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Force Control
7. Force Control

Luigi Villani, Joris De Schutter

A fundamental requirement for the success of
a manipulation task is the capability to han-
dle the physical contact between a robot and
the environment. Pure motion control turns
out to be inadequate because the unavoid-
able modeling errors and uncertainties may
cause a rise of the contact force, ultimately
leading to an unstable behavior during the in-
teraction, especially in the presence of rigid
environments. Force feedback and force con-
trol becomes mandatory to achieve a robust
and versatile behavior of a robotic system in
poorly structured environments as well as safe
and dependable operation in the presence of
humans. This chapter starts from the analysis
of indirect force control strategies, conceived
to keep the contact forces limited by ensuring
a suitable compliant behavior to the end effec-
tor, without requiring an accurate model of the
environment. Then the problem of interaction

tasks modeling is analyzed, considering both
the case of a rigid environment and the case of
a compliant environment. For the specification
of an interaction task, natural constraints set
by the task geometry and artificial constraints
set by the control strategy are established, with
respect to suitable task frames. This formula-
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tion is the essential premise to the synthesis of
hybrid force/motion control schemes.

7.1 Background

Research on robot force control has flourished in the

past three decades. Such a wide interest is motivated

by the general desire of providing robotic systems

with enhanced sensory capabilities. Robots using force,

touch, distance, and visual feedback are expected to au-

tonomously operate in unstructured environments other

than the typical industrial shop floor.

Since the early work on telemanipulation, the use of

force feedback was conceived to assist the human op-

erator in the remote handling of objects with a slave

manipulator. More recently, cooperative robot systems

have been developed where two or more manipulators

(viz. the fingers of a dexterous robot hand) are to be

controlled so as to limit the exchanged forces and avoid

squeezing of a commonly held object. Force control

plays a fundamental role also in the achievement of

robust and versatile behavior of robotic systems in open-

ended environments, providing intelligent response in
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162 Part A Robotics Foundations

unforeseen situations and enhancing human–robot in-

teraction.

7.1.1 From Motion Control
to Interaction Control

Control of the physical interaction between a robot

manipulator and the environment is crucial for the suc-

cessful execution of a number of practical tasks where

the robot end-effector has tomanipulate an object or per-

form some operation on a surface. Typical examples in

industrial settings include polishing, deburring, machin-

ing or assembly. A complete classification of possible

robot tasks, considering also nonindustrial applications,

is practically infeasible in view of the large variety of

cases that may occur, nor would such a classification

be really useful to find a general strategy to control the

interaction with the environment.

During contact, the environment may set constraints

on the geometric paths that can be followed by the

end-effector, denoted as kinematic constraints. This sit-

uation, corresponding to the contact with a stiff surface,

is generally referred to as constrained motion. In other

cases, the contact task is characterized by a dynamic in-

teraction between the robot and the environment that can

be inertial (as in pushing a block), dissipative (as in slid-

ing on a surface with friction) or elastic (as in pushing

against an elastically compliant wall). In all these cases,

the use of a pure motion control strategy for controlling

interaction is prone to failure, as explained below.

Successful execution of an interaction task with the

environment by using motion control could be obtained

only if the task were accurately planned. This would in

turn require an accurate model of both the robot manipu-

lator (kinematics and dynamics) and the environment

(geometry and mechanical features). A manipulator

model may be known with sufficient precision, but

a detailed description of the environment is difficult to

obtain.

To understand the importance of task planning ac-

curacy, it is sufficient to observe that in order to perform

a mechanical part mating with a positional approach the

relative positioning of the parts should be guaranteed

with an accuracy of an order of magnitude greater than

part mechanical tolerance. Once the absolute position of

one part is exactly known, the manipulator should guide

the motion of the other with the same accuracy.

In practice, the planning errors may give rise to

a contact force and moment, causing a deviation of the

end-effector from the desired trajectory. On the other

hand, the control system reacts to reduce such devia-

tions. This ultimately leads to a build-up of the contact

force until saturation of the joint actuators is reached or

breakage of the parts in contact occurs.

The higher the environment stiffness and position

control accuracy are, the more easily a situation like

the one just described can occur. This drawback can be

overcome if a compliant behavior is ensured during the

interaction. This compliant behavior can be achieved

either in a passive or in an active fashion.

Passive Interaction Control
In passive interaction control the trajectory of the robot

end-effector is modified by the interaction forces due

to the inherent compliance of the robot. The compli-

ance may be due to the structural compliance of the

links, joints, and end-effector, or to the compliance of

the position servo. Soft robot arms with elastic joints

or links are purposely designed for intrinsically safe

interactionwith humans. In industrial applications, ame-

chanical device with passive compliance, known as the

remote center of compliance (RCC) device [7.1], is

widely adopted. An RCC is a compliant end-effector

mounted on a rigid robot, designed and optimized for

peg-into-hole assembly operations.

The passive approach to interaction control is

very simple and cheap, because it does not require

force/torque sensors; also, the preprogrammed trajec-

tory of the end-effector must not be changed at execution

time; moreover, the response of a passive compliance

mechanism is much faster than active repositioning

by a computer control algorithm. However, the use of

passive compliance in industrial applications lacks flex-

ibility, since for every robotic task a special-purpose

compliant end-effector has to be designed and mounted.

Also, it can only deal with small position and orientation

deviations of the programmed trajectory. Finally, since

no forces are measured, it can not guarantee that high

contact forces will never occur.

Active Interaction Control
In active interaction control, the compliance of the

robotic system is mainly ensured by a purposely de-

signed control system. This approach usually requires

the measurement of the contact force and moment,

which are fed back to the controller and used to mod-

ify or even generate online the desired trajectory of the

robot end-effector.

Active interaction control may overcome the afore-

mentioned disadvantages of passive interaction control,

but it is usually slower, more expensive, and more so-

phisticated. To obtain a reasonable task execution speed
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and disturbance rejection capability, active interaction

control has to be used in combination with some degree

of passive compliance [7.2]: feedback, by definition, al-

ways comes after a motion and force error has occurred,

hence some passive compliance is needed in order to

keep the reaction forces below an acceptable threshold.

Force Measurements
For a general force-controlled task, six force compo-

nents are required to provide complete contact force

information: three translational force components and

three torques. Often, a force/torque sensor is mounted

at the robot wrist [7.3], but other possibilities exist, for

example, force sensors can be placed on the fingertips

of robotic hands [7.4]; also, external forces and mo-

ments can be estimated via shaft torque measurements

of joint torque sensors [7.5, 6]. However, the majority

of the applications of force control (including indus-

trial applications) is concerned with wrist force/torque

sensors. In this case, the weight and inertia of the tool

mounted between the sensor and the environment (i. e.,

the robot end-effector) is assumed to be negligible or

suitably compensated from the force/torque measure-

ments. The force signals may be obtained using strain

measurements, which results in a stiff sensor, or de-

formation measurements (e.g., optically), resulting in

a compliant sensor. The latter approach has an advantage

if additional passive compliance is desired.

7.1.2 From Indirect Force Control
to Hybrid Force/Motion Control

Active interaction control strategies can be grouped into

two categories: those performing indirect force control

and those performing direct force control. The main

difference between the two categories is that the for-

mer achieve force control via motion control, without

explicit closure of a force feedback loop; the latter in-

stead offer the possibility of controlling the contact force

and moment to a desired value, thanks to the closure of

a force feedback loop.

To the first category belongs impedance control (or

admittance control) [7.7, 8], where the deviation of the

end-effector motion from the desired motion due to the

interaction with the environment is related to the con-

tact force through a mechanical impedance/admittance

with adjustable parameters. A robot manipulator under

impedance (or admittance) control is described by an

equivalent mass–spring–damper system with adjustable

parameters. This relationship is an impedance if the

robot control reacts to the motion deviation by gener-

ating forces, while it corresponds to an admittance if the

robot control reacts to interaction forces by imposing

a deviation from the desired motion. Special cases of

impedance and admittance control are stiffness control

and compliance control [7.9], respectively, where only

the static relationship between the end-effector position

and orientation deviation from the desired motion and

the contact force and moment is considered. Notice that,

in the robot control literature, the terms impedance con-

trol and admittance control are often used to refer to the

same control scheme; the same happens for stiffness and

compliance control. Moreover, if only the relationship

between the contact force and moment and the end-

effector linear and angular velocity is of interest, the

corresponding control scheme is referred to as damping

control [7.10].

Indirect force control schemes do not require, in

principle, measurements of contact forces andmoments;

the resulting impedance or admittance is typically non-

linear and coupled. However, if a force/torque sensor

is available, then force measurements can be used in

the control scheme to achieve a linear and decoupled

behavior.

Differently from indirect force control, direct force

control requires an explicit model of the interaction

task. In fact, the user has to specify the desired motion

and the desired contact force and moment in a con-

sistent way with respect to the constraints imposed

by the environment. A widely adopted strategy be-

longing to this category is hybrid force/motion control,

which aims at controlling the motion along the uncon-

strained task directions and force (and moment) along

the constrained task directions. The starting point is

the observation that, for many robotic tasks, it is pos-

sible to introduce an orthogonal reference frame, known

as the compliance frame [7.11] (or task frame [7.12])

which allows one to specify the task in terms of nat-

ural and artificial constrains acting along and about

the three orthogonal axes of this frame. Based on this

decomposition, hybrid force/motion control allows si-

multaneous control of both the contact force and the

end-effector motion in two mutually independent sub-

spaces. Simple selection matrices acting on both the

desired and feedback quantities serve this purpose for

planar contact surfaces [7.13], whereas suitable projec-

tion matrices must be used for general contact tasks,

which can also be derived from the explicit constraint

equations [7.14–16]. Several implementation of hybrid

motion control schemes are available, e.g., based on in-

verse dynamics control in the operational space [7.17],

passivity-based control [7.18], or outer force control
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loops closed around inner motion loops, typically avail-

able in industrial robots [7.2].

If an accurate model of the environment is not

available, the force control action and the motion con-

trol action can be superimposed, resulting in a parallel

force/position control scheme. In this approach, the force

controller is designed so as to dominate the motion con-

troller; hence, a position error would be tolerated along

the constrained task directions in order to ensure force

regulation [7.19].

7.2 Indirect Force Control

To gain insight into the problems arising at the inter-

action between the end-effector of a robot manipulator

and the environment, it is worth analyzing the effects of

a motion control strategy in the presence of a contact

force and moment. To this aim, assume that a refer-

ence frame Σe is attached to the end-effector, and let

pe denote the position vector of the origin and Re the

rotation matrix with respect to a fixed base frame. The

end-effector velocity is denoted by the 6×1 twist vec-

tor ve =
(

ṗ⊤
e ω⊤

e

)⊤ where ṗe is the translational velocity

and ωe the angular velocity, and can be computed from

the n ×1 joint velocity vector q̇ using the linear mapping

ve = J(q)q̇ . (7.1)

The matrix J is the 6× n end-effector geometric

Jacobian. For simplicity, the case of nonredundant non-

singular manipulators is considered; therefore, n = 6

and the Jacobian is a square nonsingular matrix. The

force f e and moment me applied by the end-effector

to the environment are the components of the wrench

he =
(

f ⊤
e m⊤

e

)⊤
.

It is useful to consider the operational space formu-

lation of the dynamic model of a rigid robot manipulator

in contact with the environment

Λ(q)v̇e +Γ (q, q̇)ve +η(q) = hc−he , (7.2)

where Λ(q) = (JH(q)−1J⊤)−1 is the 6×6 operatio-

nal space inertia matrix, Γ (q, q̇) = J−⊤C(q, q̇)J−1 −
Λ(q) J̇ J−1 is the wrench including centrifugal and

Coriolis effects, and η(q) = J−⊤g(q) is the wrench of

the gravitational effects; H(q), C(q, q̇) and g(q) are the

corresponding quantities defined in the joint space. The

vector hc = J−⊤τ is the equivalent end-effector wrench

corresponding to the input joint torques τ.

7.2.1 Stiffness Control

In the classical operational space formulation, the end-

effector position and orientation is described by a 6×1

vector xe =
(

p⊤
e ϕ⊤

e

)⊤
, where ϕe is a set of Euler angles

extracted from Re. Hence, a desired end-effector posi-

tion and orientation can be assigned in terms of a vector

xd, corresponding to the position of the origin pd and

the rotation matrix Rd of a desired frame Σd. The end-

effector error can be denoted as∆xde = xd− xe, and the

corresponding velocity error, assuming a constant xd,

can be expressed as ∆ẋde = −ẋe = −A−1(ϕe)ve, with

A(ϕe)=
(

I 0

0 T(ϕe)

)
,

where I is the 3×3 identity matrix, 0 is a 3×3 null

matrix, and T is the 3×3 matrix of the mapping

ωe = T(ϕe)ϕ̇e, depending on the particular choice of

the Euler angles.

Consider the motion control law

hc = A−⊤(ϕe)KP∆xde− KDve +η(q) , (7.3)

corresponding to a simple PD + gravity compensation

control in the operational space, where KP and KD are

symmetric and positive-definite 6×6 matrices.

In the absence of interaction with the environment

(i. e., when he = 0), the equilibrium ve = 0, ∆xde = 0

for the closed-loop system, corresponding to the de-

sired position and orientation for the end-effector, is

asymptotically stable. The stability proof is based on

the positive-definite Lyapunov function

V = 1

2
v⊤
e Λ(q)ve + 1

2
∆xdeKP∆xde ,

whose time derivative along the trajectories of the

closed-loop system is the negative semidefinite function

V̇ = −v⊤
e KDve . (7.4)

In the presence of a constant wrench he, using a similar

Lyapunov argument, a different asymptotically stable

equilibrium can be found, with a nonnull ∆xde. The

new equilibrium is the solution of the equation

A−⊤(ϕe)KP∆xde−he = 0 ,

which can be written in the form

∆xde = K−1
P A⊤(ϕe)he , (7.5)
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or, equivalently, as

he = A−⊤(ϕe)KP∆xde . (7.6)

Equation (7.6) shows that in the steady state the end-

effector, under a proportional control action on the

position and orientation error, behaves as a six-degree-

of-freedom (DOF) spring in respect of the external force

and moment he. Thus, the matrix KP plays the role

of an active stiffness, eaning that it is possible to act

on the elements of KP so as to ensure a suitable elas-

tic behavior of the end-effector during the interaction.

Analogously, (7.5) represents a compliance relationship,

where the matrix K−1
P plays the role of an active compli-

ance. This approach, consisting of assigning a desired

position and orientation and a suitable static relationship

between the deviation of the end-effector position and

orientation from the desiredmotion and the force exerted

on the environment, is known as stiffness control.

The selection of the stiffness/compliance parameters

is not easy, and strongly depends on the task to be ex-

ecuted. A higher value of the active stiffness means

a higher accuracy of the position control at the expense of

higher interaction forces. Hence, if it is expected to meet

some physical constraint in a particular direction, the

end-effector stiffness in that direction should be made

low to ensure low interaction forces. Conversely, along

the directions where physical constraints are not ex-

pected, the end-effector stiffness should be made high

so as to follow closely the desired position. This al-

lows discrepancies between the desired and achievable

positions due to the constraints imposed by the environ-

ment to be resolved without excessive contact forces and

moments.

It must be pointed out, however, that a selective

stiffness behavior along different directions cannot be

effectively assigned in practice on the basis of (7.6). This

can easily be understood by using the classical definition

of a mechanical stiffness for two bodies connected by

a 6-DOF spring, in terms of the linear mapping between

the infinitesimal twist displacement of the two bodies at

an unloaded equilibrium and the elastic wrench.

In the case of the active stiffness, the two bodies are,

respectively, the end-effector, with the attached frame

Σe, and a virtual body, attached to the desired frame

Σd. Hence, from (7.6), the following mapping can be

derived

he = A−⊤(ϕe)KPA−1(ϕe)δxde , (7.7)

in the case of an infinitesimal twist displacement δxde
defined as

δxde =
(

δpde

δθde

)
=

(
∆ ṗde

∆ωde

)
dt = −

(
ṗe

ωe

)
dt ,

where ∆ ṗde = ṗd − ṗe is the time derivative of the po-

sition error ∆pde = pd − pe and ∆ωde = ωd −ωe is the

angular velocity error. Equation (7.7) shows that the

actual stiffness matrix is A−⊤(ϕe)KPA−1(ϕe), which
depends on the end-effector orientation through the vec-

tor ϕe, so that, in practice, the selection of the stiffness

parameters is quite difficult.

This problem can be overcome by defining a geomet-

rically consistent active stiffness, with the same structure

and properties as ideal mechanical springs.

Mechanical Springs
Consider two elastically coupled rigid bodies A and B

and two reference frames Σa and Σb, attached to A and

B, respectively. Assuming that at equilibrium frames

Σa and Σb coincide, the compliant behavior near the

equilibrium can be described by the linear mapping

hbb = Kδxbab =
(

K t K c

K⊤
c Ko

)
δxbab , (7.8)

where hbb is the elastic wrench applied to body B, ex-

pressed in frame B, in the presence of an infinitesimal

twist displacement δxbab of frame Σa with respect to

frame Σb, expressed in frame B. The elastic wrench

and the infinitesimal twist displacement in (7.8) can

also be expressed equivalently in frame Σa, since Σa

and Σb coincide at equilibrium. Therefore, hbb = hab and

δxbab = δxaab; moreover, for the elastic wrench applied to

body A, haa = K tδxaba = −hbb being δxaba = −δxbab. This

property of themapping (7.8) is known as port symmetry.

In (7.8), K is the 6× 6 symmetric positive-

semidefinite stiffness matrix. The 3×3 matrices K t and

Ko, called respectively the translational stiffness and ro-

tational stiffness, are also symmetric. It can be shown

that, if the 3×3 matrix K c, called the coupling stiffness

is symmetric, there is maximum decoupling between

rotation and translation. In this case, the point corres-

ponding to the coinciding origins of the frames Σa and

Σb is called the center of stiffness. Similar definitions

and results can be formulated for the case of the com-

pliance matrix C = K−1. In particular, it is possible to
define a center of compliance in the case that the off-

diagonal blocks of the compliancematrix are symmetric.

The center of stiffness and compliance do not necessarily

coincide.

There are special cases in which no coupling exists

between translation and rotation, i. e., a relative transla-
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tion of the bodies results in a wrench corresponding to

a pure force along an axis through the center of stiff-

ness; also, a relative rotation of the bodies results in

a wrench that is equivalent to a pure torque about an

axis through the centers of stiffness. In these cases, the

center of stiffness and compliance coincide. Mechanical

systems with completely decoupled behavior are, e.g.,

the remote center of compliance (RCC) devices.

Since K t is symmetric, there exists a rotation matrix

Rt with respect to the frame Σa = Σb at equilibrium,

such that K t = Rt Γ t R⊤
t , and Γ t is a diagonal matrix

whose diagonal elements are the principal transla-

tional stiffnessess in the directions corresponding to the

columns of the rotation matrix Rt, known as the princi-

pal axes of translational stiffness. Analogously, Ko can

be expressed as Ko = Ro Γ o R⊤
o , where the diagonal

elements of Γ o are the principal rotational stiffnesses

about the axes corresponding to the columns of rotation

matrix Ro, known as the principal axes of rotational

stiffness. Moreover, assuming that the origins of Σa and

Σb at equilibrium coincide with the center of stiffness,

the expression K c = Rc Γ c R⊤
c can be found, where the

diagonal elements of Γ c are the principal coupling stiff-

nesses along the directions corresponding to the columns

of the rotation matrix Rc, known as the principal axes

of coupling stiffness. In sum, a 6×6 stiffness matrix can

be specified, with respect to a frame with origin in the

center of stiffness, in terms of the principal stiffness

parameters and principal axes.

Notice that the mechanical stiffness defined by (7.8)

describes the behavior of an ideal 6-DOF spring which

stores potential energy. The potential energy function of

an ideal stiffness depends only on the relative position

and orientation of the two attached bodies and is port

symmetric. A physical 6-DOF spring has a predomi-

nant behavior similar to the ideal one, but nevertheless

it always has parasitic effects causing energy dissipa-

tion.

Geometrically Consistent Active Stiffness
To achieve a geometrically consistent 6-DOFactive stiff-

ness, a suitable definition of the proportional control

action in control law (7.3) is required. This control ac-

tion can be interpreted as the elastic wrench applied to

the end-effector, in the presence of a finite displacement

of the desired frame Σd with respect to the end-effector

frame Σe. Hence, the properties of the ideal mechanical

stiffness for small displacements should be extended to

the case of finite displacements. Moreover, to guarantee

asymptotic stability in the sense of Lyapunov, a suitable

potential elastic energy function must be defined.

For simplicity, it is assumed that the coupling stiff-

ness matrix is zero. Hence, the potential elastic energy

can be computed as the sum of a translational potential

energy and a rotational potential energy.

The translational potential energy can be defined as

Vt =
1

2
∆p⊤

deK ′
Pt∆pde (7.9)

with

K ′
Pt =

1

2
RdKPtR

⊤
d + 1

2
ReKPtR

⊤
e ,

where KPt is a 3×3 symmetric positive-definite matrix.

The use of K ′
Pt in lieu of KPt in (7.9) guarantees that

the potential energy is port symmetric also in the case

of finite displacements. Matrices K ′
Pt and KPt coincide

at equilibrium (i. e., when Rd = Re) and in the case of

isotropic translational stiffness (i. e., when KPt = kPt I).

The computation of the power V̇t yields

V̇t = ∆ ṗe⊤de f e
∆t+∆ωe⊤

de me
∆t ,

where ∆ ṗede is the time derivative of the posi-

tion displacement ∆pede = R⊤
e (pd − pe), while ∆ωe

de =
R⊤
e (ωd −ωe). The vectors f e

∆
and µe

∆
are, respectively,

the elastic force and moment applied to the end-effector

in the presence of the finite position displacement∆pede.

These vectors have the following expressions when

computed in the base frame

f∆t = K ′
Pt∆pde m∆t = K ′′

Pt∆pde (7.10)

with

K ′′
Pt =

1

2
S(∆pde)RdKPtR

⊤
d ,

where S(·) is the skew-symmetric operator performing
the vector product. The vector h∆t =

(
f ⊤
∆t m⊤

∆t

)⊤
is the

elastic wrench applied to the end-effector in the pres-

ence of a finite position displacement ∆pde and a null

orientation displacement. The momentm∆t is null in the

case of isotropic translational stiffness.

To define the rotational potential energy, a suitable

definition of the orientation displacement between the

frames Σd and Σe has to be adopted. A possible choice

is the vector part of the unit quaternion {ηde, ǫede} that
can be extracted from matrix Re

d = R⊤
e Rd. Hence, the

orientation potential energy has the form

Vo = 2ǫe⊤de KPoǫ
e
de , (7.11)

where KPo is a 3×3 symmetric positive-definite matrix.

The function Vo is port symmetric because ǫede = −ǫded.
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The computation of the power V̇o yields

V̇o = ∆ωe⊤
de me

∆o ,

where

m∆o = K ′
Poǫde , (7.12)

with

K ′
Po = 2E⊤(ηde, ǫde)ReKPoR⊤

e

and E(ηde, ǫde) = ηde I − S(ǫde). The above equations

show that a finite orientation displacement ǫde = R⊤
e ǫede

produces an elastic wrench h∆o = (0⊤ m⊤
∆o)

⊤ which is

equivalent to a pure moment.

Hence, the total elastic wrench in the presence of

a finite position and orientation displacement of the de-

sired frame Σd with respect to the end-effector frame

Σe can be defined in the base frame as

h∆ = h∆t +h∆o . (7.13)

where h∆t and h∆o are computed according to (7.10)

and (7.12), respectively.

Using (7.13) for the computation of the elastic

wrench in the case of an infinitesimal twist displacement

δxede near the equilibrium, and discarding the high-order

infinitesimal terms, yields the linear mapping

hee = KPδxede =
(

KPt 0

0 KPo

)
δxede . (7.14)

Therefore, KP represents the stiffness matrix of an ideal

spring with respect to a frame Σe (coinciding with Σd

at equilibrium) with the origin at the center of stiff-

ness. Moreover, it can be shown, using definition (7.13),

that the physical/geometrical meaning of the principal

stiffnesses and of the principal axes for the matrices

KPt and KPo are preserved also in the case of large

displacements.

The above results imply that the active stiffness ma-

trix KP can be set in a geometrically consistent way with

respect to the task at hand.

Notice that geometrical consistency can also be en-

sured with different definitions of the orientation error

in the potential orientation energy (7.11), for example,

any error based on the angle/axis representation of Rd
e

can be adopted (the unit quaternion belongs to this cat-

egory), or, more generally, homogeneous matrices or

exponential coordinates (for the case of both position

and orientation errors). Also, the XYZ Euler angles ex-

tracted from the matrix Rd
e could be used; however, in

this case, it can be shown that the principal axes of rota-

tional stiffness cannot be set arbitrarily butmust coincide

with those of the end-effector frame.

Compliance control with a geometrically consistent

active stiffness can be defined using the control law

hc = h∆ − KDve+η(q) ,

with h∆ in (7.13). The asymptotic stability about the

equilibrium in the case he = 0 can be proven using the

Lyapunov function

V = 1

2
v⊤
e Λ(q)ve + Vt + Vo ,

with Vt and Vo given in (7.9) and (7.11), respectively,

whose time derivative along the trajectories of the

closed-loop system, in case the frame Σd is motionless,

has the same expression as in (7.4). When he 6= 0, a dif-

ferent asymptotically stable equilibrium can be found,

corresponding to a nonnull displacement of the desired

frameΣd with respect to the end-effector frameΣe. The

new equilibrium is the solution of the equation h∆ = he.

Stiffness control allows to keep the interaction force

and moment limited at the expense of the end-effector

position and orientation error, with a proper choice of

the stiffness matrix, without the need of a force/torque

sensor. However, in the presence of disturbances (e.g.,

joint friction) which can be modeled as an equivalent

end-effector wrench, the adoption of low values for the

active stiffness may produce large deviations with re-

spect to the desired end-effector position and orientation,

also in the absence of interaction with the environment.

7.2.2 Impedance Control

Stiffness control is designed to achieve a desired static

behavior of the interaction. In fact, the dynamics of

the controlled system depends on that of the robot

manipulator, which is nonlinear and coupled. A more

demanding objective may be that of achieving a de-

sired dynamic behavior for the end-effector, e.g., that of

a second-order mechanical system with six degrees of

freedom, characterized by a given mass, damping, and

stiffness, known as mechanical impedance.

The starting point to pursue this goal may be the

acceleration-resolved approach used for motion con-

trol, which is aimed at decoupling and linearizing the

nonlinear robot dynamics at the acceleration level via

an inverse dynamics control law. In the presence of

interaction with the environment, the control law

hc = Λ(q)α+Γ (q, q̇)q̇ +he (7.15)

cast into the dynamic model (7.2) results in

v̇e = α , (7.16)

P
a
rt

A
7
.2



168 Part A Robotics Foundations

where α is a properly designed control input with the

meaning of an acceleration referred to the base frame.

Considering the identity v̇e = R̄e
⊤v̇ee + ˙̄

Re
⊤vee, with

R̄e =
(

Re 0

0 Re

)
,

the choice

α = R̄e
⊤αe + ˙̄

R
⊤
e vee (7.17)

gives

v̇ee = αe , (7.18)

where the control input αe has the meaning of an ac-

celeration referred to the end-effector frame Σe. Hence,

setting

αe = K−1
M (v̇ed + KD∆vede +he

∆
−hee) , (7.19)

the following expression can be found for the closed-

loop system

KM∆v̇ede + KD∆vede +he
∆

= hee , (7.20)

where KM and KD are 6×6 symmetric and positive-

definite matrices, ∆v̇ede = v̇ed − v̇ee, ∆vede = ved −vee, v̇ed
and ved are, respectively, the acceleration and the vel-

ocity of a desired frame Σd and he
∆

is the elastic

wrench (7.13); all the quantities are referred to the

end-effector frame Σe.

The above equation describing the dynamic behav-

ior of the controlled end-effector can be interpreted as

a generalized mechanical impedance. The asymptotic

stability of the equilibrium in the case he = 0 can be

proven by considering the Lyapunov function

V = 1

2
∆ve⊤de KM∆vede+ Vt + Vo , (7.21)

Direct
kinematics

Inverse
dynamics

Impedance
control

Manipulator
and

environment

α τ

he

q

q·

pd, Rd

υd

pe, Re

υe

υ
·
d

Fig. 7.1 Impedance control

where Vt and Vo are defined in (7.9) and (7.11), respec-

tively, and whose time derivative along the trajectories

of system (7.20) is the negative semidefinite function

V̇ = −∆ve⊤de KD∆vede .

When he 6= 0, a different asymptotically stable equi-

librium can be found, corresponding to a nonnull

displacement of the desired frame Σd with respect to

the end-effector frame Σe. The new equilibrium is the

solution of the equation he
∆

= he.

In case Σd is constant, (7.20) has the meaning of

a true 6-DOF mechanical impedance if KM is chosen as

KM =
(

m I 0

0 M

)
,

where m is a mass and M is a 3×3 inertia tensor,

and KD is chosen as a block-diagonal matrix with 3×3

blocks. The physically equivalent system is a body of

mass m with inertia tensor M with respect to a frame

Σe attached to the body, subject to an external wrench

he. This body is connected to a virtual body attached to

frame Σd through a 6-DOF ideal spring with stiffness

matrix KP and is subject to viscous forces and moments

with damping KD. The function V in (7.21) represents

the total energy of the body: the sum of the kinetic and

potential elastic energy.

A block diagram of the resulting impedance control

is sketched in Fig. 7.1. The impedance control computes

the acceleration input as in (7.17) and (7.19) on the

basis of the position and orientation feedback as well

as the force and moment measurements. Then, the in-

verse dynamics control law computes the torques for the

joint actuators τ = J⊤hc with hc in (7.15). This control

scheme, in the absence of interaction, guarantees that

the end-effector frame Σe asymptotically follows the

desired frame Σd. In the presence of contact with the

environment, a compliant dynamic behavior is imposed

on the end-effector, according to the impedance (7.20),

and the contact wrench is bounded at the expense of a fi-

nite position and orientation displacement between Σd

andΣe. Differently from stiffness control, a force/torque

sensor is required for the measurement of the contact

force and moment.

Implementation Issues
The selection of good impedance parameters ensuring

a satisfactory behavior is not an easy task. In fact, the

dynamics of the closed-loop system is different in free

space and during interaction. The control objectives are

different as well, since motion tracking and disturbance
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rejectionmust be ensured in free space, while, during the

interaction, the main goal is achieving a suitable compli-

ant dynamic behavior for the end-effector. Notice also

that the dynamics of the controlled system during the

interaction depends on the dynamics of the environment.

To gain insight into these problems, assume that the

interaction of the end-effector with the environment can

be approximated by that derived from an ideal 6-DOF

spring connecting end-effector frameΣe to the environ-

ment frameΣo. Therefore, according to (7.8), the elastic

wrench exerted by the end-effector on the environment,

in the presence of an infinitesimal twist displacement of

Σe with respect to Σo, can be computed as

hee = Kδxeeo , (7.22)

whereΣe andΣo coincide at equilibrium and K is a stiff-

ness matrix. The above model holds only in the presence

of interaction, while the contact wrench is null when the

end-effector moves in free space.

The disturbances acting on the robotmanipulator and

the unmodeled dynamics (joint friction,modeling errors,

etc.) may be taken into account by introducing an addi-

tive term on the right-hand side of the dynamic model of

the robot manipulator (7.2), corresponding to an equiva-

lent disturbance wrench acting on the end-effector. This

term produces an additive acceleration disturbance γ e

on the right-hand side of (7.18). Therefore, using the

control law (7.19), the following closed-loop impedance

equation can be found

KM∆v̇ede + KD∆vede +he
∆

= hee + KMγ e . (7.23)

The tuning procedure for the impedance parameters

can be set up starting from the linearized model that

can be computed from (7.23) in the case of infinitesimal

displacements, i. e.:

KMδẍ
e
de + KDδẋede + (KP + K )δxede

= Kδxedo + KMγ e , (7.24)

where (7.22) and the equality δxeeo = −δxede+δxedo have

been used. The above equation is valid both for con-

strained (K 6= 0) and for free motion (K = 0).

It is evident that suitable dynamics of the position

and orientation errors can be set by suitably choosing

the matrix gains KM, KD, and KP. This task is easier

under the hypothesis that all the matrices are diagonal,

resulting in a decoupled behavior for the six components

of the infinitesimal twist displacement. In this case, the

transient behavior of each component can be set, e.g., by

assigning the natural frequency and damping ratio with

the relations

ωn =
√

kP + k

kM
, ζ = 1

2

kD√
kM(kP + k)

.

Hence, if the gains are chosen so that a given natural

frequency and damping ratio are ensured during the in-

teraction (i. e., for k 6= 0), a smaller natural frequency

with a higher damping ratio will be obtained when the

end-effector moves in free space (i. e., for k = 0). As for

the steady-state performance, the end-effector error for

the generic component is

δxde = k

(kP + k)
δxdo + kM

kP + k
γ

and the corresponding interaction force is

h = kPk

kP + k
δxdo − kMk

kP + k
γ .

The above relations show that, during interaction, the

contact force can be made small at the expense of a large

position error in steady state, as long as the active stiff-

ness kP is set low with respect to the stiffness of the

environment k, and vice versa. However, both the contact

force and the position error also depend on the external

disturbance γ ; in particular, the lower kP, the higher the

influence of γ on both δxde and h. Moreover, a low ac-

tive stiffness kP may result in a large position error also

in the absence of interaction (i. e., when k = 0).

Admittance Control
A solution to this drawback can be devised by separating

motion control from impedance control as follows. The

motion control action is purposefully made stiff so as to

enhance disturbance rejection but, rather than ensuring

tracking of the desired end-effector position and orien-

tation, it ensures tracking of a reference position and

orientation resulting from the impedance control action.

In other words, the desired position and orientation, to-

gether with the measured contact wrench, are input to

the impedance equation which, via a suitable integra-

tion, generates the position and orientation to be used as

a reference for the motion control.

To implement this solution, it is worth introducing

a reference frame other than the desired frame Σd. This

frame is referred to as the compliant frame Σc, and is

specified by the quantities pc, Rc, vc, and v̇c that are

computed from pd, Rd, vd, and v̇d and the measured

wrench hc, by integrating the equation

KM∆v̇cdc + KD∆vcdc+hc
∆

= hc , (7.25)

where hc
∆
is the elastic wrench in the presence of a fi-

nite displacement between the desired frameΣd and the
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Fig. 7.2 Impedance control with inner motion control loop (admittance control)

compliant frame Σc. Then, a motion control strategy,

based on inverse dynamics, is designed so that the end-

effector frameΣe is taken to coincidewith the compliant

frame Σc. To guarantee the stability of the overall sys-

tem, the bandwidth of the motion controller should be

higher than the bandwidth of the impedance controller.

A block diagram of the resulting scheme is sketched

in Fig. 7.2. It is evident that, in the absence of interaction,

the compliant frameΣc coincides with the desired frame

Σd and the dynamics of the position and orientation

error, as well as the disturbance rejection capabilities,

depend only on the gains of the inner motion control

loop. On the other hand, the dynamic behavior in the

presence of interaction is imposed by the impedance

gains (7.25).

The control scheme of Fig. 7.2 is also known as ad-

mittance control because, in (7.25), the measured force

(the input) is used to compute the motion of the compli-

ant frame (the output), given the motion of the desired

frame; a mapping with a force as input and a position

or velocity as output corresponds to a mechanical ad-

mittance. Vice versa, (7.20), mapping the end-effector

displacement (the input) from the desired motion tra-

jectory into the contact wrench (the output), has the

meaning of a mechanical impedance.

Simplified Schemes
The inverse dynamics control is model based and

requires modification of current industrial robot con-

trollers, which are usually equipped with independent

PI joint velocity controllers with very high bandwidth.

These controllers are able to decouple the robot dy-

namics to a large extent, especially in the case of slow

motion, and to mitigate the effects of external forces

on the manipulator motion if the environment is suffi-

ciently compliant. Hence, the closed-loop dynamics of

the controlled robot can be approximated by

q̇ = q̇r

in joint space, or equivalently

v̇e = vr (7.26)

in the operational space, where q̇r and vr are the control

signals for the inner velocity motion loop generated by

a suitably designed outer control loop. These control

signals are related by

q̇r = J−1(q)vr .

The velocity vr, corresponding to a velocity-resolved

control, can be computed as

ver = ved + K−1
D (he

∆
−hee) ,

where the control input has been referred to the end-

effector frame, KD is a 6×6 positive-definite matrix and

h∆ is the elastic wrench (7.13) with stiffness matrix KP.

The resulting closed-loop equation is

KD∆vede +he
∆

= hee

corresponding to a compliant behavior of the end-

effector characterized by a damping KD and a stiffness

KP. In the case KP = 0, the resulting scheme is known

as damping control.

Alternatively, an admittance-type control scheme

can be adopted, where the motion of a compliant frame

Σc can be computed as the solution of the differential

equation

KD∆vcdc +hc
∆

= hce

in terms of the position pc, orientation Rc, and velocity

twist vc, where the inputs are the motion variables of the

desired frameΣd and the contact wrench hce. Themotion

variables of Σc are then input to an inner position and

velocity controller. In the case KD = 0, the resulting

scheme is known as compliance control.
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7.3 Interaction Tasks

Indirect force control does not require explicit

knowledge of the environment, although to achieve a sat-

isfactory dynamic behavior the control parameters have

to be tuned for a particular task. On the other hand,

a model of the interaction task is required for the syn-

thesis of direct force control algorithms.

An interaction task is characterized by complex

contact situations between the manipulator and the en-

vironment. To guarantee proper task execution, it is

necessary to have an analytical description of the in-

teraction force and moment, which is very demanding

from a modeling viewpoint.

A real contact situation is a naturally distributed

phenomenon in which the local characteristics of the

contact surfaces as well as the global dynamics of the

manipulator and environment are involved. In detail:

• the environment imposes kinematic constraints on

the end-effector motion, due to one or more contacts

of different type, and a reaction wrench arises when

the end-effector tends to violate the constraints (e.g.,

the case of a robot sliding a rigid tool on a frictionless

rigid surface);

• the end-effector, while being subject to kinematic

constraints, may also exert a dynamic wrench on the

environment, in the presence of environment dynam-

ics (e.g., the case of a robot turning a crank, when

the crank dynamics is relevant, or a robot pushing

against a compliant surface);

• the contact wrench may depend on the structural

compliance of the robot, due to the finite stiffness of

the joints and links of the manipulator, as well as of

the wrist force/torque sensor or of the tool (e.g., an

end-effector mounted on an RCC device);

• local deformation of the contact surfaces may occur

during the interaction, producing distributed contact

areas (e.g., the case of a soft contact surface of the

tool or of the environment);

• static and dynamic friction may occur in the case of

non ideally smooth contact surfaces.

The design of the interaction control and the perfor-

mance analysis are usually carried out under simplifying

assumptions. The following two cases are considered:

1. the robot and the environment are perfectly rigid

and purely kinematics constraints are imposed by

the environment,

2. the robot is perfectly rigid, all the compliance in

the system is localized in the environment, and the

contact wrench is approximated by a linear elastic

model.

In both cases, frictionless contact is assumed. It is ob-

vious that these situations are only ideal. However, the

robustness of the control should be able to cope with

situations where some of the ideal assumptions are re-

laxed. In that case the control laws may be adapted to

deal with nonideal characteristics.

7.3.1 Rigid Environment

The kinematic constraints imposed by the environ-

ment can be represented by a set of equations that the

variables describing the end-effector position and ori-

entation must satisfy; since these variables depend on

the joint variables through the direct kinematic equa-

tions, the constraint equations can also be expressed in

the joint space as

φ(q) = 0 . (7.27)

The vector φ is an m ×1 function, with m < n, where n

is the number of joints of the manipulator, assumed to

be nonredundant; without loss of generality, the case

n = 6 is considered. Constraints of the form (7.27),

involving only the generalized coordinates of the sys-

tem, are known as holonomic constraints. The case of

time-varying constraints of the form φ(q, t) = 0 is not

considered here but can be analyzed in a similar way.

Moreover, only bilateral constraints expressed by equal-

ities of the form (7.27) are of concern; thismeans that the

end-effector always keeps contact with the environment.

The analysis presented here is known as kinetostatic

analysis.

It is assumed that the vector (7.27) is twice differen-

tiable and that itsm components are linearly independent

at least locally in a neighborhood of the operating point.

Hence, differentiation of (7.27) yields

Jφ(q)q̇ = 0 , (7.28)

where Jφ(q) = ∂φ/∂q is the m ×6 Jacobian of φ(q),

known as the constraint Jacobian. By virtue of the

above assumption, Jφ(q) is of rank m at least locally

in a neighborhood of the operating point.

In the absence of friction, the generalized interaction

forces are represented by a reaction wrench that tends

to violate the constraints. This end-effector wrench pro-

duces reaction torques at the joints that can be computed
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using the principle of virtual work as

τe = J⊤
φ (q)λ ,

where λ is an m ×1 vector of Lagrange multipliers.

The end-effector wrench corresponding to τe can be

computed as

he = J−⊤(q)τe = Sf(q)λ , (7.29)

where

Sf = J−⊤(q)J⊤
φ (q) . (7.30)

From (7.29) it follows that he belongs to the m-

dimensional vector space spanned by the columns of

the 6×m matrix Sf. The inverse of the linear transfor-

mation (7.29) is computed as

λ = S
†
f (q)he , (7.31)

where S
†
f denotes aweighted pseudoinverse of thematrix

Sf, i. e.,

S
†
f = (S⊤

f WSf)
−1S⊤

f W (7.32)

where W is a suitable weighting matrix.

Notice that, while the range space of the matrix Sf
in (7.30) is uniquely defined by the geometry of the con-

tact, thematrix Sf itself is not unique; also, the constraint

equations (7.27), the corresponding Jacobian Jφ as well

as the pseudoinverse S
†
f and the vector λ are not uniquely

defined.

In general, the physical units of measure of the elem-

ents of λ are not homogeneous and the columns of the

matrix Sf, as well as of the matrix S
†
f , do not necessar-

ily represent homogeneous entities. This may produce

invariance problems in the transformation (7.31) if he
represents a measured wrench that is subject to distur-

bances and, as a result, may have components outside

the range space of Sf. If a physical unit or a reference

frame is changed, the matrix Sf undergoes a transforma-

tion; however, the result of (7.31) with the transformed

pseudoinverse in general depends on the adopted phys-

ical units or on the reference frame. The reason is that

the pseudoinverse is the weighted least-squares solution

of a minimization problem based on the norm of the

vector he − Sf(q)λ, and the invariance can be guaran-

teed only if a physically consistent norm of this vector is

used. In the ideal case that he is in the range space of Sf,

there is a unique solution for λ in (7.31), regardless of

the weighting matrix, and hence the invariance problem

does not appear.

A possible solution consists of choosing Sf so that its

columns represent linearly independent wrenches. This

implies that (7.29) gives he as a linear combination of

wrenches and λ is a dimensionless vector. A physically

consistent norm on the wrench space can be defined

based on the quadratic form h⊤
e K−1he, which has the

meaning of an elastic energy if K is a positive-definite

matrix corresponding to a stiffness. Hence, the choice

W = K−1 can be made for the weighting matrix of the
pseudoinverse.

Notice that, for a given Sf, the constraint Jaco-

bian can be computed from (7.30) as Jφ(q) = S⊤
f J(q);

moreover, the constraint equations can be derived by

integrating (7.28).

Using (7.1) and (7.30), the equality (7.28) can be

rewritten in the form

Jφ(q)J
−1(q)J(q)q̇ = S⊤

f ve = 0 , (7.33)

which, by virtue of (7.29), is equivalent to

h⊤
e ve = 0 . (7.34)

Equation (7.34) represents the kinetostatic relation-

ship, known as reciprocity, between the ideal reaction

wrench he (belonging to the so-called force-controlled

subspace) and the end-effector twist that obeys the con-

straints (belonging to the so-called velocity-controlled

subspace). The concept of reciprocity, expressing the

physical fact that, in the hypothesis of rigid and friction-

less contact, the wrench does not cause any work against

the twist, is often confused with the concept of orthogo-

nality, which makes no sense in this case because twists

and wrenches belong to different spaces.

Equations (7.33) and (7.34) imply that the velocity-

controlled subspace is the reciprocal complement of the

m-dimensional force-controlled subspace, identified by

the range of matrix Sf. Hence, the dimension of the

velocity-controlled subspace is 6−m and a 6× (6−m)

matrix Sv can be defined, whose columns span the

velocity-controlled subspace, i. e.,

ve = Sv(q)ν , (7.35)

where ν is a suitable (6−m) × 1 vector. From (7.33)

and (7.35) the following equality holds

S⊤
f (q)Sv(q)= 0 ; (7.36)

moreover, the inverse of the linear transformation (7.35)

can be computed as

ν = S†v(q)ve , (7.37)

where S
†
v denotes a suitable weighted pseudoinverse of

the matrix Sv, computed as in (7.32).
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Notice that, as for the case of Sf, although the range

space of the matrix Sv is uniquely defined, the choice of

the matrix Sv itself is not unique.Moreover, the columns

of Sv are not necessarily twists and the scalar ν may

have nonhomogeneous physical dimensions. However,

in order to avoid invariance problems analogous to that

considered for the case of Sf, it is convenient to se-

lect the columns of Sv as twists so that the vector ν

is dimensionless; moreover, the weighting matrix used

to compute the pseudoinverse in (7.37) can be set as

W = M, being M a 6×6 inertia matrix; this corresponds

to defining a norm in the space of twists based on the

kinetic energy. It is worth observing that the transforma-

tion matrices of twists and wrenches, corresponding to

a change of reference frame, are different; however, if

twists are defined with angular velocity on top and trans-

lational velocity on bottom, then their transformation

matrix is the same as for wrenches.

The matrix Sv may also have an interpretation in

terms of Jacobians, as for Sf in (7.30). Due to the pres-

ence ofm independent holonomic constraints (7.27), the

configuration of the robot in contact with the environ-

ment can be described in terms of a (6−m) ×1 vector

r of independent variables. From the implicit function

theorem, this vector can be defined as

r = ψ(q) , (7.38)

where ψ(q) is any (6−m) ×1 twice-differentiable vec-

tor function such that the m components of φ(q) and

the n −m components of ψ(q) are linearly indepen-

dent at least locally in a neighborhood of the operating

point. This means that the mapping (7.38), together with

the constraint (7.27), is locally invertible, with inverse

defined as

q = ρ(r) , (7.39)

where ρ(r) is a 6×1 twice-differentiable vector function.

Equation (7.39) explicitly provides all the joint vectors

which satisfy the constraint (7.27). Moreover, the joint

velocity vectors that satisfy (7.28) can be computed as

q̇ = Jρ(r)ṙ ,

where Jρ(r)= ∂ρ/∂r is a 6× (6−m) full-rank Jacobian

matrix. Therefore, the following equality holds

Jφ(q)Jρ(r)= 0 ,

which can be interpreted as a reciprocity condition be-

tween the subspace of the reaction torques spanned by

the columns of the matrix J⊤
φ and the subspace of the

constrained joint velocities spanned by the columns of

the matrix Jρ .

Rewriting the above equation as

Jφ(q)J(q)
−1J(q)Jρ(r)= 0 ,

and taking into account (7.30) and (7.36), the matrix Sv
can be expressed as

Sv = J(q)Jρ(r) , (7.40)

which, by virtue of (7.38) and (7.39), it can be equiva-

lently expressed as a function of either q or r.

The matrices Sf and Sv, and their pseudoinverse

S
†
f and S

†
v are known as selection matrices. They play

a fundamental role for the task specification, i. e., the

specification of the desired end-effector motion and in-

teraction forces and moments, as well as for the control

synthesis.

7.3.2 Compliant Environment

In many applications, the interaction wrench between

the end-effector and a compliant environment can be ap-

proximated by an ideal elastic model of the form (7.22).

However, since the stiffnessmatrix K is positive definite,

this model describes a fully constrained case, when the

environment deformation coincides with the infinitesi-

mal twist displacement of the end-effector. In general,

however, the end-effector motion is only partially con-

strained by the environment and this situation can be

modeled by introducing a suitable positive-semidefinite

stiffness matrix.

The stiffness matrix describing the partially con-

strained interaction between the end-effector and the

environment can be computed by modeling the envi-

ronment as a couple of rigid bodies, S and O, connected

through an ideal 6-DOF spring of complianceC = K−1.
Body S is attached to a frame Σs and is in contact with

the end-effector; bodyO is attached to a frameΣowhich,

at equilibrium, coincides with frame Σs. The environ-

ment deformation about the equilibrium, in the presence

of a wrench hs, is represented by the infinitesimal twist

displacement δxso between frames Σs and Σo, which

can be computed as

δxso = C hs . (7.41)

All the quantities hereafter are referred to frame Σs but

the superscript s is omitted for brevity.

For the considered contact situation, the end-effector

twist does not completely belong to the ideal velocity

subspace, corresponding to a rigid environment, because
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the environment can deform. Therefore, the infinitesimal

twist displacement of the end-effector frame Σe with

respect to Σo can be decomposed as

δxeo = δxv + δxf , (7.42)

where δxv is the end-effector infinitesimal twist dis-

placement in the velocity-controlled subspace, defined

as the 6− m reciprocal complement of the force-

controlled subspace, while δxf is the end-effector

infinitesimal twist displacement corresponding to the

environment deformation. Hence:

δxv = Pvδxeo (7.43)

δxf = (I − Pv)δxeo = (I − Pv)δxso , (7.44)

where Pv = SvS
†
v and Sv and S

†
v are defined as in the

rigid environment case. The matrix Pv is a projection

matrix that filters out all the end-effector twists (and in-

finitesimal twist displacements) that are not in the range

space of Sv, while I − Pv is a projection matrix that

filters out all the end-effector twists (and infinitesimal

twist displacements) that are in the range space of Sv.

The twists Pvv are denoted as twists of freedom while

the twists (I − Pv)v are denoted as twists of constraint.

In the hypothesis of frictionless contact, the in-

teraction wrench between the end-effector and the

environment is restricted to a force-controlled subspace

defined by the m-dimensional range space of a matrix

Sf, as for the rigid environment case, i. e.,

he = Sfλ = hs , (7.45)

where λ is an m ×1 dimensionless vector. Premulti-

plying both sides of (7.42) by S⊤
f and using (7.41),

(7.43), (7.44), and (7.45) yields

S⊤
f δxeo = S⊤

f C Sfλ ,

where the identity S⊤
f Pv = 0 has been exploited. There-

fore, the following elastic model can be found:

he = Sfλ = K ′
δxeo , (7.46)

where K ′ = Sf(S
⊤
f CSf)

−1S⊤
f is the positive-semidefinite

stiffness matrix corresponding to the partially con-

strained interaction.

If the compliance matrix C is adopted as a weight-

ing matrix for the computation of S
†
f , then K ′ can be

expressed as

K ′ = PfK , (7.47)

where Pf = SfS
†
f is a projection matrix that filters out

all the end-effector wrenches that are not in the range

space of Sf.

The compliance matrix for the partially constrained

interaction cannot be computed as the inverse of K ′,
since thismatrix is of rankm < 6.However, using (7.44),

(7.41), and (7.45), the following equality can be found

δxf = C′he ,

where the matrix

C′ = (I − Pv)C , (7.48)

of rank 6−m, is positive semidefinite. If the stiffness

matrix K is adopted as a weighting matrix for the com-

putation of S
†
v, then the matrix C′ has the noticeable

expressionC′ = C − Sv(S
⊤
v K Sv)

−1S⊤
v , showing thatC′

is symmetric.

7.3.3 Task Specification

An interaction task can be assigned in terms of a desired

end-effector wrench hd and twist vd. In order to be con-

sistent with the constraints, these vectors must lie in the

force- and velocity-controlled subspaces, respectively.

This can be guaranteed by specifying vectors λd and νd
and computing hd and vd as

hd = Sfλd, vd = Svνd ,

where Sf and Sv have to be suitably defined on the basis

of the geometry of the task, and so that invariance with

respect to the choice of the reference frame and change

of physical units is guaranteed.

Many robotic tasks have a set of orthogonal ref-

erence frames in which the task specification is very

easy and intuitive. Such frames are called task frames

or compliance frames. An interaction task can be spec-

ified by assigning a desired force/torque or a desired

linear/angular velocity along/about each of the frame

axes. The desired quantities are known as artificial con-

straints because they are imposed by the controller; these

constraints, in the case of rigid contact, are complemen-

tary to those imposed by the environment, known as

natural constraints.

Some examples of task frame definition and task

specification are given below.

Peg-in-Hole
The goal of this task is to push the peg into the hole

while avoiding wedging and jamming. The peg has two

degrees of motion freedom, hence the dimension of the

velocity-controlled subspace is 6−m = 2, while the di-

mension of the force-controlled subspace is m = 4. The

task frame can be chosen as shown in Fig. 7.3 and the
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xt

yt

zt

Fig. 7.3 Insertion of a cylindrical peg into a hole

task can be achieved by assigning the following desired

forces and torques:

• zero forces along the xt and yt axes

• zero torques about the xt and yt axes

and the desired velocities

• a nonzero linear velocity along the zt-axis

• an arbitrary angular velocity about the zt-axis

The task continues until a large reaction force in the zt
direction is measured, indicating that the peg has hit the

bottom of the hole, not represented in the figure. Hence,

the matrices Sf and Sv can be chosen as

Sf =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0




, Sv =




0 0

0 0

1 0

0 0

0 0

0 1




,

where the columns of Sf have the dimensions of

wrenches and those of Sv have the dimensions of twists,

defined in the task frame, and they transform accordingly

when changing the reference frame. The task frame can

be chosen either attached to the end-effector or to the

environment.

Turning a Crank
The goal of this task is turning a crank with an idle

handle. The handle has two degrees of motion freedom,

corresponding to the rotation about the zt-axis and to

the rotation about the rotation axis of the crank. Hence

the dimension of the velocity-controlled subspace is

6−m = 2, while the dimension of the force-controlled

subspace is m = 4. The task frame can be assumed as

in the Fig. 7.4, attached to the crank. The task can be

xt

yt

zt

Fig. 7.4 Turning a crank with an idle handle

achieved by assigning the following desired forces and

torques:

• zero forces along the xt and zt axes

• zero torques about the xt and yt axes

and the following desired velocities

• a nonzero linear velocity along the yt-axis

• an arbitrary angular velocity about the zt-axis

Hence, th ematrices Sf and Sv can be chosen as

Sf =




1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




, Sv =




0 0

1 0

0 0

0 0

0 0

0 1




,

referred to the task frame. In this case, the task frame

is fixed with respect to the crank, but in motion with

respect both the end-effector frame (fixed to the handle)

and to the base frame of the robot. Hence, the matrices

Sf and Sv are time variant when referred either to the

end-effector frame or to the base frame.

Sliding a Block on a Planar Elastic Surface
The goal of this task is to slide a prismatic block

over a planar surface along the xt-axis, while pushing

with a given force against the elastic planar surface.

The object has three degrees of motion freedom, hence

the dimension of the velocity-controlled subspace is

6−m = 3 while the dimension of the force-controlled

subspace is m = 3. The task frame can be chosen at-

tached to the environment, as shown in Fig. 7.5, and the

task can be achieved by assigning the desired velocities:
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xt

yt

zt

Fig. 7.5 Sliding of a prismatic object on a planar elastic

surface

• a nonzero velocity along the xt-axis

• a zero velocity along the yt-axis

• a zero angular velocity about the zt-axis

and the desired forces and torques

• a nonzero force along the zt-axis

• zero torques about the xt and yt axes

Hence, the matrices Sf and Sv can be chosen as

Sf =




0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0




, Sv =




1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1




.

The elements of the 6×6 stiffness matrix K ′, corres-
ponding to the partially constrained interaction of the

end-effector with the environment, are all zero except

those of the 3×3 principal minor K ′
m formed by rows

3, 4, 5 and columns 3, 4, 5 of K ′, which can be computed
as

K ′
m =




c3,3 c3,4 c3,5

c4,3 c4,4 c4,5

c5,3 c5,4 c5,5




−1

,

where ci, j = c j,i are the elements of the compliance

matrix C.

General Contact Model
The task frame concept has proven to be very useful

for the specification of a variety of practical robotic

tasks. However, it only applies to task geometries with

limited complexity, for which separate control modes

can be assigned independently to three pure transla-

tional and three pure rotational directions along the axes

of a single frame. For more complex situations, as in

the case of multiple-point contact, a task frame may

not exist and more complex contact models have to be

adopted. A possible solution is represented by the vir-

tual contact manipulator model, where each individual

contact is modeled by a virtual kinematic chain between

the manipulated object and the environment, giving the

manipulated object (instantaneously) the same motion

freedom as the contact. The velocities and force kine-

matics of the parallel manipulator, formed by the virtual

manipulators of all individual contacts, can be derived

using the standard kinematics procedures of real man-

ipulators and allow the construction of bases for the twist

and wrench spaces of the total motion constraint.

A more general approach, known as constraint-

based task specification opens up new applications

involving complex geometries and/or the use of mul-

tiple sensors (force/torque, distance, visual sensors) for

controlling different directions in space simultaneously.

The concept of task frame is extended to that of multi-

ple features frames. Each of the feature frames makes it

possible tomodel part of the task geometry using transla-

tional and rotational directions along the axes of a frame;

also, part of the constraints is specified in each of the

feature frames. The total model and the total set of con-

straints are achieved by collecting the partial task and

constraints descriptions, each expressed in the individual

feature frames.

7.3.4 Sensor-Based Contact
Model Estimation

The task specification relies on the definition of the

velocity-controlled subspace and of the force-controlled

subspace assuming that an accurate model of the contact

is available all the time. On the other hand, in most prac-

tical implementations, the selection matrices Sf and Sv
are not exactly known, howevermany interaction control

strategies turn out to be rather robust against modeling

errors. In fact, to cope reliably with these situations is

exactly why force control is used. The robustness of

the force controller increases if the matrices Sf and Sv
can be continuously updated, using motion and/or force

measurements, during task execution.

In detail, a nominalmodel is assumed to be available;

when the contact situation evolves differently fromwhat

the model predicts, the measured and predicted motion

and force will begin to deviate. These small incompati-

bilities can be measured and can then be used to adapt

the model online, using algorithms derived from classi-

cal state-space prediction–correction estimators such as

the Kalman filter.

P
a
rt

A
7
.3



Force Control 7.4 Hybrid Force/Motion Control 177

υyt

υxt

υyr

a)

yt

xr

xt

fyt

fyt

fxt

yr

θ

θ

b)

yt

xr
xt

Fig. 7.6a,b Estimation of orientation error: (a) velocity-

based approach, (b) force-based approach

Figure 7.6 reports an example of error between nom-

inal and measured motion and force variables, typical of

a two-dimensional contour-following task. The orienta-

tion of the contact normal changes if the environment

is notplanar. Hence an angular error θ appears between

the nominal contact normal, aligned to the yt-axis of the

task frame (the frame with axes xt and yt), and the real

contact normal, aligned to the yr-axis of the real task

frame (the frame with axes xr and yr). This angle can

be estimated with either velocity or force measurements

only.

• Velocity-based approach: the executed linear vel-

ocity v, which is tangent to the real contour (aligned

to the xr-axis), does not completely lie along the

xt-axis, but has a small component vyt along the

yt-axis. The orientation error θ can then be approxi-

mated by θ = tan−1(vyt/vxt ).• Force-based approach: the measured (ideal) contact

force f does not completely lie along the nom-

inal normal direction, aligned to the yt-axis, but

has a small component fxt along the xt-axis. The

orientation error θ can then be approximated by

θ = tan−1( fxt/ fyt ).

The velocity-based approach is disturbed by me-

chanical compliance in the system; the force-based

approach is disturbed by contact friction.

7.4 Hybrid Force/Motion Control

The aim of hybrid force/motion control is to split up

simultaneous control of both end-effector motion and

contact forces into two separate decoupled subproblems.

In the following, the main control approaches in the

hybrid framework are presented for the cases of both

rigid and compliant environments.

7.4.1 Acceleration-Resolved Approach

As for the case of motion control, the acceleration-

resolved approach is aimed at decoupling and linearizing

the nonlinear robot dynamics at the acceleration level,

via an inverse dynamics control law. In the presence of

interactionwith the environment, a complete decoupling

between the force- and velocity-controlled subspaces is

sought. The basic idea is that of designing amodel-based

inner control loop to compensate for the nonlinear dy-

namics of the robot manipulator and decouple the force

and velocity subspaces; hence an outer control loop is

designed to ensure disturbance rejection and tracking of

the desired end-effector force and motion.

Rigid Environment
In the case of a rigid environment, the external wrench

can be written in the form he = Sfλ. The force multiplier

λ can be eliminated from (7.2) by solving (7.2) for v̇e
and substituting it into the time derivative of the last

equality (7.33). This yields:

λ = Λf(q)

{
S⊤
f Λ−1(q)

[
hc −µ(q, q̇)

]
+ Ṡ

⊤
f ve

}
,

(7.49)

where Λf(q) = (S⊤
f Λ−1Sf)

−1 and µ(q, q̇) = Γ q̇ +η.

Therefore the constraint dynamics can be rewritten in

the form

Λ(q)v̇e + SfΛf(q)Ṡ
⊤
f ve = P(q)

[
hc −µ(q, q̇)

]
,

(7.50)

where P = I − SfΛfS
⊤
f Λ−1. Notice that P Sf = 0, hence

the 6×6 matrix P is a projection matrix that filters out

all the end-effector wrenches lying in the range of Sf.

These correspond to wrenches that tend to violate the

constraints.
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Equation (7.49) reveals that the force multiplier vec-

tor λ instantaneously depends also on the applied input

wrench hc. Hence, by suitably choosing hc, it is possible

to directly control the m independent components of the

end-effector wrench that tend to violate the constraints;

these components can be computed from the m force

multipliers through (7.29). On the other hand, (7.50)

represents a set of six second-order differential equa-

tions whose solution, if initialized on the constraints,

automatically satisfy (7.27) at all times.

The reduced-order dynamics of the constrained sys-

tem is described by 6−m second-order equations that

are obtained by premultiplying both sides of (7.50) by

the matrix S⊤
v and substituting the acceleration v̇e with

v̇e = Svν̇ + Ṡvν .

The resulting equations are

Λv(q)ν̇ = S⊤
v

[
hc−µ(q, q̇)−Λ(q)Ṡvν

]
, (7.51)

whereΛv = S⊤
v ΛSv and the identities (7.36) and S⊤

v P =
Sv have been used. Moreover, expression (7.49) can be

rewritten as

λ = Λf(q)S
⊤
f Λ−1(q)

[
hc −µ(q, q̇)−Λ(q)Ṡvν

]
,

where the identity Ṡ
⊤
f Sv = −S⊤

f Ṡv has been exploited.

An inverse-dynamics inner control loop can be de-

signed by choosing the control wrench hc as

hc = Λ(q)Svαv + Sf fλ +µ(q, q̇)+Λ(q)Ṡvν ,

(7.52)

where αv and fλ are properly designed control inputs.

Substituting (7.52) into (7.51) and (7.49) yields

ν̇ = αν

λ = fλ ,

showing that control law (7.52) allows complete de-

coupling between the force- and velocity-controlled

subspaces.

It is worth noticing that, for the implementation

of the control law (7.52), the constraint (7.27) as

well as (7.38) defining the vector of the configuration

variables for the constrained system are not required,

provided that the matrices Sf and Sv are known or es-

timated online. In these cases, the task can easily be

assigned by specifying a desired force, in terms of the

vector λd(t), and a desired velocity, in terms of the vector

νd(t); moreover, a force/velocity control is implemented.

The desired force λd(t) can be achieved by setting

fλ = λd(t) , (7.53)

but this choice is very sensitive to disturbance forces,

since it contains no force feedback. Alternative choices

are

fλ = λd(t)+ KPλ

[
λd(t)−λ(t)

]
, (7.54)

or

fλ = λd(t)+ K Iλ

t∫

0

[
λd(τ)−λ(τ)

]
dτ , (7.55)

where KPλ and K Iλ are suitable positive-definite ma-

trix gains. The proportional feedback is able to reduce

the force error due to disturbance forces, while the in-

tegral action is able to compensate for constant bias

disturbances.

The implementation of force feedback requires the

computation of the force multiplier λ from the meas-

urement of the end-effector wrench he, which can be

achieved by using (7.31).

Velocity control is achieved by setting

αν = ν̇d(t)+ KPν

[
νd(t)−ν(t)

]

+ K Iν

t∫

0

[
νd(τ)−ν(τ)

]
dτ , (7.56)

where KPν and K Iν are suitable matrix gains. It is

straightforward to show that asymptotic tracking of νd(t)

and ν̇d(t) is ensured with exponential convergence for

any choice of positive-definite matrices KPν and K Iν .

The computation of the vector ν from the available

measurements can be achieved using (7.37), where the

end-effector twist is computed from joint position and

velocity measurements through (7.1).

Equations (7.54) or (7.55) and (7.56) represent the

outer control loop ensuring force/velocity control and

disturbance rejection.

When equations (7.27) and (7.38) are known, the

matrices Sf and Sv can be computed according to (7.30)

and (7.40) and a force/position control can be designed

by specifying a desired force λd(t) and a desired posi-

tion rd(t).

Force control can be designed as above, while posi-

tion control can be achieved by setting

αν = r̈d(t)+ KDr

[
ṙd(t)−ν(t)

]
+ KPr

[
rd(t)− r(t)

]
.

Asymptotic tracking of rd(t), ṙd(t) and r̈d(t) is ensured

with exponential convergence for any choice of positive-

definite matrices KDr and KPr . The vector r required for

position feedback can be computed from joint position

measurements via (7.38).

P
a
rt

A
7
.4



Force Control 7.4 Hybrid Force/Motion Control 179

Compliant Environment
In the case of a compliant environment, according to the

decomposition (7.42) of the end-effector displacement,

the end-effector twist can be decomposed as

ve = Svν +C′Sfλ̇ , (7.57)

where the first term is a twist of freedom, the second

term is a twist of constraint, the vector ν is defined as

in (7.40), and C′ is defined in (7.48). Assuming a con-
stant contact geometry and compliance, i. e., Ṡv = 0,

Ċ
′ = 0, and Ṡf = 0, a similar decomposition holds in

terms of acceleration

v̇e = Svν̇ +C′Sfλ̈ . (7.58)

An inverse-dynamics control law (7.15) can be

adopted, resulting in the closed loop (7.16), where α

is a properly designed control input.

In view of the acceleration decomposition (7.58), the

choice

α = Svαν +C′Sf fλ (7.59)

allows decoupling of the force control from velocity

control. In fact, substituting (7.58) and (7.59) into (7.16)

and premultiplying both sides of the resulting equation

once by S
†
v and once by S⊤

f , the following decoupled

equations can be derived

ν̇ = αν (7.60)

λ̈ = fλ . (7.61)

Hence, by choosing αν according to (7.56) as for the

rigid environment case, asymptotic tracking of a desired

velocity νd(t) and acceleration ν̇d(t) is ensured, with

exponential convergence. The control input fλ can be

chosen as

fλ = λ̈d(t)+ KDλ

[
λ̇d(t)− λ̇(t)

]

+ KPλ

[
λd(t)−λ(t)

]
, (7.62)

ensuring asymptotic tracking of a desired force trajec-

tory
(
λd(t), λ̇d(t), λ̈d(t)

)
with exponential convergence

for any choice of positive-definite matrices KDλ

and KPλ.

Differently from the rigid environment case, feed-

back of λ̇ is required for the implementation of the force

control law (7.62). This quantity could be computed

from end-effector wrench measurements he as

λ̇ = S
†
f ḣe .

However, since the wrench measurement signal is often

noisy, the feedback of λ̇ is often replaced by

λ̇ = S
†
f K ′ J(q)q̇ , (7.63)

where joint velocities are measured using tachometers

or computed from joint positions via numerical differ-

entiation and K ′ is the positive-semidefinite stiffness

matrix (7.47) describing the partially constrained inter-

action. For the computation of (7.63), only knowledge

(or an estimate) of K ′ is required, and not that of the

full stiffness matrix K . Also, the implementation of the

control law (7.59) requires knowledge (or an estimate)

of the compliance matrix C′ of the partially constrained
interaction and not that of the full compliance matrix C.

If the contact geometry is known, but only an esti-

mate of the stiffness/compliance of the environment is

available, the control law (7.59), with (7.62), may still

guarantee the convergence of the force error, if a con-

stant desired force λd is assigned. In this case, the control

law (7.59) has the form

α = Svαν + Ĉ
′
Sf fλ ,

where Ĉ
′ = (I − Pv)Ĉ and Ĉ is an estimate of the com-

pliance matrix. Hence, (7.60) still holds, while, in lieu

of (7.61), the following equality can be found

λ̈ = Lf fλ

where Lf = (S⊤
f C Sf)

−1S⊤
f Ĉ Sf is a nonsingular matrix.

Thus, the force- and velocity-controlled subspaces re-

main decoupled and the velocity control law (7.56) does

not need to be modified. On the other hand, if the feed-

back of the time derivative of λ is computed using (7.63),

only an estimate
˙̂
λ can be obtained. Using (7.63), (7.57)

and (7.46), the following equality can be found

˙̂
λ = L−1

f λ̇ .

Therefore, computing the force control law f λ as

in (7.62) with a constant λd,
˙̂
λ in lieu of λ̇ and

KDλ = KDλ I, the dynamics of the closed-loop system

is

λ̈+ KDλλ̇+ LfKPλλ = LfKPλλd ,

showing that exponential asymptotic stability of the

equilibrium λ = λd can be ensured, also in the pres-

ence of the uncertain matrix Lf, with a suitable choice

of the gains KDλ and KPλ.

7.4.2 Passivity-Based Approach

The passivity-based approach exploits the passivity

properties of the dynamic model of the manipulator,

which hold also for the constrained dynamicmodel (7.2).

It can be easily shown that the choice of the matrix
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C(q, q̇) that guarantees the skew symmetry of the ma-

trix Ḣ(q)−2C(q, q̇) in the joint space, also makes the

matrix Λ̇(q)−2Γ (q, q̇) skew symmetric. This funda-

mental property of Lagrangian systems is at the base of

passivity-based control algorithms.

Rigid Environment
The control wrench hc can be chosen as

hc = Λ(q)Svν̇r +Γ ′(q, q̇)νr + (S†v)
⊤Kν(νr −ν)

+η(q)+ Sf fλ , (7.64)

where Γ ′(q, q̇) = Γ Sv +ΛṠv, Kν is a suitable sym-

metric and positive-definite matrix, and νr and f λ are

properly designed control inputs.

Substituting (7.64) into (7.2) yields

Λ(q)Svṡν +Γ ′(q, q̇)sν + (S†v)
⊤Kνsν

+ Sf( f λ −λ)= 0 (7.65)

with ṡν = ν̇r − ν̇ and sν = νr − ν, showing that the

closed-loop system remains nonlinear and coupled.

Premultiplying both sides of (7.65) by the matrix Sv,

the following expression for the reduced-order dynamics

is achieved

Λv(q)ṡν +Γ v(q, q̇)sν + Kνsν = 0 , (7.66)

with Γ v = S⊤
v Γ (q, q̇)Sv + S⊤

v Λ(q)Ṡv; it can easily be

shown that the skew symmetry of the matrix Λ̇(q)−
2Γ (q, q̇) implies that the matrix Λ̇v(q)−2Γ v(q, q̇) is

skew symmetric as well.

On the other hand, premultiplying both sides

of (7.65) by the matrix S⊤
f Λ−1(q), the following ex-

pression for the force dynamics can be found

fλ −λ = −Λf(q)S
⊤
f

·Λ−1(q)
[
Γ ′(q, q̇)− (S†v)

⊤K ν

]
sν , (7.67)

showing that the force multiplier λ instantaneously de-

pends on the control input fλ but also on the error sν in

the velocity-controlled subspace.

The asymptotic stability of the reduced-order sys-

tem (7.66) can be ensured with the choices

ν̇r = ν̇d +α∆ν , (7.68)

νr = νd +α∆xν , (7.69)

where α is a positive gain, ν̇d and νd are the desired

acceleration and velocity, respectively,∆ν = νd−ν, and

∆xν =
t∫

0

∆ν(τ)dτ .

The stability proof is based on the positive-definite

Lyapunov function

V = 1

2
s⊤
ν Λv(q)sν +α∆x⊤

ν Kν∆xν ,

whose time derivative along the trajectories of (7.66),

V̇ = −∆ν⊤Kν∆ν −α2∆x⊤
ν K ν∆xν ,

is a definite semi-negative function. Hence, ∆ν = 0,

∆xν = 0, and sν = 0 asymptotically. Therefore, tracking

of the desired velocity νd(t) is ensured. Moreover, the

right-hand side of (7.67) remains bounded and vanishes

asymptotically. Hence, tracking of the desired force

λd(t) can be ensured by setting fλ as for the acceleration-

resolved approach, according to the choices (7.53),

(7.54), or (7.55).

Notice that position control can be achieved if a de-

sired position rd(t) is assigned for the vector r in (7.38),

provided that the matrices Sf and Sv are computed ac-

cording to (7.30) and (7.40), and the vectors ν̇d = r̈d,

νd = ṙd, and∆xν = rd−r are used in (7.68) and (7.69).

Compliant Environment
The control wrench hc can be chosen as

hc = Λ(q)v̇r +Γ (q, q̇)vr + K s(vr −ve)+he+η(q) ,

(7.70)

where K s is a suitable symmetric positive-definite ma-

trix while vr and its time derivative v̇r are chosen as

vr = vd +α∆x ,

v̇r = v̇d +α∆v ,

where α is the positive gain, vd and its time derivative

v̇d are properly designed control inputs, ∆v = vd −ve,

and

∆x =
t∫

0

∆vdτ .

Substituting (7.70) into (7.2) yields

Λ(q)ṡ +Γ (q, q̇)s + K ss = 0 (7.71)

with ṡ = v̇r − v̇e and s = vr −ve.

The asymptotic stability of system (7.71) can be

ensured by setting:

vd = Svνd +C′Sfλ̇d ,

where νd(t) is a desired velocity trajectory and λd(t) is

the desired force trajectory. The stability proof is based

on the positive-definite Lyapunov function

V = 1

2
s⊤Λ(q)s +α∆x⊤K s∆x ,
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whose time derivative along the trajectories of (7.71),

V̇ = −∆v⊤K s∆v−α2∆x⊤K s∆x ,

is a negative-definite function. Hence, ∆v = 0 and

∆x = 0, asymptotically. In the case of constant contact

geometry and stiffness, the following equalities hold

∆v = Sv(νd −ν)+C′Sf(λ̇d − λ̇) ,

∆x = Sv

t∫

0

(νd −ν)dτ +C′Sf(λd −λ) ,

showing that both the velocity and force tracking errors,

belonging to reciprocal subspaces, converge asymptoti-

cally to zero.

7.4.3 Velocity-Resolved Approach

The acceleration-resolved approach, as well as the

passivity-based approach, require modification of the

current industrial robot controllers. As for the case of

impedance control, if the contact is sufficiently com-

pliant, the closed-loop dynamics of a motion-controlled

robot can be approximated by (7.26), corresponding to

a velocity-resolved control.

To achieve force and velocity control, according to

the end-effector twist decomposition (7.57), the control

input vr can be chosen as

vr = Svvν +C′Sf fλ , (7.72)

with

vν = νd(t)+ K Iν

t∫

0

[νd(τ)−ν(τ)]dτ , (7.73)

and

fλ = λ̇d(t)+ KPλ[λd(t)−λ(t)] , (7.74)

where K Iν and KPλ are suitable symmetric and positive-

definite matrix gains. Decoupling between velocity- and

force-controlled subspaces and exponential asymptotic

stability of the closed-loop system can be proven as for

the acceleration-resolved approach. Also, since the force

error has second-order dynamics, an integral action can

be added to (7.74) to improve the disturbance rejection

capabilities, i. e.:

fλ = λ̇d(t)+ KPλ

[
λd(t)−λ(t)

]

+K Iλ

t∫

0

[
λd(τ)−λ(τ)

]
dτ , (7.75)

and the exponential asymptotic stability is guaranteed if

the matrices KPλ and K Iλ are symmetric and positive

definite.

If an estimate Ĉ of the stiffnessmatrix of the environ-

ment is used in (7.72), as for the acceleration-resolved

approach, the exponential convergence of λ to a constant

λd can still be ensured for both (7.74) and (7.75).

In some applications, besides the stiffness matrix,

also the geometry of the environment is uncertain. In

these cases, a force/motion control law similar to (7.72)

can be implemented, without using the selection matri-

ces Sv and Sf to separate the force-controlled subspace

from the velocity-controlled subspace. The motion con-

trol law can be set as in (7.73), but using full velocity

feedback. Also, the force control law can be set as

in (7.75), but using full force and moment feedback.

That is, both motion control and force control are ap-

plied in all directions of the six-dimensional (6-D)

space. The resulting control, known as force control with

feedforward motion or parallel force/position control

guarantees force regulation at the expense of position

errors along the constrained task directions, thanks to

the dominance of the force controller over the position

controller ensured by the presence of the integral action

on the force error.

7.5 Conclusions and Further Reading

This chapter has summarized the main approaches to

force control in a unifying perspective. However, there

are many aspects that have not been considered and

that must be carefully taken into account when dealing

with interaction robotic tasks. The two major paradigms

of force control (impedance and hybrid force/motion

control) are based on several simplifying assumptions

that are only partially satisfied in practical implemen-

tations. In fact, the performance of a force-controlled

robotic system depends on the interaction with a chang-

ing environment which is very difficult to model and

identify correctly. A general contact situation is far

from being completely predictable, not only quantita-

tively, but also qualitatively: the contact configuration

can change abruptly, or be of a different type than ex-

pected. Hence, the standard performance indices used
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to evaluate a control system, i. e., stability, bandwidth,

accuracy, and robustness, cannot be defined by consid-

ering the robotic system alone, as for the case of robot

motion control, but must be always referred to the par-

ticular contact situation at hand. Also, a classification

of all these different situations is not easy, especially in

the case of dynamics environments and when the task

involves multiple contacts acting in parallel.

Due to the inherent complexity of the force control

problem, a large number of research papers on this topic

have been published in the past three decades. A descrip-

tion of the state of the art of the first decade is provided

in [7.20], whereas the progress of the second decade is

surveyed in [7.21] and [7.22]. More recently, two mono-

graphs on force control [7.23, 24] have appeared. In the

following, a list of references is provided, where more

details on the arguments presented in the chapter, as well

as topics not covered here, can be found.

7.5.1 Indirect Force Control

The concept of generalized spring and damping for force

control in joint coordinates was originally proposed

in [7.3] and the implementation discussed in [7.10].

Stiffness control in Cartesian coordinates was proposed

in [7.9]. Devices based on the remote center of compli-

ance were discussed in [7.25] for successful mating of

rigid parts. The original idea of a mechanical impedance

model used for controlling the interaction between the

manipulator and the environment is presented in [7.7],

and a similar formulation is given in [7.8]. Stability

of impedance control was analyzed in [7.26] and the

problems of interaction with a stiff environment were

considered in [7.27].

Adaptive impedance control algorithms [7.28, 29]

have been proposed to overcome uncertainties in the dy-

namic parameters of the robot manipulator, while robust

control schemes can be found in [7.30]. Impedance con-

trol has also been used in the hybrid force/motion control

framework [7.31].

A reference work on modeling 6-DOF (spatial) stiff-

ness is [7.32], while the properties of spatial compliance

have been analyzed in detail in [7.33–35]; a 6-DOF

variable compliant wrist was proposed in [7.36], while

several studies concerning the construction of pro-

grammed compliances, optimized for specific tasks,

have been proposed [7.37, 38]. The energy-based ap-

proach to derive a spatial impedance was introduced

in [7.39], using rotation matrices; various 6-DOF

impedance control schemes based on different repre-

sentations of end-effector orientation, including the unit

quaternion, can be found in [7.40]. The quaternion-based

formulation is extended to the case of non-block-

diagonal stiffness matrix in [7.41]. A rigorous treatment

of spatial impedance control in a passivity framework

can be found in [7.42].

7.5.2 Task Specification

The concepts of natural and artificial constraints and of

compliance framewere introduced in [7.11]. These ideas

have been systematically developed in [7.12, 43] within

the task frame formalism. Theoretical issues on the reci-

procity of generalized force and velocity directions are

discussed in [7.44, 45], while invariance in computing

the generalized inverse in robotics is addressed in [7.46].

The issue of partially constrained tasks is considered

in [7.47], where the models of positive-semidefinite

stiffness and compliance matrices are developed. The

problem of estimating geometric uncertainties is con-

sidered in [7.48, 49], as well as the issue of linking

constraint-based task specification with real-time task

execution control. This approach is generalized in [7.50],

where a systematic constraint-based methodology to

specify complex tasks is presented.

7.5.3 Hybrid Force/Motion Control

Early works on force control can be found in [7.10].

The original hybrid force/positon control concept was

introduced in [7.13], based on the natural and artificial

constraint task formulation [7.11]. The explicit inclu-

sion of the manipulator dynamic model was presented

in [7.17], and a systematic approach to modeling the in-

teraction with a dynamic environment was developed

in [7.51]. The constrained formulation with inverse dy-

namic controllers is treated in [7.14,52] in the Cartesian

space as well as in [7.15] joint space. The constrained

approach was also used in [7.16] with a controller

based on linearized equations. The invariance problems

pointed out in [7.45] were correctly addressed, among

other papers, in [7.44,53]. Transposition of model-based

schemes from unconstrained motion control to con-

strained cases was accomplished for adaptive control

in [7.18, 54, 55] and for robust control in [7.56].

Approaches designed to cope with uncertainties in

the environment geometry are the force control with

feedforward motion scheme proposed in [7.2] and the

parallel force/position control [7.19], based on the

concept of dominance of force control on motion con-

trol, thanks to the use of an integral action on the

force error. A parallel force/position regulator was de-
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veloped in [7.57]. The integral action for removing

steady-state force errors has traditionally been used; its

stability was proven in [7.58], while robustness with

respect to force measurement delays was investigated

in [7.59, 60].

It has generally been recognized that force con-

trol may cause unstable behavior during contact with

environment. Dynamic models for explaining this phe-

nomenon were introduced in [7.61] and experimental

investigations can be found in [7.62] and [7.63].

Moreover, control schemes are usually derived on the

assumption that the manipulator end-effector is in con-

tact with the environment and that this contact is not

lost. Impact phenomena may occur and deserve careful

consideration, and there is a need for global ana-

lysis of control schemes including the transition from

noncontact to contact situations and vice versa, see

e.g., [7.64–66].
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