longer defined (explosion in finite time) and,

since the velocity vector has become orthogonal to the

curve, the point P can no longer stay on the curve.

The explanation for this behavior is as follows. Since

the orientation is not controlled, the variable θe has its

own, a priori unknown, dynamics. It can be stable, or

unstable. For the considered control solution, we have

shown that it is stable when u1 > 0. In particular, θe re-

mains in the domain of definition (−π/2, π/2) of the

feedback law for u2. When u1 < 0, this dynamics be-

comes unstable and θe reaches the border of the control

law’s domain of definition (−π/2, π/2). This instabil-

ity upon the part of the system which is not directly

controlled (the system’s zero dynamics, in the control ter-

minology) occurs in the same manner when trailers are

hooked to a leading vehicle. When the longitudinal vel-

ocity is positive, the vehicle has a pulling action which

tends to align the followers along the curve. In the other

case, the leader has a pushing action which tends to mis-

align them (the jackknife effect). In order to remove this

constraint on the sign of the longitudinal velocity, the

control has to be designed so that all orientation an-

gles are actively stabilized. An indirect way to do this

consists in choosing the point P on the actuated wheels

axle, at the mid-distance of the wheels, for instance. In
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Motion Control of Wheeled Mobile Robots 34.4 Methods Specific to Nonholonomic Systems 807

this case, the nonholonomy constraints intervene much

more explicitly, and the control can no longer be ob-

tained by applying the techniques used for holonomic

manipulators.

This section is organized as follows. First, the mod-

eling equations with respect to a Frénet frame are recast

into a canonical form called the chained form. From

there, a solution to the path-following problem with ac-

tive stabilization of the vehicle’s orientation is worked

out. The problem of (feasible) trajectory stabilization

is also revisited with the complementary objective of

controlling the vehicle’s orientation. The asymptotic sta-

bilization of fixed postures is then addressed. Finally,

some comments on the limitations of the proposed con-

trol strategies, in relation to the objective of asymptotic

stabilization, serve to motivate and introduce a new

control approach developed in the subsequent section.

34.4.1 Transformation of Kinematic Models
into the Chained Form

In the next chapter dedicated to path planning, it is shown

how the kinematic equations of the mobile robots here

considered (unicycle-type, car-like, with trailers) can be

transformed into the chain form via a change of state and

control variables. In particular, the equations of a unicy-

cle (34.4), and those of a car (34.5), can be transformed

into a three-dimensional and a four-dimensional chained

system, respectively. Those of a unicycle-type vehicle

with N trailers yield a chained system of dimension

N +3when the trailers are hooked to each other in a spe-

cific way. As shown below, this transformation can be

generalized to the kinematicmodels derivedwith respect

to a Frénet frame. The result will be given only for the

unicycle and car cases (equations (34.9) and (34.10)), but

it also holds when trailers are hooked to such vehicles.

The reference point P is now chosen at the mid-distance

of the vehicle’s rear wheels (or at the mid-distance of

the wheels of the last trailer, when trailers are involved).

Let us start with the unicycle case. Under the as-

sumption that P corresponds to the origin of Fm, one

has l1 = l2 = 0 so that the system (34.9) simplifies to















ṡ = u1
1−dc(s)

cos θe ,

ḋ = u1 sin θe ,

θ̇e = u2 − ṡc(s) .

(34.17)

Let us determine a change of coordinates and con-

trol variables (s, d, θe, u1, u2) 7−→ (z1, z2, z3, v1, v2)

allowing to (locally) transform (34.17) into the three-

dimensional chained system















ż1 = v1 ,

ż2 = v1z3 ,

ż3 = v2 .

(34.18)

By first setting

z1 = s , v1 = ṡ =
u1

1−dc(s)
cos θe ,

we already obtain ż1 = v1. This implies that

ḋ = u1 sin θe =
u1

1−dc(s)
cos θe[1−dc(s)] tan θe

= v1[1−dc(s)] tan θe .

We then set z2 = d et z3 = [1−dc(s)] tan θe, so that the

above equation becomes ż2 = v1z3. Finally, we define

v2 = ż3

= [−ḋc(s)−d
∂c

∂s
ṡ] tan θe

+[1−dc(s)](1+ tan2θe)θ̇e .

The equations (34.18) are satisfied with the variables zi

and vi so defined.

From this construction it is simple to verify that

the mapping (s, d, θe) 7−→ z is a local change of co-

ordinates defined on R
2 × (−π/2, π/2) (to be more

rigorous, one should also take the constraint |d| < 1/c(s)

into account). Let us finally remark that the change of

control variables involves the derivative (∂c/∂s) of the

path’s curvature (whose knowledge is thus needed for

the calculations). One can similarly transform the car’s

equations into a four-dimensional chained system, al-

though the calculations are slightly more cumbersome.

Let us summarize these results in the following propo-

sition.

Proposition 34.3

The change of coordinates and of control variables

(s, d, θe, u1, u2) 7−→ (z1, z2, z3, v1, v2) defined by

(z1, z2, z3) = (s, d, [1−dc(s)] tan θe)

(v1, v2) = (ż1, ż3)

transforms the model (34.17) of a unicycle-type vehicle

into a three-dimensional chained system.

Similarly, the change of coordinates and control

variables (s, d, θe, φ, u1, u2) 7−→ (z1, z2, z3, z4, v1, v2)
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808 Part E Mobile and Distributed Robotics

defined by

(z1, z2, z3, z4) =

{

s, d, [1−dc(s)] tan θe,

− c(s)[1−dc(s)]
(

1+2tan2θe

)

−d
∂c

∂s
tan θe

+[1−dc(s)]2
tanφ

L

1+ tan2θe

cos θe

}

,

(v1, v2) = (ż1, ż4)

transforms the model (34.10) of a car-like vehicle (with

l1 = l2 = 0) into a four-dimensional chained system.

34.4.2 Tracking of a Reference Vehicle
with the Same Kinematics

Let us now consider the problem of tracking, in both

position and orientation, a reference vehicle (Fig. 34.6).

Contrary to what happens when the control objective is

limited to the tracking in position only (Sect. 34.3.1), the

choice of the reference point P is of lesser importance

because, whatever P, most reference trajectories t 7−→

(xr(t), yr(t), θr(t)) are not feasible for the state vector

(xP, yP, θ). For simplicity, we choose P as the origin Pm

of the robot’s chassis frame Fm.

Although the terminology is rather loose, the track-

ing problem is usually associated, in the control litera-

ture, with the problem of asymptotically stabilizing the

reference trajectory. In this case, a necessary condition

for the existence of a control solution is that the reference

is feasible. Feasible trajectories t 7−→ (xr(t), yr(t), θr(t))

are smooth time functions which are solution to the

robot’s kinematic model for some specific control in-

put t 7−→ ur(t) = (u1,r(t), u2,r(t))
⊤, called the reference

control. For a unicycle-type robot for example, this

means in view of (34.4) that















ẋr = u1,r cos θr ,

ẏr = u1,r sin θr ,

θ̇r = u2,r .

(34.19)

In other words, feasible reference trajectories corre-

spond to themotion of a reference frameFr = {Pr, ir, jr}

rigidly attached to a reference unicycle-type robot, with

Pr (alike P = Pm) located at the mid-distance of the ac-

tuated wheels (see Fig. 34.6). From there, the problem

is to determine a feedback control which asymptotic-

ally stabilizes the tracking error (x − xr, y − yr, θ − θr)

O
Reference
vehicle

j

i

im
jm

θe

Pm
ir

jr

xe

ye

Pr

Fig. 34.6 Reference vehicle and error coordinates

at zero, with (xr, yr) being the coordinates of Pr in F0,

and θr the oriented angles between i and ir. One can pro-

ceed as in the path-following case, first by establishing

the error equations with respect to the frame Fr, then

by transforming these equations in the chain form via

a change of variables like the one used to transform the

kinematic equations of a mobile robot into a chained

system, and finally by designing stabilizing control laws

for the transformed system.

Expressing the tracking error in position (x − xr,

y − yr) with respect to the frame Fr gives the vector

(Fig. 34.6)

(

x e

ye

)

=

(

cos θr sin θr

− sin θr cos θr

)(

x − xr

y − yr

)

. (34.20)

Calculating the time derivative of this vector yields

(

ẋ e

ẏe

)

= θ̇r

(

− sin θr cos θr

− cos θr − sin θr

) (

x − xr

y − yr

)

+

(

cos θr sin θr

− sin θr cos θr

) (

ẋ − ẋr

ẏ − ẏr

)

=

(

u2,rye +u1 cos(θ − θr)−u1,r

−u2,rx e +u1 sin(θ − θr)

)

.

By denoting θe = θ − θr, the orientation error between

the frames Fm and Fr, we obtain















ẋ e = u2,rye +u1 cos θe −u1,r ,

ẏe = −u2,rx e +u1 sin θe ,

θ̇e = u2 −u2,r .

(34.21)

To determine a control (u1, u2) which asymptotically

stabilizes the error (x e, ye, θe) at zero, let us consider the

following change of coordinates and control variables

(x e, ye, θe, u1, u2) 7−→ (z1, z2, z3, w1, w2)
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Motion Control of Wheeled Mobile Robots 34.4 Methods Specific to Nonholonomic Systems 809

defined by

z1 = x e ,

z2 = ye ,

z3 = tan θe ,

w1 = u1 cos θe −u1,r ,

w2 =
u2 −u2,r

cos2θe

.

Note that, around zero, this mapping is only defined

when θe ∈ (−π/2, π/2). In other words, the orientation

error between the physical robot and the reference robot

has to be smaller than π/2.

It is immediate to verify that, in the new variables,

the system (34.21) can be written as














ż1 = u2,rz2 +w1 ,

ż2 = −u2,rz1 +u1,rz3 +w1z3 ,

ż3 = w2 .

(34.22)

We remark that the last term in each of the above three

equations corresponds to the one of a chained system.

We then have the following result:

Proposition 34.4

The control law






w1 = −k1|u1,r|(z1 + z2z3) (k1 > 0) ,

w2 = −k2u1,rz2 − k3|u1,r|z3 , (k2, k3 > 0) ,

(34.23)

renders the origin of the system (34.22) globally asymp-

totically stable if u1,r is a bounded differentiable

function whose derivative is bounded and which does

not tend to zero as t tends to infinity.

Remark
By comparison with the results of Sect. 34.3, we note

that u1,r may well pass through zero and change its sign.

Proof
Consider the following positive-definite function

V (z) =
1

2

(

z21 + z22 +
1

k2
z23

)

.

The time derivative of V along the trajectories of the

controlled system (34.22–34.23) is given by

V̇ = z1w1 + z2(u1,rz3 +w1z3)+
1

k2
z3w2

= w1(z1 + z2z3)+ z3

(

u1,rz2 +
1

k2
w2

)

= −k1|u1,r|(z1 + z2z3)
2 −

k3

k2
|u1,r|z

2
3 .

Therefore, along any of these trajectories, V is non-

increasing and converges to some limit value Vlim ≥ 0.

This implies that the variables z1, z2, and z3 are bounded.

Since u1,r is continuous, and since its derivative is

bounded, |u1,r| is uniformly continuous. Therefore, V̇ is

uniformly continuous and, by application of Barbalat’s

lemma, V̇ tends to zero when t tends to infinity. In

view of the expression of V̇ , this implies that u1,rz3
and u1,r(z1 + z2z3) (and thus u1,rz1 also) tend to zero.

On the other hand, by using the expression of w2 (= ż3)

one has

d

dt

(

u2
1,rz3

)

= 2u̇1,ru1,rz3 − k3u2
1,r|u1,r|z3 − k2u3

1,rz2

and one deduces from what precedes that

d

dt

(

u2
1,rz3

)

+ k2u3
1,rz2

tends to zero. Since u3
1,rz2 is uniformly continuous (it

is continuous and its derivative is bounded), and since

u2
1,rz3 tends to zero, one deduces by application of

a slightly extended version of Barbalat’s lemma that

u3
1,rz2 (and thus u1,rz2 also) tends to zero. In view of the

expression of V , the convergence of u1,rzi (i = 1, 2, 3)

to zero implies the convergence of u1,rV to zero. There-

fore, u1,rVlim = 0, and Vlim = 0 by using the assumption

that u1,r does not tend to zero.

The linearization of the control (34.23) yields the

simpler control






w1 = −k1|u1,r|z1 ,

w2 = −k2u1,rz2 − k3|u1,r|z3 .

Since w1 ≈ u1 −u1,r andw2 ≈ u2 −u2,r near the origin,

it is legitimate to wonder if the control






u1 = u1,r − k1|u1,r|z1 ,

u2 = u2,r − k2u1,rz2 − k3|u1,r|z3 .

can also be used for the system (34.21). In fact, it is not

difficult to verify, via a classical pole-placement calcula-

tion, that this control asymptotically stabilizes the origin

of the linear system which approximates the system

(34.21) when u1,r and u2,r are constant, with u1,r 6= 0.

Therefore, it also locally asymptotically stabilizes the

origin of the system (34.21) when these conditions on
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810 Part E Mobile and Distributed Robotics

u1,r and u2,r are satisfied. Thismeans also that the tuning

of the gains k1,2,3 can be performed by using classical

linear control techniques applied to the linear approxi-

mation of the system (34.21). The control (34.23) is in

fact designed so that its tuning for the specific velocities

u1,r = 1 and u2,r = 0 gives good results for all other vel-

ocities (except, of course, u1,r = 0, for which the linear

approximation of the system (34.21) is not controllable

and the control vanishes). Indeed, the multiplication of

all control gains by ±u1,r reduces to normalizing the

equations of the controlled system with respect to the

longitudinal velocity, so that the transient path followed

by the vehicle in the process of catching up with the

reference vehicle is independent of the intensity of the

longitudinal velocity.

Generalization to a Car-Like Vehicle
The previousmethod extends to the car case.We provide

below the main steps of this extension, and leave to the

interested reader the task of verifying the details.

Consider the car’s kinematic model (34.5), comple-

mented with the following model of the reference car

that one wishes to track


























ẋr = u1,r cos θr ,

ẏr = u1,r sin θr ,

θ̇r =
u1,r

L
tanφr ,

φ̇r = u2,r .

(34.24)

We assume that there exists δ ∈ (0, π/2) such that the

steering angle φr belongs to the interval [−δ, δ].

By defining x e, ye, and θe as in the unicycle case, and

by setting φe = φ−φr, one easily obtains the following

system (to be compared with (34.21))


























ẋ e = (
u1,r

L
tanφr)ye +u1 cos θe −u1,r ,

ẏe = −(
u1,r

L
tanφr)x e +u1 sin θe ,

θ̇e = u1
L

tanφ−
u1,r

L
tanφr ,

φ̇e = u2 −u2,r .

(34.25)

Introduce the new state variables


























z1 = x e ,

z2 = ye ,

z3 = tan θe ,

z4 =
tanφ−cos θe tanφr

Lcos3θe
+ k2ye , (k2 > 0) .

We note that for any φr ∈ (−π/2, π/2), the mapping

(x e, ye, θe, φ) 7−→ z defines a diffeomorphism between

R
2 × (−π/2, π/2)2 and R

4. Introduce now the new con-

trol variables


















w1 = u1 cos θe −u1,r ,

w2 = ż4 = k2 ẏe +
(

3 tanφ
cos θe

−2 tanφr

)

sin θe

Lcos3θe
θ̇e

−
u2,r

Lcos2φrcos2θe
+ u2

Lcos2φcos3θe
.

(34.26)

One shows that (u1, u2) 7−→ (w1, w2) defines a change

of variables for θe, φ, and φr, inside the interval

(−π/2, π/2). These changes of state and control vari-

ables transform the system (34.25) into






































ż1 = (
u1,r

L
tanφr)z2 +w1 ,

ż2 = −(
u1,r

L
tanφr)z1 +u1,rz3 +w1z3 ,

ż3 = −k2u1,rz2 +u1,rz4

+w1

(

z4 − k2z2 + (1+ z23)
tanφr

L

)

,

ż4 = w2 .

(34.27)

Proposition 34.4 then becomes:

Proposition 34.5

The control law






w1 = −k1|u1,r|
(

z1 +
z3
k2

[

z4 + (1+ z23)
tanφr

L

])

,

w2 = −k3u1,rz3 − k4|u1,r|z4 ,

(34.28)

with k1,2,3,4 denoting positive numbers, renders the ori-

gin of the system (34.27) globally asymptotically stable

if (i) u1,r is a bounded differentiable function whose

derivative is bounded and which does not tend to zero

when t tends to infinity, and (ii) |φr| is smaller or equal

to δ < π/2.

As in the case of the unicycle, the gain parameters ki

can be tuned from the controlled system’s linearization.

More precisely, one can verify from (34.25), (34.26), and

(34.28), that in the coordinates η = (x e, ye, θe, φe/L)⊤,

the linearization of the controlled system at the equilib-

rium η = 0 yields, when ur = (1, 0), the linear system

η̇ = Aη with

A =











−k1 0 0 0

0 0 1 0

0 0 0 1

0 −k2k4 −k3 −k4










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The control gains ki can then be chosen to give desired

values to the roots of the corresponding characteris-

tic polynomial P(λ)= (λ+k1)(λ
3 +k4λ

2+k3λ+k2k4).

The nonlinear feedback law (34.28) is designed so that

this choice also yields good results when the inten-

sity of u1,r is different from 1 and/or varies arbitrarily,

provided that the convergence conditions specified in

Proposition 34.5 are satisfied.

The simulation shown on Fig. 34.7 illustrates this

control scheme. The gain parameters ki have been

chosen as (k1, k2, k3, k4) = (1, 1, 3, 3). The initial con-

figuration of the reference vehicle (i. e. at t = 0),

which is represented in Fig. 34.7a by dashed lines, is

(xr, yr, θr)(0) = (0, 0, 0). The reference control ur is

defined by (34.29). The initial configuration of the con-

trolled robot, represented in the figure by plain lines,

is (x, y, θ)(0) = (0, −1.5, 0). The configurations at time

t = 10, 20, and 30, are also represented on the figure.

Due to the fast convergence of the tracking error to zero

(see the time evolution of the components x e, ye, θe of

the tracking error in Fig. 34.7b), one can basically con-

sider that the configurations of both vehicles coincide

after time t = 10.

ur(t) =



























(1, 0)⊤ , if t ∈ [0, 10] ,

(−1, 0.5 cos(2π(t −10)/5))⊤ ,

if t ∈ [10, 20] ,

(1, 0)⊤ , if t ∈ [20, 30] .

(34.29)

34.4.3 Path Following
with Orientation Control

We reconsider the path-following problem with the ref-

erence point P now located on the actuated wheels axle,

at the mid-distance of the wheels. The objective is to

synthesize a control law which allows the vehicle to fol-

low the path in a stable manner, independently of the

sign of the longitudinal velocity.

Unicycle Case
We have seen in Sect. 34.4.1 how to transform kinematic

equations with respect to a Frénet frame into the three-

dimensional chained system














ż1 = v1 ,

ż2 = v1z3 ,

ż3 = v2 .

(34.30)

Recall that (z1, z2, z3) = (s, d, (1− dc(s)) tan θe) and

that v1 = u1/1−dc(s) cos θe. The objective is to de-

termine a control law which asymptotically stabilizes

(d = 0, θe = 0) and also ensures that the constraint on

the distance d to the path (i. e., |dc(s)| < 1) is satisfied

along the trajectories of the controlled system. For the

control law, a first possibility consists in considering

a proportional feedback like

v2 = −v1k2z2 −|v1|k3z3 , (k2, k3 > 0) . (34.31)

It is then immediate to verify that the origin of the closed-

loop subsystem







ż2 = v1z3 ,

ż3 = −v1k2z2 −|v1|k3z3

(34.32)

is asymptotically stable when v1 is constant, either pos-

itive or negative. Since u1 (not v1) is the intensity of
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812 Part E Mobile and Distributed Robotics

the vehicle’s longitudinal velocity, one would rather es-

tablish stability conditions which depend on u1. The

following result provides a rather general stability con-

dition and gives a sufficient condition for the satisfaction

of the constraint |dc(s)| < 1.

Proposition 34.6

Consider the system (34.30) controlled with (34.31),

and assume that the initial conditions [z2(0), z3(0)] =

[d(0), {1−d(0)c[s(0)]} tan θe(0)] verify

z22(0)+
1

k2
z23(0) <

1

c2max

with cmax = maxs|c(s)|. Then, the constraint |dc(s)| < 1

is satisfied along any solution to the controlled system.

Moreover, the function

V (z) =
1

2

(

z22 +
1

k2
z23

)

(34.33)

is nonincreasing along any trajectory z(t) of the system,

and V [z(t)] tends to zero as t tends to infinity if, for

instance, u1 is a bounded differentiable time function

whose derivative is bounded and which does not tend to

zero as t tends to infinity.

The proof is similar to the one of Proposition 34.4:

a simple calculation shows that the function V is non-

increasing so that, along any solution to the controlled

system, it converges to some limit value Vlim. The same

arguments as those used in the proof of Proposition 34.4

can then be repeated to show that Vlim = 0.

Note that the constraints upon u1 are rather weak. In

particular, the sign of u1 does not have to be constant.

From a practical point of view it can be useful to

complement the control action with an integral term.

More precisely, let us define a variable z0 by

ż0 = v1z2 , z0(0) = 0 .

The control (34.31) can be modified as follows:

v2 = −|v1|k0z0 −v1k2z2 −|v1|k3z3 ,

= −|v1|k0

t
∫

0

v1z2 −v1k2z2 −|v1|k3z3 ,

(k0, k2, k3 > 0) (34.34)

and Proposition 34.6 becomes:

Proposition 34.7

Consider the system (34.30) controlled by (34.34) with

k0, k2, and k3 such that the polynomial

s3 + k3s2 + k2s + k0

is Hurwitz stable (all roots of this polynomial have

a negative real part.). Assume also that the initial condi-

tions [z2(0), z3(0)] = [d(0), {1−d(0)c[s(0)]} tan θe(0)]

verify:

z22(0)+
1

k2 −
k0
k3

z23(0) <
1

c2max

.

Then the constraint |dc(s)| < 1 is satisfied along any

solution to the controlled system.Moreover, the function

k0

k3





t
∫

0

v1z2





2

+ z22(t)+
1

k2 −
k0
k3

z23(t)

is nonincreasing along any trajectory of the system, and

it tends to zero as t tends to infinity if, for instance, u1 is

a bounded differentiable time-function whose derivative

is bounded and which does not converge to zero as t

tends to infinity.

Generalization to a Car-Like Vehicle
and to a Unicycle-Type Vehicle with Trailers

One of the assets of this type of approach, besides the

simplicity of the control law and little demanding con-

ditions of stability associated with it, is that it can be

generalized in a straightforward manner to car-like ve-

hicles and unicycle-type vehicleswith trailers. The result

is summarized in the next proposition by considering

a n-dimensional chained system






































ż1 = v1 ,

ż2 = v1z3 ,

...

żn−1 = v1zn ,

żn = v2 ,

(34.35)

with n ≥ 3. Its proof is a direct extension of the

one in the three-dimensional case. The dimension

n = 4 corresponds to the car case (Sect. 34.4.1). As

for a unicycle-type vehicle with N trailers, one has

n = N +3. Recall also that, in all cases, z2 represents

the distance d between the path and the point P lo-

cated at the mid-distance of the rear wheels of the last

vehicle.

Proposition 34.8

Let k2, . . . , kn denote parameters such that the polyno-

mial

sn−1 + knsn−2 + kn−1sn−3 + . . .+ k3s + k2
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Motion Control of Wheeled Mobile Robots 34.4 Methods Specific to Nonholonomic Systems 813

is Hurwitz stable.With these parameters, let us associate

the control law

v2 = −v1

n
∑

i=2

sign(v1)
n+1−iki zi . (34.36)

Then, there exists a positive-definite matrix Q (whose

entries depend on the coefficients ki ) such that, if the

initial conditions [z2(0), z3(0), . . . , zn(0)] verify

‖[z2(0), z3(0), . . . , zn(0)]‖Q <
1

cmax
(34.37)

the constraint |dc(s)| < 1 is satisfied along any solution

to the controlled system. Moreover, the function

‖[z2(t), z3(t), . . . , zn(t)]‖Q

is nonincreasing along any trajectory of the system, and

it tends to zero as t tends to infinity if, for instance, u1

is a bounded differentiable function whose derivative is

bounded and which does not converge to zero as t tends

to infinity.

Remark
The condition (34.37) is always satisfied when c(s) = 0

for every s (i. e., when the path is a straight line). It

is little demanding in practice when cmax is small. Note

also that it is possible to calculate thematrix Q explicitly

as a function of the parameters ki (see [34.1] for more

details).

As in the three-dimensional case, it is possible to

add an integral term to the control. In this case, the

control is calculated from the expression of an extended

system whose state vector is composed of the variables

z1, . . . , zn , and a complementary variable z0 such that

ż0 = v1z2. Since adding the variable z0 preserves the

chained structure of the system, the control expression

is simply adapted from the one determined for a system

of dimension n +1with no integral term.More precisely,

one obtains

v2 = −k0v1sign(v1)
n

×

t
∫

0

v1z2 −v1

n
∑

i=2

sign(v1)
n+1−iki zi

with the parameters ki chosen so that the polynomial

sn + knsn−1 + kn−1sn−3 + . . .+ k2s + k0 is Hurwitz sta-

ble.

The simulation results reported in Fig. 34.8 illus-

trate how this control scheme performs for a car-like

vehicle. The reference curve is the circle of radius

equal to four, centered at the origin. The robot’s lon-

gitudinal velocity u1 is defined by u1 = 1 for t ∈ [0, 5],

and u1 = −1 for t > 5. The control gains have been

chosen as (k2, k3, k4) = (1, 3, 3). The motion of the car-

like robot in the plane is represented in Fig. 34.8a, and

its configuration at times t = 0, 5, and 25 are also de-

picted in the figure. The time evolution of the variables

z2, z3, z4 (defined in Proposition 34.3) is represented

in Fig. 34.8b. One can observe that the (discontinuous)

change of the longitudinal velocity u1 at t = 5 does not

affect the convergence of these variables to zero.

34.4.4 Asymptotic Stabilization
of Fixed Postures

We now consider the problem of asymptotic stabiliza-

tion of a fixed desired (reference) posture (i. e., position
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814 Part E Mobile and Distributed Robotics

and orientation) for the robot chassis. This problem

may be seen as a limit case of the trajectory tracking

problem. However, none of the feedback controllers pro-

posed previously in this chapter provides a solution to

this problem. For instance, in Sect. 34.3, although the

result about the stabilization in position of feasible tra-

jectories did not exclude the case of a trajectory reduced

to a single point, the stability of the vehicle’s orienta-

tion was not granted in this case. As for the results in

Sect. 34.4, the convergence of the posture error to zero

has been proven when the robot’s longitudinal velocity

did not converge to zero (which excludes the case of

fixed postures).

From the automatic control point of view, the asymp-

totic stabilization of fixed postures is very different from

the problems of path following and trajectory track-

ing with nonzero longitudinal velocity, much in the

same way as a human driver knows, from experience,

that parking a car at a precise location involves tech-

niques and skills different from those exercised when

cruising on a road. In particular, it cannot be solved

by any classical control method for linear systems (or

based on linearization). Technically, the underlying gen-

eral problem is the one of asymptotic stabilization of

equilibria of controllable driftless systems with less

control inputs than state variables. This problem mo-

tivated numerous studies during the last decade of the

last century, from many authors and with various an-

gles of attack, and it has remained a subject of active

research five years later. The variety of candidate solu-

tions proposed until now, themathematical technicalities

associated with several of them, together with unsolved

difficulties and limitations, particularly (but not only)

in terms of robustness (an issue on which we will re-

turn), prevent us from attempting to cover the subject

exhaustively. Instead, we have opted for a somewhat

informal exposition of approaches which have been

considered, with the illustration of a few control so-

lutions, without going into technical and mathematical

details.

A central aspect of the problem, which triggered

much of the subsequent research on the control of non-

holonomic systems, is that asymptotic stabilization of

equilibria (or fixed points) cannot be achieved by using

continuous feedbacks which depend on the state only

(i. e., continuous pure-state feedbacks). This is a conse-

quence of an important result due to Brockett in 1983

(see also related comments in Sect. 17.4.2). The original

result by Brockett concerned differentiable feedbacks;

it has later been extended to the larger set of feedbacks

which are only continuous.

Theorem 34.1

(Brockett [34.2]) Consider a control system ẋ =

f (x, u) (x ∈ R
n, u ∈ R

m), with f a differentiable func-

tion and (x, u) = (0, 0) an equilibrium of this system.

A necessary condition for the existence of a contin-

uous feedback control u(x) which renders the origin

of the closed-loop system ẋ = f (x, u(x)) asymptotic-

ally stable is the local surjectivity of the application

(x, u) 7−→ f (x, u). More precisely, the image by f of

any neighborhood Ω of (0, 0) in R
n+m must be a neigh-

borhood of 0 in R
n .

This result implies that the equilibria of many con-

trollable (nonlinear) systems are not asymptotically

stabilizable by continuous pure-state feedbacks. All

nonholonomic WMRs belong to this category of sys-

tems. This will be shown in the case of a unicycle-type

vehicle; the proof for the other mobile robots is sim-

ilar. Let us thus consider a unicycle-type vehicle,

whose kinematic equations (34.4) can be written as

ẋ = f (x, u) with x = (x1, x2, x3)
⊤, u = (u1, u2)

⊤, and

f (x, u) = (u1 cos x3, u1 sin x3, u2)
⊤, and let us show

that f is not locally onto in the neighborhood of

(x, u) = (0, 0). To this purpose, take a vector in R
3

of the form (0, δ, 0)⊤. It is obvious that the equation

f (x, u) = (0, δ, 0)⊤ does not have a solution in the

neighborhood of (x, u) = (0, 0) since the first equation,

namely u1 cos x3 = 0, implies that u1 = 0, so that the

second equation cannot have a solution if δ is different

from zero.

It is also obvious that the linear approximation (about

the equilibrium (x, u)= (0, 0)) of the unicycle kinematic

equations is not controllable. If it were, it would be possi-

ble to (locally) asymptotically stabilize this equilibrium

with a linear (thus continuous) state feedback.

Therefore, by application of the above theorem,

a unicycle-type mobile robot (like other nonholonomic

robots) cannot be asymptotically stabilized at a desired

posture (position/orientation) by using a continuous

pure-state feedback. This impossibility has motivated

the development of other control strategies in order to

solve the problem. Three major types of controls have

been considered:

1. continuous time-varying feedbacks, which, besides

from depending on the state x, depend also on the

exogenous time variable (i. e., u(x, t) instead of u(x)

for classical feedbacks),

2. discontinuous feedbacks, in the classical form u(x),

except that the function u is not continuous at the

equilibrium that one wishes to stabilize,
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Motion Control of Wheeled Mobile Robots 34.4 Methods Specific to Nonholonomic Systems 815

3. hybrid discrete/continuous feedbacks. Although this

class of feedbacks is not defined as precisely as the

other two sets of controls, it is mostly composed

of time-varying feedbacks, either continuous or dis-

continuous, such that the part of the control which

depends upon the state is only updated periodically,

e.g., u(t) = ū[x(kT ), t] for any t ∈ [kT, (k +1)T ],

with T denoting a constant period, and k ∈ N.

We will now illustrate these approaches. In fact, only

time-varying and hybrid feedbacks will be considered

here. The main reason is that discontinuous feed-

backs involve difficult questions (existence of solutions,

mathematical meaning of these solutions, etc.) which

complicate their analysis and for which complete an-

swers are not available. Moreover, for most of the

discontinuous control strategies described in the liter-

ature, the property of stability in the sense of Lyapunov

is either not granted or remains an open issue.

Time-Varying Feedbacks
The use of time-varying feedbacks for the asymptotic

stabilization of a fixed desired equilibrium, for a non-

holonomicWMR, in order to circumvent the obstruction

pointed out by Brockett’s Theorem, was first proposed

in [34.3]. Since then, very general results about the

stabilization of nonlinear systems by means of time-

varying feedbacks have been obtained. For instance, it

has been proved that any controllable driftless system

can have any of its equilibria asymptotically stabilized

with a control of this type [34.4]. This includes the kine-

matic models of the nonholonomic mobile robots here

considered. We will illustrate this approach in the case

of unicycle-type and car-like mobile robots modeled by

three- and four-dimensional chained systems, respec-

tively. In order to consider the three-dimensional case, let

us come back on the results obtained in Sect. 34.4.3 for

path following. We have established (Proposition 34.6)

that the control v2 = −v1k2z2 −|v1|k3z3 applied to the

system















ż1 = v1 ,

ż2 = v1z3 ,

ż3 = v2 ,

renders the function V (z) defined by (34.33) nonin-

creasing along any trajectory of the controlled system,

i. e.,

V̇ = −
k3

k2
|v1|z

2
3 ,

and ensures the convergence of z2 and z3 to zero if, for

instance, v1 does not tend to zero as t tends to infinity.

For example, if v1(t) = sin t, the proposition applies, z2
and z3 tend to zero, and

z1(t) = z1(0)+

t
∫

0

v1(s)ds = z1(0)+

t
∫

0

sin sds

= z1(0)+1− cos t

so that z1(t) oscillates around the mean value z1(0)+1.

To reduce these oscillations, one can multiply v1 by

a factor which depends on the current state. Take, for

example, v1(z, t) = ‖(z2, z3)‖ sin t, that we complement

with a stabilizing term like −k1z1 with k1 > 0, i. e.,

v1(z, t) = −k1z1 +‖(z2, z3)‖ sin t .

The feedback control so obtained is time-varying and

asymptotically stabilizing.

Proposition 34.9

The continuous time-varying feedback






v1(z, t) = −k1z1 +α‖(z2, z3)‖ sin t ,

v2(z, t) = −v1(z, t)k2z2 −|v1(z, t)|k3z3 ,
(34.38)

with α, k1,2,3 > 0, renders the origin of the three-

dimensional chained system globally asymptotically

stable [34.5].

The above proposition can be extended to chained sys-

tems of arbitrary dimension [34.5]. For the case n = 4,

which corresponds to the car-like robot, one has the

following result.

Proposition 34.10

The continuous time-varying feedback














v1(z, t) = −k1z1 +α‖(z2, z3, z4)‖ sin t ,

v2(z, t) = −|v1(z, t)|k2z2 −v1(z, t)k3z3

−|v1(z, t)|k4z4 ,

(34.39)

with α, k1,2,3,4 > 0 chosen such that the polynomial

s3 + k4s2 + k3s + k2 is Hurwitz-stable, renders the ori-

gin of the four-dimensional chained system globally

asymptotically stable [34.5].

Figure 34.9 below illustrates the previous result. For this

simulation, the parameters α, k1,2,3,4 in the feedback

law (34.39) have been chosen as α = 3 and k1,2,3,4 =

(1.2, 10, 18, 17). Figure 34.9a shows the motion of the
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Fig. 34.9a,b Asymptotic stabilization with a Lipschitz-

continuous controller

car-like robot in the plane. The initial configuration,

at time t = 0, is depicted in plain lines, whereas the

desired configuration is shown in dashed lines. The time

evolution of the variables x, y, and θ (i. e., the position

and orientation variables corresponding to the model

(34.5)) is shown in Fig. 34.9b.

A shortcoming of this type of control, very clear

from this simulation, is that the system’s state converges

to zero quite slowly. One can show that the rate of con-

vergence is only polynomial, i. e., it is commensurable

with t−α (for some α ∈ (0, 1)) for most of the trajectories

of the controlled system. This slow rate of conver-

gence is related to the fact that the control function is

Lipschitz-continuous with respect to x. It is a character-

istics of systems the linear approximation of which is not

stabilizable, as specified in the following proposition.

Proposition 34.11

Consider the control system ẋ = f (x, u) (x ∈ R
n, u ∈

R
m) with f being differentiable, and (x, u) = (0, 0) an

equilibrium point of this system. Assume that the linear

approximation of this system is not stabilizable. Con-

sider also a continuous time-varying feedback u(x, t),

periodic with respect to t, such that u(0, t) = 0 for any

t, and such that u(., t) is k(t)-Lipschitz continuous with

respect to x, for some bounded function k. This feed-

back cannot yield uniform exponential convergence to

zero of the closed-loop system’s solutions: there do not

exist constants K > 0 and γ > 0 such that, along any

trajectory x(.) of the controlled system, one has

|x(t)| ≤ K |x(t0)|e
−γ (t−t0) . (34.40)

The intuitive reason behind this impossibility can eas-

ily be illustrated on the unicycle example. When using

the chain form representation, the second equation is

ż2 = v1z3. Since the linearization around (z = 0, v = 0)

of this equation gives ż2 = 0, the linear approximation

of the system is not controllable (nor stabilizable). In

these conditions, exponential convergence, when ap-

plying a linear feedback, would necessitate the use of

gains growing to infinity, thus ruling out the prop-

erty of Lipschitz-continuity. This type of reasoning,

coupled to the need of better performance and effi-

ciency, has triggered the development of stabilizing

time-varying feedbacks which are continuous, but not

Lipschitz-continuous. Examples of such feedbacks,

yielding uniform exponential convergence, are given

in the following propositions for chained systems of

dimension three and four, respectively.

Proposition 34.12

Let α, k1,2,3 > 0 denote scalars such that the polynomial

p(s) = s2 + k3s + k2 is Hurwitz stable. For any integers

p, q ∈ N
∗, let ρp,q denote the function defined on R

2 by

∀z̄2 = (z2, z3) ∈ R
2, ρp,q(z̄2)

=
(

|z2|
p

q+1 +|z3|
p
q

)
1
p

.

Then, there exists q0 > 1 such that, for any q ≥ q0 and

p > q +2, the continuous state feedback














v1(z, t) = −k1(z1 sin t −|z1|) sin t

+αρp,q(z̄2) sin t

v2(z, t) = −v1(z, t)k2
z2

ρ2
p,q (z̄2)

−|v1(z, t)|k3
z3

ρp,q (z̄2)

(34.41)
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renders the origin of the three-dimensional chained

system globally asymptotically stable, with a uniform

exponential rate of convergence [34.1].

The parenthood of the controls (34.38) and (34.41) is

noticeable. One can also verify that the control (34.41)

is well defined (by continuity) at z̄2 = 0. More precisely,

the ratios

z2

ρ2
p,q(z̄2)

and
z3

ρp,q(z̄2)
,

which are obviously well defined when z̄2 6= 0, tend

to zero when z̄2 tends to zero. This guarantees the

continuity of the control law.

The property of exponential convergence pointed

out in the above result calls for some remarks. Indeed,

this property does not exactly correspond to the clas-

sical exponential convergence property associated with

stable linear systems. In this latter case, exponential con-

vergence implies that the relation (34.40) is satisfied.

This corresponds to the common notion of exponential

stability. In the present case, this inequality becomes

ρ[z(t)] ≤ Kρ[z(t0)]e
−γ (t−t0)

for some function ρ, defined for example by

ρ(z) = |z1|+ρp,q(z2, z3), with ρp,q as specified in

Proposition 34.12. Although the function ρ shares com-

mon features with the Euclidean norm of the state vector

(it is definite positive and it tends to infinity when ‖z‖

tends to infinity), it is not equivalent to this norm. Of

course, this does not change the fact that each compo-

nent zi of z converges to zero exponentially. However,

the transient behavior is different because one only has

|zi (t)| ≤ K‖z(t0)‖
α e−γ (t−t0)

with α < 1, instead of

|zi (t)| ≤ K‖z(t0)‖e
−γ (t−t0) .

In the case of the four-dimensional chained system,

one can establish the following result, which is similar

to Proposition 34.12.

Proposition 34.13

Let α, k1, k2, k3, k4 > 0 be chosen such that the poly-

nomial p(s) = s3 + k4s2 + k3s + k2 is Hurwitz stable.

For any integers p, q ∈ N
∗, let ρp,q denote the function

defined on R
3 by

ρp,q(z̄2) =
(

|z2|
p

q+2 +|z3|
p

q+1 +|z4|
p
q

)
1
p

with z̄2 = (z2, z3, z4) ∈ R
3. Then, there exists q0 > 1

such that, for any q ≥ q0 and p > q +2, the continuous

state feedback



























v1(z, t) = −k1(z1 sin t −|z1|) sin t

+αρp,q(z̄2) sin t ,

v2(z, t) = −|v1(z, t)|k2
z2

ρ3
p,q (z̄2)

−v1(z, t)k3
z3

ρ2
p,q(z̄2)

−|v1(z, t)|k4
z4

ρp,q (z̄2)
,

(34.42)

renders the origin of the four-dimensional chained sys-

tem globally asymptotically stable, with a uniform

exponential rate of convergence [34.1].
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Fig. 34.10a,b Asymptotic stabilization with a continuous

(non-Lipschitz) time-varying feedback
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The performance of the control law (34.42) is illustrated

by the simulation results shown in Fig. 34.10. The con-

trol parameters have been chosen as follows: α = 0.6,

k1,2,3,4 = (1.6, 10, 18, 17), q = 2, p = 5. The compari-

son with the simulation results of Fig. 34.9 shows a clear

gain in performance.

Hybrid Feedbacks
These feedbacks constitute an alternative for the asymp-

totic stabilization of fixed postures. They may be seen

as a mix of open-loop and feedback controls in the

sense that the dependence on the state is, in general,

only updated periodically (by contrast with time-varying

feedbacks which are updated continuously). Between

two updates, the control works in open-loop mode.

Nonetheless, this type of control may present some ad-

vantages with respect to time-varying feedbacks. This

point is briefly commented upon a little further. An ex-

ample of a hybrid feedback is provided in the following

proposition.

Proposition 34.14

The hybrid feedback law v defined by

v(t) = v̄[z(kT ), t] , ∀t ∈ [kT, (k +1)T ] , (34.43)

with






v̄1(z, t) = 1
T
[(k1 −1)z1 +2πρ(z) sin(ωt)] ,

v̄2(z, t) = 1
T
[(k3 −1)z3 +2(k2 −1) z2

ρ(z)
cos(ωt)] ,

and

k1,2,3 ∈ (−1, 1) , ω =
2π

T
,

ρ(z) = α2|z2|
1/2 , (α2 > 0)

is a K(T )-exponential stabilizer for the three-

dimensional chained system [34.6].

The property of K(T )-exponential stabilizer evoked in

the above proposition means that there exist positive

constants K , η, and γ , with γ < 1, such that for any z0,

the solution at time t of the controlled system associated

with the initial condition z0 at time t = 0, which we

denote as z(t, 0, z0), satisfies for any k ∈ N and any s ∈

[0, T ) the inequalities

‖z((k +1)T, 0, z0)‖ ≤ γ‖z(kT, 0, z0)‖

and

‖z(kT + s, 0, z0)‖ ≤ K‖z(kT, 0, z0)‖
η .

These relations imply the exponential convergence of

the system’s trajectories to the origin z = 0. They do

not imply the stability of this point because ‖z(t, 0, z0)‖

may vanish at some time t = t̄ and not remain equal to

zero thereafter. Note, however, that if ‖z(kT, 0, z0)‖ =

0 for some k ∈ N, then the above relations imply that

‖z(t, 0, z0)‖ = 0 for all t ≥ kT .

In the case of four-dimensional systems, a result

similar to Proposition 34.14 can also be established.

Proposition 34.15

The hybrid feedback law v defined by

v(t) = v̄(z(kT ), t) , ∀t ∈ [kT, (k +1)T ] (34.44)

with














v̄1(z, t) = 1
T
[(k1 −1)z1 +2πρ(z) sin(ωt)] ,

v̄2(z, t) = 1
T
[(k4 −1)z4 +2(k3 −1)

z3
ρ(z)

cos(ωt)

+8(k2 −1) z2
ρ2(z)

cos(2ωt)] ,

k1,2,3,4 ∈ (−1, 1), ω = 2π
T
, and ρ(z) = α2|z2|

1/4 +

α3|z3|
1/3 (α2,3 > 0), is a K(T )-exponential stabilizer

for the four-dimensional chained system [34.6].

The simulation results reported in Fig. 34.11 illustrate

the application of the feedback law (34.44). The control

parameters have been chosen as T = 3, k1,2,3,4 = 0.25,

and α2,3 = 0.95. The control performance is similar to

the one observed in Fig. 34.10, as could be expected from

the fact that both controls yield exponential convergence

to the origin.

34.4.5 Limitations Inherent to the Control
of Nonholonomic Systems

Let us first mention some problems associated with

the nonlinear time-varying and hybrid feedbacks just

presented. An ever important issue, when studying feed-

back control, is robustness. Indeed, if it were not for the

sake of robustness, feedback control would lose much

of its value and interest with respect to open-loop con-

trol solutions. There are various robustness issues. One

of them concerns the sensitivity to modeling errors. For

instance, in the case of a unicycle-type robot whose kine-

matic equations are in the form ẋ = u1b1(x)+u2b2(x),

one would like to know whether a feedback law which

stabilizes an equilibrium of this system also stabilizes

this equilibrium for the neighbor system ẋ = u1[b1(x)+

εg1(x)]+u2[b2(x)+ εg2(x)], with g1 and g2 denoting

continuous applications, and ε a parameter which quan-

tifies the modeling error. This type of error can account,
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Fig. 34.11a,b Asymptotic stabilization with a hybrid dis-

crete/continuous controller

for example, for a small uncertainty concerning the ori-

entation of the actuated wheels axle with respect to the

chassis, which results in a bias in the measurement of

this orientation. One can show that time-varying control

laws like (34.41) are not robust with respect to this type

of error in the sense that, for certain functions g1 and g2,

and for ε arbitrarily small, the system’s solutions end up

oscillating in the neighborhood of the origin, instead of

converging to the origin. In other words, both the prop-

erties of stability of the origin and of convergence to

this point can be jeopardized by arbitrarily small mod-

eling errors, even in the absence of measurement noise.

In this respect, the hybrid control law (34.43) is more

robust: the exponential convergence to the origin of the

controlled system’s solutions is still obtained when ε is

small enough. However, the slightest discretization un-

certainty can produce the same type of local instability.

In view of these problems, one is brought to question

the existence of fast (exponential) stabilizers endowed

with robustness properties similar to those of stabiliz-

ing linear feedbacks for linear systems. The answer is

that, to our knowledge, no such control solution (ei-

ther continuous or discontinuous) has ever been found.

More than likely such a solution does not exist for non-

holonomic systems. Robustness of the stability property

against modeling errors, and control discretization and

delays, has been proved in some cases, but this could

only be achieved with Lipschitz-continuous feedbacks

which, as we have seen, yield slow convergence. The

classical compromise between robustness and perfor-

mance thus seems much more acute than in the case of

stabilizable linear systems (or nonlinear systems whose

linear approximation is stabilizable).

A second issue is the proven nonexistence of a uni-

versal feedback controller capable of stabilizing any

feasible reference state trajectory asymptotically [34.7].

This is another notable difference with the linear case.

Indeed, given a controllable linear system ẋ = Ax+ Bu,

the feedback controller u = ur + K (x − xr), with K

a gain matrix such that A+ BK is Hurwitz stable, ex-

ponentially stabilizes any feasible reference trajectory

xr (solution to the system) associated with the control

input ur. The nonexistence of such a controller, in the

case of nonholonomic mobile robots, is related to the

conditions upon the longitudinal velocity stated in pre-

vious propositions concerning trajectory stabilization

(Propositions 34.4 and 34.5). This basically indicates

that such conditions cannot be removed entirely: what-

ever the chosen feedback controller, there always exists

a feasible reference trajectory that this feedback can-

not asymptotically stabilize. Note that this limitation

persists when considering nonstandard feedbacks (such

as, e.g., time-varying periodic feedbacks capable of

asymptotically stabilizing reference trajectories which

are reduced to a single point). Moreover, it has clear

practical consequences because there are applications

(automatic tracking of a human-driven car, for instance)

for which the reference trajectory, and thus its proper-

ties, are not known in advance (is the leading car going

to keepmoving or stop?) so that one cannot easily decide

on which controller to use. Switching between various

controllers is a possible strategy, which has been stud-

ied by some authors and may give satisfactory results in

many situations. However, since implementing a prede-

fined switching strategy between two controllers sums

up to designing a third controller, this does not solve the

core of the problem nor grant any certitude of success.
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A third issue, which is not specific to nonholo-

nomic systems, but has seldom been addressed in the

nonlinear control literature, concerns the problem of

tracking nonfeasible trajectories (i. e., trajectories which

are not solutions to the system’s equations). Since exact

tracking is not possible, by the definition of a nonfea-

sible trajectory, the control objective is then to ensure

that the tracking errors shrink to, and ever after never

exceed, certain nonzero thresholds. The fact that these

thresholds can theoretically be arbitrarily small in the

case of nonholonomic systems, if the amplitude of the

velocity control inputs is not limited, makes this prob-

lem particularly relevant for these systems. This can

be termed as a practical stabilization objective which,

although slightly less ambitious than the objective of

asymptotic stabilization considered in previous sections,

opens up both the control design problem and the range

of applications significantly. For instance, it allows to

address the problem of tracking an omnidirectional ve-

hicle with a unicycle-type, or a car-like, vehicle. In the

context of planning a trajectory with obstacle avoidance,

transforming a nonfeasible trajectory into a feasible ap-

proximation for a certain mobile robot can be performed

by applying a practical stabilizer to a model of this robot

and by numerical integration of the system’s closed-loop

equations. Also, if one reformulates the former ques-

tion about the existence of a universal stabilizer, with

the objective of asymptotic stabilization now replaced

by the one of practical stabilization, then the answer

becomes positive: such a stabilizer exists and, more-

over, the reference trajectories do not even have to be

feasible.

34.4.6 Practical Stabilization
of Arbitrary Trajectories Based
on the Transverse Function
Approach

A possible approach for the design of practical stabi-

lizers in the case of controllable driftless systems is

described in [34.8]. Some of its basic principles, here

adapted to the specific examples of unicycle-type and

car-like mobile robots, are recalled next.

Let us introduce some matrix notation that will be

used in this section.

R(θ) =

(

cos θ − sin θ

sin θ cos θ

)

, S =

(

0 −1

1 0

)

R̄(θ) =

(

R(θ) 0

0 1

)

.

Unicycle Case
With the above notation, the kinematic model (34.4) can

be written as

ġ = R̄(θ)Cu (34.45)

with g = (x, y, θ)′ and

C =







1 0

0 0

0 1






.

Let us now consider a smooth function

f : α 7−→ f (α) =







fx (α)

fy(α)

fθ (α)







with α ∈ S1 = R/2πZ (i. e., α is an angle variable), and

define

ḡ :=







x̄

ȳ

θ̄






:= g − R̄

(

θ − fθ (α)
)

f (α)

=







(

x

y

)

− R(θ − fθ (α))

(

fx (α)

fy(α)

)

θ − fθ (α)






. (34.46)

Note that ḡ can be viewed as the situation of a frame

F̄m(α) the origin of which has components

−R(− fθ (α))

(

fx (α)

fy(α)

)

in the frameFm. In term of differential geometry, ḡ is the

product of g by the inverse f (α)−1 of f (α), in the sense

of the Lie group operations in SE(2). Hence, F̄m(α) is

all the closer to Fm as the components of f (α) are small.

For any smooth time function t 7−→ α(t), and along any

solution to system (34.45), the time derivative of ḡ is

given by

˙̄g = R̄(θ̄)ū (34.47)

with

ū = A(α)
(

R̄( fθ (α)) −∂ f/∂α(α)

)

(

Cu

α̇

)

(34.48)

and

A(α) =







I2 −S

(

fx (α)

fy(α)

)

0 1






. (34.49)
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From (34.47) and (34.48), one can view α̇ as a comple-

mentary control input that can be used to monitor the

motion of the frame F̄m(α). More precisely, F̄m(α) can

be viewed as an omnidirectional frame provided that ū

can be rendered equal to any vector of R
3, i. e., provided

that the mapping (u, α̇) 7−→ ū is onto. Let us determine

when this condition is satisfied. Equation (34.48) can

also be written as

ū = A(α)H(α)

(

u

α̇

)

(34.50)

with

H(α) =







cos fθ (α) 0 −∂ fx/∂α(α)

sin fθ (α) 0 −∂ fy/∂α(α)

0 1 −∂ fθ/∂α(α)






. (34.51)

Since A(α) is invertible, F̄m(α) is omnidirectional if and

only if the matrix H(α) is also invertible. A function

f which satisfies this property for any α ∈ S1 is called

a transverse function [34.9]. The issue of the existence of

such functions has been treated in themuchmore general

context of the transverse function approach [34.8, 9]. In

the present case, a family of transverse functions is given

by:

f (α) =







ε sinα

ε2η sin 2α
4

arctan(εη cosα)






with ε, η > 0 .

(34.52)

Indeed, with this function one can verify that, for any

α ∈ S1, detH(α) = −
ε2η
2

cos(arctan(εη cosα)) < 0.Note

that the components of f uniformly tend to zero as

ε tends to zero, so that the associated omnidirectional

frame F̄m(α) can be made arbitrarily close to Fm by

choosing ε small (but different from zero).

Now, let t 7−→ gr(t) = [xr(t), yr(t), θr(t)]
⊤ denote

a smooth, but otherwise arbitrary, reference trajectory.

It is not difficult to derive from (34.47) a feedback law

ū which asymptotically stabilizes ḡ at gr. A possible

choice is given by

ū = R̄(−θ̄)[ġr − k(ḡ − gr)] , (34.53)

which implies that ( ˙̄g − ġr) = −k(ḡ − gr) and therefore

that ḡ − gr = 0 is an exponentially stable equilibrium of

the above equation for any k > 0. Then, it follows from

(34.46) that

lim
t→+∞

{

g(t)− gr(t)− R̄[θr(t)] f [α(t)]
}

= 0 .

(34.54)

The normof the tracking error ‖g−gr‖ is thus ultimately

bounded by the norm of f (α) which, in view of (34.52),

can be made arbitrarily small via the choice of ε. It is

in this sense that practical stabilization is achieved. The

control u for the unicycle-like robot is then calculated by

inverting the relation (34.50) and using the expression

(34.53) of ū.

While it can be tempting to use very small val-

ues of ε for the transverse function f in order to

obtain a good tracking precision, one must be aware

of the limits of this strategy. Indeed, when ε tends to

zero, the matrix H(α) defined by (34.51) becomes ill-

conditioned, and its determinant tends to zero. This

implies, by (34.50), that the robot’s velocities u1 and

u2 may become very large. In particular, when the ref-

erence trajectory gr is not feasible, many manoeuvres

are likely to occur. Note that this difficulty is intrinsic

to the robot’s nonholonomy and that it cannot be cir-

cumvented (think about the problem of parking a car in

a very narrow parking place). For this reason, trying

to impose very accurate tracking of nonfeasible tra-

jectories is not necessarily a good option in practice.

On the other hand, when the trajectory is feasible, ma-

noeuvres are not needed to achieve accurate tracking,

so that smaller values of ε can be used in this case.

This clearly leads to a dilemma when the reference tra-

jectory is not known in advance and its properties in

term of feasibility can vary with time. A control strategy

which addresses this issue, based on the use of trans-

verse functions whose magnitude can be adapted online,

is proposed in [34.10]. Experimental validations of the

present approach on a unicycle-like robot can also be

found in [34.11].

Car Case
The control approach presented above can be extended

to car-like vehicles (and also to the trailer case). Again,

the idea is to associate with the robot’s frame Fm an

omnidirectional companion frame F̄m(α) which can

be maintained arbitrarily close to Fm via the choice

of some design parameters. Let us show how this

can be done for a car-like vehicle. To simplify the

forthcoming equations, let us rewrite system (34.5)

as



























ẋ = u1 cos θ ,

ẏ = u1 sin θ ,

θ̇ = u1ξ ,

ξ̇ = uξ ,
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with ξ = (tanφ)/L and uξ = u2(1+ tan2φ)/L . This

system can also be written as (compare with

(34.45))






ġ = R̄(θ)C(ξ)u1 ,

ξ̇ = uξ ,
(34.55)

with g = (x, y, θ)⊤ and C(ξ) = (1, 0, ξ)⊤. Let us now

consider a smooth function

f : α 7−→ f (α) =

(

fg(α)

fξ (α)

)

=











fx (α)

fy(α)

fθ (α)

fξ (α)











with α ∈ S1 × S1 (i. e. α = (α1, α2)), and define (compare

with (34.46))

ḡ :=







x̄

ȳ

θ̄






:= g − R̄(θ − fθ (α)) fg(α)

=







(

x

y

)

− R(θ − fθ (α))

(

fx (α)

fy(α)

)

θ − fθ (α)






, (34.56)

which, as in the unicycle case, can be viewed as the

situation of some companion frame F̄m(α). By differ-

entiating ḡ along any smooth time function t 7−→ α(t)

and any solution to system (34.55), one can verify that

(34.47) is still satisfied, except that ū is now given

by

ū = A(α)
(

R̄[ fθ (α)] −∂ fg/∂α1(α) −∂ fg/∂α2(α)

)

×







C(ξ)u1

α̇1

α̇2






(34.57)

rather than by (34.48) (with A(α) still defined by

(34.49)). Using the fact that

C(ξ)u1 = C( fξ (α))u1 +{C(ξ)−C[ fξ (α)]}u1

=







1

0

fξ (α)






u1 +







0

0

ξ − fξ (α)






u1 ,

(34.57) can also be written as

ū = A(α)H(α)







u1

α̇1

α̇2






+ A(α)







0

0

u1[ξ − fξ (α)]







(34.58)

with

H(α)=







cos fθ (α) −∂ fx/∂α1(α) −∂ fx/∂α2(α)

sin fθ (α) −∂ fy/∂α1(α) −∂ fy/∂α2(α)

fξ (α) −∂ fθ/∂α1(α) −∂ fθ/∂α2(α)






.

(34.59)

By setting

uξ = ḟξ (α)− k(ξ − fξ (α) (34.60)

with k > 0, it follows from (34.55) that ξ −

fξ (α) exponentially converges to zero. Hence, after

some transient phase whose duration is commensu-

rable with 1/k, ξ − fξ (α) ≈ 0, and (34.58) reduces

to

ū = A(α)H(α)







u1

α̇1

α̇2






. (34.61)

Provided that the function f is such that H(α) is

always invertible, this latter relation means that the

frame F̄m(α) associated with ḡ is omnidirectional.

Any function f for which this property is satisfied

is called a transverse function. Once it has been de-

termined, one can proceed as in the unicycle case

to asymptotically stabilize an arbitrary reference tra-

jectory gr for ḡ, for example, by defining ū as in

(34.53). The control u1 for the car is then obtained by

inverting relation (34.61). The following lemma spec-

ifies a family of transverse functions for the car case.

Lemma 34.1

For any ε > 0 and any η1, η2, η3 such that η1, η2, η3 > 0

and 6η2η3 > 8η3 +η1η2, the function f defined by

f (α)=











f̄1(α)

f̄4(α)

arctan( f̄3(α))

f̄2(α)cos
3 f3(α)











with f̄ : S1 × S1 −→ R
4 given by

f̄ (α)

=















ε(sinα1 +η2 sinα2)

εη1 cosα1

ε2
(

η1 sin 2α1
4

−η3 cosα2

)

ε3
(

η1
sin2α1 cosα1

6
−

η2η3 sin 2α2
4

−η3 sinα1 cosα2

)















satisfies the transversality condition detH(α) 6= 0 ∀α,

with H(α) defined by (34.59) [34.12].
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The simulation results reported in Fig. 34.12 illustrate

the application of this control approach for a car-like

robot. The reference trajectory is defined by the initial

condition gr(0)= 0 and its time derivative

ġr(t)=







































(0, 0, 0)⊤ if t ∈ [0, 30]

(1, 0, 0)⊤ if t ∈ [30, 38]

(0, 0.3, 0)⊤ if t ∈ [38, 53]

(−1, 0, 0)⊤ if t ∈ [53, 61]

(0, 0, 0.2)⊤ if t ∈ [61, 80]

This corresponds to a fixed situation when t ∈ [0, 30],

three sequences of pure translational motion when t ∈

[30, 61], and a pure rotational motion when t ∈ [61, 80].

Let us remark that this trajectory is not feasible for the

car-like robot when t ∈ [38, 53], since it corresponds to

a lateral translation in the direction of the unit vector jr of

the frame Fr associated with gr, nor when t ∈ [61, 80],

since a rear-drive car cannot perform pure rotational

motion. The initial configuration of the car-like robot, at

t = 0, is g(0)= (0, 1.5, 0), and the initial steering wheel

angle is φ(0)= 0.

In Fig. 34.12a, the robot is drawn with a solid line at

several time instants, whereas the chassis of the refer-

ence vehicle is shown as a dashed line at the same time

instants. The figure also shows the trajectory of the point

located at the mid-distance of the robot’s rear wheels.

Figure 34.12b shows the time evolution of the track-

ing error expressed in the reference frame (i. e., (x e, ye)

as defined by (34.20), and θe = θ − θr). It follows from

(34.54) that, after the transient phase associated with

the exponential convergence of ḡ to zero, the ultimate

bound for |x e|, |ye|, and |θe| is upper-bounded by the

maximum amplitude of the functions fx , fy, and fθ , re-

spectively. For this simulation, the control parameters

of the transverse function f of Lemma 34.1 have been

chosen as follows: ε = 0.17, η1,2,3 = (12, 2, 20). With

these values, one can verify that | fx |, | fy|, and | fθ | are

bounded by 0.51, 0.11, and 0.6, respectively. This is con-

sistent with the time evolution of the tracking error in
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Fig. 34.12a,b Practical stabilization of an arbitrary trajec-

tory by the transverse function approach

the figure. As pointed out for the unicycle case, a greater

tracking precision could be obtained by decreasing the

value of ε, but this would involve larger values of the

control inputs and also more frequent manoeuvres, es-

pecially on the time intervals [38, 53] and [61, 80]when

the reference trajectory is not feasible.

34.5 Complementary Issues and Bibliographical Guide

General Trailer Systems
Most of the control design approaches here presented

and illustrated for unicycle-like and car-like vehicles can

be extended to the case of trains of vehicles composed

of trailers hitched to a leading vehicle. In particular, the

methods of Sect. 34.4 which are specific to nonholo-

nomic systems can be extended to this case, provided

that the kinematic equations of motion of the system

can be transformed (at least semiglobally) into a chained

system [34.5]. This basically requires that the hitch point
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of each trailer is located on the rear-wheel axle of the

preceding vehicle [34.13]. For instance, the transfor-

mation to the chained form is not possible when there

are two (or more) successive trailers with off-axle hitch

points [34.14]. So-called general trailer systems (with

off-axle hitch points) raise difficult control design issues,

and the literature devoted to them is sparse. For this

reason, and also because these systems are not met in

applications as frequently as simpler vehicles, control

methods specifically developed for them are not reported

here. Nonetheless, a few related references are given

next. The path-following problem has been considered

in, e.g., [34.15] for a system with two trailers and, more

generally, in [34.16, Chap. 3] and [34.17] for an arbi-

trary number of trailers. To our knowledge, the problem

of stabilizing non-stationary reference trajectories has

not been addressed for these systems (except in the sin-

gle trailer case for which the system can be transformed

into the chained form [34.14, 18]). In fact, the explicit

calculation of feasible trajectories joining a given con-

figuration to another is already a very difficult problem,

even in the absence of obstacles. As for the asymptotic

stabilization of fixed configurations, the problem can

(in theory) be solved by using existing general methods

developed for the larger class of controllable driftless

systems. However, the calculations associatedwith these

methods quickly become intractable when the number

of trailers increases. More specific and simpler ones

have been proposed in [34.19], for an arbitrary number

of trailers and the asymptotic stabilization of a reduced

set of configurations, and in [34.20], in the case of two

trailers and arbitrary fixed configurations.

Sensor-Based Motion Control
The control laws described in the present chapter,

and their calculation, involve the online measurement,

eventually complemented by the online estimation, of

variables depending on the position of the vehicles in

their environment. Measures can be acquired via the

use of various sensors (odometry, GPS, proximetry, vi-

sion, . . . ). Usually, various treatments are applied to raw

sensory data prior to computing the control variables

themselves. For instance, noise filtering and state esti-

mation are such basic operations, well documented in

the automatic-control literature. Among all sensors, vi-

sion sensors play a particularly important role in robotic

applications, due to the richness and versatility of the

information which they provide. The combination of vi-

sual data with feedback control is often referred to as

visual servoing. In Chap. 24, a certain number of visual

servoing tasks are addressed, mostly in the context of

manipulation and/or under the assumption that realiz-

ing the robot task is equivalent to controlling the pose of

a camera mounted on an omnidirectional manipulator.

In a certain number of cases, the concepts and methods

described in this chapter can be adapted, without much

effort, to the context of mobile robots. These cases ba-

sically correspond to the control methods adapted from

robotic manipulation which are described in Sect. 34.3

of the present chapter. For instance, automatic driving

via the control of the visually estimated lateral distance

between a robotic vehicle and the side of a road, or

car-platooning by controlling the frontal and lateral dis-

tances to a leading vehicle, can be addressed with the

control techniques reported in Chap. 24. The reason is

that it is possible to simply recast these techniques in

the form of the control laws proposed in Sect. 34.3.

However, there are also vision-based applications for

nonholonomic mobile robots which cannot be solved

by applying classical visual-servoing techniques. This

is the case, for instance, of the task objectives addressed

in Sect. 34.4, an example of which is the stabilization

of the complete posture (i. e., position and orientation)

of a nonholonomic vehicle at a desired one. Vision-

based control problems of this type have been addressed

in [34.10, 21].

A few former surveys on the control of WMRs

have been published. Let us mention [34.22–24], which

contain chapters on the modeling and control issues.

A detailed classification of kinematic and dynamicmod-

els for the different types of WMR structures, on which

Chap. 17 is based, is provided in [34.25]. The use of

the chain form to represent WMR equations has been

proposed in [34.26], then generalized in [34.13].

Path following may have been the first mobile robot

control problem addressed by researchers in robotics.

Among the pioneering works, let us cite [34.27, 28].

Several results presented in the present chapter are based

on [34.5, 29].

The problem of tracking admissible trajectories for

unicycle-type and car-like vehicles is treated in the

books [34.22–24], and also in numerous conference

and journal papers. Several authors have addressed this

problem by applying dynamic feedback linearization

techniques. In this respect, one can consult [34.30–32],

and [34.22, Chap. 8], for instance.

Numerous papers on the asymptotic stabilization

of fixed configurations have been published. Among

them, [34.33] provides an early overview of feedback

control techniques elaborated for this purpose, and also

a list of references. The first result presenting a time-

varying feedback solution to this problem, in the case
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of a unicycle-type vehicle, is in [34.3]. The confer-

ence paper [34.34] provides a survey on time-varying

feedback stabilization, in the more general context of

nonlinear control systems. More specific results, like

Propositions 34.9 and 34.12, are given in [34.1, 5].

Other early results on the design of smooth time-varying

feedbacks can be found in [34.35, 36], for example.

Concerning continuous (but not Lipschitz-continuous)

time-varying feedbacks yielding exponential conver-

gence, one can consult [34.37]. Designs of hybrid

discrete/continuous fixed-point stabilizers can be found

in [34.38–40], for instance. The control law in Proposi-

tion 34.14 is taken from [34.6]. Discontinuous control

design techniques are not addressed in the present chap-

ter, but the interested reader will find examples of such

feedbacks in [34.41, 42].

To our knowledge, the control approach presented

in Sect. 34.4.6, which is based on the concept of trans-

verse functions [34.8, 9], is the first attempt to address

the problem of tracking arbitrary trajectories (i. e., not

necessarily feasible for the controlled robot). Implemen-

tation issues and experimental results for this approach

can be found in [34.10, 11]. An overview of trajec-

tory tracking problems for wheeled mobile robots, with

a detailed case study of car-like systems, is presented

in [34.12].
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