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Legged Robot16. Legged Robots

Shuuji Kajita, Bernard Espiau

In this chapter, we introduce legged robots. After
introducing the history of legged robot research in
Sect. 16.1, we start to discuss hopping robots and
analyze a simple passive walker as a typical cycling
walking robot in Sect. 16.2; the Poincaré map is one
of the most important tools to analyze its dynamics
and stability. In Sect. 16.3, the dynamics and con-
trol of general biped robots are discussed. The key
is the forward dynamics subject to the unilateral
constraint between the feet and the ground. Its
formal treatment leads to walking trajectory gen-
eration and various control methods. As a practical
scheme to control biped robots, we discuss the
zero-moment point (ZMP) in Sect. 16.4, including
its definition, physical meaning, measurement,
calculation, and usage. In Sect. 16.5, we move to
multilegged robots. In this field, the most impor-
tant subject is the relationship between gaits and
stability. We also introduce the landmark robots in
this field. In Sect. 16.6, we overview the divergence
of the legged robots. We see leg–wheel hybrid
robots, leg–arm hybrid robots, tethered walk-
ing robots, and wall-climbing robots. To compare
these legged robots with different configurations,
we use some useful performance indices such as
the Froude number and the specific resistance,
which are introduced in Sect. 16.7. We conclude
the chapter and address future trends in Sect. 16.8.
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The idea of designing and realizing artificial entities is

almost as old as humanity. After some wonderful formal

studies by Leonardo Da Vinci, the first notable artificial

machines, called automatons were built, among others

by Jacquard, Jacquet-Droz, Vaucanson (including his

famous duck) mainly in France around the 18th century.

This was followed by a florilegium of realizations from

1850 to World War I. The area then experienced a long

P
a
rt

B
1
6



362 Part B Robot Structures

eclipse, up to the early 1970s. It should be noticed that

the revival was then driven by scientists, instead of the

brilliant engineers, artists or magicians of the previous

centuries.

16.1 A Brief History

The pioneering works in the field of legged robots were

achieved around 1970 by two famous researchers, Kato

andVukobratovic. Bothworkswere characterized by the

design of relevant experimental systems. In Japan, the

first anthropomorphic robot, WABOT 1, was demon-

strated in 1973 by I. Kato and his team at Waseda

University. Using a very simple control scheme, it was

able to realize a few slow steps in static equilibrium.

This achievement was the starting point of a prolific

generation of legged robots in Japan.

In parallel, M.Vukobratovic and his team were very

involved in the problems generated by functional re-

habilitation. At the Mihailo Puppin Institute, Belgrade,

Yugoslavia, they designed the first active exoskeletons,

and several other devices such as the Belgrade’s hand,

but the most well-known outcome remains their analy-

sis of locomotion stability, which exhibited around 1972

the concept of zero-moment point (ZMP), widely used

since that time [16.3]. This was the first attempt to for-

malize the need for dynamical stability of legged robots;

the idea was to use the dynamic wrench in order to ex-

tend a classical criterion of static balance (the center

of mass should project inside the convex hull of contact

points). This important point will be detailed later in this

Chapter.

In the next decade, the breakthroughs came from the

United States. Following the early work of R.McGhee

in the 1960s at USC (University of Southern Califor-

nia), then in the 1970s at OSU (Ohio State University),

which resulted in the first computer-controlled walk-

ing machine, M. Raibert started to study dynamically

stable running at CMU (Carnegie Mellon University).

Then, he launched the Massachusetts Institute of Tech-

nology (MIT) LegLab, where a sequence of active

hopping robots, with one, two or four legs were de-

signed, with impressive results, among them a famous

flip performed by a two-legged hoppingmachine. Simul-

taneously, R.McGhee andK.Waldron, after the building

of some prototypes, achieved the design of the largest

hexapod in the world, called the adaptive suspension

vehicle, a quasi-industrial system able to walk on nat-

ural irregular terrain, which was driven by a human

(Sect. 16.5.2).

A third key period for research in legged robots

was the early 1990s. Indeed, the idea of studying

purely passive mechanical systems was pioneered by

McGeer [16.4]. In this seminal paper, McGeer intro-

duces the concept of natural cyclic behavior, for a class

of very simple systems: a plane compass on an inclined

plane. Stable walking results from the balance between

increase of the energy due to the slope and loss at the im-

pacts. However, what should be emphasized here is that

McGeer popularized for roboticists the analysis of such

systems in terms of orbital stability using Poincarémaps.

Several researchers have followed the tracks open by

McGeer, with many extensions (examples in Fig. 16.1):

adding trunk, feet and knees [16.1], semipassive control,

walking/running underactuated systems like the Rabbit

robot [16.2], etc.

Finally, the end of themillenniumwas a period of in-

tense technological activities. Industrial breakthroughs

showed to the world that building true humanoids was

now possible. In Japan, the first humanoid robot, P2,

was exhibited by Honda in 1996, followed by several

more. Presently, the most impressive technical achieve-

a) Denise (2004) b) RABBIT (2003

Fig. 16.1a,b Underactuated biped robots [16.1, 2]
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Legged Robots 16.2 Analysis of Cyclic Walking 363

ments are still realized by industrial companies: ASIMO

(Honda), QRIO (Sony), HRP (Kawada), being the ma-

jor examples today, among others. In parallel, it should

be noticed that the market for small humanoid robots,

mainly aimed at entertainment, has grown steadily over

the last decade.

While examining the history above and the present

state of the art, it is clear that roboticists are now facing

a challenge. Very nice technological achievements are

available, especially biped robots. However, the ability

of these systems to walk truly autonomously on uneven

and various terrains in a robust way, i. e., in daily life,

remains to be demonstrated. The goal of this chapter is

therefore to provide some keys in modeling and recent

control advances, in order to be able to design adequate

and efficient control schemes when needed. This will

be based on two main classes of approaches: the use of

so-called forward dynamics on one hand, and the use of

the ZMP on the other hand. The Chapter is organized as

follows: after a brief summary of the control principles

used for hopping and passive robots, we will focus on

the issues needed for the control of biped robots from

a dynamic model scheme: modeling aspects, stability

issues, trajectory generation, and control. Then we will

present in depth the concept of ZMP and its use in a con-

trol scheme. Since the first parts are mainly concerned

with biped robots, the chapter will end with a section

dedicated to multilegged robots.

16.2 Analysis of Cyclic Walking

16.2.1 A Few Points About Hopping Robots

Cyclic legged robots are those that reach, either naturally

or with the help from a control, a steady-state behavior

characterized by a cycle in the phase plane. The underly-

ing assumption is that there exists in some sense a more

or less hidden set of optimal natural behaviors of the sys-

tem. Within this class, hopping (or bouncing) robots are

interesting since they are generally unstable, but capable

of high performance in terms of velocities.

As mentioned, these robots have been widely stud-

ied in the MIT LegLab. It is not the goal of the Chapter

to develop in depth the related design approaches and

control techniques, and we refer the reader to the excel-

a) 3D one-leg hopper 

(1983)

b) 3D biped (1989)

Fig. 16.2a,b Raibert’s hopping robots [16.5]

lent, although ancient, book by Mark Raibert [16.5] on

the subject. Let us just give a flavor of Raibert’s results,

taken from this reference.

The basis of the work is in fact the planar one-

leg hopping robot. Raibert proved that the control of

such system could be split into three separate compo-

nents: the first controls the altitude by providing a fixed

thrust during each cycle; the second part controls the

forward velocity of the whole system by assigning to

the foot, at each step, a given distance from the hip

when landing; and the last one controls the body atti-

tude by servoing the hip during the stance phase. The

related algorithms are quite simple and allow a real-

time implementation.What is very interesting is that this

simple approach applies almost straightforwardly to the

case of the three-dimensional (3-D) one-legged hopping

robot (Fig. 16.2b), and moreover this three-part control

scheme can also be extended to biped (Fig. 16.2a) or

quadruped robots by adding techniques of leg sequenc-

ing and using the concept of a virtual leg when pairs of

legs operate in unison.

Indeed, this interesting piece of work was not really

followed up, but was surely the inspiration for many re-

searches on cyclic systems. Among these, purely passive

walkers have largely been considered, and we will now

provide some insight into this area.

16.2.2 Stability of Passive Walking

The aim of this section is to present some basic facts

and concepts related to passive walking. Many more

details may be found in the literature, for example
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364 Part B Robot Structures

in [16.1, 4, 6] among others. The issues considered here

are mainly taken from [16.7]. We use the simplest pos-

sible model (Fig. 16.3), an unactuated symmetric planar

compass descending a slope of angle φ. Masses are pin-

point, and telescopic massless legs are only a way of

ensuring foot clearance. Several assumptions underlie

the model. Among these, let us mention that the swing

phase is assumed to be slipless, and that the double

stance phase, during which the swing and support leg

are exchanged, is instantaneous. The related impact is

slipless and inelastic. We define (following the notation

in Fig. 16.3):






µ = mH
m

; β = b
a

x = [q, q̇]⊤ = [qns, qs, q̇ns, q̇s]⊤ .
(16.1)

The swing-stage equations of the robot, similar to those

for a frictionless double pendulum, can be written in the

form of Lagrangian dynamics

H(q)q̈ +C(q, q̇)q̇ + 1

a
τg(q) = 0 , (16.2)

where

H(q) =
(

β2 −(1+β)β cos 2α

−(1+β)β cos 2α (1+β)2(µ+1)+1

)

,

C(q, q̇) =
(

0

−(1+β)βq̇ns sin(qs −qns)

(1+β)βq̇s sin(qs −qns)

0

)

,

τg(q) =
(

gβ sin qns

−[(µ+1)(1+β)+1]g sin qs

)

,

where 2α is the inter-leg hip angle.

The specificity of this system with respect to, for

example, manipulation robots, is that we have to com-

plete the continuous dynamicswith equations describing

the step transition.Wewill encounter this requirement of

separatemodeling in legged locomotion againwhen pre-

senting the dynamics of bipedal walking (Sect. 16.3.2).

The pre- and the post-impact configurations of

the robot can be related by q+ = Sq−, where S is

a 2×2 antisymmetric matrix with unit elements. The

principle of conservation of angular momentum ap-

plied to the robot gives Q−(α)q̇− = Q+(α)q̇+, from

a + b = l

a

b

m

mH

cH

m

φ

2α

cns

csqns
q·ns

q·sqs
j

i

Fig. 16.3 Compass model

which we can obtain the joint velocity relationship

q̇+ = [Q+(α)]−1Q−(α)q̇− = A(α)q̇−, where

Q−(α) =
(

−β −β +[µ(1+β)2 +2(1+β)] cos 2α
0 −β

)

,

Q+(α) =






β[β − (1+β) cos 2α]

β2

(1+β)[(1+β)−β cos 2α]
· · ·+1+µ(1+β)2

−β(1+β) cos 2α






.

The complete state vector x before and after impact can

thus be written as

x+ = W(α)x−
(16.3)

with matrix W(α) =
(

S 0

0 A(α)

)

.

The periodic dynamic behavior of this system can

be summarized in the phase portrait given in Fig. 16.4,

where discontinuities result from impacts. The stabil-

ity of this system can be analyzed in terms of orbital

stability, a theoretical definition of which can be found

in [16.7]. Intuitively, this means that, when the system

deviates from its trajectory in the phase plane within

a certain domain (the basin of attraction), its natural be-
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III
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Fig. 16.4 Typical cycle

havior is to return to this phase-plane trajectory, called

the limit cycle.

The concept of orbital stability is well suited to the

analysis of cyclic systems such as steady-state walk-

ing. Thus, the robustness of the obtained gait can be

assessed by measuring the size of the basin of attrac-

tion. However, for a general nonlinear system, the proof

of the existence of a limit cycle, the analysis of its local

orbital stability, and the procedure to compute the cy-

cle and its basin of attraction are often difficult. For

example, in the present case, the analysis would re-

quire the explicit integration of the dynamics during

the swing phase. Nevertheless, it is possible to test the

local stability of a limit cycle, once it has been found.

One method to determine the stability of the robot gait

is through the numerical computation of its Poincaré

0.2 0.92 1.63 2.35 3.07 3.79 4.50 5.22

Step period T (s)

Slope φ (deg)

0.815

0.783

0.751

0.719

0.687

0.655

Fig. 16.5 Bifurcations and chaos

map [16.4]. Limit cycles are fixed points of this map,

which in the context of biped locomotion is called the

stride function [16.4]. Essentially the procedure con-

sists of injecting small perturbations to the robot states

around the limit cycle and calculating the eigenvalues of

the sensitivity matrix. For an orbitally stable cycle the

eigenvalues lie within the unit circle. A natural choice

of the Poincaré section corresponds to the state where

the swing leg hits the ground. This introduces a natu-

ral discretization of the dynamics. For two successive

touchdowns of the same leg, the states of the robot are

related as:

xk = F(xk+1) . (16.4)

The equilibrium is the solution of x∗ = F(x∗). By taking

a first-order expansion, we have

F(x∗ +∆x∗) ≈ x∗ + (∇F)∆x∗. (16.5)

Therefore, (∇F)∆x∗ ≈ F(x∗ +∆x∗)− x∗, and a numer-

ical procedure can be used to check whether the moduli

of the eigenvalues of (∇F) are strictly less than 1. One

method is to apply successively smaller perturbations to

every state and observe their first-return map, then to

numerically solve the equation (∇F)τ = Ψ , where the

4×4 diagonal matrix τ collects the state variable pertur-

bations and Ψ the measured variations in the first-return

map. Note that this method is quite general and can be

applied to other kind of mechanical systems that exhibit

a periodic behavior.

It has been shown that passivewalking robots can ex-

hibit stable limit cycles. Often, for a given slope, φ, and

for a particular range of slopes, the number of such sta-

ble behaviors is one. Interestingly, increasingφmay lead

to the appearance of period doubling, evolving towards

a chaotic behavior if φ is too large (Fig. 16.5).

In conclusion, it should be emphasized that this class

of machines has inspired the design of efficient simple

biped robots. Indeed, systems that exhibit natural pas-

sive gaits are optimal in some energetic sense. A limit

cycle is analogous to the comfortable walking gait of hu-

mans, in which the consumption ofmetabolic energy per

unit distance is minimal. An interesting idea is therefore

to add to a passive system a minimum set of actua-

tors in order to just compensate for the loss of energy

when the system is not on a descending slope. Several

laboratory realizations are based on this principle, but

this idea has yet to be exploited for operational legged

robots.
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366 Part B Robot Structures

16.3 Control of Biped Robots Using Forward Dynamics

This section presents a view of the state of the art in

modeling and control of biped robots in the framework

of forward dynamics. Space does not allow to go deeply

into the details of the equations or their derivation, which

is why we only provide the reader with the essential

issues and refer to more complete papers, such as [16.8,

9] and mainly the deep analysis of [16.10, 11].

16.3.1 Configuration Space

A biped robot is usually modeled as a rigid tree-form

tridimensional articulated structure. Basically, the in-

ternal parameterization is q1, while that of the joint

space is Q. If the robot is considered as having its

foot (resp. feet) motionless during every phase of swing

(resp. stance), then the model is that of a classical robot

manipulator. If all joints are actuated, then the closure

equations make the robot overactuated during the stance

phase (with two feet on the ground). However, it is

more correct and general to consider a walking robot

as a free system in space, but subject to nonconstant

unilateral contacts. The configuration space is therefore

{{Q}⊕ R3 ⊕ SO(3)}, where the six-dimensional (6-D)

displacement of a given body is parameterized by q2.

16.3.2 Dynamics

A basic modeling approach consists of splitting the dy-

namics equations into three parts: Lagrangian dynamics

in the full space; constraints due to contact forces; and

transition equations with impacts.

Continuous Dynamics and Contact Forces
Under the assumption that the robot structure is rigid,

continuous dynamics can be expressed in the Lagrangian

form

H(q)q̈ +C(q, q̇)q̇ + G(q) = Γ +Γext , (16.6)

where q = (q1, q2) ∈ R
n is defined in Sect. 16.3.1.

Γ = [0, τ]⊤ ∈ R
n is the generalized efforts vector, in-

cluding the joint actuation torques (generally bounded),

τ ∈ R
m ; H is the inertia matrix, C is the matrix of

centrifugal, gyroscopic, and Coriolis effects, and τg
is the generalized gravity force vector. The set (q, q̇)

constitutes the state of the robot.

The points of the robot in contact with the ground

satisfy a closure equation of the form

φ(q) =
(

φn(q)

φt(q)

)

= 0 ,

where Γext are the torques generated by these ground

contact, which can be expressed as

Γext = J(q)⊤λ(q, q̇) ,

where J(q)= ∂φ(q)⊤
∂q

is the Jacobianmatrix of the contact

points of the robot, i. e., where the external forces are

applied. λ(q, q̇) are Lagrange multipliers. We can split

this expression into two parts

Γext = Jn(q)
⊤λn(q, q̇)+ Jt(q)

⊤λt(q, q̇) .

The subscripts ‘n’ and ‘t’ stand for normal and tangential

to the ground components, respectively. The Lagrange

multipliers λn and λt express the amplitudes of those

efforts.

Now, there are two main ways of modeling the

ground interaction. First, it is possible to consider a vis-

coelastic model, but this suffers from possible problems

in the physical analysis and numerical integration. We

will consider here the opposite case: that the contacts

are rigid and result in a set of constraints, called unilat-

eral, such as nonpenetration, to which should be added

a friction model. The semipositive normal forces and ac-

celerations of the contact points are therefore related by

a complementarity condition [16.10, 12]

λ⊤
n (q, q̇)φ̈n(q) = 0, λn(q, q̇) ≥ 0, φ̈n(q) ≥ 0 .

Excluding the case where the system is slipping, tangen-

tial constraints can be written as

φ̈t(q) = 0 .

Finally, since the existence of friction limits the allowed

tangential forces, a nonslip condition is satisfied as long

as

‖λt‖ ≤ µ0λn ,

where µ0 is the friction coefficient, which depends on

the materials in contact.

Impacts
As stated in Sect. 16.2.2, if the impact is assumed to

be inelastic and nonsliding, the velocity of the system

jumps from q̇− to q̇+ according to the equations

H(q)(q̇+ − q̇−) = Jn(q)
⊤Λn(q, q̇)+ Jt(q)

⊤Λt(q, q̇) ,

where Λ(q, q̇) = [Λn(q, q̇), Λt(q, q̇)]⊤ is the vector of

the impulse forces.
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Legged Robots 16.3 Control of Biped Robots Using Forward Dynamics 367

Under the assumption that contact points do not

move after impact, we can write:

φ̇n(q) = Jn(q)q̇
+ = 0 and φ̇t(q) = Jt(q)q̇

+ = 0

Dynamic Balance
Basically, a biped robot is in equilibrium if it maintains

a walk without falling. In the early times of robotics,

the gaits were statical. This means that, when the ve-

locities and accelerations are small, and assuming that

contact points are motionless during each phase of the

step, the balance condition reduces to the classical one:

the projection of the robot’s center ofmass belongs to the

convex hull of contact points. Therefore, a static walk

can be defined as a continuous sequence of configura-

tions ensuring the forward progression and maintaining

the erected position of the system simultaneously such

that at each instant the static equilibrium condition is

satisfied. As we will see later, related control schemes

are easy to design.

However, the true interesting issue is dynamic bal-

ance. Nicely addressed in the case of Raibert’s hopping

robots or for passive walkers through orbital stability

as presented in Sect. 16.2.2, the questions of stability

and balance deserve a deeper analysis in the case of

other kinds of biped robots, such as the work described

in [16.11].

For a biped robot, the dynamical equilibrium can be

intuitively linked to the idea of a possible movement. Let

us firstly return to the dynamics; splitting the equations

in a way coherent with the two parts of the configuration

space, the dynamics (16.6) can be rewritten as:






H1(q)q̈ +C1(q, q̇)q̇ = τ + J1(q)
⊤λ−τg1(q) ,

H2(q)q̈ +C2(q, q̇)q̇ = 0 + J2(q)
⊤λ−τg2(q) ,

(16.7)

where τ is the set of actuator torques.

It can be shown [16.11] that the left-hand side of

the second equation of (16.7) is equivalent to the dy-

namic wrench of the system, while the right-hand side is

equivalent to the wrench of contact and gravity forces.

This equation is of the Newton–Euler form, where the

Newton part can be expressed easily in terms on the ac-

celeration of the center of mass of the robot. This shows

a fundamental issue: the global displacement and orien-

tation of the robot can only be realized through contact

forces. Moreover, this motion is necessarily associated

with a change of posture. More generally, the system

can achieve a desired movement if and only if the total

wrench of gravity and contact forces is equal to the dy-

namic wrench of the robot. For a given control scheme,

the question is then to check whether this property is

satisfied by the robot under control.

In the case where all contact points are in the same

plane, it can be shown that there exists a point in this

plane around which the horizontal rotation momentum

of gravity and dynamic forces vanishes. This point is

known as the zero-moment point (ZMP), and is also the

center of pressure (CoP). We will see in Sect. 16.4 how

this concept allows the derivation of efficient control

schemes.

Another way of setting the problem of the dynamic

balance of a walking machine while also taking into

account nonhorizontality and tangential forces is to

state the problem as follows. A necessary condition for

a walking system to realize a motion specified by a tra-

jectory q(t) on a given time interval is that there exists

contact forces λ(t) such that






H2(q)q̈ +C2(q, q̇)q̇ +τg2(q) = J2(q)
⊤λ ,

A(λ) ≥ 0 ,
(16.8)

where the vector inequality A(λ) ≥ 0 gathers all

constraints on normal (unilaterality) and tangential

(Coulomb friction) forces. Finally, themotion can defini-

tively be achieved if the actuation forces are compatible

with the dynamical requirements of the first equation

of (16.7). As an illustration of this, we will propose

in the next section a control method in relation to this

approach.

16.3.3 Trajectory Generation

A frequently used approach for designing a full biped

control scheme is to combine the a priori definition of

desired trajectories to follow, a classical control allowing

them to be tracked, and dedicated online adaption tech-

niques to cope with model uncertainties, obstacles, and

disturbances to prevent the robot from falling. Twomain

classes of methods can be used to compute the desired

(also called reference) trajectories: they can either be

obtained from capturing human motions, or be purely

computer generated. In the latter case, the usual ap-

proach includes two steps: first, a set of output variables

with adequate dimension is chosen. This is generally

made from the three-dimensional (3-D) coordinates of

a few selected points on the robot. Secondly, after param-

eterization (under the form of splines, for example) the

desired trajectories of these variables are computed for

every phase of the gait: stance, swing, left or right, etc.,
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368 Part B Robot Structures

allowing one to take into account, for example, obstacles

or stairs. They can be either all synchronized in time, or

be functions of a single timed reference coordinate. The

most interesting way of achieving this computation is

to use an optimization algorithm based on the dynamics

that takes into account various constraints. The trajec-

tories either remain specified in the output space or are

transformed in trajectories in the joint space, qd(t). Fi-

nally, these trajectories are tracked by a controller, as

explained later; an online walk stabilization mechanism

is often added.

Another approach to be mentioned is the possibil-

ity to use bio-inspired techniques, such as the central

pattern generator. The idea is to design self-oscillating

systems (i. e., without inputs, although the shape of

the output is tunable through some parameters) from

which synchronized periodic motions of the joints can

be derived. This approach is generally used for generat-

ing gaits for multilegged robots (quadrupeds, hexapods)

or snake-like systems, but some works also address

biped robots [16.13]. The most well-known nonlinear

oscillator is the Van der Pol equation

ÿ +a(1−by2)ẏ + c2y = 0 , (16.9)

from which many variations can be derived. Similar re-

sults can be obtained from a more biologically inspired

point of view, through the design of neural oscilla-

tors [16.14]. In this case, sets of artificial neural networks

with possible open-loop sinusoidal excitation are con-

nected to generate plausible walking patterns. In some

cases it is even possible to create a kind of feedback

to cope with environmental variations or to improve

stability [16.15].

16.3.4 Control

We present in this subsection three examples of con-

trol schemes only, without details. Indeed, many kinds

of control schemes are reported in the literature and

it is not possible in a single chapter to provide an

exhaustive view. We therefore refer the reader to the

best journals and conferences in this field for more

information [16.16–23].

Simple Dynamic Control
For simplicity, let us only consider the case where the

desired walking behavior is specified as a set of multidi-

mensional reference joint trajectories, qd(t), defined for

every distinct walking phase. It is now necessary to de-

sign a control scheme allowing these trajectories to be

tracked as accurately as possible in the ideal case. Basi-

cally, a proportional–(integral)–derivative (PID) loop on

the tracking error is the core of such a control scheme.

However, since the use of high gains in a PID controller

is not always desirable, due both to the presence of noise

and to the need for discretization, good tracking perfor-

mance require the integration of mechanical modeling

issues into the control. When the dynamics of the sys-

tem are well known, it is often interesting to use them,

in a so-called computed torque approach, in which the

applied control torque is of the generic form

Γ = Ĥ(q)(kp(q −qd)+ kv(q̇ − q̇d)+ q̈d)

+ Ĉ(q, q̇)q̇ + τ̂g(q)+ ÎF , (16.10)

where, in relation to the dynamics of (16.6), the hats

mean that approximate models are used. ÎF covers fric-

tion aspects and the k∗ are control gains. This form is

given in the joint space, but can be also used in other

diffeomorphic output spaces. Concerning the models,

let us note that, at least, the compensation of grav-

ity term τ̂g(q) should be considered. Moreover, one

of the most important source of errors is the effect of

internal friction. As soon as an effective model of fric-

tion in joints, gears, and actuators, ÎF, is available, it

should be used, of course with care. In practice, if foot

switches exist, phase transitions, leg synchronization,

and reinitialization of the trajectories on their cycle can

be triggered by the events generated by such sensors (see

also Sect. 7.4)

This kind of control can be used at least for generat-

ing staticwalking. If the trajectories have been generated

in a dynamical framework, for example, by taking into

account a desired position of the ZMP, it can also be used

in dynamic walk, possibly with the addition of a ded-

icated stabilization algorithm. Many variations of this

scheme exist based, for example, the linearization of the

dynamics, or the use of an inverted-pendulum model.

Nevertheless, although this kind of control can over-

come some internal disturbances, it is neither sufficient

to ensure the stability of walking in a robust enough way

in real time, nor able to cope with environmental un-

certainties. The basic requirement is now to find a way

of controlling the ground contact forces in order to be

sure that the support foot (or feet) remain motionless

when it is specified and/or needed by the reference tra-

jectory. This means that the control has to ensure that the

inequality conditions (no sliding, no take-off), which in-

volve the Lagrange multipliers as stated in Sect. 16.3.2,

are verified at each time despite disturbances. Never-

theless, this capacity of reaction will be limited by the

bounds that exist on the actuators.
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An adequate way of addressing the question of

online walk stabilization is to share the control in

two parts [16.24, 25]: a first part, which is devoted to

the tracking of the prescribed trajectory and involves

a large subset of the joints and a second part, dedicated

to the control of the ground forces through selected

joints (the trunk, or more often, the ankles). It can

effectively be shown that controlling ankle torques is

a way of approximately control ground reaction forces

through an adequate compliant model. Like the simi-

lar scheme called hybrid control in robot manipulators

(see Sect. 7.4), the implementation can use the con-

tact wrenches more or less directly, estimated from

force/torque sensors integrated within the ankles or the

soles of the feet.

A Variation: The Use
of Parameterized Trajectories

A drawback of the classical tracking trajectory approach

is that it is necessary to explicitly design as many tra-

jectories as possible situations. Therefore, adaptation to

disturbances requires a jump from one trajectory to an-

other, for example, in order to stride over a small obstacle

or when it is required to increase or lower the overall

velocity by modifying the shape, duration, and length

of the prescribed step. An interesting attempt to derive

a systematic way of online adaption of the behavior of

the system consists of adding degrees of freedom to the

definition of the trajectories to be tracked by parame-

terizing them [16.26]. The principle of the method is

described below.

Let us consider that, in fact, the reference trajectory

depends on a set of time-varying twice-differentiable pa-

rameters p: qd = qd[p(t)]. Various characterizations of

the trajectories may appear in p: step length, maximal

height of the heel trajectory, time scaling, etc. These pa-

rameters are reflected, for example, in the coefficients

of the splines that define the trajectories. They are set

to a nominal value p∗ corresponding to the desired

motion. However, since they are supposed to evolve

when needed, it is necessary to set their dynamics of

return to p∗, through a linear second-order behavior

p̈d = f (p, ṗ, p∗). Now, it can be shown that it is possible

to gather the dynamics, including a PD control scheme

like (16.10), the unilaterality of contacts, the require-

ments of nonsliding and no take-off, and the bounds

on actuators, all described in Sect. 16.3.2 and summa-

rized in (16.8), into a single vector inequality of the

form

A(q, q̇, p, ṗ, p̈) ≤ 0 . (16.11)

The problem is now solved by finding at each time

through an adequate optimizationmethod (such as FSQP

(feasible sequential quadratic programming), originally

developed at ISR (Institute of Systems Research), Uni-

versity of Maryland) the parameter acceleration p̈ that

minimizes ‖ p̈d − p̈‖2 while ensuring that (16.11) is sat-

isfied. This approach is, for example, able to compensate

for disturbances such as external forces applied to the

body, since they are reflected at the internal-state level,

and are therefore accounted for through the respect of

the inequality (16.11). It has been shown [16.26] that

it is possible to increase the range of acceptable distur-

bances by a factor ten using this method, compared to

nonadaptive approaches. Furthermore, the use of exte-

roceptive sensors such as distance, proximity, and vision

is allowed as soon as they directly generate a modifica-

tion of the parameters, for example, in order to climb

a stair or avoid an obstacle.

Online Optimization
The ultimate way to adapt the motion of the robot in real

time is to even avoid using any type of precomputed tra-

jectories. This requires that both the desired motion and

the related control can be computed online. In the most

general case, one can even imagine that these two steps

could be fused into a single approach. Besides, thanks to

the exponential growth of available embedded comput-

ing power, it is now possible to envision the computation

of accurate dynamical models and/or the use of complex

optimization techniques in real time. This is whywe pro-

pose to end this part of the chapter with the description

of promising optimization-based methods that avoid the

explicit synthesis of analytical trajectories.

Model Predictive Control (MPC). The idea is to start from
well-known model predictive control (MPC) techniques

based on the following principle. Let us assume that

a dynamical model of the system that is good enough

for synthesizing a control scheme is available. Then,

the following operations are achieved at each sampling

time:

1. measurement of the actual state

2. computation of the control that optimizes a given

state-dependent cost function on a finite horizon,

starting from the current discrete time

3. application of the control input at the first time index

only

4. return to step 1

A main drawback of the standard approach is that

the available theoretical results of stability are presently
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limited to the linear case or to very particular classes

of nonlinear systems. For example, the nonlinear model

predictive control (NMPC) presents stability properties

under certain assumptions. Moreover, it has some abil-

ity to handle constraints, which makes it well suited to

the problem of walking pattern synthesis and control of

a biped robot subject to unilateral constraints or distur-

bances due to an unstructured environment. A complete

overview of theoretical and practical results concern-

ing the MPC or the NMPC can be found in [16.27].

However, it can be seen from these papers that apply-

ing such algorithms is not straightforward when dealing

with highly dynamical systems such as robots.

Trajectory-Free NMPC. Following the idea of the pa-

rameter adaptation method presented earlier based on

the real-time minimization of a cost function through

an SQP (sequential quadratic programming) method, an

alternative approach consists of solving at every time

point a constrained optimization problem with a mov-

ing horizon [16.28]. A set of constraints is imposed in

order both to ensure the feasibility of walking and to sat-

isfy the user’s requirements. Defining these constraints

is then the only way which is used to express all the

issues involved in the motion of the robot.

As an example of such specifications, let us consider

the swing phase in normal steady-state walking. The

inequality constraints belong to two distinct subsets.

1. Intrinsic constraints related to safety issues:

– respecting physical limits: the admissible control

torques belong to a given set, which may depend

on the instantaneous joint velocities; the range

of angular joint positions is bounded;

– ensuring stability: all along the swing phase, the

normal contact forces at the support foot are

Sliding horizon

Obstacle

k k+1

U0|k

X1|k

U1|k

X2|k

U2|k

X3|k

U3|k

XNp|k

UNp|k

Uk
Nc = 

(U0|k,U1|k, ...UNp|k)T

Xk
Nc = 

(X0|k,X1|k, ...XNp|k)T

k+2 k+3 k+Np

State

Control input

Time

Time

Xmax

Umax

Xmin

Umin

X0|k

Fig. 16.6 NMPC principles

strictly greater than given positive values; the

absolute values of the tangential forces are less

than given thresholds that depend on the friction

parameters.

2. The constraints associated with the gait specifica-

tion:

– achieving forward progression: the horizontal

velocity of the ankle of the swing leg belongs

to a given positive interval; the horizontal po-

sition of the pelvis stays inside the position of

the toes of the support foot and the horizontal

position of the heel of the swinging foot;

– controlling the posture: the angle expressing the

trunk bending is positive and bounded; the angle

between the sole of the swing foot and the ground

is fixed; the height of the pelvis is low-bounded;

– ensuring foot clearance: the altitude of the ankle

is constrained to stay inside a given area (for

example, specified by two polynomial functions

of its horizontal position). These functions are

a way of avoiding obstacles or climbing stairs.

All these constraints can be gathered in the single

vector inequality g(.) ≤ 0. The equality constraints are

mainly:

• the dynamics itself (16.6) instanced for the swing

phase

• the initial conditions on the state: at time tk+1, they

are the final state at time tk

Therefore the method consists of optimizing, from

the inputs (control, state, contact forces, etc.), the an-

ticipated future behavior of the system, subject to the

constraints above, using an internal model over a finite

sliding time horizon, which is the prediction horizon.

Since the problem is finally termed open-loop con-

strained optimization, solved at each sampling time, the

last step is to define an objective function to minimize.

Usually, such a cost function includes a term linked to

the final state over the prediction horizon and a quadratic

expression reflecting some energetic considerations.

The solution of the optimization algorithm is a se-

quence of Nc control inputs over the prediction horizon

Np. Only the first input is applied to the system and the

procedure starts again. It should be noted that the feed-

back effect, which should be included in any real-time

control, appears through the use of actual current val-

ues of the state in the optimization. Furthermore, the

adaptation of the motion in order to react to unexpected

events can be performed by modifying online the set of

equality and inequality constraints.
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Let us consider Fig. 16.6, for example.Here, the state

X i|k is the prediction of the heel altitude at time k + i,

computed from the current time k. Then the detection of

an obstacle leads to modification of the polynomial that

is the lower limit of the trajectory of X. The prediction

horizon finally allows one to anticipate the dynamical

behavior of the system,which ensures that the foot safely

crosses over the obstacle.

This method is known as trajectory-free nonlin-

ear model predictive control and is describe in detail

in [16.28]. An extension of the predictive controlmethod

to the case of ZMP-based control is presented in [16.29].

16.4 Biped Robots in the ZMP Scheme

The zero-moment point (ZMP) might be one of the

most famous technical terms born in robotics com-

munity. Figure 16.7 shows two important figures in

the scene of ZMP-based biped walking. Figure 16.7a

is WL-10RD, developed by Takanishi and Kato. This

is the first ZMP-based robot, which successfully re-

alized dynamic biped walking in 1985 [16.30]. It

is a 12-degree-of-freedom (DOF) biped, 1.43m high

and weighing 84.5 kg, and driven by hydraulic actua-

tors.

Figure 16.7b is ASIMO, a 26-DOF humanoid robot

developed by Honda Motor Co. in 2000 [16.31]. This

is one of the most famous robots in public culture, and

at the same time, its superior performance of biped lo-

comotion (walking and running) is well acknowledged

by specialists. According to the published papers and

patents, ZMP takes an important role in the walking

control of ASIMO.

In this section, we describe the basic definition, the

calculation, and the usage of ZMP.

a) WL-10RD (1985) b) ASIMO (2000)

Fig. 16.7a,b Biped robots controlled in the ZMP scheme

[16.30, 31]

16.4.1 Mechanisms

Figure 16.8 shows recently developed biped robots con-

trolled by the ZMP scheme. Figure 16.8a is Johnnie,

developed by Gienger et al. in 2001 [16.32]. It is

a 1.80m-high 17-DOFhumanoidweighing 40 kg, driven

by direct-current (DC) servo motors with harmonic

drive gears and ball screws. Figure 16.8b is HRP-2L,

which was developed by Kaneko et al. [16.33]. It is

a 1.41m-high 12-DOF biped weighing 58.2 kg, driven

by DC servo motors with harmonic drive reduction

gears. Figure 16.8c is WL-16R, developed by Takanishi

et al. [16.34] as a walking chair that can carry a human

weighing up to 94 kg. It is a 1.29m-high 12-DOF biped

weighing 55 kg with Stewart-platform-type legs driven

by electric linear actuators. Figure 16.8d is HUBO, de-

veloped by Oh et al. [16.35]. It is a 1.25m-high 41-DOF

humanoid robot weighing 55 kg.

Although these robots have different leg mechanism

and outlook, they share some common features:

1. there are at least six fully actuated joints for each

leg,

2. the joints are position controlled,

3. the feet are equipped with force sensors, which are

used to measure the ZMP.

Aswewill see in the following subsections, these are

the fundamental requirements for ZMP-based walking

robots.

16.4.2 Zero-Moment Point (ZMP)

The term zero-moment point (ZMP)was coined byVuko-

bratović and Stepanenko in 1972. They said [16.36]:

In Fig. 16.9 an example of force distribution across

the foot is given. As the load has the same sign

all over the surface, it can be reduced to the resul-

tant force R, the point of attack of which will be
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a) Johnnie (2000) b) HRP-2L (2001)

c) WL-16R (2003) d) HUBO (2006)

Fig. 16.8a–d Biped robots controlled in the ZMP scheme

[16.32–35]

ZMP
R

Fig. 16.9 Original definition of the zero-moment point

(ZMP) [16.36]

in the boundaries of the foot. Let the point on the

surface of the foot, where the resultant R passed,

z

y

x

Fig. 16.10 Floor reaction force in three dimensions

be denoted as the zero-moment point, or ZMP in

short.

Wecan see that the ZMP is defined as a center of pressure

(CoP) of the floor reaction force.

For the further discussion, let us discuss detailed

floor reaction force in three dimensions, as shown in

Fig. 16.10.

Suppose that the floor reaction force is acting on

a finite number of contact points pi (i = 1, . . . , N) and

that each force vector is of the form

fi := [ fix fiy fiz]⊤ ,

where fix , fiy, and fiz are the force components in the

x, y, and z directions in the coordinate system fixed to

the ground, respectively. The ZMP can be calculated as

p :=
∑N

i=1 pi fiz
∑N

i=1 fiz

. (16.12)

It can also be written as

p =
N

∑

i=1

αi pi , (16.13)

αi := fiz/ fz , (16.14)

fz :=
N

∑

i=1

fiz . (16.15)

Since an ordinary walking robot cannot generate adhe-

sive force on its soles,

fiz ≥ 0 (i = 1, . . . , N) . (16.16)
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Then we can say,






α j ≥ 0 (i = 1, . . . , N) ,
∑N

i=1 αi = 1 .
(16.17)

The points that satisfy (16.13) and (16.17) form the sup-

port polygon, the convex hull of the contacting point.

Thus, we can conclude that the ZMP always exists in

the support polygon. In other words, the ZMP never

leaves the support polygon as the result of the unilateral

constraint on the floor reaction force.

Now let us calculate the torque around the ZMP:

τ =
N

∑

i=1

(pi − p) × fi . (16.18)

This equation can be rewritten in terms of vector com-

ponents as

τx =
N

∑

i=1
(piy − py) fiz −

N
∑

i=1
(piz − pz) fiy , (16.19)

τy =
N

∑

i=1
(piz − pz) fix −

N
∑

i=1
(pix − px ) fiz , (16.20)

τz =
N

∑

i=1
(pix − px ) fiy −

N
∑

i=1
(piy − py) fix , (16.21)

where pix , piy, piz are the components of the position

vector pi and px , py, and pz are the components of the

ZMP.

When the floor is horizontal, we have piz = pz for

all i, thus, the second term of (16.19) and the first

term of (16.20) become zero. Moreover, by substitut-

ing (16.12) into (16.19) and (16.20), we obtain

τx = τy = 0 . (16.22)

This is the reason why p was named as zero-moment

point. Nevertheless, one must note that the frictional

force creates a nonzero vertical moment (16.21) in the

general case.

τz 6= 0 . (16.23)

16.4.3 Computed ZMP: ZMP Calculated
from Robot Motion

With given robot dynamics andmotion, we can calculate

or predict the resulting ZMP by using Newton’s law. To

distinguish this from the original ZMP defined in the

τ = 0

zc

O

x··

p

x

M

a) b)

Fig. 16.11a,b Cart–table model [16.37]

former subsection, we will use the term computed ZMP

as in the paper of Vukobratović et al. [16.3]

Simple Case
Let us start with an extremely simple mechanism. Fig-

ure 16.11a illustrates a walking robot and its simplified

model, which consists of a running cart on a massless

table. The cart has mass M and its position is (x, zc) cor-

responds to the center of mass of the robot (Fig. 16.11b).

Also, the table is assumed to have the same support

polygon as the robot.

In this case, the torque τ around the point p is given

by

τ = −Mg(x − p)+ Mẍzc , (16.24)

where g is the acceleration due to gravity. Using the

zero-moment condition of τ = 0, the computed ZMP of

this cart–table model is obtained as

p = x − zc

g
ẍ . (16.25)

From this equation, we can observe two fundamental

facts about the computed ZMP.

1. When the acceleration of the cart is zero, the ZMP

corresponds to the projection of the CoM: p = x.

2. The computed ZMP is not bounded by the support

polygon. In fact, we can easily determine x and ẍ to

give any specified value of p.

The second fact is explained in Fig. 16.12a. When

the cart acceleration is too large, the computed ZMP

goes outside of the support polygon. This happens since

(16.25) does not consider the support polygon and the

unilateral constraint (16.16). In other words, (16.25) as-

sumes that the foot is glued to the floor. If the unilateral

constraint is properly considered, we have the state of
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z

p

x·· x··
z··

p

a) b)

Fig. 16.12a,b Computed ZMP (a) fictitious case (b) correct result

Fig. 16.12b. Since the table is no longer upright, the

computed ZMP must be calculated by

p = x − z

g + z̈
ẍ , (16.26)

which gives the computed ZMP on the edge of support

polygon.

In much of the literature, states like Fig. 16.12b are

not explicitly discussed, but the computed ZMP is al-

lowed to leave the support polygon under the implicit

assumption of the glued foot on the floor. In this case,

a computed ZMP outside of the support polygon implies

that the robot might not maintain its feet in full contact

with the ground and that the walking motion will not be

performed as planned.

When the computed ZMP is inside the support poly-

gon, it guarantees the full foot-ground contact under

the unilateral constraint, while it tells us nothing about

stability in the context of control theory.

Computed ZMP for Full 3-D Dynamics
We will show a method to calculate the computed ZMP

of a robot that consists of N rigid-body links in three

dimensions. As in the preceding treatment, we assume

that the all kinematic information (the position of the

CoM, link orientation, link velocity, etc.) have already

been calculated by forward kinematics. In this subsec-

tion, the link postures and their angular velocities are

represented in the ground-fixed coordinate system.

First we calculate the total mass M and the center of

mass of the whole robot c by

M =
N

∑

j=1
m j , (16.27)

c =
N

∑

j=1
m jc j/M , (16.28)

cj

z

y
x

ZMP

O

mjIj

f

p

Rj ωj

Fig. 16.13 Robot model and ZMP in three dimensions

where m j and c j are the mass and the CoM of the j-th

link, respectively.

The total linear momentum P is given as

P =
N

∑

j=1
m j ċ j . (16.29)

Then the total angular momentum L with respect to the

origin is

L =
N

∑

j=1

[

c j × (m j ċ j )+ R j I j R⊤
j ω j

]

, (16.30)

where R j , I j , andω j are the 3×3 rotation matrix, inertia

tensor, and angular velocity of the j-th link, respectively.

R j I j R⊤
j gives the inertia tensor in the ground-fixed

frame.

Applied with the external force f and external mo-

ment τ, the change of linear and angular momenta are

described by Newton and Euler’s law:

f = Ṗ − Mg , (16.31)

τ = L̇− c× Mg , (16.32)

where g := [00− g]⊤ is the vector of acceleration due

to gravity.

Suppose that the external force is acting on the ZMP

located at p.

τ = p× f +τZMP , (16.33)

where τZMP is the moment at the ZMP, whose first and

second components are zero.

Substituting (16.31) and (16.32) into (16.33) we

obtain

τZMP = L̇− c× Mg + (Ṗ − Mg) × p . (16.34)
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The first and the second raws of this equation are

τZMP,x = L̇x + Mgy + Ṗy pz − (Ṗz + Mg)py ,

(16.35)

τZMP,y = L̇y − Mgx − Ṗx pz + (Ṗz + Mg)px ,

(16.36)

where we use the notations

τZMP =: [τZMP,xτZMP,yτZMP,z]⊤ ,

P =: [PxPyPz]⊤ ,

L =: [LxLyLz]⊤ ,

c =: [x y z]⊤ .

The zero-moment point is calculated from (16.35)

and (16.36) using τZMP,x = τZMP,y = 0

px = Mgx + pzṖx − L̇y

Mg + Ṗz

, (16.37)

py = Mgy + pzṖy + L̇x

Mg + Ṗz

, (16.38)

where pz is the height of the floor.

When the robot remains stationary, we have the ZMP

as the projection of the CoM:

px = x , (16.39)

py = y . (16.40)

Note that ZMP can also be calculated from the motion

equation in Lagrangian form. See Sect. 16.3.2 for more

details.

16.4.4 ZMP-Based Walking Pattern
Generation

Prescribing Foot and ZMP Trajectories
In the original work, a model with a compensating

mechanism was assumed to realize the prescribed ZMP

pattern [16.36]. Figure 16.14a illustrates an example

model, which uses predetermined leg trajectories while

ZMP is controlled by using the compensatingmass. This

concept was realized by the WL-12 robot developed by

Takanishi and Kato (Fig. 16.14b) [16.38].

In modern implementations, the body motion is

used to realize prescribed ZMP trajectories, as shown

in Fig. 16.15. Instead of the leg joint trajectories, the

foot trajectories are prescribed. The leg motion is deter-

mined by inverse kinematics from the body and the feet

trajectories.

Figure 16.16 shows an example ZMP trajectory for

two forward steps. First, the time profile of the support

Compensating mass

Pre-determined

leg motion

ZMP

a) Vukobratovic's model b) WL-12 (1985)

Fig. 16.14a,b Biped robots with compensating mass [16.38]

Body motion is determined

from ZMP

Pre-determined

foot motion

Next

support

Previous

support ZMP

Fig. 16.15 Modern implementation of the ZMP scheme

polygon is determined from the foot trajectory as the

gray band. Its width is determined from the foot geome-

try and the step length and changes at every touchdown

(td) and lift-off (lo). Then the ZMP trajectory (bold line)

is determined so that it runs within the support polygon.

Note that we can design any ZMP trajectories as long as

it remains inside of the support polygon with a certain

stability margin.

Pattern Generation for the Desired ZMP
Let us define a function ZMP() that gives a calculated

ZMP for the given robot motion.

(

px

py

)

= ZMP(q, q̇, q̈), (16.41)
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td

Support polygon

SS: Single support phase

DS: Double support phase

lo td lo

Walk direction

Time

SS DS DSSS SS

ZMP

Fig. 16.16 Support polygon and prescribed ZMP trajectory.

td: touchdown; lo: lift-off

where q, q̇, and q̈ are the vectors of joint position, veloc-

ity, and acceleration, respectively. ZMP-based walking

pattern generation is to determine the feasible q(t) that

satisfies given desired ZMP pdx (t), pdy(t). It should be

noted that:

1. As the premise of this method, the robot must be

fully actuated and position controlled. Basically, un-

deractuated or torque-controlled robots do not fit in

this scheme.

2. When the dimension of q is larger than three, extra

constraints must be introduced to solve the redun-

dancy. For example, constraints of constant body

height and upright posture are frequently used.

3. Even under the proper constraints, (16.41) have

infinite numbers of solutions because the initial con-

dition q(0) is left free. This degree of freedom is

used to avoid the divergence of the joint trajectories.

4. In practice, we do not need an exact control of ZMP:

px (t)= pdx (t), py(t)= pdy(t). Nevertheless, it is pre-

ferred to minimize the sum of ZMP error during the

walking motion.

Several practical methods have been proposed.

Takanishi et al. proposed to solve this problem by us-

ing Fourier transformation [16.39]. By applying the fast

Fourier transformation (FFT) to the ZMP reference, the

ZMP equations can be solved in the frequency domain,

then the inverse FFT returns the resulted CoM trajectory

to the time domain. Kagami et al. proposed a method to

solve this problem in the discrete time domain [16.40].

They showed that the ZMP equation can be discretized

as a trinomial expression, and that it can be solved ef-

ficiently by an algorithm of O(N) for given reference

data of size N .

Another practical method was described by Huang

et al. [16.41]. Sugihara et al. proposed a method that

can consider the multibody dynamics of a robot [16.42].

Nagasaka et al. proposed an efficient real-time method

that is also applicable to running and jumping mo-

tion [16.43]. Harada et al. proposed another efficient

real-time method that can be used when pushing an

object during walking [16.44].

Pattern Generation Using Preview Controller
In this subsection, we will describe the method pro-

posed by Kajita et al. [16.37]. Its stability and possible

expansions are well discussed by Wieber [16.29].

For the simplicity, let us use the cart–table model of

Fig. 16.11 again, but this time, we take the jerk of the

cart as the system input u,

...
x = u . (16.42)

In this way, the ZMP equation (16.25) can be translated

into a strictly proper dynamical system as

d

dt







x

ẋ

ẍ






=







0 1 0

0 0 1

0 0 0













x

ẋ

ẍ






+







0

0

1






u , (16.43)

p =
(

1 0 −zc/g

)







x

ẋ

ẍ






.

For this system, we can design a digital controller that

lets the system output follow the reference input as

u(k) = −Gi

k
∑

i=0
e(i)− Gx x(k) , (16.44)

e(i) := p(i)− pd(i) ,

where Gi is the gain for the ZMP tracking error, Gx

is the state feedback gain, and x := [xẋ ẍ]⊤. The value
at the k-th sample time is indicated by appending (k).

The block diagram of the feedback system is shown in

Fig. 16.17.

Although we can guarantee the stability of this

system by LQ (linear quadratic) feedback gains, the con-

troller of (16.44) cannot realize sufficient ZMP tracking

due to the phase delay. To solve this problem, we must
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Controller
–+

Desired ZMP ZMP

ppd

p x

u

Fig. 16.17 ZMP tracking control

use the following controller:

u(k) = −Gi

k
∑

i=0
e(i)− Gxx(k)−

NL
∑

j=1
Gp( j)pd(k + j)

(16.45)

The third term is new and contains the ZMP reference up

to NL samples future. Since this controller uses future

information, it is called a preview controller [16.45,46].

The gain Gp( j) is called the preview gain and Fig. 16.18

shows its profile towards the future. We can observe

that the magnitude of the preview gain quickly dimin-

ishes, thus the ZMP reference in the far future can be

neglected.

Figure 16.19 shows an example of a walking pat-

tern generated by using a preview controller. The upper

graph shows the sagittal motion along the x-axis and

the lower graph shows the lateral motion along the y-

axis. We can see that a smooth trajectory of the CoM

(dashed line) is generated and that the resulting ZMP

(bold line) follows the reference (thin line) with good

accuracy.

16.4.5 ZMP-Based Walking Control

If we have an ideal mechanism on a perfect flat floor,

we can expect that a robot walks just by a playback

of prescribed joint trajectory. Since this is not the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Preview gain

Time (s)

1500

1000

500

0

Fig. 16.18 Preview controller gain Gp (sample time T =
5ms, zc = 0.814m, Qe = 1.0, Qx = 0, R = 1.0×10−6)

ZMP ref

y

ZMP

ZMP ref

x

ZMP

0 1 2 3 4 5 6 7

ZMPy (m)

Time (s)

0.1

0.05

0

–0.05

–0.1

0 1 2 3 4 5 6 7

ZMPx (m)

Time (s)

1

0.8

0.6

0.4

0.2

0

Fig. 16.19 Body trajectory obtained by preview control; previewing

period TNL = 1.6 s

Stabilizer

Walking pattern
generator Real robot

Walking

pattern

Sensor feedback

Reference

ZMP

Fig. 16.20 Pattern generator and stabilizer

case in general, we need feedback control to mod-

ify the reference trajectory using sensor information,

as shown in Fig. 16.20. Such stabilizers are discussed

in [16.25, 47–50].

16.4.6 Expansion of the ZMP Concept

We can predict a robot fall when the CoM projection

is observed outside of the support polygon. However,

we cannot use the ZMP by this way, since the ZMP

never leaves the support polygon of a real biped robot.

When the ZMP is on the edge of the support poly-

gon, all we can say is that the robot can fall, since it

is merely a necessary condition of falling. As an alterna-
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tive of ZMP,Goswami proposed a foot-rotating indicator

(FRI) [16.51]. FRI is a ZMP calculated by omitting the

acceleration of the supporting foot and is a measurable

value of real robots that may leave the support poly-

gon. When am FRI is outside of the support polygon,

this indicates a support foot acceleration, which breaks

a foot–floor contact.

Another problem is that the ZMP is defined only on

the flat plane. Sardain andBessonnet discussed a general

ZMP calculation including a double support phase on

uneven terrain [16.52].

Saida et al. proposed a feasible solution of wrench

(FSW) as a new criterion for a legged robot on uneven

terrain [16.53].

Hirukawa et al. also proposed a universal sta-

bility criterion that can treat a general geometry

of foot–ground contact and unidirectional force con-

straints [16.54].

16.5 Multilegged Robots

This section treats robots that have more than three legs.

16.5.1 Analysis of Static Gait

Compared with bipeds, multilegged robots have a wider

choice of foot placing to maintain static balance. From

this reason, many research works have concentrated

on gait planning for statically stable walking rather

than treating dynamic stability. In this subsection, we

will introduce those important results by following

McGhee [16.55] and Song and Waldron [16.56].

Support polygon
(support pattern)

CoM

Fig. 16.21 Support polygon (support pattern) of a multi-

legged robot

a) Stability margin b) Longitudinal stability margin

Sm = min (d1, d2, d3) Sl = min (d1, d2)

Body 
motion

d2 d1

d2

d3

d1

Fig. 16.22a,b Definition of stability margins

Stability Margins
In multilegged robot research, the term support pattern

is frequently used for support polygon [16.55–57]. By

neglecting the inertial effects caused by body and leg

acceleration, we can guarantee that the robot maintains

balance if the projection of the CoM falls inside the

support pattern, as shown in Fig. 16.21.

For a given configuration of a walking robot, the sta-

bility margin Sm is defined as the minimum distance of

the vertical projection of CoM to the boundaries of the

support pattern in the horizontal plane, as illustrated in

Fig. 16.22a. In addition, an alternative index was pro-

posed to obtain the optimal gait analytically. That is the

longitudinal stability margin Sl, which is defined as the

minimum distance from the vertical projection of the

CoM to the support pattern boundaries along the line

parallel to the body motion.

Quadruped Creeping Gait and Crawl Gait
From the front to the rear of a 2n-legged robot or animal,

let us index the left legs and the right legs by odd numbers

1, 3, . . . , 2n −1 and even numbers 2, 4, . . . , 2n, respec-

tively. Following this rule, the legs of a quadruped robot

are numbered as in Fig. 16.23.

3 1

4 2

(Tail)

(Head)

Fig. 16.23 Leg labeling of quadruped robot
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y

x

a) 1243

3

4

1

2

b) 1423 c) 1234

d) 1342 e) 1324 f) 1432

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

Fig. 16.24a–f Quadruped creeping gaits [16.57]

To walk keeping static stability, a quadruped robot

must lift and place only one leg at each step. In gen-

eral, such a pattern is called creeping gait. The possible

creeping gaits of a quadruped robot can be expressed by

a series of leg numbers to show the order of foot plac-

ing. Always choosing leg 1 as the first swing leg, we

can distinguish (4−1)! = 6 different gaits, as shown in

Fig. 16.24.

As we will see later, the 1423 creeping gait

(Fig. 16.24b) gives the maximum stability for waking

along the x-direction, and is called the crawl gait. Note

that if the walking direction was −x, 1324 (Fig. 16.24e)

gives the crawl gait. Likewise, 1234 (Fig. 16.24c) and

1432 (Fig. 16.24f) represent the crawl gait in the−y and

y directions, respectively.

On the other hand, the 1243 and 1342 creeping gaits

(Fig. 16.24a, d) gives medium stability and are suitable

for turning.

Gait Diagram
Figure 16.25b is a gait diagram to describe the gait

sequence of a multilegged robot. The horizontal axis

indicates the time normalized by walk cycle time T .

The line segment associated with each leg starts from

the touchdown and ends at lift-off. Therefore, the length

of the line segment indicates the period of the support

phase. From this diagram, we can define the duty factor

βi and phase φi of leg i as

βi = support period of leg i

T
, (16.46)

φi = touchdown time of leg i

T
. (16.47)

The touchdown time of leg i is measured from the

touchdown of leg 1; therefore, we have φ1 = 0 for any

gait.

3 1

4 2

a) Leg numbering b) Gait diagram and parameters

Leg no.

0

 4

φ4

1
Normalized time

1

4

2

3
 2

φ2

 3
φ3

 1

Fig. 16.25a,b Gait diagram and parameters

Wave Gait of Quadrupeds
There exists a special gait which gives maximum longi-

tudinal stability margin for a quadruped robot [16.57].

It is called the wave gait defined as

βi = β, (i = 1, . . . , 4) , (16.48)

0.75≤ β < 1 , (16.49)

φ2 = 0.5 , (16.50)

φ3 = β , (16.51)

φ4 = φ3 −0.5 , (16.52)

where β is the duty factor of the wave gait. Figure 16.26

shows the gait diagram of a wave gait of β = 0.75.

If we look at the order of foot placement in

Fig. 16.26, it is a crawl gait (1423 creeping gait) shown in

Fig. 16.24b. Therefore, a wave gait is the optimal crawl

gait.

The most important feature of the wave gait is spec-

ified by (16.51). This means that leg 3 touchdowns at

the moment of leg 1’s lift-off, as indicated by the el-

lipse (broken line) in Fig. 16.26. Equation (16.49) gives

the possible range of duty factor for a statically stable

walking. In addition, a wave gait is characterized as reg-

ular and symmetric. A gait is regular when all legs have

the same duty factor β, as specified by (16.48). A gait is

Leg no.

0 13/41/21/4
Normalized time

4

2

3

1

Fig. 16.26 Wave gait of a quadruped robot (β = 0.75)

P
a
rt

B
1
6
.5



380 Part B Robot Structures

Leg no.

a) Leg numbering b) Wave gait   = 2/3

0 15/64/63/62/61/6
Normalized time

1

3

5

2

4

6
5 3

Lb

1

6 4 2

Fig. 16.27a,b Wave gait of a hexapod robot

Leg no.

a) Wave gait   = 1/2 b) Support pattern t = 1/6

0 15/64/63/62/61/6
Normalized time

1

3

5

2

4

6

5
1

4

Fig. 16.28a,b Tripod gait of a hexapod robot

symmetric when the right and the left leg of each column

has a phase difference of a half-cycle, 0.5 as specified

by (16.50) and (16.52).

Wave Gait of 2n-Legged Robots
A wave gait of 2n-legged robots can be defined as

a regular and symmetric gait with the following feature.

φ2m+1 = F(mβ), (m = 1, . . . , n −1), (16.53)

3/(2n)≤ β < 1, (16.54)

where F(x) gives the fractional part of a real num-

ber x. Equation (16.53) is a generalization of (16.51).

An example wave gait for hexapod robot is shown in

Fig. 16.27. The ellipses (broken line) show the condi-

tion (16.53).

Figure 16.28 shows a wave gait with β = 1/2, which

is the most important for hexapod robots. From the

constraint (16.54), this is the smallest duty factor for

hexapods and thus results in the fastest walking speed.

This gait is specially called a tripod gait since a robot

is supported by the three legs 145 and 236 reciprocally

(Fig. 16.28b).

It is known that the longitudinal gait stability margin

of a 2n-legged robot is maximized by wave gaits [16.56].

Figure 16.29 shows the optimal wave-gait stability mar-

gin normalized by body length Lb (Fig. 16.27a) for

0 0.2 0.4 0.6 0.8 1
Duty factor

Stability margin

0.5

0.4

0.3

0.2

0.1

0

N=12
N=10
N=8

N=∞

N=4

N=6

Fig. 16.29 Optimal wave-gait stability margin of N-legged

locomotion systems [16.55]

Fig. 16.30 The adaptive suspension vehicle (1986) [16.58]

N-legged robots [16.55]. We can observe that by in-

creasing the number of legs the stability and allowable

range of duty factors are improved. The largest improve-

ment is obtained from N = 4 to 6 and the gains gradually

become small towards N = ∞. Since the cost of the

hardware goes up in proportion to the number of the

legs, this explains the rarity of developed robots with

more than ten legs.

16.5.2 Practical Gait Design

Unlike the ideal analysis in previous section, real multi-

legged robots are far more complex. In this subsection,

we see more practical aspects of gait control by concen-

trating on a few state-of-the-art examples.

Hexapod: The Adaptive Suspension Vehicle
Figure 16.30 shows one of the most famous hexapods,

the adaptive suspension vehicle (ASV) developed by

Waldron and McGhee [16.56, 58]. The ASV is a hy-
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Table 16.1 Specifications of the ASV [16.56]

Dimensions: 5.2m in length

3.0m in height

2.4m in track width

Degree of freedom 18 DOF (3 DOF × 6)

Weight 2700 kg

Payload 220 kg

Speed 8 km/h

Grade climb ability: 60% gradient

Mobility: Ditch crossing: 1.8m

Vertical step crossing: 1.7m

Isolated wall crossing: 1.4m

Fording depth: 1.2m

Table 16.2 Gait used by the ASV [16.56]

Wave gait

Equal phase gait

Periodic Backward wave gait

Backward equal-phase gait

Dexterous periodic gait

Continuous follow-the-leader gait

Discontinuous follow-the-leader gait

Nonperiodic Large-obstacle gait

Precision footing gait

Free gait

draulically driven hexapod robot that can carry a parson

over rough terrain. Table 16.1 lists the design specifi-

cations and mobility of the ASV at experimentation in

natural terrain.

Table 16.2 shows the variety of gaits that was used

to control the ASV. We can see that the wave gait ap-

pears at the top of list, however, it requires undesirable

peak power consumption at certainmoments. The equal-

phase gait was designed to solve this problem. Another

interesting gait is the follow-the-leader gait in which the

middle foot is placed on the footprint made by the front

foot, and the rear foot is placed in the footprint of the

middle foot. By using this gait, the load on the human

operator to specify foot placement when moving over

difficult terrain can be drastically reduced. In this man-

ner, each gait listed in Table 16.2 has some advantage

depending on the ground adaptivity, power consumption

or smoothness of body motion.

Quadruped: TITAN Series
Figure 16.31 shows quadruped robots developed by

Hirose and his colleagues [16.59, 60]. TITAN III

(Fig. 16.31a) has four legs, each 1.2m long, and weighs

a) TITAN III (1981) b) TITAN IV (1985)

Fig. 16.31a,b The TITAN series [16.59, 60]

20

24

9

0

λ*

Fig. 16.32 Walking motion over a river [16.61]

80 kg. Each leg is driven by three DC motors, thus this

is a 12-DOF walking robot. On flat ground, TITAN III

uses a generalized crawl gait which allows the robot

to move omnidirectionally (crab-walk gait). When the

robot step into a rough terrain it uses free gait, which is

a nonperiodic gait to search for safe footholds, avoiding

obstacles and maintaining static stability. Figure 16.32

shows an example of free gait to walk over a river. Once

the robot returns to flat ground, it is controlled to return

the crab-walk gait, which is more efficient.

Leg no.

a) Gait diagram b) Support pattern

0 13/41/21/4
Normalized time

1

3

2

4

3

Support 
pattern 2

1

4

 t = 3/4

Fig. 16.33a,b Trot gait
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TITAN IV (Fig. 16.31b) has a similar configuration

to TITAN III, but weighs 160 kg. Since it has much

powerful motors, an experiment of dynamic walk was

conducted. For a given return speed of the swing leg U ,

the walking speed with duty factor β is

V = 1−β

β
U . (16.55)

Leg no.

a) Pace b) Bound

0 13/41/21/4
Normalized time

1

3

2

4

3

2

1

4  t = 3/4

Leg no.

0 13/41/21/4
Normalized time

1

3

2

4

3
4

2

1
 t = 1/4

Fig. 16.34a,b Another dynamic gait of quadrupeds

a) Tekken (2003) b) BigDog (2005)

Fig. 16.35a,b Quadruped robots inspired by mammals [16.62,63]

a) Genghis (1989) b) SCORPION (2004)

Fig. 16.36a,b Biologically inspired multilegged robots [16.64,65]

For a statically stable wave gait, the smallest β is

0.75 (Sect. 16.5.1), thus V = 0.33U is the maximum

speed. However, by using a duty factor of β = 0.5, we

can achieve V = U , three times faster than the max-

imum speed of static walk. Figure 16.33 shows such

a gait. The gait diagram (Fig. 16.33) shows that the robot

stands on two legs at all times, which is called the trot

gait.

As illustrated in Fig. 16.33b, a trot gait is a dy-

namic walk where the ZMP should be controlled to

be inside the support pattern (support polygon) while

the projection of the CoM goes outside of it. Hirose

et al. introduced the body swaying control to meet

the ZMP condition and the expanded trot gait for

a smooth transition from a static gait at slow speed to

a dynamic gait at high speed [16.60]. Later, this tech-

nique was elaborated for TITAN VI, the successor to

TITAN IV [16.66].

16.5.3 Dynamic Quadrupeds Inspired
by Mammals

Nature exhibits a variety of implementations of legged

locomotion and some of them are much more dynamic

than in the analysis and synthesis discussed above.

Figure 16.34 shows two dynamic gaits used by mam-

mals [16.67]. Pace is used by camels and bound is used

by running dogs, for example.

Raibert showed that trot, pace, and bound can be

regarded as biped locomotion by pairing diagonal legs,

font–rear legs, and lateral legs, respectively. Using this

idea, he demonstrated a hydraulic running quadruped

that can trot, pace, and bound [16.5]. Such gaits have

also been realized by electrically powered quadrupeds

using different control schemes [16.68, 69].

Figure 16.35a shows recently developed mammal-

like quadruped robots. Tekken is an electric quadruped

robot with a 20 cm body length and weight of 3.1 kg de-

veloped by Fukuoka and Kimura [16.62]. It can walk on

irregular terrain by using a controller based on a central

pattern generator (CPG) and reflex controls.

BigDog is an energy-autonomous hydraulic quad-

ruped robot that is 1m tall and 1m long, and weighs

90 kg, developed by Buehler et al., (Fig. 16.35b). Each

leg has one passive linear pneumatic compliance in

the lower leg, and three active joints for knee, hip

pitch, and roll [16.63]. In an outdoor environment, Big-

Dog can walk up and down 35◦ inclines, can trot at

speeds of up to 0.8m/s, and can carry over 50 kg of

payload.
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16.5.4 Behavior-Based Multilegged Robots

Figure 16.36a shows a small hexapod robot Genghis

(35 cm length and 1 kg weight) developed by Brooks

[16.64]. Most importantly, the gait of Genghis was

not explicitly controlled, but emerged from the

carefully designed network named subsumption ar-

chitecture. Genghis and other robots created by

Brooks created a huge trend of behavior-based

robotics in robotics and artificial intelligence in the

1990s.

Figure 16.36b shows the eight-legged robot SCOR-

PION (65 cm length and 11.5 kg weight) developed in

collaboration between the University of Bremen and

the National Aeronautics and Space Administration

(NASA) [16.65]. The gait control of SCORPION is de-

signed based on a behavior-based network and a central

pattern generator.

16.6 Other Legged Robots

16.6.1 Leg–Wheel Hybrid Robots

Unlike animals or insects, a robot can be designed to

have wheels that can rotate infinitely. By mixing the

efficiency of wheels and the flexibility of legs, we can

expect a robot of maximum terrain adaptivity with mini-

mum power consumption. Figure 16.37 shows examples

of such design concept.

Figure 16.37a shows stair climbing by a biped leg–

wheeled robot developed by Matsumoto et al. [16.70].

The robot is a planer biped with telescopic legs, but the

tip of each leg is equippedwith a poweredwheel. During

the single-leg support phase, the robot is controlled as

a wheeled inverted pendulum. In addition, a controller

was developed to realize a smooth transient between

the single support and statically stable double support

phases.

Figure 16.37b shows RollerWalker, developed by

Hirose et al. [16.71,76]. RollerWalker is a 12-DOFquad-

ruped robot equipped with passive wheels on the tip of

legs. It uses a roller-skating mode on a flat floor, while it

can walk on an uneven terrain by retracting the passive

wheels.

Figure 16.37c shows RHex developed by Buehler

et al. [16.72]. Although it was originally inspired from

the locomotion of cockroach, RHex has only six active

DOF, that is, one actuator for each hip. Moreover, the

legs can rotate full circle around the pitch axis. Using

this unique design, RHex can walk and run over rugged,

broken, and obstacle-ridden ground. Recently, it also

demonstrated biped running with its rear legs [16.77].

Figure 16.37d shows Whegs II, another cockroach-

inspired robot developed by Allen et al. [16.73]. This

robot has only four active DOFs, one for propulsion,

two for steering, and one for body flexion. Each leg

is equipped with three spring-loaded spokes and is

driven by the same actuator. Whegs II can realize

comparable mobility to RHex, while it uses fewer actu-

ators.

a) Biped leg-wheel robot (1998) b) Roller Walker (1996)

c) RHex (2001) d) Whegs II (2003)

(1) (2) (3) (4)

Fig. 16.37a–d Leg–wheel hybrid robots [16.70–73]

a) MELMANTIS-1 (1996) b) Yanbo3 (2003)

Fig. 16.38a,b Leg–arm hybrid robots [16.74, 75]
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Fig. 16.39 Dante II (1994) [16.78]

a) NINJA-1 (1991) b) RiSE (2005)

Fig. 16.40a,b Wall-climbing robots [16.79, 80]

16.6.2 Leg–Arm Hybrid Robots

Another design concept is the leg–arm hybrid robot.

Since legs have inherently many degree of freedom, it

is possible to use them as manipulators. In this way, we

can minimize the total number of DOFs, complexity,

weight, and power consumption of the walking robot.

MELMANTIS-1 (Fig. 16.38a) developed by Koyachi

et al. is a hexapod walker with 22 DOFs that can trans-

form its legs into manipulators [16.74]. The robot can

manipulate an object using two legs while standing with

four other legs, after traveling on six legs for maximum

stability.

Yanbo3 is a bipedwalkerwith eight DOFs developed

by the group of Yoneda andHirose [16.75]. It is designed

to have the minimum number of DOFs necessary for

a biped robot as well as for a manipulator when it is

in the single support phase. In Fig. 16.38b, the robot is

pressing the elevator button using its foot.

16.6.3 Tethered Walking Robots

Figure 16.39 shows Dante II, an eight-legged tethered

walking robot developed by the eCMU Field Robotics

Center in 1994. It was used at anAlaskan volcano for sci-

entific exploration. To descend down steep crater walls

in a rappelling-like manner, the robot uses a tether ca-

ble anchored at the crater rim [16.78]. Hirose et al.

also developed a tethered quadruped for construction

work [16.81].

16.6.4 Wall-Climbing Robots

Wall-climbing robots are characterized by their foot

mechanisms and leg configurations. The vital part is the

foot mechanism to generate the pulling force, and the

use of vacuum suction cups, electromagnets (for steel

wall), adhesive materials, or miniature spine array have

been proposed.

Figure 16.40a shows the wall-climbing quadruped

NINJA-1 developed by Hirose et al. [16.79]. Each foot

of NINJA-1 is equipped with a specially designed suc-

tion pad that can minimize its vacuum leakage. Another

reliable wall-climbing robot with suction cups was de-

veloped by Yano et al. [16.82].

Figure 16.40b shows the wall-climbing hexapod

RiSE developed by Kim et al. [16.80, 83]. Each foot

of RiSE is equipped with arrays of miniature spines

observed in some insects and spiders. The robot can

reliably climb on a wide variety of outdoor surfaces

including concrete, stucco, brick, and dressed sand-

stone.
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16.7 Performance Indices

In this section, we introduce useful performance indices

that can be used to evaluate legged robots of different

configurations.

16.7.1 Expansion
of the Stability Margin Concept

As we see in Sect. 16.5.1, the stability margin was

originally proposed for a degree of stability of the

static walking multilegged robots by McGhee and

Frank [16.57]. For a dynamic walking robot, we can

define a stability margin as the minimum distance of the

ZMP to the boundaries of the support polygon, since

the ZMP is the natural extension of a projected CoM

on the ground. This fact was already mentioned in the

original work on the ZMP [16.36], and has been used

implicitly by many researchers. Explicit definition of

this ZMP stability margin can be seen, for example, in

Huang et al. [16.41].

PV II [14]

Big muskie [15]

OSU hexapod [16]

Electric monopod
(Papantoniou [6]) 

Hydraulic quadruped
(Raibert [5]) 

GE quadruped [19]

1950 Cars [13]

1994 Cars [21]

Limiting line
(Gabrielli & von Karman [13])

Human running [23]

Off-road
vehicles [22]

Human
cycling [25]

Human
walking [23]

ASV [17]

Helios II [18]
ARL monopod [/g. 8]

Gravity walker
(McGeer [20])

0.01 0.1 1 10 100 1000

Speci/c resistance ε

Velocity (m/s)

100

10

1

0.1

0.01

0.001

Fig. 16.41 The Gabrielli–von Karman diagram [16.84]

For a legged robot on rough terrain, Messuri and

Klein defined the energy stability margin as the min-

imum potential energy required to tumble the robot

as,

SE =min
i
(Mghi) , (16.56)

where hi is the CG height variation during the tum-

ble around the i-th segment of the support polygon and

M is the total mass of the robot [16.85]. This concept

is widely accepted, and there are some proposals for

improvement [16.31, 86].

16.7.2 Duty Factor and Froude Number

Throughout this chapter, we have observed various

walking robots that might fit best for certain environ-

ments and purposes. In some cases, however, we need

to compare walking robots which have different masses,
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sizes, and numbers of legs by using a certain perfor-

mance index. Such an index should be dimensionless

like a Mach or Reynolds number in fluid mechanics.

One of the useful indices for walking machines was

already shown, that is, the duty factor β defined as

β = (support period)

(cycle time)
.

Duty factors can be used tomake the distinction between

walks and runs, since we have β ≥ 0.5 for walking and

β < 0.5 for running [16.67].

The Froude number is used in fluid mechanics to

explain the behavior of surface waves. Since both of

surface waves and legged locomotion are dynamic mo-

tion in gravity, Alexander used it to characterize animal

locomotion [16.67, 87]. He calculated a Froude number

by

Fr2 = V 2

gh
, (16.57)

where V is thewalking or running speed, g is the acceler-

ation due to gravity, and h is the height of hip joint from

the ground. He showed that animals of different sizes use

similar gaits when they travel with equal Froude num-

bers. In particular, most animals change their gait from

walking to running at a speed equivalent to a Froude

number of Fr2 = 1.

The Froude number is also defined as

Fr1 = V√
gh

, (16.58)

which is the square root of Fr2 and can be used as

a dimensionless speed for animals or legged robots.

16.7.3 Specific Resistance

The specific resistance is another important dimension-

less number that is used to evaluate the energy efficiency

of a mobile robot.

Gabrielli and von Karman discussed the perfor-

mance of various vehicles using the power consumption

per unit distance. That is

ǫ = E

Mgd
, (16.59)

where E is the total energy consumption for a travel of

distance d, M is the total mass of the vehicle, and g is

the acceleration due to gravity [16.88]. Note that when

we push a box of mass M a distance d on a floor with

friction coefficient µ, we consume the energy Mgµd

and the specific resistance becomes ǫ = µ. Therefore,

we can say that the specific resistance indicates how

smooth the locomotion is.

In their original work, Gabrielli and von Karman

plotted the specific resistance as a function of speed

for various vehicles as Fig. 16.41. This is called the

Gabrielli–von Karman diagram and it was used to

compare various styles of locomotion by Umetani and

Hirose [16.89]. Gregorio, Ahmadi and Buehler also

showed the specific resistance of recent walking robots

including their efficient hopping robot, ARL mono-

pod [16.84].

16.8 Conclusions and Future Trends

In this chapter, we have discussed the following topics.

Sect. 16.1 A brief history: The history of legged robot

research was introduced.

Sect. 16.2 Analysis of cycling walking: As the typi-

cal cycling walking robot, a simple passive

walker was analyzed. The Poincaré map is

one of the most important tools for this

purpose.

Sect. 16.3 Control of biped robots using forward dy-

namics: The dynamics and control of biped

robots were discussed. The treatment of the

unilateral ground force is the key issue for

bipeds, as well as other legged robots.

Sect. 16.4 Biped robots in the ZMP scheme: As a prac-

tical scheme to control biped robots, the

zero-moment point (ZMP) was discussed.

Sect. 16.5 Multilegged robots: The relationship be-

tween gaits and stability was discussed. In

addition, the landmark robots in this field

were introduced.

Sect. 16.6 Other legged robots: We introduced leg–

wheel hybrid, leg–arm hybrid, tethered

walking, and wall-climbing robots. One

might be impressed with the range of

imagination displayed here, but these ex-

amples are still just the tip of the

iceberg.
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Sect. 16.7 Performance indices: The stability margin,

Froude number, and the specific resistance

were discussed. They are useful perfor-

mance indices to compare legged robots in

different configurations.

Over the last three decades, legged robots have

become faster, more efficient, and more robust. This

trend may continue in the future, aiming for ultimate

mobility comparable to that of insects, mammals, and

ourselves.

References

16.1 M. Wisse, L. Schwab, F.L.T. Van der Helm: Passive
walking dynamic model with upper body, Robotica
22(6), 681–688 (2004)

16.2 C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan,
E.R. Westervelt, C. Canudas-de-Wit, J.W. Grizzle:
RABBIT: a testbed for advanced control theory, IEEE
Contr. Syst. Mag. 23(5), 57–79 (2003)

16.3 M. Vukobratovíc, B. Borovac: Zero-moment point –
Thirty five years of its life, Int. J. Humanoid Robot.
1(1), 157–173 (2004)

16.4 T. McGeer: Passive dynamic walking, Int. J. Robot.
Res. 9(2), 62–82 (1990)

16.5 M.H. Raibert: Legged Robots That Balance (MIT
Press, Cambridge 1986)

16.6 M. Coleman, A. Ruina: An uncontrolled walking
toy that cannot stand still, Phys. Rev. Lett. 80(16),
3658–3661 (1998)

16.7 A. Goswami, B. Thuilot, B. Espiau: A study of a
compass-like biped robot: symmetry and chaos,
Int. J. Robot. Res. 17(12), 1282–1301 (1998)

16.8 C. Azevedo, B. Amblard, B. Espiau, C. As-
saiante: A synthesis of bipedal locomotion
in human and robots, Res. Rep. 5450, IN-
RIA https://hal.inria.fr/inria-00070557 (December
2004)

16.9 C. Azevedo, B. Espiau, B. Amblard, C. Assaiante:
Bipedal locomotion: toward unified concepts in
robotics and neurosciences, Biol. Cybern. 96(2),
209–228 (2007)

16.10 P.B. Wieber: Constrained stability and parameter-
ized control in biped walking, Int. Symp. Math.
Theory Netw. Syst. (2000)

16.11 P.B. Wieber: On the stability of walking systems,
Int. Workshop Humanoids Human Friendly Robot.
(2002)

16.12 F. Pfeiffer, C. Glocker: Multibody Dynamics with
Unilateral Contacts (Wiley, New York 1996)

16.13 L. Righetti, A.J. Ijspeert: Programmable central
pattern generators: an application to biped lo-
comotion control, IEEE Int. Conf. Robot. Autom.
(Orlando,USA May 2006)

16.14 K. Matsuoka: Sustained oscillations generated by
mutually inhibiting neurons with adaptation, Biol.
Cybern. 52, 345–353 (1985)

16.15 G. Endo, J. Morimoto, J. Nakanishi, G. Cheng: An
empirical exploration of a neural oscillator for

biped locomotion control, IEEE Int. Conf. Robot.
Autom. (New Orleans 2004) pp. 3036–3042

16.16 D.C. Witt: A feasibility study on powered lower-
limb prosthesis, Univer. Oxford Dep. Eng. Sci. Rep.
(1970)

16.17 F. Gubina, H. Hemami, R.B. McGhee: On the dy-
namic stability of biped locomotion, IEEE Trans.
Biomed. Eng. BME-21(2), 102–108 (1974)

16.18 H. Miura, I. Shimoyama: Dynamic walk of a biped,
The Int. J. Robot. Res. 3(2), 60–74 (1984)

16.19 J. Furusho, M. Masubuchi: A theoretically mo-
tivated reduced order model for the control of
dynamic biped locomotion, J. Dyn. Syst. Meas.
Contr. 109, 155–163 (1987)

16.20 S. Kawamura, F. Miyazaki, S. Arimoto: Realization
of robot motion based on a learning method, IEEE
Trans. Syst. Man Cybern. 18(1), 126–134 (1988)

16.21 S. Kajita, T. Yamaura, A. Kobayashi: Dynamic walk-
ing control of a biped robot along a potential
energy conserving orbit, IEEE Trans. Robot. Autom.
8(4), 431–438 (1992)

16.22 J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, G. Pratt:
An intuitive approach for bipedal locomotion, Int.
J. Robot. Res. 20(2), 129–143 (2001)

16.23 E.R. Westervelt, J.W. Grizzle, D.E. Koditschek: Hy-
brid zero dynamics of planar biped walkers, IEEE
Trans. Autom. Contr. 48(1), 42–56 (2003)

16.24 S. Lohmeier, K. Löffler, M. Gienger, H. Ulbrich,
F. Pfeiffer: Computer system and control of biped
Johnnie, IEEE Int. Conf. Robot. Autom. (New-
Orleans 2004) pp. 4222–4227

16.25 J.H. Kim, J.H. Oh: Walking control of the humanoid
platform KHR-1 based on torque feedback control,
IEEE Int. Conf. Robot. Autom. (2004) pp. 623–628

16.26 P.B. Wieber, C. Chevallereau: Online adaptation of
reference trajectories for the control of walking
systems, Robot. Auton. Syst. 54(7), 559–566 (2006)

16.27 F. Allgöwer, T.A. Badgwell, J.B. Rawlings,
S.J. Wright: Nonlinear predictive control and mov-
ing horizon estimation an overview., Eur. Contr.
Conf. (Karlsruhe 1999) pp. 392–449

16.28 C. Azevedo, P. Poignet, B. Espiau: Artificial locomo-
tion control: from human to robots, Robot. Auton.
Syst. 47(4), 203–223 (2004)

16.29 P.B. Wieber: Trajectory-free linear model predic-
tive control for stable walking in the presence

P
a
rt

B
1
6



388 Part B Robot Structures

of strong perturbations, IEEE-RAS Int. Conf. Hu-
manoid Robots (Genoa 2006)

16.30 A. Takanishi, M. Ishida, Y. Yamazaki, I. Kato: The
realization of dynamic walking by the biped walk-
ing robot WL-10RD, Int. Conf. Adv. Robot. (ICAR’85)
(1985) pp. 459–466

16.31 M. Hirose, Y. Haikawa, T. Takenaka, K. Hirai: De-
velopment of humanoid robot ASIMO, IEEE/RSJ Int.
Conf. Intell. Robots Syst. – Workshop 2 (2001)

16.32 M. Gienger, K. Löffler, F. Pfeiffer: Towards the de-
sign of a biped jogging robot, IEEE Int. Conf. Robot.
Autom. (2001) pp. 4140–4145

16.33 K. Kaneko, S. Kajita, F. Kanehiro, K. Yokoi, K. Fu-
jiwara, H. Hirukawa, T. Kawasaki, M. Hirata,
T. Isozumi: Design of advanced leg module for hu-
manoid robotics project of METI, IEEE Int. Conf.
Robot. Autom. (2002) pp. 38–45

16.34 Y. Sugahara, M. Kawase, Y. Mikuriya, T. Hosobata,
H. Sunazuka, K. Hashimoto, H. Lim, A. Takanishi:
Support torque reduction mechanism for biped
locomotor with parallel mechanism, IEEE/RSJ Int.
Conf. Intell. Robots Syst. (2004) pp. 3213–3218

16.35 I.W. Park, J.Y. Kim, J. Lee, J.H. Oh: Online free
walking trajectory generation for biped humanoid
robot KHR-3(HUBO), IEEE Int. Conf. Robot. Autom.
(Orlando 2006) pp. 1231–1236

16.36 M. Vukobratovíc, J. Stepanenko: On the stability of
anthropomorphic systems, Math. Biosci. 15, 1–37
(1972)

16.37 S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara,
K. Harada, K. Yokoi, H. Hirukawa: Biped walk-
ing pattern generation by using preview control of
zero-moment point, IEEE Int. Conf. Robot. Autom.
(2003) pp. 1620–1626

16.38 A. Takanishi, Y. Egusa, M. Tochizawa, T. Takeya,
I. Kato: Realization of dynamic biped walking
stabilized with trunk motion, ROMANSY 7 (1988)
pp. 68–79

16.39 A. Takanishi, H. Lim, M. Tsuda, I. Kato: Realiza-
tion of dynamic biped walking stabilized by trunk
motion on a sagittally uneven surface, IEEE Int.
Workshop Intell. Robots Syst. (1990) pp. 323–330

16.40 S. Kagami, K. Nishiwaki, T. Kitagawa, T. Sugihiara,
M. Inaba, H. Inoue: A fast generation method of a
dynamically stable humanoid robot trajectory with
enhanced ZMP constraint, IEEE Int. Conf. Humanoid
Robot. (2000)

16.41 Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai,
N. Koyachi, K. Tanie: Planning walking patterns for
a biped robot, IEEE Trans. Robot. Autom. 17(3), 280–
289 (2001)

16.42 T. Sugihara, Y. Nakamura, H. Inoue: Realtime
humanoidmotion generation through ZMPmanip-
ulation based on inverted pendulum control, IEEE
Int. Conf. Robot. Autom. (2002) pp. 1404–1409

16.43 K. Nagasaka, K. Kuroki, S. Suzuki, Y. Itoh, J. Ya-
maguchi: Integrated motion control for walking,
jumping and running on a small bipedal en-

tertainment robot, IEEE Int. Conf. Robot. Autom.
(2004) pp. 3189–3194

16.44 K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara,
K. Kaneko, K. Yokoi, H. Hirukawa: Real-time plan-
ning of humanoid robot’s gait for force controlled
manipulation, IEEE Int. Conf. Robot. Autom. (2004)
pp. 616–622

16.45 M. Tomizuka, D.E. Rosenthal: On the optimal digital
state vector feedback controller with integral and
preview actions, Trans. the ASME J. Dyn. Syst. Meas.
Contr. 101, 172–178 (1979)

16.46 T. Katayama, T. Ohki, T. Inoue, T. Kato: Design of
an optimal controller for a discrete time system
subject to previewable demand, Int. J. Contr. 41(3),
677–699 (1985)

16.47 J. Yamaguchi, A. Takanishi, I. Kato: Experimental
development of a foot mechanism with shock ab-
sorbing material for acquisition of landing surface
position information and stabilization of dynamic
biped walking, IEEE Int. Conf. Robot. Autom. (1995)
pp. 2892–2899

16.48 K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka: The
development of honda humanoid robot, IEEE Int.
Conf. Robot. Autom. (1998) pp. 1321–1326

16.49 K. Yokoi, F. Kanehiro, K. Kaneko, S. Kajita,
K. Fujiwara, H. Hirukawa: Experimental study of
humanoid robot HRP-1S, Int. J. Robot. Res. 23(4-5),
351–362 (2004)

16.50 K. Hashimoto, Y. Sugahara, H. Sunazuka, C. Tanaka,
A. Ohta, M. Kawase, H. Lim, A. Takanishi: Biped
landing pattern modification method with non-
linear compliance control, IEEE Int. Conf. Robot.
Autom. (Orlando 2006) pp. 1213–1218

16.51 A. Goswami: Postural stability of biped robots and
the foot-rotation indicator(FRI) point, Int. J. Robot.
Res. 18(6), 523–533 (1999)

16.52 P. Sardain, G. Bessonnet: Forces acting on a biped
robot. center of pressure–zero moment point, IEEE
Trans. Syst. Man Cybern. Part A: Syst. Humans 34(5),
630–637 (2004)

16.53 T. Saida, Y. Yokokoji, T. Yoshikawa: FSW (feasi-
ble solution of wrench) for multi-legged robots,
IEEE Int. Conf. Robot. Autom. (2003) pp. 3815–
3820

16.54 H. Hirukawa, S. Hattori, K. Harada, S. Kajita,
K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa:
A universal stability criterion of the foot contact of
legged robots – Adios ZMP, IEEE Int. Conf. Robot.
Autom. (Orlando 2006), pp. 1976–1983

16.55 R.B. McGhee: Vehicular legged locomotion. In:
Advances in Automation and Robotics, ed. by
G.N. Saridis (JAI Press, New York 1985) pp. 259–284

16.56 S.M. Song, K.J. Waldron: Machines that Walk: the
Adaptive Suspension Vehicle (The MIT Press, Cam-
bridge 1989)

16.57 R.B. McGhee, A.A. Frank: On the stability properties
of quadruped creeping gaits, Math. Biosci. 3, 331–
351 (1968)

P
a
rt

B
1
6



Legged Robots References 389

16.58 K.J. Waldron, R.B. McGhee: The adaptive suspen-
sion vehicle, IEEE Contr. Syst. Mag. 6, 7–12 (1986)

16.59 S. Hirose, Y. Fukuda, H. Kikuchi: The gait con-
trol system of a quadruped walking vehicle, Adv.
Robot. 1(4), 289–323 (1986)

16.60 S. Hirose, K. Yoneda, R. Furuya, T. Takagi: Dynamic
and static fusion control of quadruped walking ve-
hicle, IEEE/RSJ Int. Workshop Intell. Robots Syst.
(1989) pp. 199–204

16.61 S. Hirose: A study of design and control of a quad-
ruped walking vehicle, Int. J. Robot. Res. 3(2),
113–133 (1984)

16.62 Y. Fukuoka, H. Kimura, A.H. Cohen: Adaptive dy-
namic walking of a quadruped robot on irregular
terrain based on biological concepts, Int. J. Robot.
Res. 22(3-4), 187–202 (2003)

16.63 M. Buehler, R. Playter, M. Raibert: Robots step
outside, Int. Symp. Adapt. Motion Animals Mach.
(AMAM) (Ilmenau 2005)

16.64 R.A. Brooks: A robot that walks; emergent behavior
from a carefully evolved network, IEEE Int. Conf.
Robot. Autom. (Scottsdale 1989) pp. 292–296

16.65 D. Spenneberg, K. McCullough, F. Kirchner: Stability
of walking in a multilegged robot suffering leg loss,
IEEE Int. Conf. Robot. Autom. (2004) pp. 2159–2164

16.66 S. Hirose, K. Yoneda, K. Arai, T. Ibe: Design of pris-
matic quadruped walking vehicle TITAN VI, 5th Int.
Conf. Adv. Robot. (Pisa taly 1991) pp. 723–728

16.67 R. McNeill Alexander: The gait of bipedal and
quadrupedal animals, Int. J. Robot. Res. 3(2), 49–
59 (1984)

16.68 H. Kimura, I. Shimoyama, H. Miura: Dynamics in
the dynamic walk of a quadruped robot, Adv.
Robot. 4(3), 283–301 (1990)

16.69 J. Furusho, A. Sano, M. Sakaguchi, E. Koizumi: Re-
alization of bounce gait in a quadruped robot with
articular-joint-type legs, IEEE Int. Conf. Robot. Au-
tom. (1995) pp. 697–702

16.70 O. Matsumoto, S. Kajita, M. Saigo, K. Tani: Dy-
namic trajectory control of passing over stairs by
a biped type leg-wheeled robot with nominal ref-
erence of static gait, IEEE/RSJ Int. Conf. Intell. Robot
Syst. (1998) pp. 406–412

16.71 S. Hirose, H. Takeuchi: Study on roller-walk (ba-
sic characteristics and its control), IEEE Int. Conf.
Robot. Autom. (1996) pp. 3265–3270

16.72 U. Saranli, M. Buehler, D.E. Koditschek: RHex: a
simple and highly mobile hexapod robot, Int. J.
Robot. Res. 20(7), 616–631 (2001)

16.73 T.J. Allen, R.D. Quinn, R.J. Bachmann, R.E. Ritz-
mann: Abstracted biological principles applied
with reduced actuation improve mobility of legged
vehicles, IEEE Int. Conf. Intell. Robots Syst. (Las
Vegas 2003) pp. 1370–1375

16.74 N. Koyachi, H. Adachi, M. Izumi, T. Hirose, N. Senjo,
R. Murata, T. Arai: Multimodal control of hexapod
mobile manipulator MELMANTIS-1, 5th Int. Conf.
Climbing Walking Robots (2002) pp. 471–478

16.75 Y. Ota, T. Tamaki, K. Yoneda, S. Hirose: Devel-
opment of walking manipulator with versatile
locomotion, IEEE Int. Conf. Robot. Autom. (2003)
pp. 477–483

16.76 G. Endo, S. Hirose: Study on roller-walker: system
integration and basic experiments, IEEE Int. Conf.
Robot. Autom. (Detroit 1999) pp. 2032–2037

16.77 N. Neville, M. Buehler, I. Sharf: A bipedal running
robot with one actuator per leg, IEEE Int. Conf.
Robot. Autom. (Orlando 2006) pp. 848–853

16.78 J. Bares, D. Wettergreen: Dante II: technical de-
scription, results and lessons learned, Int. J. Robot.
Res. 18(7), 621–649 (1999)

16.79 S. Hirose, A. Nagakubo, R. Toyama: Machine that
can walk and climb on floors, walls and ceilings,
5th Int. Conf. Adv. Robot. (Pisa 1991) pp. 753–758

16.80 S. Kim, A. Asbeck, W. Provancher, M.R. Cutkosky:
SpinybotII: Climbing hard walls with compliant
microspines, IEEE ICAR (Seattle 2005) pp. 18–20

16.81 S. Hirose, K. Yoneda, H. Tsukagoshi: TITAN VII:
quadruped walking and manipulating robot on a
steep slope, IEEE Int. Conf. Robot. Autom. (1997)

16.82 T. Yano, S. Numao, Y. Kitamura: Development of a
self-contained wall climbing robot with scanning
type suction cups, IEEE/RSJ Int. Conf. Intell. Robots
Syst. (1998) pp. 249–254

16.83 A.T. Asbeck, S. Kim, A. McClung, A. Parness,
M.R. Cutkosky: Climbing walls with microspines
(video), IEEE Int. Conf. Robot. Autom. (Orlando
2006)

16.84 P. Gregorio, M. Ahmadi, M. Buehler: Design, con-
trol, and energetics of an electrically actuated
legged robot, IEEE Trans. Syst. Man Cyber. – Part
B: Cyber. 27(4), 626–634 (1997)

16.85 D.A. Messuri, C.A. Klein: Automatic body regulation
for maintaining stability of a legged vehicle during
rough-terrain locomotion, IEEE J. Robot. Autom.
RA-1(3), 132–141 (1985)

16.86 E. Garcia, P. Gonzalez de Santos: An improved en-
ergy stability margin for walking machines subject
to dynamic effects, Robotica 23(1), 13–20 (2005)

16.87 R. McNeill Alexander: Exploring Biomechanics –
Animals in Motion (W.H. Freeman, New York 1992)

16.88 G. Gabrielli, T. von Karman: What price speed –
specific power required for propulsion of vehicles,
Mech. Eng. 72(10), 775–781 (1950)

16.89 Y. Umetani, S. Hirose: Biomechanical study of ser-
pentine locomotion (evaluation as a locomotion
measure) (in Japanese). In: BIOMECHANISM(2) (Univ.
Tokyo Press, Tokyo 1973) pp. 289–297

P
a
rt

B
1
6


