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Sensing and E
4. Sensing and Estimation

Henrik I. Christensen, Gregory D. Hager

Sensing and estimation are essential aspects
of the design of any robotic system. At a very
basic level, the state of the robot itself must be
estimated for feedback control. At a higher level,
perception, which is defined here to be task-
oriented interpretation of sensor data, allows the
integration of sensor information across space
and time to facilitate planning.

This chapter provides a brief overview of
common sensing methods and estimation tech-
niques that have found broad applicability in
robotics. The presentation is structured according
to a process model that includes sensing, feature
extraction, data association, parameter estima-
tion, and model integration. Several common
sensing modalities are introduced and char-
acterized. Common methods for estimation in
linear and nonlinear systems are discussed, in-
cluding statistical estimation, the Kalman filter,
and sample-based methods. Strategies for robust
estimation are also briefly described. Finally,
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several common representations for estimation
are introduced.

Controlling a robotic system would be relatively simple

if a complete model of the environment was available,

and if the robot actuators could execute motion com-

mands perfectly relative to this model. Unfortunately,

in most cases of interest a complete world model is not

available, and perfect control of mechanical structures

is never a realistic assumption. Sensing and estimation

are a means of compensating for this lack of complete

information. Their role is to provide information about

the state of the environment and the state of the robot

system as a basis for control, decision making, and in-

teraction with other agents in the environment, such as

humans.

For the purposes of discussion, we will differentiate

between sensing and estimation to recover the state of

the robot itself, referred to as proprioception, versus

sensing and estimation to recover the state of the external

world, referred to as exteroception. In practice, most

robot systems are designed to have the proprioception

necessary to estimate and control their own physical

state. On the other hand, recovering the state of the

world from sensor data is usually a much larger and

more complex problem.

Early work on computational perception for robotics

assumed that one could recover a complete general-

purpose model of the environment, use such a model

to make decisions, and subsequently act on them, as

for example presented by [4.1]. More recently it has

become apparent that such an approach is not realistic.

Indeed, considering that sensor-based robots now appear

in diverse applications such asmobile surveillance, high-

performance manipulation, and medical interventions,

it is clear that appropriate sensing and estimation for

a given system must be highly task dependent. Conse-
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88 Part A Robotics Foundations

quently, the discussion here is organized along the lines

of task-oriented sensing and estimation of the external

world.

Sensing and estimation together can be viewed as

the process of transforming a physical quantity into

a computer representation that can be used for further

processing. Sensing is thus closely tied to transducers

that transform some physical entity into a signal that

can be processed by a computer. Sensing is also inti-

mately tied to perception, the process of representing

the sensory information in an task-oriented model of the

world. However, sensor data is usually corrupted in var-

ious ways that complicate this process. Statistical noise

arises from the transducer, discretization is introduced

in the digitization process, and ambiguity is introduced

by poor sensor selectivity to name a few examples.

Estimation methods are thus introduced to support ap-

propriate integration of information into models of the

environment and for improvement of the signal-to-noise

ratio.

In this chapter the general characteristics of sens-

ing and estimation are introduced, while more in-depth

presentations of select topics are provided in Part C of

the handbook. In Sect. 4.1 the overall sensing/perception

process is introduced. In Sect. 4.2 different kinds of

sensors are introduced and some key characteristics

are presented. Estimation of world representations can

utilize a number of different methods involving both

parametric and nonparametric techniques as discussed

in Sect. 4.3. For model-based integration a variety of

different representations can be used, as described

in Sect. 4.4.

4.1 The Perception Process

The input to the perception process is typically twofold:

(1) digital data from a number of sensors/transducers,

and (2) a partial model of the environment (a world

model) that includes information about the state of the

robot and other relevant entities in the external world.

The sensor data itself can take on a number of dif-

ferent forms such as a scalar or vector value x(α, β)

acquired over a time series x(t), a scan xt(θi ), a vec-

tor field x or a three-dimensional volume x(ρ, θ, φ). In

many cases, a system must integrate data from several

disparate sensors, for example, an estimate of the po-

sition of a mobile robot may integrate data from axis

encoders, vision, global positioning system (GPS) data,

and inertial sensors.

To further structure the discussion in this chapter, we

adopt a generalmodel of the perception process as shown

in Fig. 4.1. In this model, we have included the most

common operations applied to integrate sensor data with

Feature
extraction

Matching
(association)

Updating

Prediction

Model
integration Model

Fig. 4.1 Example of a perception process as discussed in this chapter

a world model. Depending on the task in question, some

of the includedmodules may bemissing, and others may

themselves take on a complicated structure. However,

the supplied model suffices to illustrate many of the

issues in sensing and estimation. In the remainder of this

section, we discuss an example frommobile localization

to illustrate this model.

The initial problem in sensory processing is data

preprocessing and feature extraction. The role of pre-

processing is to reduce noise from the transducer, to

remove any systematic errors, and to enhance relevant

aspects of the data. In some cases, sensory information

might also have to be temporally or spatially aligned

for subsequent integration. There are innumerable ways

that data can be preprocessed to enhance or extract

features that are used in the integration. One common

approach is model fitting, as illustrated for a laser scan-

ner in Fig. 4.2. Once sensor information is available,
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Sensing and Estimation 4.1 The Perception Process 89
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Fig. 4.2 An example of feature extraction from a laser scan

(after [4.2])

it is often necessary to match the data with an ex-

isting model (Fig. 4.3). This model may be based on

a priori known structure [e.g., a computer-aided design

(CAD) model of the environment], or may have been

built up from previously acquired data. Data associa-

tion methods are commonly employed to estimate the

relationship between sensor data and themodel of the en-

y

{W}

wyr

wxr

x

lw
θr

Fig. 4.3 Anexample environmentalmodel formobile robot

localization (after [4.2])

Fig. 4.4 Estimation of position and orientation for the ex-

ample mobile robot (after [4.2])

vironment. In ourmobile robot localization example, the

extracted line features are matched against a polygonal

world model. This matching process can be performed

in several different ways, but in general it is an opti-

mization that maximizes the alignment of features to the

model.

Once sensory data has been matched against the

world model it is possible to update the model with

new information contained in the sensor data. In the ex-

ample, the orientation and position of the robot relative

to the world model can be updated (Fig. 4.4) from the

matched line segments.

Finally, it may be possible to develop a dynamical

system model of the underlying state being estimated.

Using such a system model, it is possible to predict how

the world changes over time until new sensory data is

acquired. This can be used within a feed-forward pre-

diction process, which in turn simplifies data association

for new sensory readings, as shown in Fig. 4.1.

With this as a prologue, we now turn to discuss each

step of the perception process in greater detail.
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90 Part A Robotics Foundations

4.2 Sensors

There are a variety of ways to classify sensors depending

onwhat theymeasure, and how theymeasure it. As noted

previously, proprioceptive sensors are used to measure

the internal state of a robot, whichmight include position

of different degrees of freedom, temperature, voltage on

key components, motor current, force applied to an ef-

fector, and so forth. Exteroceptive sensors, on the other

hand, generate information about the external environ-

ment in terms of distance to an object, interaction forces,

tissue density, and so forth.

Sensors may also be differentiated based on whether

they are passive or active. In general, an active sen-

sor is one that emits energy into the environment, and

measures properties of the environment based on the re-

sponse. A passive sensor is one that is not active. Active

sensors are generally more robust than passive sensors

since they exert some control over the measured signal.

For example, a passive stereo camera system must rely

on the appearance of viewed surfaces when performing

feature matching for triangulation (Chap. 22), whereas

structured light systems project a pattern onto the scene

and are thus less sensitive to scene characteristics. Even

so, absorbtion, scattering or interference of the emitted

signal can affect the performance of active sensors.

Proprioceptive sensors are typically passive and usu-

ally measure physical properties of the robot such as

joint position, velocity, or acceleration, motor torque,

and so forth. Exteroceptive sensors, on the other hand,

can be further divided into contact and noncontact

sensing. The contact sensors are typically the same

modalities as used for proprioception, while noncon-

tact sensor sensors involve most of the modalities that

can be used for estimation of physical properties at a dis-

tance including intensity, range, direction, size, and so

forth.

A classification of typical sensors according to

method and typical application is shown in Table 4.1.

More detail on methods of sensing, characterization of

State Ch A Ch B

S1 High Low

S2 High High

S3 Low High

S4 Low Low

I

A

B

1 32 4

Fig. 4.5 Sketch of the quadrature encoder disc, and output frompho-

todetectors placed over each of the two pattern. The corresponding

state changes are shown on the right

sensors, and general applications can for example be

found in the Handbook of Modern Sensors [4.3] and in

Part C of this handbook.

Table 4.1 Classification of sensors frequently used in

robotics according to sensing objective [proprioception

(PC)/exteroception (EC)] and method (active/passive)

Classification Sensor type Sens A/P

Tactile sensors Switches/bumpers EC P

Optical barriers EC A

Proximity EC P/A

Haptic sensors Contact arrays EC P

Force/torque PC/EC P

Resistive EC P

Motor/axis sensors Brush encoders PC P

Potentiometers PC P

Resolvers PC A

Optical encoders PC A

Magnetic encoders PC A

Inductive encoders PC A

Capacity encoders EC A

Heading sensors Compass EC P

Gyroscopes PC P

Inclinometers EC A/P

Beacon based GPS EC A

(postion wrt Active optical EC A

an inertial RF beacons EC A

frame) Ultrasound beacon EC A

Reflective beacons EC A

Ranging Capacitive sensor EC P

Magnetic sensors EC P/A

Camera EC P/A

Sonar EC A

Laser range EC A

Structures light EC A

Speed/motion Doppler radar EC A

Doppler sound EC A

Camera EC P

Accelerometer EC P

Identification Camera EC P

Radio frequency

identification

RFID EC A

Laser ranging EC A

Radar EC A

Ultrasound EC A

Sound EC P
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Sensing and Estimation 4.2 Sensors 91

Estimation of rotational motion is fundamental to

control of robot manipulators and also for estimation

of ego-motion for mobile systems. The most common

sensor for measurement of rotation is the quadrature

encoder. It is composed of a transparent disc, with

two periodic patterns that are out of phase, as shown

in Fig. 4.5. Through the use of counters it is possible

to directly compute the motion and its direction (the

phasing between sensors A and B in Fig. 4.5). In addi-

tion the disc is frequently fitted with a single dot on the

outer rim for indexing (specification of a zero index).

The density of the pattern determines the resolution of

the measurements. When fitting the sensor to a motor

before a reduction gear it is easy to achieve accuracies

beyond 1/1 000◦.

For the estimation of force and torque at an end-

effector it is possible to use piezoelectric elements.

These elements generate a voltage that is proportional to

the introduced deformation. Through careful placement

it is possible to measure both force and torque. The sen-

sors are used in robotic manipulation as part of assembly

systems, deburring, etc. and also in medical applications

for the estimation of stress and contact. Force/torque

sensors are widely available in a range of sizes and dy-

a)

b)

Fig. 4.6 (a) TactArray, a flexible capacitive array tactile

sensor from Pressure Profile Systems, Inc., is appropriate

for sensing contact locations and areas under sliding condi-

tions. (b)Conformable TactArray sensors can fit on a human
or robotic hand (courtesy Pressure Profile Systems, Inc.)
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Fig. 4.7 Example data from an IMU unit for driving on an

unpaved road

namic ranges, including new flexible arrays that can be

mounted on a variety of end-effectors (Fig. 4.6). Poten-

tial problemswith force sensors are a dead band on initial

contact, and noisy data from the basic sensing elements,

which calls for signal processing to clean up the data.

Ego-motion estimation is an important part of al-

most all robotic systems. To this end it is possible to use

inertial measurement units (IMU). An IMU typically in-

cludes both accelerometers and gyros. Accelerometers

are sensitive to all types of acceleration, which implies

that both translation motion and rotation (centripetal

forces) are measured in combination. Joint IMU units

allow the estimation of rotation and translation, and al-

low for double integration to estimation the velocity,

orientation, and position of a system, as for example re-

ported in [4.4]. One of the problems associated with the

use of an IMU is the need for double integration. Small

biases and noise can result in significant divergence in

the final estimate, which calls for use of detailed mod-

els and careful calibration and identification of sensor

characteristics. An example of data from a cross-bow

DMU-6x unit for a car driving on an unpaved road is

shown in Fig. 4.7.

Much early work on mobile robotics, underwater

robots, and some medical robotics relies on ultrasonic

ranging. The general class of sensors are often termed

sound navigation and ranging (sonars). The general prin-

ciple is that the systems emits a sound pulse and awaits

the return of echoes that have bounced off objects in
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92 Part A Robotics Foundations

Fig. 4.8 Example laser ranging sensor (SICK LMS291)

that is widely used in mobile robotics

the environment. Knowing the transmission speed in the

medium and the time of flight it is possible to com-

pute the distance. The method was widely used in early

robotics due to the availability of low-cost sensors with

adequate performance. In underwater robotics this is

still a primary sensor. The sonar is discussed in detail

in Chap. 21.

Recent progress, in particular on environmental

modeling and navigation, has in many respects been due

to the emergence of low-cost high-fidelity laser scanning

systems. The SICK series of laser scanners are time-of-

flight scanners. The scanner sends out a pulse of light and

measures the time to return. The standard scanner en-

ables estimation of distances up to 80m at centimeter or

millimeter accuracy. The scanner measures distances in

a plane with an angular resolution of 0.5−1◦. The field

of view is 180◦ resulting in 181–361 range measure-

ments. The sensor data are contaminated by uniformly

distributed noise, whichmust be considered in the detec-

tion of features or integration of data into a raw sensor

map.

Imaging sensors are a rich source of information

for sensing and estimation. Imaging sensors come in

a wide variety of configurations, varying according to

imaging geometry, image resolution, sensor technology

and the range of sensed spectral bands. Most readers

are no doubt familiar with the traditional three-CCD,

perspective color camera. In this case, there are three

charge-coupled detector (CCD) arrays, each receiving

a portion of the visible spectrum corresponding roughly

to the human perception of red, green, and blue colors.

A common and less expensive alternative is a so-called

single-chip CCD camera. In this case, a special spatial

array of color filters, usually referred to as a Bayer filter

after its inventor Bryce Bayer, is employed. The result-

Y

X
P

Z

Image plane

O

υ

u

Fig. 4.9 The pinhole camera model

ing spatial array is subsequently processed (a process

referred to as demosaicing) to provide color information

for each pixel.

In theUnited States, image sensors traditionally con-

tained 480 rows of 640 pixels according to the NTSC

standard created for analog transmission of television

signals. The corresponding European standard, PAL, has

576 lines of 768 pixels. More recently, the advent of

Fig. 4.10 Catadioptric image and the same image mapped

to a cylindrical surface
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Sensing and Estimation 4.3 Estimation Processes 93

digital interfaces such as IEEE 1394 and USB 2.0 have

allowed camera systems to be developed with signifi-

cantly improved resolution ranging into the millions of

pixels. At the same time, cost-effective infrared (IR) and

ultraviolet (UV) cameras have become available, allow-

ing the development of advanced multispectral image

interpretation systems.

A traditional imaging sensor contains an optical sys-

tem that focuses light on a planar imaging array. In most

cases, this system can be modeled using the classical

pinhole camera model (shown in Fig. 4.9). Given a point

(x, y, z)⊤ in Euclidean space, the corresponding camera

pixel coordinates (u, v)⊤ are given by

(u −uc) =
f

sx

x

z
,

(v−vc) =
f

sy

y

z
, (4.1)

where f is the focal length of the lens system, uc and

vc are the pixel coordinates of the center of projec-

tion, and sx and sy are the size of a single pixel on

the imaging array. In practice, these models are also

augmented with low-order models of image distortion.

The values of these parameters for a given camera sys-

tem can be determined experimentally using a variety of

methods [4.5].

By combining a traditional perspective camera with

a mirror, creating a so-called catadioptric system, it is

possible to create imaging geometries that map fields

of view as large as a hemisphere into a single image.

Such systems are useful, for example, for surveil-

lance, and their geometric properties provide for stable

position referencing for mobile navigation [4.6]. An ex-

ample image is shown in Fig. 4.10 together with the

corresponding image when mapped to a cylindrical

surface.

The discussion above has touched on the most

commonly employed robotic sensing devices. Many

special-purpose sensors are employed for specific ap-

plications. In medicine (Chap. 52), ultrasound, X-ray,

computed tomography, and magnetic resonance imag-

ing are commonly employed. Underground mapping

makes use of ground-penetrating radar [4.7]. Underwa-

ter robotics makes use of many variations on acoustical

sensors. Further discussions of these more task-specific

sensing modalities can be found in the application chap-

ters in Part C of this handbook.

4.3 Estimation Processes

As discussed in the introduction, there are many differ-

ent techniques for combining information from sensors.

The appropriate set of techniques depends, to a great de-

gree, on what is known a priori about the environment,

what information is necessary for the task at hand, and

what models for the sensing system are appropriate.

Common methodologies include simple voting-based

methods, parametric and nonparametric statistical es-

timation techniques, fuzzy logic-based systems, and

Dempster–Shafer theory.

To illustrate this point, consider the robot local-

ization problem introduced in Sect. 4.1. At the outset,

if nothing is known about the environment, the robot

may acquire a laser scan and try to produce an initial

model of the environment using line segments. Since

nothing is known a priori, the system must estimate:

(1) the number of line segments, (2) the data association

between line segments and observed data values, and

(3) the parameters of the line segments themselves. This

is a challenging problem that can be attacked by sim-

ple voting techniques such as the Hough transform [4.8]

or RANSAC [4.9] or more sophisticated unsupervised

clustering methods such as k-means [4.10], expecta-

tion maximization (EM) [4.11], or GPCA [4.12]. In

many cases, this is a computationally intensive, iterative

process.

Conversely, if a prior CAD model for the environ-

ment is known, then the problem is to produce a small

set of parameters (translation and rotation) of the model

tomatch the data. This problem can be solved, using fea-

ture matching by aligning observed points to the model

with iterative closest-point algorithms (ICP) [4.13] or

other efficient combinatorial matching algorithms such

as Monte Carlo methods [4.14]. The best method to ap-

ply again depends to a great degree on the structure of

the environment and what is known a priori.

Once an initial registration is known, new data can

take advantage of the fact that strong prior knowledge

is available. In particular, as the robot moves, the sen-

sor data should change in a predictable fashion. Thus is

it possible to make use of predictor–corrector methods

such as the Kalman filter [4.15,16] or sequential impor-

tance sampling [4.17], provided appropriate statistical

characterizations of the sensing system are available.

The data association problem, if present, can be ad-

dressed using a variety of general techniques such as
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94 Part A Robotics Foundations

EM [4.10] or more specialized modifications to the

previously cited predictor–corrector methods [4.18].

It is often the case that sensor data is corrupted by

occasional nonsensical values. For example, the laser

range finder in our example may occasionally return

a spurious range value due to a reflection. Many com-

monly used estimation techniques are not robust to such

so-called data outliers. Techniques from robust statis-

tics [4.19] can be used to improve the performance of

sensing and estimation systems in such cases.

Finally, we may want to consider what information

is actually important for the task at hand. Most of the

techniques above presume that the goal is to produce

an accurate estimate of a set of continuous parameters

closely related to the underlying data. However, in some

tasks, the parameter values themselves may not be what

is of interest. For example, suppose that the goal of

our robot is to drive through a doorway. Although this

clearly depends on an ability to estimate the width of

the door (a continuous parameter), the decision is ulti-

mately binary. This problem can be codified as a decision

problem. Decision problems can be modeled using con-

cepts from decision theory [4.20] including zero–one

loss functions, likelihood ratios, or probability ratios.

For example, in the case of fitting through a door, for

a low-priority task there may be a low cost associated

with not attempting to move through this particular door

(necessitating replanning to find an alternative route) rel-

ative to attempting to navigate through an opening that

is too small (risking damage to the robot or the door,

or both). Conversely, if the task is urgent, more risky

behavior may be warranted.

For any given task (or decision), the amount of in-

formation necessary to reach the decision may vary, for

example, if the doorway is quite wide, it may require

relatively little information to safely navigate through

it. Conversely, a tight fit may require close inspection

before a decision can be reached. The problem of deter-

mining the type and/or amount of information necessary

to reach a decision is referred to variously as the se-

quential sampling problem [4.20], the sensor control

problem, or the sensor planning problem [4.21–23].

4.3.1 Point Estimation

In our robot localization example we saw several

cases where the key problem was to estimate an un-

known quantity that can be represented as a point in

a vector space. Examples include the location of a two-

dimensional (2-D) or three-dimensional (3-D) point or

the location of a robot. We also saw examples where

the problem was to locate the pose (position and ori-

entation) of the robot, or parameters of a line segment.

The latter differ in that the underlying parameter space

is not a vector space. This introduces some additional

unique problems. We refer the reader to [4.24, 25] for

further discussion, and in the remainder of this chap-

ter restrict our attention to point estimation problems on

vector spaces. In our discussion, we assume the reader

is familiar with multivariate Gaussian distributions as

described in [4.26] and basic linear algebra [4.27].

In the remainder of this section, we consider the

following general problem.

Given: an observation model

y = f (x, η) . (4.2)

Estimate: x ∈ Re(n) from observations y ∈ Re(m)

where η is an unknown disturbance taking values in

Re(k) and f is a known mapping from Re(k +n) to

Re(m).

We divide our discussion into two topical areas:

• methods for performing estimation on batch and

sequential data when f is linear

• methods for performing estimation on sequential

data when f is nonlinear

Estimation Techniques for Batch
and Sequential Data with Linear Models

In this section, we discuss linear and linearized es-

timation techniques for sequential data, including the

Kalman filter and extensions thereof. Our goal is to pro-

vide an overview of techniques available. The reader

may also wish to consult more in-depth references such

as [4.16, 28, 29] and (Chap. 25) for additional informa-

tion.

We first consider the case when f in (4.2) is linear

in its arguments. In this case, we can write

y = Fx + Bη , (4.3)

where F ∈ Re(m ×n) defines the (linear) relationship

between the unknown x and the observation y and B ∈
Re(m ×m). For the moment, we will drop B and assume

that η represents the complete disturbance model of the

system.

The least-squares method of estimating x from y

proceeds by solving the optimization problem

min
x

‖Fx − y‖2 . (4.4)

This optimization has a unique solution x̂ if and only

if the matrix F has full column rank. In this case, the
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Sensing and Estimation 4.3 Estimation Processes 95

solution can be computed by solving the following linear

system:

F⊤Fx̂ = F⊤y . (4.5)

In some cases, there may be reason to believe that some

observed elements are more reliable than others, and

hence should contribute more to the final estimate. This

information can be incorporated by modifying (4.4) to

include a diagonal positive-definite weighting matrix W

as

min
x

(Fx − y)⊤W(Fx − y) . (4.6)

The solution is then given by solving:

(F⊤WF)x̂ = F⊤Wy . (4.7)

Although (4.3) included a disturbance component

(in the form of η), the parameter estimates computed

in (4.5) or (4.7) made no explicit use of this quantity.

However, we can often model the noise characteristics

of the underlying sensor using a statistical model and

recast our original estimation problem to incorporate

this information. One commonmethod is to compute the

maximum-likelihood estimate (MLE), which is a value

x̂ such that

p(y|x̂)=max
x

p(y|x) . (4.8)

For the linear additive model of (4.3), the likelihood

function can be expressed in a particularly simple form.

Suppose that η is described by a fixed, known probability

density function D. The likelihood function is then given

by

p(y|x) = D(y − Fx) . (4.9)

TheMLE can be related to the previous least-squares

method as follows. Suppose that η ∼ N(0, Λ), where

N denotes a multivariate Gaussian density function

with (mean) 0 and covariance Λ. Upon observing that

the maximizing the value of the likelihood function is

equivalent to minimizing the negative log of the likeli-

hood function, a short series of calculations shows that

the optimal maximum-likelihood estimate is computed

by weighted least squares with W = Λ−1.

Finally, there is often a reason to include the idea

that some parameters are more likely a priori to occur as

others. For example, when observing a car driving on an

expressway, a velocity of 60mph is much more likely

than either 20mph or 300mph. This information can be

captured in prior statistics on the unknown value x.

Given a prior probably density on x, p(x), Bayes

theorem states that

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∫

p(y|x)p(x)dx
. (4.10)

The maximum a posteriori probability (MAP) estimate

is the value x̂ such that

p(x̂|y)=max
x

p(x|y) . (4.11)

In general, the solution to this optimization problem can

be quite complex. Rather than pursue this course further,

we consider another alternative. Namely, provided the

secondmoments of p(x|y) exist, it is possible to produce
a least-squares estimate, in a statistical sense, by solving

the following optimization problem over an unknown

function δ:

min
δ

E ‖δ(y)− x‖2 . (4.12)

That is, the best function δ is one that produces an es-

timate of x from y with minimum mean-square error

(MMSE). Thus, the estimator δ is often referred to as

a MMSE estimator.

It can be shown that, in the general case, the optimal

decision rule δ∗ is the conditional mean [4.20]

δ∗(y)= E [x | y] . (4.13)

Unfortunately, this expression, aswith theMAPestimate

defined above, can be extremely difficult to compute for

the general case. Later we consider methods for comput-

ing approximations to (4.13). For now,we again consider

our previous linear observation model (4.3) (without B).

Additionally, we suppose that x and η are independent

random variables with finite second moments, and both

are zero-mean random variables. Note that the latter is

not really a restriction since it can be accomplished by

simply defining a new variable x′ = x − E[x]. Finally,
we will consider only linear functions δ, that is, we can

write x̂ = δ(y)= Ky.

With this, (4.12) can be expanded as

E ‖δ(y)− x‖2 = E ‖Ky − x‖2

= E ‖K (Fx +η)− x‖2

= E ‖(K F − I )x‖2 + E ‖Kη‖2

= tr
[

(K F−I )Λ(K F−I )⊤+KΣK⊤
]

.

(4.14)

Here, the independence of x and η and the fact that they

are both zero mean has eliminated several terms. The

final step makes use of the fact that ‖x‖2 = tr(xx⊤).
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Taking derivativeswith respect to K and setting them

equal to zero yields the solution

K = ΛF⊤(FΛF⊤ +Σ)−1 . (4.15)

Thus, in this case the optimal estimate is given by a lin-

ear function of the observation, where the linear term

depends only on the variance of the underlying random

variables and the linear term defining the observation

system.

If x is not zero-mean, but has mean µ, it is not hard

to show that the optimal estimate is

x̂ = Ky + (I − K F)µ , (4.16)

and that the variance of the estimate Λ+ is

Λ+ = (I − K F)Λ . (4.17)

The interested reader may wish to work this out for

a few simple cases, for example, if Λ = Σ and F = I ,

K = 1/2I and thus x̂ = y +µ – a simple average – with

variance Λ+ = 1/2Λ.

When both the observation noise and prior statistics

are Gaussian distributions, then it can be shown that the

solution we have derived is also the MAP estimate for

the unknown x [4.20].

The Kalman Filter. With this as background, we are now

in a position to define the discrete-time Kalman–Bucy

filter [4.30] for linear systems. Consider the following

time-series model:

xt+1 = Gxt +wt , (4.18)

yt = Fxt +ηt , (4.19)

G F

K
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+

+
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z –1
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t

Λ
–
t+1F (FΛ
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Λ
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Fig. 4.11 A summary of the Kalman filter

where G is an n ×n matrix describing the system time

evolution and x0 is distributed according to a Gaussian

distribution with mean x̂0 and variance Λ0. In addition

wt and ηt are zero-mean Gaussian independent random

variables for all t, wt is independent of wt′ for all t 6 =t′,

and likewise ηt is independent of ηt′ for all t 6 =t′. Finally,

ηt has variance Σt and wt has variance Ωt .

Given an observation y1 it is possible, using the

derivation of the previous section, to compute an updated

estimate x̂1 with variance Λ1. Note, that the solution is

a linear combination of two Gaussian random variables:

the observation value y1 and the prior estimate x̂0. As

any linear combination of Gaussian random variables

is also a Gaussian random variable, it follows that the

updated estimate is also Gaussian.

Now, we add one additional step: projection through

the dynamic model. To describe this, superscripts minus

and plus will denote before and after the estimation step,

respectively. Thus, given an estimate x̂+
t with variance

Λ+
t , the projection ahead one time step produces

x̂−
t+1 = Gx+

t , (4.20)

Λ−
t+1 = GΛ+

t G⊤ +Ωt . (4.21)

At this point, a new observation yt+1 is acquired and

the cycle repeats. The summarization of the complete

Kalman filtering algorithm for linear systems is shown

in Fig. 4.11.

It is possible to show that the Kalman filter is the

optimal filter, under the stated assumptions, in the mean-

square sense. It is also the optimal linear filter when

either or both Gaussian assumptions do not hold.

Nonlinear Estimation Techniques for Sequential

Data. The results of the previous subsection presume

a linear form for the relationship between the obser-

vation and system state, additive noise, and a linear

relationship describing the state evolution. Furthermore,

the stated results are globally optimal for systems with

Gaussian observation and driving noise, but are only

the best linear estimator if the noise sources are non-

Gaussian.

As noted at the outset, the more general nonlinear

(discrete-time) system description is

xt+1 = gt(xt)+wt ,

yt = ft(xt)+ηt , (4.22)

where, for the moment, the noise model continues to be

additive.

Although this model contains nonlinear elements, it

is still possible to apply a variant of the Kalman filter,
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the extended Kalman filter (EKF) by making use of

the Taylor-series expansion of the nonlinear elements

about the current estimates. Let J f (resp. Jg) denote the

Jacobian matrix of the function f (resp. g). Supposing

that an estimate at time step t −1 exists, the first-order

expansion of (4.22) about this point yields

xt+1 = gt(x̂t−1)+ Jgt (x̂t−1)(xt − x̂t+1)+wt ,

(4.23)

yt = ft(x̂te−1)+ J ft (xt − x̂t−1)+ηt . (4.24)

Rearranging yields a linear form appropriate for the

previously defined Kalman filter

x̃t+1 = xt+1 − gt(x̂t−1)+ Jgt x̂t−1 = Jgt xt +wt ,

(4.25)

ỹt = yt − ft(x̂t−1)+ J ft x̂t−1 = J ft xt +ηt .

(4.26)

In this form, x̃ and ỹ are new synthetic state and obser-

vation variables, Jgt plays the role of G, and J ft plays

the role of F.

It is worth noting that the EKF iterations are es-

sentially a form of weighted Newton iterations (i. e., an

iterative nonlinear estimation method). As a result, it is

often useful to iterate more than once on the same ob-

servation while holding the variance terms fixed. This

allows the estimator to converge to a solution in the pres-

ence of large disturbances or significant nonlinearities.

Only after convergence are the variance terms updated.

This version of the Kalman filter is referred to as the

iterated extended Kalman filter (IEKF).

4.3.2 Other Approaches to Estimation

In the previous section, we reviewed the most common

and widely used estimation methods. However, there

are several alternative methodologies for solving param-

eter estimation problems. Here we briefly introduce two:

sequential importance sampling and graphical models.

Sequential Importance Sampling
Much of the discussion heretofore has centered around

the notion of approximating everything known about the

system state using an estimatedmean and covariance.An

alternative presents itself by simply going back to Bayes

theorem which states, in general, that

p(xn |y1, y2 . . . yn)=
p(y1, y2 . . . yn |xn)p(xn)

p(y1, y2 . . . yn)
.

(4.27)

Assuming that yn is independent of all prior observations

and states given xn , and that xn is independent of xn−k

for k > 1 given xn−1, this expression simplifies to

p(xn |xn−1, yn)=
p(yn |xn)p(xn | xn−1)

p(yn | xn−1)
. (4.28)

Recall that the optimal mean-square estimate is

given by the conditional mean which, in this case, is

δ∗(yn)= E [xn | yn] . (4.29)

In fact, we essentially showed that the Kalman filter is

a special case of this result for linear systems corrupted

by Gaussian noise.

The difficulty in implementing this procedure in the

general case ultimately comes down to the problem of

representing and computing with the distributions that

arise in the nonlinear, non-Gaussian case. However, sup-

pose that the heretofore continuous variable xn only

took on a discrete set of values. In this case, computing

Bayes theorem and other associated statistical quanti-

ties reduces to a straightforward set of computations

on this discrete set of variables. This can be simply

done for any distribution and any set of transforma-

tions.

Sequential important sampling (also known as par-

ticle filtering, condensation, and a variety of other

names) is a way of taking this approach in a statistically

soundmanner. In order to perform sequential importance

sampling, it is assumed that

1. it is possible to sample from the likelihood function

P(yn | xn), and

2. it is possible to sample from the dynamical model

P(xn | xn−1).

Note the emphasis on sampling – there is no need to

explicitly exhibit an analytical form of the likelihood

function or of the dynamical model.

Given this, sequential important sampling, in its

simplest form, can be written as follows.

1. Let πn−1 = {〈xk
n−1, w

k
n−1〉, k = 1, 2, . . . N} repre-

sent a set of sample points xk
n−1 together with a set

of weights wk
n−1 with

∑

wk
n−1 = 1.

2. Compute a new set of N samples π−
n−1 =

{〈xk
n, 1/N〉, k = 1, 2, . . . N} as

a) choose a sample point xk−1
n−1 with probability

proportional to its weight wk−1;

b) Sample from P(xn | xk
n−1) given xk

n with weight

1/N ;

3. Compute πn = {〈xk
n, P(yn | xk

n)〉, k = 1, 2, . . . N}.

It is easy to see that this set of steps is now in the form of

a recursive filter. Furthermore, at any time any statistic
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of the associated distribution can be approximated from

the set of samples and associated weights.

Sampling-based filters of this form have found wide

applicability in a variety of challenging areas where

linear estimation techniques do not suffice. These tech-

niques have been particularly successful, for problems

with low state dimension (typically n ≤ 3) and well-

constrained dynamics. For higher-dimensional problems

or systems exhibiting high dynamic variability, the num-

ber of particles necessary to obtain good approximations

can become prohibitively large. However, even in these

cases, sampling-based systems can sometimes be engi-

neered to produce acceptably good results.

Graphical Models
Graphical models are a class of models that represent

dependence and independence relationships among a set

of variables. Common examples of graphical models

include Bayes nets, influence diagrams, and neural nets.

Here, we focus on Bayes nets as a specific example.

A Bayesian network is a directed acyclic graph

consisting of nodes representing random variables, and

directed arcs representing probabilistic relationships be-

tween pairs of random variables. Let parents(X) denote

the set of nodes which have arcs terminating at X, and

let X1, X2, . . . , X N be the N random variables in the

graph. Then we can write

P(X1, X2, . . . , X N )=

N
∏

i=1

P(X i | parents(X i ))

(4.30)

For example, a Bayesian network representing a mo-

bile robot performing localization is shown in Fig. 4.12.

This graphical model encodes the sequential form of the

problem and is thus an example of a so-called recurrent

network. More discussion of such models can be found

in [4.31].

υt –1

Xt

ut

υt–1

Xt–1

ut–1

υt –1

Xt+1

ut–1

Fig. 4.12 An example of robot localization expressed as

a graphical model

The structure of a Bayesian network encodes various

independence relationships among variables. By ex-

ploiting these independence relationships, it is possible

to design efficient inference algorithms. In particu-

lar, graphs which are acyclic even in their undirected

form (referred to as polytrees) admit linear inference

algorithms. More general graphs can be solved us-

ing various types of iterative methods. In particular,

if the distributions in the network are of a continu-

ous type, variations on sequential importance sampling

can be used to solve problems in an approximate

sense [4.32].

4.3.3 Robust Estimation Methods

In our previous discussions, we generally assumed that

all of the data was good, meaning that it was perhaps

corrupted by noise but ultimately carried information

about the problem at hand. However, in many cases, the

data may contain so-called outliers – data points that

are either much more highly corrupted than typical data,

or which are completely spurious. For example, in our

mapping applicationwemight occasionally obtain range

data through multiple reflections. Thus, while scanning

a straight wall, most of the points would lie on a straight

line, but occasionally we would have a data point that

has a completely inconsistent range value.

The problem is that many common estimation meth-

ods are quite sensitive to data outliers. Consider a very

simple case: estimating a single scalar value x by aver-

aging a series of observations X1, X2, . . . X N . Then we

can write our estimate x̂ as

x̂ =

N
∑

i=1

X i/N . (4.31)

Now, without loss of generality, suppose that X N is an

outlier. We can rewrite the above as

x̂ =

N−1
∑

i=1

X i/n + X N/n . (4.32)

It is now easy to see that we can produce any value of x̂

by manipulating Xn . In short, a single outlier can create

an arbitrarily poor estimate.More generally, the solution

to any least-squares problem, e.g., estimating a line from

laser range data, takes the general form x̂ = My. By the

same argument as above, it is easy to show that any

least-squares solution is likewise susceptible to outliers.

The field of robust statistics studies the problem of

estimation or decision making when the underlying data

are contaminated by outliers. In robust statistics, there
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Fig. 4.13 (a) Three common robust M-estimation func-

tions: the square function, the absolute value, and the

Tukey biweight function. (b) The corresponding influence
functions

are two important concepts: the breakdown point and

influence function. The breakdown point is the propor-

tion of outliers (i. e., data with arbitrarily large errors)

that an estimator can tolerate before producing arbitrar-

ily large errors in an estimate. We argued above that

least-squares methods have a breakdown point of 0%

since the estimate can be perturbed arbitrarily far by

a single observation. By comparison, we might compute

an estimate by taking the median of the data, which has

a breakdown point of 50% – up to half of the data can be

outliers and meaningful results may still be produced.

Whereas the breakdown point quantifies how many

outliers can be tolerated, the influence function quan-

tifies how much an outlier affects an estimate. In the

case of least squares, the influence function is linear.

One way of creating new estimators with better robust-

ness is the method of M-estimators [4.19]. To produce

an M-estimate, we consider the following minimization

problem:

min
x̂

N
∑

i=1

ρ(x̂, yi ) . (4.33)

a) b) c)

Fig. 4.14a–c An example of using an M-estimate im-

plemented via IRLS for visual tracking (after [4.33]).

(a) Results of a face tracker in a single frame of video.

The black frame corresponds to a tracking algorithm with-

out outlier rejection and the white frame corresponds to the

algorithm with outlier rejection. (b)Magnified view of the

region in the white frame; (c) the corresponding weighting
matrix in which darker areas mark outliers

Note that defining ρ(a, b) = (a −b)2 leads to a least-

squares solution. However, we can now choose other

functions with better resistance to outliers. Figure 4.13

shows three common examples.

Note that, in general, the optimization of (4.33) is

nonlinear and the result will often not exist in closed

form. Interestingly, it is often possible to solve this

problem using the method of iteratively reweighted least

squares (IRLS) [4.28,34]. The idea behind IRLS is quite

simple. Recall that in (4.7) we introduced a weighting

matrix W . Suppose that, through some means, we knew

which data points were outliers. In this case, we could

simply set theweights for those points to zero, and the re-

sult would be the least-squares estimate on the remaining

(good) data.

In IRLS, we alternate between hypothesizing out-

liers (through reweighting) and solving to produce

a solution (through least squares). Typically, the weight

for a point depends on the residual error of the estimate.

That is, suppose we compute

r = y − Fx̂ . (4.34)

Letψ(y)= dρ/dx |x̂ ; then we can set Wi,i = ψ(y)/ri . It

can be shown that in many cases this form of weighting

will lead to convergence. An example of using IRLS

techniques for video tracking is shown in Fig. 4.14.

Voting-Based Methods
Another common method for dealing with outliers is to

choose a set of data and let it vote for a result.We discuss

two commonmethods: RANSAC [4.9] and least median

of squares (LMedS) [4.35].

In both cases, we start with the idea that, amidst

all of the data (including outliers), there is an estimate
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that is consistent with the good data. The problem is

to choose that estimate. Consider, however, our prob-

lem of estimating a line from laser data, and suppose we

have 100 laser points. All we really need is to choose

two points correctly, fit a line, and then count how many

other points are consistent with this line. If we (conser-

vatively) estimate that 3/4 of the data is good, then the

odds of choosing two good points is 9/16, or equiva-

lently, the odds of one or both points being outliers is

7/16. If we now repeat this process a few (e.g., ten)

times, then the odds that all of our choices are bad

is (7/16)10 = 0.025%. To put it in other terms, there

is a 99.975% chance we have chosen a good pair of

points.

How do we decide to accept a sample? In RANSAC,

we vote by counting the number of samples that are

consistent with an estimate to within a given distance

threshold. For example, we would choose points that

are within a fixed distance to the line we estimated. We

choose the candidate estimate with the largest number

of votes. In LMedS, we instead compute the median

distance of all of the samples to the line. We then choose

the estimate with the least median value.

It is not hard to see that LMedS has a breakdown

point of 50% of the data. RANSAC, on the other hand,

can have a breakdown point that is potentially larger, but

it requires the choice of a threshold. RANSAC also has

the advantage that, once the inliers are identified, it is

possible to compute a least-squares estimate from them,

thus reducing the noise in the estimate.

Both RANSAC and LMedS can also provide good

starting solutions for a robust iterative method such as

IRLS.

4.3.4 Data Association Techniques

The previous section considered the case where there is

a known relationship between observations and a quan-

tity to be estimated. However, as was illustrated in our

initial mobile robot mapping problem, it may be the

case that we also have to compute this correspondence

in conjunction with estimation. In this case, an essential

step in estimation is the data association problem: pro-

ducing a correspondence between the observed data and

quantities to be estimated.

The literature on this problem is enormous; here we

will focus on a few specific methods that have found

wide use. We will also separate our discussion into

causal (or sequential) association methods commonly

used when filtering time-series data and noncausal (or

batch) methods that can be used when the complete data

set is available for processing. The latter is typically

treated with methods for data clustering.

In both cases, we can extend our previous models

and notation to include uncertainty as to the underlying

source of the data. To this end, we will use a superscript

on quantities to denote the observation model. Thus, our

observation model becomes

xk
t+1 = gk(xk

t )+wk
t , (4.35)

yk
t = f k

t (x
k
t )+ηk

t , (4.36)

where k = 1 . . . M.

Clustering on Batch Data
Following the same course as our previous discussion

on point estimation, let us first consider the case where

we do not make any statistical assumptions about the

data, and we have no system dynamics. Thus, we are

simply given the observations y1, y2, . . . , yM . We have

unknown underlying parameters x1, x2, . . . , xN (for the

moment, we take N as known). Our goal it to compute

an association mapping π such that π( j)= k if and only

if y j arose from the model parameters xk.

k-means Clustering
The k-means algorithm for clustering and data associa-

tion is simple,well established, and forms a good starting

point for our discussion. Here, we assume that f (x)= x

– that is, we are provided with noisy observations of the

underlying state vectors. The k-means algorithm then

proceeds as follows.

1. Pick N cluster centers {x̂i}.
2. For each observation y j , associate it with the closest

cluster center, that is, set π( j) = i, where

d(x̂i , y j )=min
k

d(x̂k, y j ) (4.37)

for some distance function d (typically the Euclidean

distance).

3. Estimate themean of the observation associatedwith

each cluster center as

x̂i =
∑

j,π( j)=i

y j . (4.38)

4. Repeat steps 2 and 3.

In many cases and with good initialization, k-means

works quite well. However, it can also fail to produce

good clusters, and there is no guarantee that it will even

converge to a solution. It is common to repeat the al-

gorithm several times from different initial conditions

and take the result that has the best outcome. Note
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also that the extension to linear observation models is

straightforward by including F in (4.3) by defining

d(x̂i , y j )= ‖Fx̂i − y j‖ (4.39)

and replacing (4.38) with the corresponding least-

squares estimator. Going a step further, if we have

a statistical model for observed data, thenwe couldmake

use of the likelihood function introduced earlier and de-

fine d(x̂i , y j ) = p(y j |x̂
i ) and make use of the MLE in

(4.38).

One disadvantage of the k-means algorithm is that,

even when we have known statistical models, it is not

guaranteed to converge. However, a variation, known as

expectation maximization, can be shown to converge.

Expectation Maximization
for Data Association and Modeling

The expectation-maximization (EM) algorithm [4.36] is

a general statistical technique for dealing with miss-

ing data. In previous discussion, we made use of

maximum-likelihood estimation to maximize the con-

ditional probability of observed data given a set of

unknown parameters. However, our use of MLE pre-

sumed that we had complete knowledge of the data. In

particular, we knew the association between the data

elements and models.

Let use now assume that some of our data is missing.

To this end, define YO and YU as the observed and

unobserved data, respectively. We then note that we can

write

p(YO, YU|x)= p(YU|YO, x)p(YO|x) . (4.40)

Suppose now that we make a guess for x̂, and we

have a distribution over the unknown data YU (where

this comes from we will discuss in a minute). It fol-

lows that we could compute the expected value of the

log-likelihood function (recall that maximizing the log

likelihood is equivalent to maximizing the likelihood) as

Q(x, x̂)= EYU

[

log p(YO, YU|x)|YO, x̂
]

. (4.41)

Note that we differentiate between the fixed value x̂

that is usually needed to define the distribution over the

unknown data and the unknown x of the log-likelihood

function.

Ideally, we would then like to choose values for x

that make Q large. Thus, we can choose a new value

according to the iterative rule

x̂i = argmax Q(x, x̂i−1) . (4.42)

What can be shown is that this iteration will converge to

some local maximum of the objective function Q. It is

important to note that there is no guarantee that this is,

however, the global maximum.

How do we connect this with clustering? We con-

sider the observed data to be just that, the data we

have observed. Let the unobserved data be the as-

sociation values π( j), j = 1, 2, . . . M that determine

which model the observed data items originate from.

Note that this is a discrete random variable. Let us

further assume that N underlying clusters are dis-

tributed according to a Gaussian distribution with mean

xi and covariance Λi . Let the unconditional prob-

ability that a particular data item y j comes from

cluster i be αi . The unknown parameters are then θ =
{x1, x2, . . . , xN , Λ1, Λ2, . . . , ΛN , α1, α2, . . . , αN }.
We now use − and + to denote prior and updated pa-

rameter estimates, respectively. For conciseness, we also

definewi, j = p(π j = i|y j , θ) andwe use a subscript plus

to denote updated parameter estimates. Then, after a se-

ries of calculations [4.36], the EM algorithm for data

clustering becomes:

E-Step:

wi, j =
p(y j |π( j) = i, θ)αi

∑

i p(y j |π( j) = i, θ)αi

. (4.43)

M-Step:

x̂+
i =

∑

j

y jwi, j

/

∑

j

wi, j , (4.44)

Λ+
i =

∑

j

y j (y j )
twi, j

/

∑

j

wi, j , (4.45)

α+
i =

∑

j

wi, j

/

∑

i

∑

j

wi, j . (4.46)

From this, we can see that EM produces a type of

soft clustering, as opposed to k-means which produces

specific decisions (in terms of wi, j ) as to which cluster

an observation belongs. In fact, the result of estimation is

the maximum-likelihood estimate of aGaussian mixture

model which has the form

p(y|θ) =
∑

j

α j N(y|x̂ j , Λ j ) , (4.47)

where N(·) denotes a Gaussian density function. Fig-

ure 4.15 shows the results of executing the EMalgorithm

on data sampled from a Gaussian mixture model.

Recursive Filtering
In the batch methods described above, we do not have

a priori information on state parameters. In the case of

recursive filtering, we have the advantage that prior state
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Fig. 4.15a–d An example of clustering using expectation maximization. The figures are the results at iterations 1, 2, 5,

and 10

estimates, x̂k
t andΛk

t , are available for processing at time

t +1. As before, for data yi
t , i = 1 . . . N , the problem is

to determine amappingπ : {1 . . . N} → {1 . . . M}which
associates data element i to model k = π(i). In some

cases, it is also useful to include an outlier process to

handle data that comes from no known model. For this

purpose, we can include 0 in the range of the function,

and use the mapping to zero as an outlier.

Nearest-Neighbor Association
Analogous to k-mean clustering, a simple way of

producing a data association is to compute the data

association value as

π(i) = argmin
j

d(F j x̂ j , ŷi ) . (4.48)

However, nearest-neighbor methods do not take into

account what we know about either the sensor data or the

estimate. That is, wemay have a very very good estimate

of some model i and a very very bad estimate for some

other model j. If a sensor observation is equidistance

between them, does it make sense to flip a coin? Odds

are that it is more likely to come from j (with a larger

variance) than i (with a smaller variance).

A commonly used measure that can take this into

account is the Mahalanobis distance [4.37]. The idea is

to weight each value by its variance as

m(y1, y2)= (y1 − y2)(Λ1 +Λ2)
−1(y1 − y2)

⊤ .

(4.49)

Thus, distances are scaled inversely with uncertainty. In

the case above, the observation with a higher variance

would produce the smaller distance, as desired.

Even using this as a weighting method, it is still

possible that we will make an error in data association.

From an estimation point of view, this will introduce

an outlier in the estimation process with, as discussed

above, potentially disastrous results. Another approach,

analogous to IRLS, is instead to weight the data based

on the distance to a model. This leads naturally to the

notion of a data association filter. We refer the reader

to [4.18] for extensive discussions of these techniques.
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4.3.5 Modeling Sensors

To this point, we have introduced several sensing

modalities, and we have discussed several methods

for estimation. However, the latter often rely on hav-

ing statistical models for the former. Thus, no chapter

on sensing and estimation would be complete without

a short discussion of modeling sensors.

Developing a sensor model potentially involves four

major elements: (1) creating a physical model, (2) de-

termining a sensor calibration (3) determining an error

model, and (4) identifying failure conditions.

The physical model is the relationship f between the

underlying quantities of interest (x) and the available

data (y). In many cases, this relationship is obvious,

e.g., the distance from a laser sensor to a surface in the

world. In others, it may be less so, e.g., what is the right

model relating intensities in multiple camera images to

the distance to an observed point? In some cases, it

may be necessary to include computational processes,

e.g., feature detection and correspondence, in the sensor

model.

Once a physical model is determined, there is often

a process of sensor calibration. Such procedures are

typically specific to the sensor in question, for ex-

ample, the imaging geometry of a perspective camera

system requires identification of two scale parame-

ters (governing image scale) and the location of the

optical center (two additional parameters). There are

also often lens distortion parameters. These parame-

ters can only be determined by a careful calibration

procedure [4.5].

Once a calibrated physical sensor model is available,

determining an error model typically involves perform-

ing an identification of the statistical parameters. Ideally,

the first step is to determine an empirical distribution

on errors. However, this can often be difficult, as it re-

quires knowing accurate ground truth for the underlying

unknown parameters. This often requires the develop-

ment of a laboratory setup that can simulate the expected

sensing situation.

Given such an empirical distribution, there are sev-

eral important questions, including: (1)Are observations

statistically independent? (2) Is the error distribution

unimodal? and (3) Can the essential aspects of the

empirical error be captured using common statistical

quantities such as the data variance? We refer the reader

to books on statistics and datamodeling [4.38] for further

information on this topic.

Finally, it is important to understand when sensors

can and cannot provide reliable data, for example, a laser

sensormay be less accurate on dark surfaces than on light

ones, cameras do not produce meaningful data if the

lighting is too bright or too dark, and so forth. In some

cases, there are simple clues to these conditions (e.g.,

simply looking at the intensity histogram of a camera

image can quickly determine if conditions are suitable

for processing). In some cases it is only possible to detect

conditions in context (e.g., two range sensors disagree

on the distance to a surface). In some cases failure is

only detectable in retrospect, e.g., after a 3-D surface

model is built it is apparent that a hypothesized surface

would be occluded by another and must therefore be

a multiple reflection. In a truly robust sensing system,

all available possibilities for verifying sensor operation

should be exploited.

4.3.6 Other Uncertainty
Management Methods

Due to the limitations of space, we have necessarily

limited our discussion to cover the most commonly

used sensing and estimation methods. It is important

to note that many other alternative uncertainty manage-

ment methods have been proposed and employed with

success.

For example, if it is known that sensing error

is bounded, constraint-based methods can be quite

effective at performing point estimation [4.39, 40]. Al-

ternatively, if only partial probability models can be

identified, Dempster–Shafer methods can be employed

to make judgments [4.41].

Fuzzy logic allows gradedmembership of a set.With

fuzzy set theory it is possible to have partial member-

ship. As an example in classification of data it might be

difficult to select between two categories such as aver-

age and tall and gradual shifts may make sense. Such

methods have for example been used for situation as-

sessment and navigation as reported by [4.42] for the

DAMN architecture.
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4.4 Representations

Sensor data can be used directly for control but it is

also used for estimation of the state of the robot and/or

the world. The definition of state and the appropri-

ate methods for estimation are closely related to the

representation adopted for the application.

There are a rich variety of possible world represen-

tations including most typical geometric elements such

as points, curves, surfaces, and volumes. A fundamental

aspect in robotics is the concept of rigid-body pose. The

pose of a robot or an entity in the world is characterized

by position and orientation with respect to a reference

frame.

In general, pose is represented by the pair (R, T).

Here R is the orientation of the object represented by

a rotationmatrix with respect to a reference frame. Simi-

larly, T represents the translation of the object with

respect the reference frame. There is a rich set of po-

tential representations for the transformation between

reference frames as detailed in the chapter onKinematics

(Chap. 1) and in [4.43].

Sensory data is acquired in a local sensor reference

frame, for example, a sonar transducer, a laser scanner,

and a stereo imaging systemwould all measure distances

to surfaces in the world relative to their own frame.

However, if the goal is to combine this information into

a common world model, the data must be transformed

into a robot-centered reference frame, or possibly into

a fixed world (inertial) reference frame. In particular, the

world-centered reference frame enable simple transfer

across robot motions and communication to other robots

and/or users.

For the purposes of discussion, most representations

for the integration of sensor data can be categorized into

four general classes of models:

• raw sensor data models

• grid-based models

• feature-based models

• symbolic or graphical models

Naturally, it is also possible to combine elements of

these four categories to achieve hybrid models of the

environment.

4.4.1 Raw Sensor Representations

For simple feedback control [4.44] it is common to inte-

grate raw sensory data directly into the control system, as

inmany cases it is unnecessary to have aworld model for

the control. For example, proprioceptive sensing is often

used in thismanner: basic trajectory controlmakes direct

use of encoder information from joints, and force con-

trol operates directly from force or torque information

from force sensors.

Raw sensormodels are less commonwith exterocep-

tive sensing, but there are cases where it can be useful.

One example is mobile robot mapping from dense point

data. This approach has in particular been made popular

for laser range sensors, where scan alignment is used for

the generation of point-based world models. The work

by [4.45,46] demonstrates how a number of laser range

scans can be combined into a joint model of the environ-

ment. More formally a scan of the environment at time

t is represented as a point set

Pt = {pi = (ρi , θi )|i ∈ 1 . . . N} . (4.50)

Two different scans Pt and Pt+1 are then aligned

through a standard SE(3) transformation. The estima-

tion of the transformation is typically achieved through

use of the ICP algorithm [4.13]:, assume that T [0] is an

initial estimate of the transformation between the two

point sets and that ||pt − pt+1|| is the Euclidean dis-

tance between a point fromPt and a point fromPt+1. If

furthermore CP is a function to locate the closest point

from one set in the other set, then let C be the set of

point correspondences between the two sets. Through

iterations of the following algorithm:

1. compute Ck = ∪N
i=1{pi ,CP[T

[k−1](pi , Pt+1)]},

2. estimate the T [k] that minimizes the LSQ error be-

tween the points in Ck until the error has converged

an estimate of the scan alignment can be found and

a joint model of the environment can be constructed.

The model is simple to construct and well suited

for integration of sensor data from a single modality.

Typically the model does not include information about

uncertainty and, as the model grows the complexity,

O(
∑

t |Pt |) becomes an issue.

4.4.2 Grid-Based Representations

In a grid-based representation the world is tessellated

into a number cells. The cells can contain information

about environmental features such as temperature, obs-

tacles, force distribution, etc. The dimensionality of the

grid is typically two or three, depending on the appli-

cation. The tessellation can either be uniform or tree

based using quad-tree or oct-trees [4.47]. The tree-based

methods are in particular well suited for handling of in-
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homogeneous and large-scale data sets. In a grid model

each cell contains a probability over the parameter set.

As an example, when using the grid model for repre-

sentation of a physical environment, the cell specifies

occupied or free and the cell encodes the probability

P(occupied). Initially where there is no information the

grid is initialized to P(occupied) = 0.5 to indicate un-

known. It is further assumed that sensor models are

available that specify P(R|Sij ), i. e., the probability of

detection objects for a given sensor and location. Using

Bayes theorem (4.10) it is now possible to update the

grid model according to:

pij (t +1)=

P(R|Sij = O)pij (t)

P(R|Sij = 0)pij (t)+ P(R|Sij = F)(1− pij (t))
,

where pij is computed across the grid model whenever

new data are acquired.

The grid-based model has been widely used in

mobile robotics [4.48, 49] and in medical imaging

where image volumes are quite common [4.50]. Volume

models can be relative large.As an example amillimeter-

resolution grid model of the human head requires 4GB

of storage, and thus demands significant computational

resources for maintenance.

4.4.3 Discrete Feature Representations

Both the raw sensor representation and the grid-based

models contain a minimum of abstraction for the sen-

sory data. In many cases there is an interest in extracting

features from the sensor data to reduce the storage

requirement and only preserve data that are invariant

across motion of the platform or external objects. Fea-

tures span most standard geometric entities such as

points (p), lines (l), planes (N, p), curves (p(s)), and

more general surfaces. For estimation of properties of

the external world there is a need for a hybrid model in

which collections of features are integrated into a unified

model of state.

In general a point is represented in R(3). Sensors

have associated noise and, consequently, in most cases

points have an associated uncertainty, typically modeled

as Gaussian with mean µ and standard deviation σ .The

estimation of the statistics is achieved using first- and

second-order moments.

Line features are more difficult to represent. The

mathematical line can be represented by the vector pair

(p, t), i. e., a point on the line and the tangent vector.

In many practical applications the line has a finite ex-

tent, and there is a need to encode the length of the line,

u1

u5

u2

u4 u6 u7 u8

u9
u3

c12

c45 c46 c67 c78

c89

c23

c34

Fig. 4.16 A topological map of a spatial environment

which can be achieved using end points, start point, tan-

gent, and length. In some cases it is advantageous to

have a redundant representation of the line model to

simplify updating and matching. The relation between

end-point uncertainties and other line parameters can be

derived analytically, as described in [4.51]. The estima-

tion of line parameters is often based on the previously

describe RANSACmethod through the use of theHough

transform [4.8], which is another voting-based method.

For more complex feature models such as curves or

surfaces there is a corresponding need to utilize detection

methods that facilitate robust segmentation of features,

and estimation of the associated uncertainty. A com-

prehensive description of such methods is available

from [4.36].

4.4.4 Symbolic/Graph-Based Models

All of the representations presented in Sects. 4.4.1–

4.4.3 are parametric in nature with limited associated

semantics. Methods for the recognition of structures,

spaces, locations, and objects have seen major recent

progress in particular due to advances in statistical learn-

ing theory [4.10, 52]. Consequently, today there exist

a variety of methods for the recognition of complex

structures in sensor data, such as landmarks, road sur-

faces, body structures, etc. Given the availability of

recognized structures it is possible to represent the

environment using the previously discussed graphical

models. In general a graph is composed of a set of

nodes N and a set of edges E that connect nodes. Both

nodes and edges can have attributes associated such as

labels and distances. One example of a graph struc-

ture is a topological map of the environment as shown

in Fig. 4.16. The graph representation could also be a se-

mantic model of the environment (objects and places)

or a representation of the composition of an object to

assembled.
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In terms of model updating semantic/graph-based

representations can take advantage of recent advances

in Bayesian reasoning as presented by Pearl [4.53], and

exemplified in [4.54].

4.5 Conclusions and Further Readings

Sensing and estimation continues to be a challenging

and very active area of robotics research. Several areas

of sensing such as computer vision and medical imaging

are themselves large and diverse research areas. At the

same time, new fundamental and applied techniques in

estimation continue to be developed. Indeed, it is fair

to say that perception continues to be one of the most

challenging areas of robotics research.

Given this wealth of activity, no single chapter can

hope to cover all of the material that can be useful in

the development of sensor-based robotics. However, the

methods that have been presented here are representative

of the most commonly used techniques in robotics. In

particular, linear techniques such as the Kalman filter

continue to form the backbone of perceptive robotics.

Part C of the handbook provides more in-depth coverage

of several of the key topics in sensing and estimation.

For the reader wishing to learn more, general dis-

cussion on the design, physics, and use of a rich variety

of sensors can be found in the Handbook of Mod-

ern Sensors [4.3]. A discussion of sensors for mobile

robots can be found in [4.55], though significant ad-

vances have been achieved since the book was published

more than a decade ago. Sensing and estimation us-

ing computer vision is described in detail in [4.56]

and [4.57].

The basic estimation theory is covered in a num-

ber of excellent text books. Much of the detection and

linear estimation theory is covered in depth in [4.18]

and [4.58]. General statistical estimation is covered

in [4.10] and [4.11] and the more recently updated

version [4.36]. Robust methods are described in detail

in [4.19, 35]. In-depth coverage of estimation methods

for mobile systems is also covered in [4.31].
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