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Multiple Mobi
40. Multiple Mobile Robot Systems

Lynne E. Parker

Within the context of multiple mobile robot sys-
tems, this chapter explores the current state of
the art. After a brief introduction, we first ex-
amine architectures for multirobot cooperation,
exploring the alternative approaches that have
been developed. Next, we explore communi-
cations issues and their impact on multirobot
teams in Sect. 40.3, followed by a discussion
of swarm robot systems in Sect. 40.4. While
swarm systems typically assume large numbers
of homogeneous robots, other types of mul-
tirobot systems include heterogeneous robots.
We therefore next discuss heterogeneity in co-
operative robot teams in Sect. 40.5. Once robot
teams allow for individual heterogeneity, issues
of task allocation become important; Sect. 40.6
therefore discusses common approaches to task
allocation. Section 40.7 discusses the challenges
of multirobot learning, and some representa-
tive approaches. We outline some of the typical
application domains which serve as test beds
for multirobot systems research in Sect. 40.8.
Finally, we conclude in Sect. 40.9 with some
summary remarks and suggestions for further
reading.
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Researchers generally agree that multirobot systems

have several advantages over single-robot systems [40.1,

2]. The most common motivations for developing mul-

tirobot system solutions are that:

1. the task complexity is too high for a single robot to

accomplish;

2. the task is inherently distributed;

3. building several resource-bounded robots is much

easier than having a single powerful robot;

4. multiple robots can solve problems faster using par-

allelism; and

5. the introduction of multiple robots increases robust-

ness through redundancy.

The issues that must be addressed in developing multi-

robot solutions are dependent upon the task requirements

and the sensory and effector capabilities of the available

robots.

The types of robots considered in the study of mul-

tiple mobile robot systems are those robots that move

around in the environment, such as ground vehicles,

aerial vehicles, or underwater vehicles. This chapter fo-

cuses specifically on the interaction of multiple mobile
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922 Part E Mobile and Distributed Robotics

robots, as distinguished from other types of multirobot

interaction. For example, a special case of multiple mo-

bile robot systems are the reconfigurable or modular

robots that interconnect with each other for the purposes

of navigation or manipulation. This type of multirobot

system is covered in detail in Chap. 39. Networked

robotics, covered in Chap. 41, is also very closely re-

lated to multiple mobile robot systems; however, the

focus in networked robotics is on systems of robots,

sensors, embedded computers, and human users that are

all connected by networked communication. Another

variant of multirobot cooperation is multiple manipula-

tor arm cooperation; Chap. 29 describes these systems

in detail.

40.1 History

Since the earliest work on multiple mobile robot sys-

tems in the 1980s, the field has grown significantly, and

covers a large body of research. At the most general

level, approaches to multiple mobile robot systems fall

into one of two broad categories: collective swarm sys-

tems and intentionally cooperative systems. Collective

swarm systems are those in which robots execute their

own tasks with only minimal need for knowledge about

other robot team members. These systems are typified

by the assumption of a large number of homogeneous

mobile robots, in which robots make use of local con-

trol laws to generate globally coherent team behaviors,

with little explicit communication among robots. On the

other hand, robots in intentionally cooperative systems

have knowledge of the presence of other robots in the en-

vironment and act together based on the state, actions,

or capabilities of their teammates in order to accom-

plish the same goal. Intentionally cooperative systems

vary in the extent to which robots take into account the

actions or state of other robots, and can lead to either

strongly or weakly cooperative solutions [40.3]. Strongly

cooperative solutions require robots to act in concert to

achieve the goal, executing tasks that are not trivially

serializable. Typically, these approaches require some

type of communication and synchronization among the

robots. Weakly cooperative solutions allow robots to

have periods of operational independence, subsequent

to coordinating their selection of tasks or roles. Inten-

tionally cooperative multirobot systems can deal with

heterogeneity in the robot team members, in which team

members vary in their sensor and effector capabilities. In

these teams, the coordination of robots can be very dif-

ferent from in collective swarm approaches, since robots

are no longer interchangeable.

Most of the work specific to multiple mobile robot

cooperation can be categorized into a set of key top-

ics of study. These topics, which are the foci of this

chapter, include architectures, communication, swarm

robots, heterogeneity, task allocation, and learning. Ar-

chitectures and communication in multirobot systems

are relevant for all types of multirobot systems, as these

approaches specify how the robot team members are or-

ganized and interact. Swarm robots is a particular type of

multirobot system, typified by large numbers of homo-

geneous robots that interact implicitly with each other.

Such systems are often contrasted with heterogeneous

robots, in which team members may vary significantly in

their capabilities. When robots vary in capabilities, chal-

lenges arise in determining which robots should perform

which tasks – a challenge commonly referred to as task

allocation. Finally learning in multirobot teams is of par-

ticular interest in designing teams that are adaptive over

time and can learn new behaviors. Illustrating the ad-

vances in each of these areas often takes place in a set of

representative application domains; these applications

are the final major topic of discussion in this chapter.

40.2 Architectures for Multirobot Systems

The design of the overall control architecture for the mul-

tirobot team has a significant impact on the robustness

and scalability of the system. Robot architectures for

multirobot teams are composed of the same fundamen-

tal components as in single-robot systems, as described

in Chap. 8. However, they also must address the inter-

action of robots and how the group behavior will be

generated from the control architectures of the individ-

ual robots in the team. Several different philosophies

for multirobot team architectures are possible; the most

common are centralized, hierarchical, decentralized,

and hybrid.
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Multiple Mobile Robot Systems 40.2 Architectures for Multirobot Systems 923

Centralized architectures that coordinate the entire

team from a single point of control are theoretically pos-

sible [40.4], although often practically unrealistic due to

their vulnerability to a single point of failure, and due to

the difficulty of communicating the entire system state

back to the central location at a frequency suitable for

real-time control. Situations in which these approaches

are relevant are cases in which the centralized controller

has a clear vantage point from which to observe the

robots, and can easily broadcast group messages for all

robots to obey [40.5].

Hierarchical architectures are realistic for some ap-

plications. In this control approach, each robot oversees

the actions of a relatively small group of other robots,

each of which in turn oversees yet another group of

robots, and so forth, down to the lowest robot, which

simply executes its part of the task. This architecture

scales much better than centralized approaches, and is

reminiscent of military command and control. A point

of weakness for the hierarchical control architecture is

recovering from failures of robots high in the control

tree.

Decentralized control architectures are the most

common approach for multirobot teams, and typically

require robots to take actions based only on knowledge

local to their situation. This control approach can be

highly robust to failure, since no robot is responsible

for the control of any other robot. However, achieving

global coherency in these systems can be difficult, be-

cause high-level goals have to be incorporated into the

local control of each robot. If the goals change, it may

be difficult to revise the behavior of individual robots.

Hybrid control architectures combine local control

with higher-level control approaches to achieve both ro-

bustness and the ability to influence the entire team’s

actions through global goals, plans, or control. Many

multirobot control approaches make use of hybrid ar-

chitectures.

A plethora of multirobot control architectures have

been developed over the years. We focus here on

three approaches that illustrate the spectrum of control

architectures. The first, the Nerd Herd, is representa-

tive of a pure swarm robotics approach using large

numbers of homogeneous robots. The second, AL-

LIANCE, is representative of a behavior-based approach

that enables coordination and control of possibly het-

erogeneous robots without explicit coordination. The

third, distributed robot architecture (DIRA), is a hy-

brid approach that enables both robot autonomy and

explicit coordination in possibly heterogeneous robot

teams.

40.2.1 The Nerd Herd

One of the first studies of social behaviors in multi-

robot teams was conducted by Matarić [40.6], with

results being demonstrated on the Nerd Herd team of

20 identical robots (shown in Fig. 40.1). This work is an

example of swarm robotic systems, as described further

in Sect. 40.4. The decentralized control approach was

based on the subsumption architecture (see Chap. 8), and

assumed that all robots were homogeneous, but with rel-

atively simple individual capabilities, such as detecting

obstacles and kin (i. e., other robot team members). A set

of basic social behaviors (see also Chap. 38) were de-

fined and demonstrated, including obstacle avoidance,

homing, aggregation, dispersion, following, and safe

wandering. These basic behaviors were combined in

various ways to yield more composite social behaviors,

including flocking (composed of safe wandering, aggre-

gation, and dispersion), surrounding (composed of safe

wandering, following, and aggregation), herding (com-

posed of safe wandering, surrounding, and flocking),

and foraging (composed of safe wandering, dispersion,

following, homing, and flocking). The behaviors were

implemented as rules, such as the following rule for

aggregate:

Aggregate:

If agent is outside aggregation

distance

turn toward aggregation centroid

and go.

Else

stop.

This work showed that collective behaviors could be

generated through the combination of lower-level ba-

sic behaviors. Related work on this project studied

Fig. 40.1 The Nerd Herd robots
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924 Part E Mobile and Distributed Robotics

issues such as using bucket brigades to reduce inter-

ference [40.7], and learning [40.8].

40.2.2 The ALLIANCE Architecture

Another early work in multirobot team architectures

is the ALLIANCE architecture (shown in Fig. 40.2),

developed by Parker [40.9] for fault-tolerant task al-

location in heterogeneous robot teams. This approach

builds on the subsumption architecture by adding behav-

ior sets and motivations for achieving action selection

without explicit negotiations between robots. Behavior

sets group low-level behaviors together for the execu-

tion of a particular task. The motivations consist of

levels of impatience and acquiescence that can raise

and lower a robot’s interest in activating a behavior set

corresponding to a task that must be accomplished.

In this approach, the initial motivation to perform

a given behavior set is set to zero. Then, at each time

step, the motivation level is recalculated based on

1. the previous motivation level

2. the rate of impatience

3. whether the sensory feedback indicates the behavior

set is needed

4. whether the robot has another behavior set already

activated

5. whether another robot has recently begun work on

this task

6. whether the robot is willing to give up the task, based

on how long it has been attempting the task

Actuators

Sensors

Motivational
behavior

Motivational
behavior

Cross-inhibition

Motivational
behavior

Layer 2

Layer 1

Layer 0

Behavior
set 0

Behavior
set 1

Behavior
set 2

Interrobot
communi-

cation

Alliance

Fig. 40.2 The ALLIANCE architecture

Fig. 40.3 Robots using the ALLIANCE architecture for

a mock clean-up task

Effectively, the motivation continues to increase at some

positive rate unless one of four situations occurs:

1. the sensory feedback indicates that the behavior set

is no longer needed

2. another behavior set in the robot activates

3. some other robot has just taken over the task for the

first time

4. the robot has decided to acquiesce the task

In any of these four situations, the motivation re-

turns to zero. Otherwise, the motivation grows until it

crosses a threshold value, at which time the behavior set

is activated and the robot can be said to have selected

an action. When an action is selected, cross-inhibition

within that robot prevents other tasks from being acti-

vated within that same robot. When a behavior set is

active in a robot, the robot broadcasts its current activity

to other robots at a periodic rate.

The L-ALLIANCE extension [40.10] allows a robot

to adapt the rate of change of the impatience and ac-

quiescence values depending on the quality with which

that robot is expected to accomplish a given task. The

result is that robots that have demonstrated their abil-

ity to better accomplish certain tasks are more likely to

choose those tasks in the future. Additionally, if prob-

lems occur during team performance, then robots may

dynamically reallocate their tasks to compensate for the

problems. This approach was demonstrated on a team

of three heterogeneous robots performing a mock clean-

up task, two robots performing a box-pushing task, and

four robots performing a cooperative target observation

problem. The approach has also been demonstrated in

the simulation of a janitorial service task and a bound-
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Multiple Mobile Robot Systems 40.3 Communication 925

ing overwatch task. Figure 40.3 shows robots using

ALLIANCE to perform the mock clean-up task.

40.2.3 The Distributed Robot Architecture

Simmons et al. [40.11] have developed a hybrid archi-

tecture called the distributed robot architecture (DIRA).

Similar to the Nerd Herd and ALLIANCE approaches,

the DIRA approach allows autonomy in individual

robots. However, unlike the previous approaches, DIRA

also facilitates explicit coordination among robots. This

approach is based on layered architectures that are

popular for single-robot systems (see Chap. 8). In this

approach (shown in Fig. 40.4), each robot’s control ar-

chitecture consists of a planning layer that decides how

to achieve high-level goals; an executive layer that syn-

chronizes agents, sequences tasks, and monitors task

execution; and a behavioral layer that interfaces to the

robot’s sensors and effectors. Each of these layers inter-

acts with those above and below it. Additionally, robots

can interact with each other via direct connections at

each of the layers.

This architecture has been demonstrated in a team

of three robots – a crane, a roving eye, and a mobile

manipulator – performing a construction assembly task

(see Fig. 40.5). This task requires the robots to work to-

gether to connect a beam at a given location. In these

demonstrations, a foreman agent decides which robot

should move the beam at which times. Initially, the crane

moves the beam to the vicinity of the emplacement based

on encoder feedback. The foreman then sets up a behav-

ioral loop between the roving eye and the crane robot

to servo the beam closer to the point of emplacement.

Once the beam is close enough, the foreman tasks the

Planner Planner

Executive

Robot 1 Robot 2 Robot 3

Planner

Executive Executive

Behaviors Behaviors Behaviors

Fig. 40.4 The distributed robot architecture

Fig. 40.5 Robots using the distributed robot architecture

for assembly tasks

roving eye and the mobile manipulator to servo the arm

to grasp the beam. After contact is made, the foreman

tasks the roving eye and the mobile manipulator to coor-

dinate to servo the beam to the emplacement point, thus

completing the task.

40.3 Communication

A fundamental assumption in multirobot systems re-

search is that globally coherent and efficient solutions

can be achieved through the interaction of robots lacking

complete global information. However, achieving these

globally coherent solutions typically requires robots to

obtain information about their teammates’ states or ac-

tions. This information can be obtained in a number of

ways; the three most common techniques are

1. the use of implicit communication through the world

(called stigmergy), in which robots sense the effects

of teammate’s actions through their effects on the

world (e.g., [40.6, 12–16])

2. passive action recognition, in which robots use

sensors to directly observe the actions of their team-

mates (e.g., [40.17])

3. explicit (intentional) communication, in which

robots directly and intentionally communicate rele-

vant information through some active means, such

as radio (e.g., [40.9, 18–20])

Each of these mechanisms for exchanging infor-

mation between robots has its own advantages and

disadvantages [40.21]. Stigmergy is appealing because

of its simplicity and its lack of dependence upon explicit

communications channels and protocols. However, it is
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926 Part E Mobile and Distributed Robotics

limited by the extent to which a robot’s perception of

the world reflects the salient states of the mission the

robot team must accomplish. Passive action recognition

is appealing because it does not depend upon a limited-

bandwidth, fallible communication mechanism. As with

implicit cooperation, however, it is limited by the de-

gree to which a robot can successfully interpret its

sensory information, as well as the difficulty of an-

alyzing the actions of robot team members. Finally,

the explicit communication approach is appealing be-

cause of its directness and the ease with which robots

can become aware of the actions and/or goals of its

teammates. The major uses of explicit communication

in multirobot teams are to synchronize actions, ex-

change information, and to negotiate between robots.

Explicit communication is a way of dealing with the

hidden-state problem [40.22], in which limited sen-

sors cannot distinguish between different states of the

world that are important for task performance. How-

ever, explicit communication is limited in terms of fault

tolerance and reliability, because it typically depends

upon a noisy, limited-bandwidth communications chan-

nel that may not continually connect all members of

the robot team. Thus, approaches that make use of ex-

plicit communications must also provide mechanisms to

handle communication failures and lost messages.

Selecting the appropriate use of communication in

a multirobot team is a design choice dependent upon

the tasks to be achieved by the multirobot team. One

needs to carefully consider the costs and benefits of al-

ternative communications approaches to determine the

method that can reliably achieve the required level of

system performance. Researchers generally agree that

communication can have a strong positive impact on

the performance of the team. One of the earliest il-

lustrations of this impact was given in the work of

MacLennan [40.23], which investigates the evolution of

communication in simulated worlds and concludes that

the communication of local robot information can result

in significant performance improvements. Interestingly,

for many representative applications, researchers have

found a nonlinear relationship between the amount of

information communicated and its impact on the perfor-

mance of the team. Typically, even a small amount of

information can have a significant impact on the team,

as found in the study of Balch and Arkin [40.24]. How-

ever, more information does not necessarily continue

to improve performance, as it can quickly overload

the communications bandwidth without providing an

application benefit. The challenge in multirobot sys-

tems is to discover the optimal pieces of information

to exchange that yield these performance improvements

without saturating the communications bandwidth. Cur-

rently, no general approaches to identifying this critical

information are available; thus, the decision of what to

communicate is an application-specific question to be

answered by the system designer. Dudek’s taxonomy

of multirobot systems [40.25] includes axes related to

communication, including communication range, com-

munication topology, and communication bandwidth.

These characteristics can be used to compare and con-

trast multirobot systems.

Several related issues of active research in communi-

cations for multirobot teams deal with dynamic network

connectivity and topologies; for example, robot teams

must either be able to maintain communications con-

nectivity as they move, or employ recovery strategies

that allow the robot team to recover when the commu-

nications connectivity is broken. These concerns may

require robots to adapt their actions in response to the

anticipated effects on the communications network, or

in response to knowledge of the anticipated propagation

behavior of information through the dynamic network.

These and related issues are discussed in some detail in

the context of networked robotics; see Chap. 41 for more

information.

40.4 Swarm Robots

Historically, some of the earliest work in multirobot

systems [40.12, 13, 26–33] dealt with large numbers of

homogeneous robots, called swarms. Still undergoing

active study today, the swarm approaches obtain in-

spiration from biological societies – particularly ants,

bees, and birds – to develop similar behaviors in mul-

tirobot teams. Because biological societies are able to

accomplish impressive group capabilities, such as the

ability of termites to build large complex mounds, or the

ability of ants to collectively carry large prey, robotics

researchers aim to reproduce these capabilities in robot

societies.

Swarm robotics systems are often called collective

robotics, indicating that individual robots are often un-

aware of the actions of other robots in the system, other

than information on proximity. These approaches aim
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Multiple Mobile Robot Systems 40.4 Swarm Robots 927

to achieve a desired team-level global behavior from

the interaction dynamics of individual robots follow-

ing relatively simple local control laws. Swarm robotic

systems typically involve very little explicit communica-

tion between robots, and instead rely on stigmergy (i. e.,

communication through the world) to achieve emer-

gent cooperation. Individual robots are assumed to have

minimal capabilities, with little ability to solve mean-

ingful tasks on their own. However, when grouped with

other similar robots, they are collectively able to achieve

team-level tasks. Ideally, the entire team should be able

to achieve much more than individual robots working

alone (i. e., it is superadditive, meaning that the whole is

bigger than the sum of the parts). These systems as-

sume very large numbers of robots (at least dozens,

and often hundreds or thousands) and explicitly ad-

dress issues of scalability. Swarm robotic approaches

achieve high levels of redundancy because robots are

assumed to be identical, and thus interchangeable with

each other.

Many types of swarm behaviors have been studied,

such as foraging, flocking, chaining, search, herding,

aggregation, and containment. The majority of these

swarm behaviors deal with spatially distributed multi-

robot motions, requiring robots to coordinate motions

either

1. relative to other robots

2. relative to the environment

3. relative to external agents

Table 40.1 Categories of swarm behaviors

Relative motion requirements Swarm behaviors

Relative to other robots Formations [40.34, 35], flocking [40.29],

natural herding (as in herds of cattle),

schooling, sorting [40.14], clumping [40.14],

condensation, aggregation [40.36], dispersion [40.37]

Relative to the environment Search [40.38], foraging [40.39], grazing,

harvesting, deployment [40.40], coverage [40.41],

localization [40.42], mapping [40.43], exploration [40.44]

Relative to external agents Pursuit [40.45], predator–prey [40.46], target tracking [40.47],

forced herding/shepherding (as in shepherding sheep)

Relative to other robots and the environment Containment, orbiting,

surrounding, perimeter search [40.48]

Relative to other robots, external agents, Evasion, tactical overwatch, soccer [40.49]

and the environment

4. relative to robots and the environment

5. relative to all (i. e., other robots, external agents, and

the environment)

Table 40.1 categorizes swarm robot behaviors according

to these groupings, citing representative examples of

relevant research.

Much of the current research in swarm robotics is

aimed at developing specific solutions to one or more

of the swarm behaviors listed in Table 40.1. Some of

these swarm behaviors have received particular atten-

tion, notably formations, flocking, search, coverage, and

foraging. Section 40.8 discusses these behaviors in more

detail. In general, most current work in the development

of swarm behaviors is aimed not just at demonstrating

group motions that are similar to biological systems, but

also at understanding the formal control theoretic prin-

ciples that can predictably converge to the desired group

behaviors, and remain in stable states.

Demonstration of physical robot swarms is both

a hardware and a software challenge. As dis-

cussed in Sect. 40.2, the first demonstrations were

by Matarić [40.6], involving about 20 physical

robots performing aggregation, dispersion, and flock-

ing. This work defined composable basis behaviors

as primitives for structuring more complex systems

(see Chap. 38 for more information). More recently,

McLurkin [40.50] developed an extensive catalog of

swarm behavior software, and demonstrated these be-

haviors on about 100 physical robots (called the
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928 Part E Mobile and Distributed Robotics

Fig. 40.6 The SwarmBot robots

SwarmBot robots), developed by iRobot, as shown

in Fig. 40.6. He created several group behaviors, such as

avoidManyRobots, disperseFromSource, disperseFrom-

Leaves, disperseUniformly, computeAverageBearing,

avoidManyRobots, followTheLeader, orbitGroup, navi-

gateGradient, clusterOnSource, and clusterIntoGroups.

A swarm of 108 robots used the developed dispersion

algorithms in an empty schoolhouse of area of about

300 m2, and were able to locate an object of interest and

lead a human to its location [40.37].

The European Union has sponsored several swarm

robot projects, leading toward decreasingly smaller

sized individual robots. The I-SWARM project, for in-

stance, is aimed at developing millimeter-sized robots

with full onboard sensing, computation, and power for

performing biologically inspired swarming behaviors,

as well as collective perception tasks. This project is

both a hardware and a software challenge, in that de-

veloping microscale robots that are fully autonomous

and can perform meaningful cooperative behaviors will

require significant advances in the current state of the

art.

Another notable effort in swarm robotics research is

the US multi-university SWARMS initiative led by the

University of Pennsylvania. Research in this project is

aimed at developing a new system-theoretic framework

for swarming, developing models of swarms and swarm-

ing behavior, analyzing swarm formation, stability, and

robustness, synthesizing emergent behaviors for active

perception and coverage, and developing algorithms for

distributed localization.

Besides the hardware challenges of dealing with

large numbers of small robots, there are many import-

ant software challenges that remain to be solved. From

a practical perspective, the usual approach to creat-

ing homogeneous multirobot swarms is to hypothesize

a possible local control law (or laws), and then study

the resulting group behavior, iterating until the desired

global behavior is obtained. However, the longer-term

objective is to be able to both predict group performance

based on known local control laws, and to generate local

control laws based upon a desired global group behav-

ior. Active research by many investigators is ongoing to

develop solutions to these key research challenges.

40.5 Heterogeneity

Robot heterogeneity can be defined in terms of vari-

ety in robot behavior, morphology, performance quality,

size, and cognition. In most large-scale multirobot sys-

tems work, the benefits of parallelism, redundancy,

and solutions distributed in space and time are ob-

tained through the use of homogeneous robots, which

are completely interchangeable (i. e., the swarm ap-

proach, as described in Sect. 40.4). However, certain

complex applications of large-scale robot teams may

require the simultaneous use of multiple types of sen-

sors and robots, all of which cannot be designed into

a single type of robot. Some robots may need to be

scaled to smaller sizes, which will limit their payloads,

or certain required sensors may be too expensive to

duplicate across all robots on the team. Other robots

may need to be large to carry application-specific

payload or sensors, or to navigate long distances in

a limited time. These applications, therefore, require

the collaboration of large numbers of heterogeneous

robots.

The motivation for developing heterogeneity in mul-

tirobot teams is thus twofold: heterogeneity may be

a design feature beneficial to particular applications, or

heterogeneity may be a necessity. As a design feature,

heterogeneity can offer economic benefits, since it can

be easier to distribute varying capabilities across mul-

tiple team members rather than to build many copies

of monolithic robots. Heterogeneity can also offer en-

gineering benefits, as it may simply be too difficult to

design individual robots that incorporate all of the sens-

ing, computational, and effector requirements of a given

application. Heterogeneity in behavior may also arise in
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Multiple Mobile Robot Systems 40.5 Heterogeneity 929

an emergent manner in physically homogeneous teams,

as a result of behavior specialization.

A second compelling reason to study heterogeneity

is that it may be a necessity, in that it is nearly impossible

in practice to build a truly homogeneous robot team. The

realities of individual robot design, construction, and

experience will inevitably cause a multirobot system to

drift to heterogeneity over time. This is recognized by ex-

perienced roboticists, who have seen that several copies

of the same model of robot can vary widely in capabili-

ties due to differences in sensor tuning, calibration, etc.

Over time, even minor initial differences among robots

will grow due to individual robot drift and wear and

tear. The implication is that, to employ robot teams ef-

fectively, we must understand diversity, predict how it

will impact performance, and enable robots to adapt to

the diverse capabilities of their peers. In fact, it is often

advantageous to build diversity explicitly into the design

of a robot team.

There are a variety of research challenges in het-

erogeneous multirobot systems. A particular challenge

to achieving efficient autonomous control is when over-

lap in team member capabilities occurs, thus affecting

task allocation or role assignments [40.51]. Techniques

as described in Sect. 40.6 can typically deal with het-

erogeneous robots for the purposes of task allocation.

Another important topic in heterogeneity is how to rec-

ognize and quantify heterogeneity in multirobot teams.

Some types of heterogeneity can be evaluated quantita-

tively, using metrics such as the social entropy metric

developed by Balch [40.52]. Most research in hetero-

geneous multirobot systems assumes that robots have

a common language and a common understanding of

symbols in their language; developing a common un-

derstanding of communicated symbols among robots

with different physical capabilities is a fundamental

challenge, addressed by Jung in [40.53].

As discussed in Sect. 40.2, one of the earliest re-

search demonstrations of heterogeneity in physical robot

teams was in the development of the ALLIANCE ar-

chitecture by Parker [40.9]. This work demonstrated

the ability of robots to compensate for heterogeneity

in team members during task allocation and execu-

tion. Murphy has studied heterogeneity in the context

of marsupial robot deployment, where a mothership

robot assists smaller robots in applications such as

search and rescue [40.54]. Grabowski et al. [40.43]

developed modular millibots for surveillance and recon-

naissance that could be composed of interchangeable

sensor and effector components, thus creating a variety

of different heterogeneous teams. Simmons et al. [40.11]

Fig. 40.7 Heterogeneous team of an air and two ground

vehicles that can perform cooperative reconnaissance and

surveillance

demonstrated the use of heterogeneous robots for au-

tonomous assembly and construction tasks relevant to

space applications. Sukatme et al. [40.55] demonstrated

a helicopter robot cooperating with two ground robots in

tasks involving marsupial-inspired payload deployment

and recovery, cooperative localization, and reconnais-

sance and surveillance tasks, as shown in Fig. 40.7.

Parker et al. [40.56] demonstrated assistive navigation

for sensor network deployment using a more intelligent

leader robot for guiding navigationally challenged sim-

ple sensor robots to goal locations, as part of a larger

demonstration by Howard et al. [40.57] of 100 robots

performing exploration, mapping, deployment, and de-

tection. Chaimowicz et al. [40.58] demonstrated a team

of aerial and ground robots cooperating for surveil-

lance applications in urban environments. Parker and

Tang [40.59] developed ASyMTRe (Automated Syn-

thesis of Multirobot Task solutions through software

Reconfiguration), which enables heterogeneous robots

to share sensory resources to enable the team to ac-

complish tasks that would be impossible without tightly

coupled sensor sharing.

Many open research issues remain to be solved in

heterogeneous multirobot teams; for example, the issue

of optimal team design is a very challenging problem.

Clearly, the required behavioral performance in a given

application dictates certain constraints on the physi-

cal design of the robot team members. However, it is

also clear that multiple choices may be made in design-

ing a solution to a given application, based upon cost,

robot availability, ease of software design, flexibility in

robot use, and so forth. Designing an optimal robot team

for a given application requires significant analysis and

consideration of the tradeoffs in alternative strategies.
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40.6 Task Allocation

In many multirobot applications, the mission of the team

is defined as a set of tasks that must be completed. Each

task can usually be worked on by a variety of differ-

ent robots; conversely, each robot can usually work on

a variety of different tasks. In many applications, a task

is decomposed into independent subtasks [40.9], hier-

archical task trees [40.60], or roles [40.11, 58, 61, 62]

either by a general autonomous planner or by the human

designer. Independent subtasks or roles can be achieved

concurrently, while subtasks in task trees are achieved

according to their interdependence. Once the set of tasks

or subtasks have been identified, the challenge is to de-

termine the preferred mapping of robots to tasks (or

subtasks). This is the task allocation problem.

The details of the task allocation problem can vary

in many dimensions, such as the number of robots re-

quired per task, the number of tasks a robot can work on

at a time, the coordination dependencies among tasks,

and the time frame for which task assignments are deter-

mined. Gerkey and Matarić [40.63] defined a taxonomy

for task allocation that provides a way of distinguishing

task allocation problems along these dimensions, which

is referred to as the multirobot task allocation (MRTA)

taxonomy.

40.6.1 Taxonomy for Task Allocation

Generally, tasks are considered to be of two principal

types: single-robot tasks (SR, according to the MRTA

taxonomy) are those that require only one robot at a time,

while multirobot tasks (MR) are those that require more

than one robot working on the same task at the same

time. Commonly, single-robot tasks that have minimal

task interdependencies are referred to as loosely cou-

pled tasks, representing a weakly cooperative solution.

On the other hand, multirobot tasks are often considered

to be sets of subtasks that have strong interdependen-

cies. These tasks are therefore often referred to as tightly

coupled tasks that require a strongly cooperative solu-

tion. The subtasks of a loosely coupled multirobot task

require a high level of synchronization or coordination

between subtasks, meaning that each task must be aware

of the current state of the coordinated subtasks within

a small time delay. As this time delay becomes progres-

sively larger, coordinated subtasks become more loosely

coupled, representing weakly cooperative solutions.

Robots can also be categorized as either single-task

robots (ST), which work on only one task at a time or

multitask robots (MT), which are able to make progress

on more than one task at a time. Most commonly, task al-

location problems assume robots are single-task robots,

since more capable robots that perform multiple tasks in

parallel are still beyond the current state of the art.

Tasks can either be assigned to optimize the in-

stantaneous allocation of tasks (IA), or to optimize

the assignments into the future (TA, for time-extended

assignment). In the case of instantaneous assignment,

no consideration is made for the effect of the cur-

rent assignment on future assignments. Time-extended

assignments attempt to assign tasks so that the perfor-

mance of the team is optimized for the entire set of tasks

that may be required, not just the current set of tasks that

need to be achieved at the current time step.

Using the MTRA taxonomy, triples of these abbre-

viations are used to categorize various task allocation

approaches, such as SR-ST-IA, which refers to an

assignment problem in which single-robot tasks are as-

signed once to single-task robots. Different variations of

the task allocation problem have different computational

complexities. The easiest variant is the ST-SR-IA prob-

lem, which can be solved in polynomial time since it is

an instance of the optimal assignment problem [40.64].

Other variants are much more difficult, and do not have

known polynomial time solutions. For example, the

ST-MR-IA variant can be shown to be an instance of

the set partitioning problem [40.65], which is strongly

NP-hard. The ST-MR-TA, MT-SR-IA, and MT-SR-

TA variants have also all been shown to be NP-hard

problems. Because these problems are computation-

ally complex, most approaches to task allocation in

multirobot teams generate approximate solutions.

40.6.2 Representative Approaches

Approaches to task allocation in multirobot teams can

be roughly divided into behavior-based approaches and

market-based (sometimes called negotiation-style or

auction-based) approaches. The following subsections

describe some representative architectures for each of

these general approaches. Refer to [40.63] for a com-

parative analysis of some of these approaches, in terms

of computation and communications requirements and

solution quality.

Behavior-Based Task Allocation
Behavior-based approaches typically enable robots to

determine task assignments without explicitly dis-

cussing individual tasks. In these approaches, robots use
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knowledge of the current state of the robot team mis-

sion, robot team member capabilities, and robot actions

to decide, in a distributed fashion, which robot should

perform which task.

One of the earliest architectures for multirobot task

allocation that was demonstrated on physical robots

was the behavior-based ALLIANCE architecture [40.9]

and the related L-ALLIANCE architecture [40.10].

ALLIANCE addresses the ST-SR-IA and ST-SR-TA

variants of the task allocation problem without explicit

communication among robots about tasks. As described

in Sect. 40.2.2, ALLIANCE achieves adaptive action se-

lection through the use of motivational behaviors, which

are levels of impatience and acquiescence within each

robot that determine its own and its teammates’ relative

fitness for performing certain tasks. These motivations

are calculated based upon the mission requirements, the

activities and capabilities of teammates, and the robots’

internal states. These motivations effectively calculate

utility measures for each robot–task pair.

Another behavior-based approach to multirobot task

allocation is broadcast of local eligibility ( BLE) [40.66],

which addresses the ST-SR-IA variant of task allocation.

BLE uses a subsumption style behavior control archi-

tecture [40.67] that allows robots to efficiently execute

tasks by continuously broadcasting locally computed

eligibilities and only selecting the robot with the best

eligibility to perform the task. In this case, task alloca-

tion is achieved through behavior inhibition. BLE uses

an assignment algorithm that is very similar to Botelho

and Alami’s M+ architecture [40.68].

Market-Based Task Allocation
Market-based (or negotiation-based) approaches typi-

cally involve explicit communications between robots

about the required tasks, in which robots bid for tasks

based on their capabilities and availability. The nego-

tiation process is based on market theory, in which the

team seeks to optimize an objective function based upon

individual robot utilities for performing particular tasks.

The approaches typically greedily assign subtasks to the

robot that can perform the task with the highest utility.

Smith’s contract net protocol (CNP) [40.69] was the

first to address the problem of how agents can nego-

tiate to collectively solve a set of tasks. The use of

a market-based approach specifically for multirobot task

allocation was first developed by Botelho and Alami

with their M+ architecture [40.68]. In the M+ approach,

robots plan their own individual plans for the task they

have been assigned. They then negotiate with other team-

mates to incrementally adapt their actions to suit the

team as a whole, through the use of social rules that

facilitate the merging of plans.

Since these early developments, many alternative

approaches to market-based task allocation have been

developed. A thorough survey on the current state of

the art in market-based techniques for multirobot task

allocation is given in [40.70], comparing alternative

approaches in terms of solution quality, scalability,

dynamic events and environments, and heterogeneous

teams.

Most of the current approaches in market-based task

allocation address the ST-SR problem variant, with some

approaches (e.g., [40.11,71–73]) dealing with instantan-

eous assignment (IA), and others (e.g., [40.44, 74–76])

addressing time-extended assignments (TA). More re-

cent methods are beginning to address the allocation

of multirobot tasks (i. e., the MR-ST problem variant),

including [40.59, 77–81]. An example approach to the

MR-MT problem variant is found in [40.82].

Some representative market-based techniques in-

clude MURDOCH [40.71], TraderBots [40.60, 76], and

Hoplites [40.78]. The MURDOCH approach [40.71]

employs a resource-centric, publish–subscribe commu-

nication model to carry out auctions, which has the

advantage of anonymous communication. In this ap-

proach a task is represented by the required resources,

such as the environmental sensors. The methods for how

to use such a sensor to generate satisfactory results is

preprogrammed into the robot.

The TraderBots approach [40.60,76] applies market

economy techniques for generating efficient and robust

multirobot coordination in dynamic environments. In

a market economy, robots act based on selfish interests.

A robot receives revenue and incurs cost when trying to

accomplish a task. The goal is for robots to trade tasks

through auctions/negotiations such that the team profit

(revenue minus cost) is optimized.

The Hoplites approach [40.78] focuses on the selec-

tion of an appropriate joint plan for the team to execute

by incorporating joint revenue and cost into the bid.

This approach couples planning with passive and active

coordination strategies, enabling robots to change co-

ordination strategies as the needs of the task change.

Strategies are predefined for a robot to accomplish

a selected plan.

Some alternative approaches formulate the objects

to be assigned as roles, which typically package a set

of tasks and/or behaviors that a robot should undertake

when acting in a particular role. Roles can then be dy-

namically assigned to robots in a similar manner as in

the auction-based approaches (e.g., [40.11, 61]).
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40.7 Learning

Multirobot learning is the problem of learning new co-

operative behaviors, or learning in the presence of other

robots. The other robots in the environment, however,

have their own goals and may be learning in paral-

lel [40.83]. The challenge is that having other robots

in the environment violates the Markov property that is

a fundamental assumption of single-robot learning ap-

proaches [40.83]. The multirobot learning problem is

particularly challenging because it combines the diffi-

culties of single-robot learning with multiagent learning.

Particular difficulties that must be considered in mul-

tirobot learning include continuous state and action

spaces, exponential state spaces, distributed credit as-

signment, limited training time and insufficient training

data, uncertainty in sensing and shared information,

nondeterministic actions, difficulty in defining appropri-

ate abstractions for learned information, and difficulty

of merging information learned from different robot

experiences.

The types of applications that have been stud-

ied for multirobot learning include multitarget

observation [40.84, 85], air fleet control [40.86],

predator–prey [40.46, 87, 88], box pushing [40.89],

foraging [40.22], and multirobot soccer [40.49,90]. Par-

ticularly challenging domains for multirobot learning

are those tasks that are inherently cooperative. Inherently

cooperative tasks are those that cannot be decomposed

into independent subtasks to be solved by individual

robots. Instead, the utility of the action of one robot is

dependent upon the current actions of the other team

members. This type of task is a particular challenge

in multirobot learning, due to the difficulty of assign-

ing credit for the individual actions of the robot team

members.

The credit assignment problem is a particular chal-

lenge, since it is difficult for a robot to determine

whether the fitness (either good or bad) is due to its

own actions, or due to the actions of another robot. As

discussed by Pugh and Martinoli in [40.91], this prob-

lem can be especially difficult in situations where robots

do not explicitly share their intentions. Two different

variations of the credit assignment problem are com-

mon in multirobot learning. The first is when robots

are learning individual behaviors in the presence of

other robots that can affect their performance. The sec-

ond is when robots are attempting to learn a task with

a shared fitness function. It can be difficult to determine

how to decompose the fitness function to appropri-

ately reward or penalize the contributions of individual

robots.

While learning has been explored extensively in

the area of single-robot systems (see, for example,

the discussion of learning in behavior-based sys-

tems in Chap. 38, and a discussion of fundamental

learning techniques in Chap. 9) and in multiagent sys-

tems [40.92], much less work has been done in the area

of multirobot learning, although the topic is gaining in-

creased interest. Much of the work to date has focused

on reinforcement learning approaches. Some examples

of this multirobot learning research include the work by

Asada et al. [40.93], who propose a method for learning

new behaviors by coordinating previously learned be-

haviors using Q-learning, and apply it to soccer-playing

robots. Matarić [40.8] introduces a method for combin-

ing basic behaviors into higher-level behaviors through

the use of unsupervised reinforcement learning, hetero-

geneous reward functions, and progress estimators. This

mechanism was applied to a team of robots learning to

perform a foraging task. Kubo and Kakazu [40.94] pro-

posed another reinforcement learning mechanism that

uses a progress value for determining reinforcement,

and applied it to simulated ant colonies competing for

food. Fernandez et al. [40.84] apply a reinforcement

learning algorithm that combines supervised function

approximation with generalization methods based on

state-space discretization, and apply it to robots learn-

ing the multiobject tracking problem. Bowling and

Veloso [40.83] developed a general-purpose, scalable

learning algorithm called GraWoLF (Gradient-based

Win or Learn Fast), which combines gradient-based pol-

icy learning techniques with a variable learning rate, and

demonstrated the results in the adversarial multirobot

soccer application.

Other multirobot learning approaches not based on

reinforcement include Parker’s L-ALLIANCE architec-

ture [40.10], which uses parameter tuning, based on

statistical experience data, to learn the fitness of dif-

ferent heterogeneous robots in performing a set of tasks.

Pugh and Martinoli [40.91] apply particle swarm opti-

mization techniques to distributed unsupervised robot

learning in groups, for the task of learning obstacle

avoidance.
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40.8 Applications

Many real-world applications can potentially bene-

fit from the use of multiple mobile robot systems.

Example applications include container management

in ports [40.95], extraplanetary exploration [40.96],

search and rescue [40.54], mineral mining, trans-

portation, industrial and household maintenance, con-

struction [40.11], hazardous waste cleanup [40.9],

security [40.97, 98], agriculture, and warehouse man-

agement [40.99]. Multiple robot systems are also used

in the domain of localization, mapping, and exploration;

Chap. 37 mentions some of the work in multirobot

systems applied to these problems. Part F of this Hand-

book outlines many application areas that are relevant

not only to single-robot systems, but also to mul-

tiple mobile robot systems. To date, relatively few

real-world implementations of these multirobot sys-

tems have occurred, primarily due to the complexities

of multiple robot systems and the relative newness

of the supporting technologies. Nevertheless, many

proof-of-principle demonstrations of physical multi-

robot systems have been achieved, and the expectation

is that these systems will find their way into prac-

tical implementations as the technology continues to

mature.

Research in multiple mobile robot systems is of-

ten explored in the context of common application

test domains. While not yet elevated to the level of

benchmark tasks, these common domains do provide

opportunities for researchers to compare and contrast al-

ternative strategies to multirobot control. Additionally,

even though these common test domains are usually

just laboratory experiments, they do have relevance to

real-world applications. This section outlines these com-

mon application domains; see also [40.2] and [40.100]

for a discussion of these domains and a more detailed

listing of related research.

40.8.1 Foraging and Coverage

Foraging is a popular testing application for multirobot

systems, particularly for those approaches that address

swarm robotics, involving very large numbers of mo-

bile robots. In the foraging domain, objects such as

pucks or simulated food pellets are distributed across

the planar terrain, and robots are tasked with collecting

the objects and delivering them to one or more gath-

ering locations, such as a home base. Foraging lends

itself to the study of weakly cooperative robot sys-

tems, in that the actions of individual robots do not

have to be tightly synchronized with each other. This

task has traditionally been of interest in multirobot

systems because of its close analogy to the biolog-

ical systems that motivate swarm robotics research.

However, it also has relevance to several real-world

applications, such as toxic waste cleanup, search and

rescue, and demining. Additionally, since foraging usu-

ally requires robots to completely explore their terrain

in order to discover the objects of interest, the coverage

domain has similar issues to the foraging application.

In coverage, robots are required to visit all areas of

their environment, perhaps searching for objects (such

as landmines) or executing some action in all parts of

the environment (e.g., for floor cleaning). The cover-

age application also has real-world relevance to tasks

such as demining, lawn care, environmental mapping,

and agriculture.

In foraging and coverage applications, a fundamen-

tal question is how to enable the robots to explore

their environments quickly without duplicating actions

or interfering with each other. Alternative strategies can

include basic stigmergy [40.14], forming chains [40.28],

and making use of heterogeneous robots [40.39]. Other

research demonstrated in the foraging and/or coverage

domain includes [40.22, 41, 101–106].

40.8.2 Flocking and Formations

Coordinating the motions of robots relative to each

other has been a topic of interest in multiple mobile

robot systems since the inception of the field. In par-

ticular, much attention has been paid to the flocking

and formation control problems. The flocking problem

could be viewed as a subcase of the formation control

problem, requiring robots to move together along some

path in the aggregate, but with only minimal require-

ments for paths taken by specific robots. Formations

are stricter, requiring robots to maintain certain rela-

tive positions as they move through the environment. In

these problems, robots are assumed to have only mini-

mal sensing, computation, effector, and communications

capabilities. A key question in both flocking and forma-

tion control research is determining the design of local

control laws for each robot that generate the desired

emergent collective behavior. Other issues include how

robots cooperatively localize themselves to achieve for-

mation control (e.g., [40.42,107]), and how paths can be

planned for permutation-invariant multirobot formations

(e.g., [40.108]).
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Early solutions to the flocking problem in artifi-

cial agents were generated by Reynolds [40.109] using

a rule-based approach. Similar behavior- or rule-based

approaches have been used physical robot demonstra-

tions and studies, such as in [40.29, 110]. These earlier

solutions were based on human-generated local control

rules that were demonstrated to work in practice. More

recent work is based on control theoretic principles, with

a focus on proving stability and convergence properties

in multirobot team behaviors. Examples of this work

include [40.36, 111–119].

40.8.3 Box Pushing
and Cooperative Manipulation

Box pushing and cooperative manipulation are popu-

lar domains for demonstrating multirobot cooperation,

because they offer a clear domain where close coordina-

tion and cooperation is required. Box pushing requires

robot teams to move boxes from their starting posi-

tions to defined goal configurations, sometimes along

specified paths. Typically, box pushing operates in the

plane, and the assumption is made that the boxes are

too heavy or too long to enable single robots to push

alone. Sometimes there are several boxes to be moved,

with ordering dependencies constraining the sequence

of motions. Cooperative manipulation is similar, except

it requires robots to lift and carry objects to a destination.

This test bed domain lends itself to the study of strongly

cooperative multirobot strategies, since robots often

have to synchronize their actions to successfully execute

these tasks. The domain of box pushing and cooperative

manipulation is also popular because it has relevance

to several real-world applications [40.100], including

warehouse stocking, truck loading and unloading, trans-

porting large objects in industrial environments, and

assembly of large-scale structures.

Researchers usually emphasize different aspects of

their cooperative control approach in the box push-

ing and cooperative manipulation domain. For example,

Kube and Zhang [40.13] demonstrate how swarm-type

cooperative control techniques could achieve box push-

ing, Parker [40.10, 120] illustrates aspects of adaptive

task allocation and learning, Donald et al. [40.121]

illustrates concepts of information invariance and the

interchangeability of sensing, communication, and con-

trol, and Simmons et al. [40.11] demonstrate the

feasibility of cooperative control for building planetary

habitats. A significant body of additional research has

been illustrated in this domain; representative examples

include [40.3, 6, 31, 71, 96, 122–130].

40.8.4 Multitarget Observation

The domain of multitarget observation requires multi-

ple robots to monitor and/or observe multiple targets

moving through the environment. The objective is to

maximize the amount of time, or the likelihood, that the

targets remain in view by some team member throughout

task execution. The task can be especially challenging if

there are more targets than robots. This application do-

main can be useful for studying strongly cooperative task

solutions, since robots have to coordinate their motions

or the switching of targets to follow in order to maximize

their objective. In the context of multiple mobile robot

applications, the planar version of this test bed was first

introduced in [40.131] as cooperative multirobot obser-

vation of multiple moving targets (CMOMMT). Similar

problems have been studied by several researchers, and

extended to more complex problems such as environ-

ments with complex topography or three-dimensional

versions for multiple aerial vehicle applications. This

domain is also related to problems in other areas, such

as art gallery algorithms, pursuit evasion, and sensor

coverage. This domain has practical application in many

security, surveillance, and reconnaissance problems. Re-

search applied to the multitarget observation problem in

multirobot systems includes [40.47, 66, 132–136].

40.8.5 Traffic Control
and Multirobot Path Planning

When multiple robots are operating in a shared envi-

ronment, they must coordinate their actions to prevent

interference. These problems typically arise when the

space in which robots operate contains bottlenecks, such

as networks of roadways, or when the robots take up

a relatively large portion of the navigable space. In these

problems, the open space can be viewed as a resource

that robots must share as efficiently as possible, avoiding

collisions and deadlocks. In this domain, robots usually

have their own individual goals, and must work with

other robots to ensure that they receive use of the shared

space to the extent needed to achieve their goals. In some

variants, the entire paths of multiple robots need to be

coordinated with each other; in other variants, robots

must simply avoid interfering with each other.

A variety of techniques have been introduced to ad-

dress this problem, including traffic rules, subdividing

the environment into single-ownership sections, and ge-

ometric path planning. Many of the earliest research

approaches to this problem were based on heuristic ap-

proaches, such as predefining motion control (or traffic)
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rules that were shown to prevent deadlock [40.137–140],

or using techniques similar to mutual exclusion in dis-

tributed computing [40.141, 142]. These approaches

have the benefit of minimizing the planning cost for ob-

taining a solution. Other, more formal, techniques view

the application as a geometric multirobot path planning

problem that can be solved precisely in configuration

space–time. Chapter 5 includes a discussion of motion

planning for multiple robots relevant to this domain.

While geometric motion planning approaches provide

the most general solutions, they can often be too compu-

tationally intensive for practical application, impractical

due to the dynamic nature of the environment, or sim-

ply unnecessary for the problem at hand. In these cases,

heuristic approaches may be sufficient.

40.8.6 Soccer

Since the inception of the RoboCup multirobot soccer

domain as a proposed challenge problem for studying

coordination and control in multirobot systems [40.143],

research in this domain has grown tremendously. This

domain incorporates many challenging aspects of mul-

tirobot control, including collaboration, robot control

architectures, strategy acquisition, real-time reasoning

and action, sensor fusion, dealing with adversarial en-

vironments, cognitive modeling, and learning. Annual

competitions show the ever-improving team capabili-

ties of the robots in a variety of settings, as shown

Fig. 40.8 Legged robot teams competing in robot soccer

in Fig. 40.8. A key aspect of this domain that is not

present in the other multirobot test domains is that robots

must operate in adversarial environments. This domain

is also popular because of its educational benefits, as it

brings together students and researchers from across the

world in competitions to win the RoboCup challenges.

The RoboCup competitions have added an additional

search-and-rescue category to the competition [40.144],

which has also become a significant area of research

(see Chap. 50 for more details on this field). Annual

proceedings of the RoboCup competitions document

much of the research that is incorporated into the multi-

robot soccer teams. Some representative research works

include [40.145–149].

40.9 Conclusions and Further Reading

This chapter has surveyed the current state of the

art in multirobot systems, examining architectures,

communications issues, swarm robot systems, heteroge-

neous teams, task allocation, learning, and applications.

Clearly, significant advances have been made in the

field in the last decade. The field is still an active area

of research, however, since many open research issues

still remain to be solved. Key open research questions

remain in the broad areas of system integration, robust-

ness, learning, scalability, generalization, and dealing

with heterogeneity.

For example, in the area of system integration, an

open question is how to effectively allow robot teams

to combine a spectrum of approaches toward achieving

complete systems that can perform more than a limit-

ed set of tasks. In the area of robustness, multirobot

teams still need improvements in the ability to degrade

gracefully, to reason for fault tolerance, and to achieve

complexity without escalating failure rates. The area

of learning in multirobot teams is still in its infancy,

with open questions including how to achieve continual

learning in multirobot teams, how to facilitate the use

of complex representations, and how to enable humans

to influence and/or understand the results of the team

learning. Scalability is still a challenging problem, in

terms of more complex environments as well as ever-

larger numbers of robots. Open issues in generalization

include enabling the robot team to reason about context

and increasing the versatility of systems so that they can

operate in a variety of different applications. In dealing

with heterogeneity, open questions include determining

theoretical approaches to predicting system performance

when all robots are not equal, and determining how to

design a robot team optimally for a given application.
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These problems, and others, promise to keep the field of

multiple mobile robot systems active for many years to

come.

For further reading on the topic of multiple mobile

robot systems, the reader is referred to survey articles

in the field, including [40.2, 100, 150, 151]. Addition-

ally, several special journal issues on this topic have

appeared, including [40.1, 152–154]. Some taxonomies

of multirobot systems are given in [40.25, 100, 155].

A variety of symposia and workshops have been held

on a regular basis on the topic of multirobot systems;

recent proceedings of these workshops and symposia

include [40.156–163]. An additional edited text on this

topic is [40.164].
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