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61. Evolutionary Robotics

Dario Floreano, Phil Husbands, Stefano Nolfi

Evolutionary Robotics is a method for automati-
cally generating artificial brains and morphologies
of autonomous robots. This approach is use-
ful both for investigating the design space
of robotic applications and for testing sci-
entific hypotheses of biological mechanisms
and processes. In this chapter we provide an
overview of methods and results of Evolutionary
Robotics with robots of different shapes, di-
mensions, and operation features. We consider
both simulated and physical robots with special
consideration to the transfer between the two
worlds.
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61.1 Method

Evolutionary robotics is a method for the automatic cre-

ation of autonomous robots [61.1]. It is inspired by

the Darwinian principle of selective reproduction of

the fittest, captured by evolutionary algorithms [61.2].

In evolutionary robotics, robots are considered as au-

tonomous artificial organisms that develop their own

control system and body configuration in close interac-

tion with the environment without human intervention.

Drawing inspiration from principles of biological self-

organization, evolutionary robotics includes elements of

evolutionary, neural, developmental, and morphological

systems. The idea that an evolutionary process could

drive the generation of control systems dates back to

at least the 1950s [61.3] with a more explicit form ap-

pearing in the mid 1980s with the ingenious thought

experiments by neuroscientist Valentino Braitenberg on

neurally driven vehicles [61.4]. In the early 1990s, the

first generation of simulated artificial organisms with

a genetic code describing the neural circuitry and mor-

phology of a sensory motor system began evolving on

computer screens [61.5–8]. At that time, real robots

were still complicated and expensive machines that re-

quired specialized programming techniques and skillful

manipulation. Towards the end of that period, a new

generation of robots started to emerge that shared im-

portant characteristics with simple biological systems:
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1424 Part G Human-Centered and Life-Like Robotics
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Fig. 61.1 Evolutionary experiments on a single robot. Each individ-

ual of the population is decoded into a corresponding neurocontroller

which reads sensory information and sends motor commands to the

robot every 300 ms while its fitness is automatically evaluated and

stored away for reproductive selection

robustness, simplicity, small size, flexibility, and modu-

larity [61.9, 10]. Above all, those robots were designed

so that they could be programmed and manipulated by

people without engineering training. Those technolog-

ical achievements, together with the growing influence

of biological inspiration in artificial intelligence [61.11],

coincided with the first evolutionary experiments on real

robots [61.12–14], and the term evolutionary robotics

was coined [61.15].

The major methodological steps in evolutionary

robotics proceed as follows (Fig. 61.1). An initial popu-

lation of different artificial chromosomes, each encoding

the control system (and possibly the morphology) of

a robot, is randomly created. Each of these chromo-

somes is then decoded into a corresponding controller,

for example a neural network, and downloaded into the

processor of the robot. The robot is then let free to act

(move, look around, manipulate the environment) ac-

cording to a genetically specified controller while its

performance for a given task is automatically evaluated.

Performance evaluation is done by a fitness function

that measures how fast and straight the robot moves,

how frequently it collides with obstacles, etc. This

procedure is repeated for all chromosomes of the pop-

ulation. The fittest individuals (those that have received

more fitness points) are allowed to reproduce by gen-

erating copies of their chromosomes with the addition

of random modifications introduced by genetic opera-

tors (e.g., mutations and exchange of genetic material).

The newly obtained population is then tested again on

the same robot. This process is repeated for a num-

ber of generations until an individual is born which

satisfies the fitness function set by the user. The con-

trol system of evolved robots, encoded in an artificial

genome, is therefore generated by a repeated process

of selective reproduction, random mutation, and ge-

netic recombination, similarly to what happens in natural

evolution.

61.2 First Steps

In an early experiment on robot evolution without hu-

man intervention, carried out at Ecole Polytechnique

Fédérale de Lausanne (EPFL) [61.12], a small wheeled

robot was evolved for navigation in a looping maze

(Fig. 61.2). The Khepera robot has a diameter of 55 mm

and two wheels with controllable velocities in both di-

rections of rotation. It also has eight infrared sensors, six

on one side and two on the other side, that can function

either in active mode to measure distance from obstacles

or in passive mode to measure the amount of (infrared)

light in the environment. The robot was connected to

a desktop computer through rotating contacts that pro-

vided both power supply and data exchange through

a serial port.

A simple genetic algorithm [61.16] was used to

evolve the synaptic strengths of a neural network com-

posed of eight sensory neurons and two motor neurons.

Each sensory unit was clamped to one of the eight ac-

tive infrared sensors whose value was updated every

300 ms. Each motor unit received weighted signals from

the sensory units and from the other motor unit, plus

a recurrent connection with itself with a 300 ms delay.

The net input of the motor units was offset by a modi-

fiable threshold and passed through a logistic squashing

function. The resulting outputs, in the range [0, 1], were

used to control the two motors so that an output of 1

generated maximum rotation speed in one direction, an

output of 0 generated maximum rotation speed in the

opposite direction, and an output of 0.5 did not generate

any motion in the corresponding wheel. A population of

80 individuals, each coding the synaptic strengths and

threshold values of the neural controllers, was initialized

with all weights set to small random values centered

around zero. Each individual was tested on the phys-
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Evolutionary Robotics 61.2 First Steps 1425

Fig. 61.2 Bird’s-eye view of the desktop Khepera robot in

the looping maze

ical robot for 80 sensorimotor cycles (approximately

24 s) and evaluated at every cycle according to a fitness

function with three components measured onboard the

robot:

φ = V (1−
√

∆v)(1− i) , (61.1)

where V is the average rotation speed of the two wheels,

∆v is the absolute value of the algebraic difference be-

tween the signed speed values of the wheels (positive

is one direction, negative the other), and i is the nor-

malized activation value of the infrared sensor with the

highest activity. The first component is maximized by

speed, the second by straight motion, and the third by

distance from objects.

During the first 100 generations, both average and

best fitness values grew steadily, as shown in Fig. 61.3.

A fitness value of 1.0 would correspond to a robot mov-

ing straight at maximum speed in an open space and

therefore was not attainable in the looping maze shown

in Fig. 61.2, where some of the sensors were often ac-

tive and where several turns were necessary to navigate.

Figure 61.4 shows the trajectory of the best individual

of the last generation.

Although the fitness function did not specify in what

direction the robot should navigate (given that it was per-

fectly circular and that the wheels could rotate in both

directions), after a few generations all the best individ-

uals moved in the direction corresponding to the side

with the highest number of sensors. Individuals mov-

ing in the other direction had a higher probability of

colliding into corners without detecting them and thus

disappeared from the population. Furthermore, the cruis-

ing speed of the best evolved robots was approximately

half of the maximum speed that could be technically

achieved and did not increase even when the evolution-
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Fig. 61.3 Average fitness of the population and fitness of the best

individual at each generation (error bars show standard error over

three runs from different initial populations)

ary experiment was continued up to 200 generations.

Further analysis revealed that this self-limitation of the

navigation speed had an adaptive function because, con-

sidering the sensory and motor refresh rate together with

the response profile of the distance sensors, robots that

traveled faster had a higher risk of colliding with walls

before detecting them; they gradually disappeared from

the population.

Despite its simplicity, this experiments shows that

evolution can discover solutions that match not only

Fig. 61.4 Trajectory of the robot with the best neural

controller of the last generation. Segments represent the

axis between the two wheels. Data were recorded and

plotted every 300 ms using an external laser positioning

device
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1426 Part G Human-Centered and Life-Like Robotics

the computational requirements of the task to be

solved, but also the morphological and mechanical

properties of the robot in relation to its physical en-

vironment.

61.2.1 Evolution of Neural Controllers
for Walking

Over the past 15 years or so, there has been a grow-

ing body of work on evolving controllers for various

kinds of walking robots – a nontrivial sensorimotor co-

ordination task. Early work in this area concentrated

on evolving dynamical network controllers for simple

(abstract) simulated insects (often inspired by cock-

roach studies) which were required to walk in simple

environments [61.18, 19]. Earlier, Beer had introduced

a neural architecture for locomotion based on studies of

cockroaches [61.17], which is shown in Fig. 61.5. The

promise of this work soon led to versions of this method-

ology being used on real robots. Probably the first

success in this direction was by Lewis et al. [61.14, 20]

who evolved a neural controller for a simple hexapod

robot using coupled oscillators built from continuous-

time, leaky-integrator, artificial neurons. All evaluations

were done on the actual robot with each leg connected

to its own pair of coupled neurons, leg swing being

driven by one neuron and leg elevation by the other.

These pairs of neurons were cross connected, in a man-

ner similar to that used by Beer and Gallagher [61.19]

(Fig. 61.5), to allow coordination between the legs. In

order to speed up the process, they employed staged evo-

lution where first an oscillator capable of moving a leg

was evolved and then an architecture based on these os-

cillators was further evolved to develop walking. The

robot was able to execute an efficient tripod gait on flat

surfaces.

Gallagher et al. [61.21] described experiments

where neural networks controlling locomotion in an

artificial insect were evolved in simulation and then

successfully downloaded onto a real hexapod robot.

This machine was more complex than Lewis et al.’s,

with a greater number of degrees of freedom per

leg. In this approach, each leg was controlled by

a fully connected network of five continuous-time,

leaky-integrator neurons, each receiving a weighted sen-

sory input from that leg’s angle sensor. Initially the

architecture shown in Fig. 61.5 was used, with the con-

nection weights and neuron time constants and biases

under genetic control. This produced efficient tripod

gaits for walking on flat surfaces. In order to pro-

duce a wider range of gaits operating at a number of
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Fig. 61.5 Schematic diagram of a distributed neural net-

work for the control of locomotion as used by Beer

et al. [61.17]. Excitatory connections are denoted by open

triangles and inhibitory connections are denoted by filled

circles. C, command neuron; P, pacemaker neuron; FT, foot

motor neuron; FS and BS, forward swing and backward

swing motor neurons; FAS and BAS, forward and backward

angle sensors

speeds such that rougher terrain could be successfully

negotiated, a different distributed architecture, more in-

spired by stick insect studies, was found to be more

effective [61.22].

Galt et al. [61.23] used a genetic algorithm to

derive the optimal gait parameters for a Robug III

robot, an eight-legged, pneumatically powered walking

and climbing robot. The individual genotypes repre-

sented parameters defining each leg’s support period

and the timing relationships between leg movements.

These parameters were used as inputs to a mechanis-

tic finite-state machine pattern-generating algorithm that

drove the locomotion. Such algorithms, which are often

used in conventional walking machines, rely on rela-

tively simple control dynamics and do not have the
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Evolutionary Robotics 61.2 First Steps 1427

same potential for the kind of sophisticated multigait

coordination that complex dynamical neural network ar-

chitectures, such as those described in this section, have

been shown to produce. However, controllers were suc-

cessfully evolved for a wide range of environments and

to cope with damage and systems failure (although an

individual controller had to be tuned to each environ-

ment; they were not able to self-adapt across a wide

range of conditions). Gomi and Ide [61.24] evolved the

gaits of an eight-legged robot (Fig. 61.6) using geno-

types made of eight similarly organized sets of genes,

each gene coding for leg motion characteristics such

as the amount of delay after which the leg begins to

move, the direction of the leg’s motion, the end po-

sitions of both vertical and horizontal swings of the

leg, and the vertical and horizontal angular speed of

the leg. After a few dozen generations, where eval-

uation was on the robot, a mixture of tetrapod and

wave gaits was obtained. Using the cellular encod-

ing [61.25] developmental approach – which genetically

encodes a grammar-tree program that controls the divi-

sion of cells growing into a dynamical recurrent neural

network of the kind used by Beer and colleagues –

Gruau [61.26] evolved a single-leg neural controller

for the same eight-legged robot used by Gomi and Ide.

This generated a smooth and fast quadrupod locomo-

tion gait. Kodjabachian and Meyer [61.27] extended

this work to develop more sophisticated locomotion

behaviors. Jakobi [61.28] successfully used his mini-

mal simulation techniques (described in Sect. 61.3) to

evolve controllers for the same eight-legged robot as

Fig. 61.6 The octopod robot built by Applied AI Systems

Inc.

Gruau. Evolution in simulation took less than 2 h on

what would today be regarded as a very slow computer,

and was then successfully transferred to the real robot.

Jakobi evolved modular controllers based on Beer’s

continuous recurrent networks to control the robot as

it engaged in walking about its environment, avoiding

obstacles and seeking out goals depending on the sen-

sory input. The robot could smoothly change gait, move

backward and forward, and even turn on the spot. More

recent work has used similar architectures to those ex-

plored by the researchers mentioned above, to control

more mechanically sophisticated robots such as the Sony

Aibo [61.29].

Recently there has been successful work on evolv-

ing coupled oscillator style neural controllers for the

highly unstable dynamic problem of biped walking.

Reil and Husbands [61.30] showed that accurate physics

based simulations using physics-engine software could

be used to develop controllers able to generate suc-

cessful bipedal gaits. Reil and colleagues have now

significantly developed this technology to exploits its

commercial possibilities, in the animation and games

industries, for the real-time control of physically sim-

ulated three-dimensional (3-D) humanoid characters

engaged in a variety of motor behaviors (see [61.31]

for further details). Coupled neural oscillators have been

evolved also to control the swimming pattern of articu-

lated, snake-like, underwater robots using physics-based

simulations [61.32].

Vaughan has taken related work in another direc-

tion. He has successfully applied evolutionary robotics

techniques to evolve a simulation of a 3-D ten-degree-

of-freedom bipedal robot. This machine demonstrates

many of the properties of human locomotion. By using

passive dynamics and compliant tendons, it conserves

energy while walking on a flat surface. Its speed and

gait can be dynamically adjusted and it is capable of

adapting to discrepancies in both its environment and

its body’s construction [61.33]. The parameters of the

body and continuous dynamical neural network con-

troller were under genetic control. The machine started

out as a passive dynamic walker [61.34] on a slope,

and then throughout the evolutionary process the slope

was gradually lowered to a flat surface. The machine

demonstrated resistance to disturbance while retaining

passive dynamic features such as a passive swing leg.

This machine did not have a torso, but Vaughan has also

successfully applied the method to a simplified two-

dimensional (2-D) machine with a torso above the hips.

When pushed, this dynamically stable bipedal machine
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1428 Part G Human-Centered and Life-Like Robotics

walks either forward or backwards just enough to re-

lease the pressure placed on it. It is also able to adapt to

external and internal perturbations as well as variations

in body size and mass [61.35].

McHale and Husbands [61.36, 37] have compared

many forms of evolved neural controllers for bipedal

and quadrupedal walking machines. Recurrent dynami-

cal continuous time networks and GasNets (described

in Sect. 61.6.3) were shown to have advantages in

most circumstances. The vast majority of the studies

mentioned above were conducted for relatively be-

nign environments. Notwithstanding this observation,

we can conclude that the more complex dynamical

neural network architectures, with their intricate dy-

namics, generally produce a wider range of gaits and

generate smoother, more adaptive locomotion than the

more standard use of systems based on finite-state

machines employing parameterized rules governing

the timing and coordination of individual leg move-

ments [61.38].

61.3 Simulation and Reality

Few of the experiments in the previous section were

carried out entirely on physical robots because

1. evolution may take a long time, especially if it is car-

ried out on a single robot that incarnates the bodies

of all the individuals of the evolving population;

2. the physical robot can be damaged because

populations always contain a certain number

of poorly performing individuals (for example,

colliding against walls) by effect of random mu-

tations;

3. restoring the environment to initial conditions be-

tween trails of different individuals or populations

(for example, replenishing the arena with objects)

may not always be feasible without human interven-

tion;

4. evolution of morphologies and evolution of robots

that can grow during their lifetime is almost impos-

sible with today’s technology without some level of

human intervention.

For those reasons, researchers often resort to evolu-

tion in simulation and transfer the evolved controllers to

the physical robot. In the case of morphology evolution,

the physical robot is manually assembled according to

the evolved specifications. However, it is well known

that programs that work well in simulations may not

function properly in the real world because of differences

in sensing, actuation, and in the dynamic interactions

between robot and environment [61.39]. This reality

gap is even more evident in adaptive approaches, such

as evolutionary robotics, where the control system and

morphology are gradually crafted through the repeated

interactions between the robot and the environment.

Therefore, robots will evolve to match the specificities

of the simulation, which differ from the real world. Al-

though these issues clearly rule out any simulation based

on grid worlds or pure kinematics, over the last 10 years

simulation techniques have dramatically improved and

resulted in software libraries that model reasonably well

dynamical properties such as friction, collision, mass,

gravity, and inertia [61.40]. These software tools allow

one to simulate articulated robots of variable morphol-

ogy and their environment as fast as, or faster than,

real time in a desktop computer. Today, those physics-

based simulations are widely used by most researchers

in evolutionary robotics and indeed most of the work

with highly articulated robots is carried out with those

simulations.

Nonetheless, even physics-based simulations in-

clude small discrepancies that can accumulate over time

and result in very different behavior from reality (for

example, a robot may get stuck against a wall in simu-

lation whereas it can get free in reality, or vice versa).

Also, physics-based simulations cannot account for di-

versity of response profiles of the individual sensors,

motors, and gears of a physical robot. There are at

least four methods to cope with these problems and

improve the quality of the transfer from simulation to

reality.

A widely used method consists of adding indepen-

dent noise to the values of the sensors provided by the

model and to the end position of the robot computed

by the simulator [61.41]. Some software libraries allow

the introduction of noise at several levels of the sim-

ulation. This solution prevents evolution from finding

solutions that rely on the specificities of the simulation

model. One may also sample the actual sensor values

of the real robot positioned at several angles and dis-

tances from objects of different texture. Those values

are then stored in a look-up table and retrieved with

the addition of noise according to the position of the
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Evolutionary Robotics 61.4 Simple Controllers, Complex Behaviors 1429

robot in the environment [61.42]. This method proved

to be very effective for generating controllers that trans-

fer smoothly from simulation to reality. A drawback of

this sampling method is that it does not scale up well to

high-dimensional sensors (e.g., vision) or geometrically

complicated objects.

Another method, also known as minimal simula-

tions, consists of modeling only those characteristics

of the robot and environment that are relevant for the

emergence of desired behaviors [61.43]. These char-

acteristics, which are referred to as base-set features,

should be accurately modeled in simulation. Instead, all

the other characteristics, which are referred to as im-

plementation aspects, should be randomly varied across

several trials of the same individual in order to ensure

that evolving individuals do not rely on implementa-

tion aspects, but rely on base-set features only. Base-set

features must also be varied to some extent across tri-

als in order to ensure some degree of robustness of

the individual with respect to base-set features, but

this variation should not be so large that reliably fit

controllers fail to evolve at all. This method allows

very fast evolution of complex robot–environment situ-

ations, as in the example of the hexapod walk described

in Sect. 61.2.1. A drawback of minimal simulations is

that it is not always easy to tell in advance which are

the base-set features that are relevant for the desired

behavior.

Yet another method consists of the coevolution of

the robot (control and/or morphology) and of the simu-

lator parameters that are most likely to differ from the

real world and that may affect the quality of the trans-

fer [61.44]. This method consists of coevolving two

populations, one encoding the properties of the robot

and one encoding the parameters of the simulator. Co-

evolution happens in several passes through a two-stage

process. In stage one, a randomly generated population

of robots are evolved in the default simulator and the

best individual is tested on the real robot while the time

series of sensory values are recorded. In stage two, the

population of simulators is evolved to reduce the dif-

ference between the time series recorded on the real

robot and the time series obtained by testing evolved

robots within the simulator. The best evolved simulator

is then used for stage one where a new randomly gen-

erated population is evolved and the best individual is

tested on the real robot to generate the time series for

stage two of simulator evolution. This two-stage coevo-

lution is repeated several times until the error between

simulated and real robot behavior is the smallest pos-

sible. It has been shown that approximately 20 passes

of the two-stage process are sufficient to evolve a good

control system that could be transferred to an articulated

robot. In that case, the real robot was used to test only

20 individuals.

Finally, another method consists of genetically en-

coding and evolving the learning rules of the control

system, rather than its parameters (e.g., connection

strengths). The parameters of the decoded control sys-

tem are always initialized to small random values at

the beginning of an individual lifetime and must self-

organize using the learning rules [61.45]. This method

prevents evolution from finding a set of control parame-

ters that fit the specificities of the simulation model, and

encourages emergence of control systems that remain

adaptive to partially unknown environments. When such

an evolved individual is transferred to the real robot, it

will develop online its control parameters according to

the genetically evolved learning rules and taking into ac-

count the specificities of the physical world. This method

is described in more detail in Sect. 61.7.2 on evolution

of learning.

61.4 Simple Controllers, Complex Behaviors

Behavior is a dynamical process resulting from nonlin-

ear interactions (occurring at a fast time rate) between

the agent’s control system, its body, and the environ-

ment [61.46,47]. At any time step, the environment and

the agent–environment relation influence the body and

the motor reaction of the agent, which in turn influ-

ences the environment and/or the agent–environmental

relation (Fig. 61.7). Sequences of these interactions lead

to a dynamical process where the contributions of the

different aspects (i. e., the robot’s control system, the

robot’s body, and the environment) cannot be sepa-

rated. This implies that even complete knowledge of

the elements governing the interactions provides little

insight into the behavior emerging from these interac-

tions [61.48, 49].

An important advantage of evolutionary robotics is

that it is not necessary to identify the relations between

the rules governing the interactions and the resulting

behavior [61.1, 49]. Evolutionary robotics is an adapta-

tion process where the free parameters of the robots that
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Environment

Body

Control

system

Fig. 61.7 Robot behavior results from nonlinear interac-

tions, occurring at fast time rates, between the agent’s

control system, its body, and the environment

regulate the interactions, initially randomly assigned,

are modified through a process of random variation and

are selected and/or discarded on the basis of their ef-

fects at the behavioral level. These characteristics allow

evolving robots to discover useful behavioral proper-

ties emerging from the interactions without the need

to identify the relations between the rules governing

the interaction and the resulting behavior. An emergent

behavioral property or behavior is a form of behavior

that can hardly be predicted or inferred by an exter-

nal observer even when they have complete knowledge

of the interacting elements and of the rules govern-

ing those interactions. The possibility of developing

robots that exploit emergent behavior, in turn, allows

evolutionary methods to come up with simple solu-

tions to problems that are complex from an observer’s

perspective.

As an example (Fig. 61.8), consider the case of

a Khepera robot placed in an arena surrounded by

walls and containing a food object (i. e., a cylindri-

cal object) that the robot should find and remain close

to [61.50]. The robot is provided with eight infrared

sensors and two motors controlling the two correspond-

ing wheels. From the point of view of an external

observer, solving this problem requires robots able

to:

1. explore the environment until an obstacle is detected

2. discriminate whether the obstacle detected is a wall

or a cylindrical object

Fig. 61.8 The environment and the robot. The environment

consists of an arena of 60 × 35 cm and contains a cylindrical

objects placed at a randomly selected location

180 270 0 90 180
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5
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180 270 0 90 180
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a)

Fig. 61.9a,b Angular trajectories of an evolved robot

close to a wall (a) and to a cylinder (b). The picture

was obtained by placing the robot at a random posi-

tion in the environment, leaving it free to move for 500

cycles, and recording its relative movements with re-

spect to the two types of objects for distances smaller

than 45 mm. For sake of clarity, arrows are used to in-

dicate the relative direction, but not the amplitude of

movements

3. approach or avoid the object depending on the object

type

A detailed analysis of the sensory patterns ex-

perienced by the robot indicated that the task of

discriminating the two objects is far from trivial since

the two classes of sensory patterns experienced by
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Evolutionary Robotics 61.5 Seeing the Light 1431

robots close to a wall and close to cylindrical objects

overlap significantly. However, robots evolved for the

ability to solve this task resorted to a strategy that does

not require explicit discrimination of the two types of

objects [61.50].

In all replications of the experiment, the evolved

robot moved away from walls, but when they encoun-

tered the food object tended to oscillate back and forth

or left and right in its proximity (Fig. 61.9). This solu-

tion consists of producing a behavioral attractor near the

cylindrical object. A behavioral attractor is a series of

sensorimotor sequences that maintain the robot close to

the object. In this case, the forward movement in front of

the cylindrical object generates a variation of the sensory

pattern experienced by the robot that, in turn, triggers

a backward movement.

Therefore, evolved robots do not solve the problem

by discriminating the two type of objects (cylinder and

wall) and displaying an approaching or avoiding be-

havior, but rather exploit behaviors that emerge from

the interaction between the robot’s control system, the

robots’ body, and the environment. The possibility to

discover and rely on these forms of emergent behavior

allows evolving robots to find computationally simple

solutions to apparently complex problems. Indeed, the

problem described in this section only requires a simple

reactive neural controller with one layer of feedforward

connections between sensors and motors.

61.5 Seeing the Light

The experiments described so far rely mainly on rela-

tively simple distance sensors, such as active infrared

or sonar. Pioneering experiments on evolving visually

guided behaviors were performed at Sussex Univer-

sity [61.51] on a specially designed gantry robot

(Fig. 61.10). Discrete-time dynamical recurrent neural

networks and visual sampling morphologies were con-

currently evolved: the brain was developed in tandem

with the visual sensor [61.13,52,53]. The robot was de-

signed to allow real-world evolution by having off-board

power and processing so that the robot could be run

for long periods while being monitored by automatic

Fig. 61.10 The gantry robot used in the visual discrimina-

tion task. The camera inside the top box points down at the

inclined mirror, which can be turned by the stepper motor

beneath. The lower plastic disk is suspended from a joystick

to detect collisions with obstacles

fitness evaluation functions. A charge-coupled device

(CCD) camera points down towards a mirror angled at

45◦ as shown in Fig. 61.10. The mirror can rotate around

an axis perpendicular to the camera’s image plane. The

camera is suspended from the gantry, allowing motion

in the X, Y , and Z dimensions. This effectively provides

an equivalent to a wheeled robot with a forward-facing

Robot x=61.58, y=73.78, θ=2.1, Time-step=135

a)

b)

Fig. 61.11a,b The shape discrimination task. (a) The posi-

tion of the robot in the arena, showing the target area in front

of the triangle. (b)The robot camera’s field of view showing

the visual patches selected by evolution for sensory input
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1432 Part G Human-Centered and Life-Like Robotics

camera when only the X and Y dimensions of transla-

tion are used. The additional dimension allows flying

behaviors to be studied.

The apparatus was initially used in a manner sim-

ilar to the real-world experiments on navigation in the

looping maze with the miniature mobile robot described

in Sect. 61.2. A population of strings encoding robot

controllers and visual sensing morphologies were stored

on a computer to be downloaded one at a time onto the

robot. The exact position and orientation of the camera

head can be accurately tracked and used in the fitness

evaluations. A number of visually guided navigation

behaviors were successfully achieved, including navi-

gating around obstacles, tracking moving targets, and

discriminating between different objects [61.52]. The

evolutionary process was incremental. The ability to dis-

tinguish between two different targets was evolved on

top of the single target-finding behavior. The chromo-

some was of dynamic length so the neurocontroller was

structurally further developed by evolution to achieve

the new task (neurons and connections added). In the

D) System

behavior

E) Vision

behavior

A) Visual

neurons

F)

C) Proprioceptive

neurons

B) Visual scene

Retina

Fig. 61.12 The neural architecture of the active vision sys-

tem is composed of: (A) a grid of visual neurons with

nonoverlapping receptive fields whose activation is given by

(B) the grey level of the corresponding pixels in the image;

(C) a set of proprioceptive neurons that provide informa-

tion about the movement of the vision system; (D) a set of

output neurons that determine the behavior of the system

(pattern recognition, car driving, robot navigation); (E) a set

of output neurons that determine the behavior of the vision

system; and (F) a set of evolvable synaptic connections. The

number of neurons in each subsystem can vary according

to the experimental settings

experiment illustrated in Figs. 61.10 and 61.11, starting

from a random position and orientation, the robot had

to move to the triangle rather than the rectangle. This

had to be achieved irrespective of the relative positions

of the shapes and under very noisy lighting conditions.

Recurrent neural network controllers were evolved in

conjunction with visual sampling morphologies. Only

genetically specified patches from the camera image

were used (by being connected to input neurons accord-

ing to the genetic specification). The rest of the image

was thrown away. This resulted in extremely minimal

systems using only two or three pixels of visual infor-

mation, yet still able to perform the task reliably under

highly variable lighting conditions [61.13, 52].

This was another example of staged, or incremental,

evolution to obtain control systems capable of solving

problems that are either too complex or may profit from

an evolutionary methodology that discovers, preserves,

and builds upon subcomponents of the solution. For an

evolutionary method that incorporate strategies to ex-

plicitly address this issue, interested readers may refer

to [61.54]. However, staged evolution remains a poorly

explored area of evolutionary robotics that deserves fur-

ther study and a more principled approach [61.55] in

order to achieve increasingly complex robotic systems.

61.5.1 Coevolution of Active Vision
and Feature Selection

Machine vision today can hardly compete with biolog-

ical vision despite the enormous power of computers.

One of the most remarkable – and often neglected – dif-

ferences between machine vision and biological vision

is that computers are often asked to process an entire

image in one shot and produce an immediate answer

whereas animals take time to explore the image over

time, searching for features and dynamically integrating

information over time.

Active vision is the sequential and interactive pro-

cess of selecting and analyzing parts of a visual

scene [61.56–58]. Feature selection instead is the de-

velopment of sensitivity to relevant features in the

visual scene to which the system selectively responds,

e.g., [61.59]. Each of these processes has been inves-

tigated and adopted in machine vision. However, the

combination of active vision and feature selection is

still largely unexplored. An intriguing hypothesis is

that coevolution of active vision and feature selection

could greatly simplify the computational complexity

of vision-based behavior by facilitating each other’s

task.
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This hypothesis was investigated in a series of ex-

periments [61.60] on coevolution of active vision and

feature selection for behavioral systems equipped with

a primitive moving retina and a deliberately simple neu-

ral architecture (Fig. 61.12). The neural architecture was

composed of an artificial retina and two sets of output

units. One set of output units determined the movement

and zooming factor of the retina, and the other set of

units determined the behavior of the system, such as the

response of a pattern-recognition system, the control pa-

rameters of a robot, or the actions of a car driver. The

neural network was embedded in a behavioral system

and its input/output values were updated every 300 ms

while its fitness was computed. Therefore, the synaptic

weights of this network were responsible for both the

visual features on which the system based its behavior

and for the motor actions necessary to search for those

features.

In a first set of experiments, the neural network was

embedded in a simulated pan–tilt camera and asked to

discriminate between triangles and squares of differ-

ent size that could appear at any location of a screen

(Fig. 61.13a), a perceptual task similar to that explored

with the gantry robot described in Sect. 61.5. The visual

system was free to explore the image for 60 s while con-

tinuously reporting whether the current screen showed

a triangle or a square. The fitness was proportional to the

amount of correct responses accumulated over the 60 s

for several screenshots containing various instances of

the two shapes. Evolved systems were capable of cor-

rectly identifying the type of shape with 100% accuracy

after a few seconds despite the fact that this recognition

problem is not linearly separable and that the neural net-

work does not have hidden units, which in theory are

necessary to solve nonlinearly separable tasks. Indeed,

the same neural network presented with the same set of

images and trained with supervised learning, but with-

out the possibility to actively explore the scene, was not

capable of solving the task. The evolved active vision

system developed sensitivity to vertical edges, oriented

edges and corners, and used its movement to search for

these features in order to tell whether the shape was

a triangle or a square. These features, which are also

found in the early visual system of almost all animals,

are invariant to size and location.

In a second set of experiments, the neural network

was embedded in a simulated car and was asked to drive

over several mountain circuits (Fig. 61.13b). The simu-

lator was a modified version of a car race video game.

The neural network could move the retina across the

scene seen through the windscreen at the driver’s seat

a) b)

Fig. 61.13 (a) An evolved individual explores the screen searching

for the shape and recognizes it by the presence of a vertical edge.

(b) Search for the edge of the road at the beginning of a drive over

a mountain road

Fig. 61.14 A mobile robot with a pan–tilt camera is asked

to move within the walled arena in the office environment

and control the steering, acceleration, and braking of the

car. The fitness was inversely proportional to the time

taken to complete the circuits without exiting the road.

Evolved networks completed all circuits with time laps

competitive to those of well-trained students controlling

the car with a joystick. The evolved network started by

searching for the edge of the road and tracked its rela-

tive position with respect to the edge of the windscreen

in order to control steering and acceleration. This be-

havior was supported by the development of sensitivity

to oriented edges.

In a third set of experiments, the neural network was

embedded in a real mobile robot with a pan–tilt camera

that was asked to navigate in a square arena with low

walls located in an office (Fig. 61.14). The fitness was

proportional to the amount of straight motion measured

over two minutes. Robots that hit the walls because they

watched people or other irrelevant features of the office

had lower fitness than robots that could perform long
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straight paths and avoid walls of the arena. Evolved

robots tended to fixate the edge between the floor and

the walls of the arena, and turned away from the wall

when the size of its retinal projection became larger than

a threshold. This combination of sensitivity to oriented

edges and looming is also found in the visual circuits of

several insects and birds.

In a further set of experiments [61.61], the visual

pathway of the neural network was augmented by an

intermediate set of neurons whose synaptic weights

could be modified by Hebbian learning [61.62] while

the robot moved in the environment. All the other synap-

tic weights were genetically encoded and evolved. The

results showed that lifelong development of the recep-

tive fields improved the performance of evolved robots

and allowed robust transfer of evolved neural controllers

from simulated to real robots, because the receptive

fields developed sensitivity to features encountered in

the environment where they happen to be born (see also

the section above on simulation and reality). Further-

more, the results showed that the development of visual

receptive fields was significantly and consistently af-

fected by active vision as compared to the development

of receptive fields passively exposed to the same set of

sample images. In other words, robots evolved with ac-

tive vision developed sensitivity to a smaller subset of

features in the environment and actively tracked those

features to maintain a stable behavior.

61.6 Computational Neuroethology

Evolutionary robotics is also used to investigate open

questions in neuroscience and cognitive science [61.65]

because it offers the vantage point of a behavioral sys-

tem that interacts with its environment [61.66]. Although

the results should be carefully considered when draw-

ing analogies with biological organisms, evolutionary

Fig. 61.15 The original apparatus in [61.63], where the

gross movements of a kitten moving almost freely were

transmitted to a second kitten that was carried in a gon-

dola. Both kittens were allowed to move their head. They

received essentially the same visual stimulation because of

the unvarying pattern on the walls and the center post of the

apparatus (after [61.64], with permission)

robotics can generate and test hypotheses that could

be further investigated with mainstream neuroscience

methods.

For example, the active vision system with Hebbian

plasticity described in the previous section was used

to answer a question raised by Held and Hein [61.63]

in the 1960s. The authors devised the apparatus shown

in Fig. 61.15 where the free movements of a kitten (ac-

tive kitten) were transmitted to a second kitten that was

carried in a gondola (passive kitten). The second kitten

could move its head, but its feet did not touch the ground.

Consequently, the two kitten received almost identical

visual stimulation, but only one of them received that

stimulation as a result of body self-movement. After

a few days in that environment, only the active kitten

displayed normal behavior in several visually guided

tasks. The authors suggested the hypothesis that propri-

oceptive motor information resulting from generation of

actions was necessary for the development of normal,

visually guided behavior.

The kitten experiments were replicated by cloning

an evolved robot controller and randomly initializing the

synaptic values of the adaptive visual pathways in both

clones. One cloned robot was then left free to move in

a square environment while the other cloned robot was

forced to move along imposed trajectories, but was free

to control its camera position, just like the passive kit-

ten [61.67]. The results indicated that the visual receptive

fields and behaviors of passive robots differ significantly

from those of active robots. Furthermore, passive robots

that were later left free to move were no longer capa-

ble of properly avoiding walls. A thorough analysis of

neural activation correlated with behavior of the robot
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and even transplantation of neurons across active and

passive robots revealed that the poor performance was

due to the fact that passive robots could not completely

select the visual features they were exposed to. Conse-

quently, passive robots developed sensitivity to features

that were not functional to their normal behavior and in-

terfered with other dominant features in the visual field.

Whether this explanation also hold for living animals

remains to be further investigated, but at least these ex-

periments indicated that motor feedback is not necessary

to explain the pattern of pathological behavior observed

in animals and robots.

61.6.1 Emergence of Place Cells

Let us now consider the case of an animal explor-

ing an environment and periodically returning to its

nest to feed. It has been speculated that this type of

situation requires the formation of spatial representa-

tions of the environment that allow the animal to find

its way home [61.68]. Different neural models with

various degrees of complexity and biological detail

that could provide such functionality have been pro-

posed [61.69, 70].

Would a robot evolved under similar survival condi-

tions develop a spatial representation of the environment

and, if so, what type of representation would that

be? These questions were explored using the same

Khepera robot and evolutionary methodology described

in Sect. 61.2 for reactive navigation in the looping maze.

The environment was a square arena with a small patch

on the floor in a corner where the robot could instan-

taneously recharge its (simulated) battery (Fig. 61.16).

The environment was located in a dark room with a small

light tower over the recharging station.

The sensory system of the robot was composed of

eight distance sensors, two ambient-light sensors (one

on each side), one floor-color sensor, and a sensor for

battery charge level. The battery lasted only 20 s and

had a linear discharge. The evolutionary neural network

included five fully connected internal neurons between

sensory and motor neurons. The same fitness function

described in Sect. 61.2 for navigation in the looping

maze was used, except for the middle term which had

been used to encourage straight navigation in the looping

maze. The fitness value was computed every 300 ms and

accumulated over the life span of the individual. There-

fore, individuals who discovered where the charger was

could live longer and accumulate more fitness by explor-

ing the environment (individuals were killed if they sur-

vived longer than 60 s to limit the experimentation time).

Fig. 61.16 Bird’s eye view of the arena with the light tower

over the recharging station and the Khepera robot

200150 2501000 50
Generations

Nr. of  actions

Fitness

b)

a)
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Fig. 61.17 (a) Average population fitness (continuous line)

and fitness of the best individual (dotted line). (b) Life span

of the best individuals measured as number of sensorimotor

cycles, or actions. Individuals start with a full battery which

lasts 50 actions (20 s), if not recharged. The maximum life

span is 150 actions

The same physical robot evolved for 10 days and

nights as both the fitness and life span of individuals con-

tinued to increase (Fig. 61.17). After approximately 200

generations, the robot was capable of navigating around

the environment, covering long trajectories while avoid-
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ing both walls and the recharging area. When the battery

was almost discharged it initiated a straight navigation

towards the recharging area and exited immediately af-

ter battery recharge to resume navigation. Best evolved

individuals always entered the recharging area one or

two seconds before full discharge of the battery. That

implies that robots must somehow calibrate the timing

and trajectory of their homing behavior depending on

where they happened to be in the environment.

In order to understand how that behavior could pos-

sibly be generated, a set of neuroethological measures

were performed using a laser positioning device that

provided exact position and orientation of the robot

every 300 ms. By correlating the robot position and

behavior with the activation of the internal neurons in

real time while the evolved individual freely moved in

the environment, it was possible to see that some neu-

rons specialized for reactive behaviors, such as obstacle

avoidance, forward motion, and battery monitoring.

Other neurons instead displayed more complex activa-

tion patterns. One of them revealed a pattern of activation

levels that depended on whether the robot was oriented

facing the light tower or facing the opposite direction

(Fig. 61.18). In the former case, the activation pattern

Facing light Facing opposite corner

Low

battery 

Full 

battery

Fig. 61.18 Activation levels (brightness proportional to activation)

of an internal neuron plotted over the environment while the robot

was positioned at various locations in each of the four conditions

(facing recharging area or not, discharged battery or not). The

recharging area is located at the top left corner of each map

reflected zones of the environment and paths typically

followed by the robot during exploration and homing.

For example, the robot trajectory towards the recharging

area never crossed the two gate walls visible in the ac-

tivation maps around the recharging station. When the

robot faced the opposite direction, the same neuron dis-

played a gradient field orthogonally aligned with the

recharging area. This gradient provides an indication of

the distance from the recharging area. Interestingly, this

pattern of activity is not significantly affected by the

charge level of the battery.

The functioning of this neuron reminds of the clas-

sic findings on the hippocampus of the rat brain where

some neurons (also known as place cells) selectively

fire when the rat is in specific areas of the environ-

ment [61.71]. Also, the orientation-specific pattern of

neural activation measured on the evolved robot is remi-

niscent of the so-called head-direction neurons in the rat

hippocampus, which are positioned nearby place cells,

whose firing patterns depend on the rat heading direc-

tion with respect to an environmental landmark [61.72].

Although the analogy between brains of evolved robots

and of biological organisms should not be taken too

literally, these results indicate that the two organisms

converge towards a functionally similar neural strategy,

which may be more efficient to address this type of situ-

ation than a strategy that does not rely on representations

(but only on reactive strategies such as random motion,

light following, or dead reckoning).

61.6.2 Spiking Neurons

The great majority of biological neurons communicate

using self-propagating electrical pulses called spikes, but

from an information-theoretic perspective it is not yet

clear how information is encoded in the spike train. Con-

nectionist models [61.73], by far the most widespread,

assume that what matters is the firing rate of a neu-

ron, that is, the average quantity of spikes emitted by

the neuron within a relatively long time window (for

example, over 100 ms). Alternatively, what matters is

the average number of spikes of a small population of

neurons at a give point. In these models the real-valued

output of an artificial neuron represents the firing rate,

possibly normalized relatively to the maximum attain-

able value. Pulsed models [61.74], instead, are based

on the assumption that the firing time, that is, the pre-

cise time of emission of a single spike, may convey

important information [61.75]. Spiking neuron models

have slightly more complicated dynamics of synaptic

and membrane integration. Depending on one’s theory
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Fig. 61.19 A network of spiking neurons is evolved to

drive the vision-based robot in the arena. The light be-

low the rotating contacts allows continuous evolution also

overnight

of what really matters, connectionist or spiking models

are used.

However, designing circuits of spiking neurons

that display a desired functionality is still a challeng-

ing task. The most successful results in the field of

robotics obtained so far focused on the first stages of

sensory processing and on relatively simple motor con-

trol [61.76, 77]. Despite these implementations, there

are not yet methods for developing complex spiking

circuits that could display minimally cognitive func-

tions or learn behavioral abilities through autonomous

interaction with a physical environment.

Artificial evolution represents a promising method-

ology to generate networks of spiking circuits with de-

sired functionalities expressed as behavioral criteria (fit-

ness function). Evolved networks could then be exam-

ined to detect what communication modality is used and

how that correlates with observed behavior of the robot.

Floreano and colleagues [61.78] evolved a fully con-

nected network of spiking neurons for driving a vision-

based robot in an arena painted with black stripes of

variable size against a white background (Fig. 61.19).

The Khepera robot used in these experiments was

equipped with a vision turret composed of one linear ar-

ray of grayscale photoreceptors spanning a visual field

of 36◦. The output values of a bank of local contrast de-

tection filters were converted in spikes (the stronger the

contrast, the larger the number of spikes per second) sent

to ten fully connected spiking neurons implemented ac-

cording to the spike response model [61.79]. The spike

series of a subset of these neurons was translated into

motor commands (more spikes per second corresponded

to faster rotation of the wheel). The fitness function was

the amount of forward translation of the robot measured

over 2 min. Consequently robots that turned in place or

hit the walls had comparatively lower fitness than robots

that could move straight and turn only to avoid walls.

The genome of these robots was a bit string that encoded

only the sign of the neurons and the presence of synap-

tic connections. Existing connections were set to 1 and

could not change during the lifetime of the robot.

Evolution reliably discovered very robust spiking

controllers in approximately 20 generations (approxi-

mately 30 h of evolution on the real robot). Evolved

robots could avoid not only the walls, but any object po-

sitioned in front of them. Detailed analysis of the best

evolved controllers revealed that neurons did not exploit

time differences between spikes, which one would have

expected if optic flow was used to detect distance from

walls. Instead, they simply used the number of incom-

ing spikes (firing rate) as an indication of when to turn.

When the robot perceived a lot of contrast it would go

straight, but when the contrast decreased below a cer-

tain threshold (indicating that it approached an object),

it started to turn away. This extremely efficient and sim-

ple result seems to be in contrast with theories of optic

flow detection in insects and may be worth considering

as an alternative hypothesis for vision-based behavior.

Spiking neural networks turned out to be more evolv-

able than connectionist models (at least for this task).

One possible explanation is that spiking neurons have

subthreshold dynamics that, to some extent, can be af-

fected by mutations without immediately affecting the

output of the network.

The robust results and compact genetic encoding en-

couraged the authors to use an even simpler model of

spiking neuron so that the entire neural network could

be mapped in less than 50 bytes of memory. The evolu-

tionary algorithm was also reduced to a few lines of

code and the entire system was implemented within

Fig. 61.20 The Alice sugar-cube robot equipped with the

evolutionary spiking neural network implemented within

its PIC microcontroller
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a programmable intelligent computer (PIC) microcon-

troller without the need for any external computer for

data storage. The system was used for a sugar-cube

robot (Fig. 61.20) that autonomously and reliably de-

veloped the ability to navigate around a maze in less

than an hour [61.80]. Interestingly, evolved spiking

controllers developed a pattern of connections where

spiking neurons received connections from a small patch

of neighboring sensors, but not from other sensors, and

were connected only to neighboring spiking neurons.

This pattern of connectivity is also observed in biologi-

cal systems and encourages specialization of neurons to

sensory features.

61.6.3 GasNets

This section describes another style of artificial neural

network strongly inspired by those parts of con-

temporary neuroscience that emphasize the complex

electrochemical nature of real nervous systems. In

particular, they make use of an analogue of volume

signaling, whereby neurotransmitters freely diffuse into

a relatively large volume around a nerve cell, potentially

affecting many other neurons [61.81, 82]. This exotic

form of neural signaling does not sit easily with classi-

cal pictures of brain mechanisms and is forcing a radical

rethink of existing theory [61.83–86]. The class of ar-

tificial neural networks developed to explore artificial

volume signaling are known as GasNets [61.87]. These

are essentially standard neural networks augmented by

a chemical signaling system comprising a diffusing vir-

tual gas which can modulate the response of other

neurons. A number of GasNet variants, inspired by

different aspects of real nervous systems, have been

explored in an evolutionary robotics context as arti-

ficial nervous systems for mobile autonomous robots.

They have been shown to be significantly more evolv-

able, in terms of speed to a good solution, than other

forms of neural networks for a variety of robot tasks

and behaviors [61.36, 87–89]. They are being inves-

tigated as potentially useful engineering tools and as

a way of gaining helpful insights into biological sys-

tems [61.85, 90, 91].

By analogy with biological neuronal networks, Gas-

Nets incorporate two distinct signaling mechanisms, one

electrical and one chemical. The underlying electrical

network is a discrete-time-step recurrent neural net-

work with a variable number of nodes. These nodes

are connected by either excitatory or inhibitory links.

In addition to this underlying network in which posi-

tive and negative signals flow between units, an abstract

process loosely analogous to the diffusion of gaseous

modulators is at play. Some units can emit virtual gases

which diffuse and are capable of modulating the be-

havior of other units by changing the profile of their

output functions. The networks occupy a 2-D space; the

diffusion processes mean that the relative positioning

of nodes is crucial to the functioning of the network.

Spatially, the gas concentration varies as an inverse ex-

ponential of the distance from the emitting node with

a spread governed by a parameter r with the concentra-

tion set to zero for all distances greater than r. The total

concentration of gas at a node is determined by summing

the contributions from all other emitting nodes.

For mathematical convenience, in the original Gas-

Net there are two gases, one whose modulatory effect is

to increase the transfer function gain parameter and one

whose effect is to decrease it. Thus the gas does not alter

the electrical activity in the network directly but rather

acts by continuously changing the mapping between in-

put and output for individual nodes, either directly of

by stimulating the production of further virtual gas. The

general form of the diffusion is based on the properties

of a (real) single-source neuron as modeled in detail by

Philippides et al. [61.85, 90]. The modulation chosen is

motivated by what is known of NO modulatory effects

at synapses [61.92]. For full details see [61.87].

Various extensions of the basic GasNet have been

produced. Two in particular are strongly inspired by con-

temporary neuroscience. The plexus model is directly

inspired by a type of signaling seen in the mammalian

cerebral cortex in which the NO signal is generated by

the combined action of many fine NO-producing fibers,

giving a targeted cloud which is distant from the neu-

rons from which the fiber plexus emanates [61.91]. In

the plexus GasNet, which models this form of signaling

at an abstract level, the spatial distribution of gas concen-

tration has been modified to be uniform over the area of

affect. The center of this gas diffusion cloud is under ge-

netic control and can be distant from the controlling node

(which, by analogy, is the source of the plexus) [61.89].

All other details of the models are identical to the orig-

inal GasNet model, as described earlier. The receptor

GasNet incorporates an aspect of biological neuronal

networks that has no analog in the vast majority of

ANNs: the role of receptor molecules. Although neu-

roscience is a long way from a full understanding of

receptor mechanisms, a number of powerful systems

level ideas can be abstracted.

Details of the receptor variant are similar to the basic

GasNet except there is now only one virtual gas and each

node in the network can have one of three discrete quan-
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Neuron 1

Neuron 2

Neuron 4

Neuron 3

Neuron 5

Neuron 6

A GasNet. Neuron 3 is emitting gas, and modulating

neuron 2 despite there being no synaptic connection.

Fig. 61.21 A basic GasNet showing positive (solid) and

negative (dashed) electrical connections and a diffusing

virtual gas creating a chemical gradient

tities (zero, medium, maximum) of a number of possible

receptors. The modulation the diffusing neurotransmit-

ter affects at a neuron depends on which receptors are

present. The strength of a modulation at a node is pro-

portional to the product of the gas concentration at the

node and the relevant receptor quantity. In the original

GasNet, any node that was in the path of a diffusing

transmitter would be modulated in a fixed way. The re-

ceptor model allows site-specific modulations, including

no modulation (no receptors) and multiple modulations

at a single site (see [61.89] for further details).

Although most of the GasNet variants described in

this section have been successfully used in a number

of robotic tasks, their evolvability and other properties

were thoroughly compared on a version of the (gantry)

robot visual discrimination task described in Sect. 61.5.

All aspects of the networks were under genetic control:

the number of nodes, the connectivity and, in the case

of the GasNets, all parameters governing volume signal-

ing (including the position of the nodes and whether or

not they were virtual gas emitters). The visual sampling

morphology was also under evolutionary control. The

original basic GasNet was found to be significantly more

evolvable than a variety of other styles of connectionist

neural networks as well as a GasNet with the volume sig-

naling disabled. Successful GasNet controllers for this

task tended to be rather minimal, in terms of numbers of

nodes and connections, while possessing complex dy-

namics [61.87]. Later experiments comparing the basic

GasNet with the plexus and receptor variants showed

the latter two to be considerably more evolvable than

the former, with the receptor GasNet being particularly

successful [61.89].

The GasNet experiments mentioned above demon-

strated that the intricate network dynamics made

possible by the artificial volume signaling mechanisms

can be readily harnessed to generate adaptive behaviors

in autonomous agents. They also throw up such ques-

tions as why GasNets are more evolvable than many

other forms of ANN and why there is a difference in

evolvability between GasNet variants. Investigations of

this question indicate that the interaction between the

two GasNet signaling mechanisms, electrical and chem-

ical, plays a crucial role [61.88,89]. Evolutionary theory

led to the hypothesis that systems involving distinct yet

coupled processes are highly evolvable when the cou-

pling is flexible (i. e., it is relatively easy for evolution

to change the degree of coupling in the system) with

a bias towards a loose coupling; this allows the possi-

bility of tuning one process against the other without

destructive interference [61.88, 89, 93]. This may also

be the case for subthreshold dynamics of spiking neural

networks, which although not yet compared to GasNets,

were shown to be more evolvable than connectionist net-

works. Measurements of the degree of coupling in the

GasNets variants versus speed of evolution supported

this view [61.89]; the receptor GasNet, for which the

evolutionary search process has the most direct con-

trol over the degree of coupling between the signaling

processes, and which has a bias towards a loose cou-

pling, was by far the most evolvable [61.89]. These and

ongoing investigations indicate that explicitly dealing

with the electrochemical nature of nervous systems is

likely to be an increasingly fruitful area of research,

both for evolutionary robotics and for neuroscience,

that will likely force us to broaden our notions of what

behavior-generating mechanisms might look like.

61.7 Evolution and Learning

Evolution and learning (or phylogenetic and ontogenetic

adaptation) are two forms of biological adaptation that

differ in space and time. Evolution is a process of selec-

tive reproduction and substitution based on the existence
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of a population of individuals displaying variability at

the genetic level. Learning, instead, is a set of modifica-

tions taking place within each single individual during its

own life time. Evolution and learning operate on differ-

ent time scales. Evolution is a form of adaptation capable

of capturing relatively slow environmental changes that

might encompass several generations (e.g., the percep-

tual characteristics of food sources for a given species).

Learning, instead, allows an individual to adapt to en-

vironmental modifications that are unpredictable at the

generational level. Learning might include a variety of

mechanisms that produce adaptive changes in an indi-

vidual during its lifetime, such as physical development,

neural maturation, variation of the connectivity between

neurons, and synaptic plasticity. Finally, whereas evo-

lution operates on the genotype, learning affects only

the phenotype, and phenotypic modifications cannot

directly modify the genotype.

Researchers have combined evolutionary techniques

and learning techniques (supervised or unsupervised

learning algorithm such us reinforcement learning or

Hebbian learning; for a review see [61.94]). These stud-

ies have been conducted with two different purposes:

1. identifying the potential advantage of combining

these two methods from the point of view of de-

veloping robust and effective robots

2. understanding the role of the interaction between

learning and evolution in nature

Within an evolutionary perspective, learning has sev-

eral different adaptive functions. First, it might allows

individuals to adapt to changes that occur too quickly

to be tracked by evolution [61.95]. Secondly, learning

might allows robots to use information extracted during

their interaction with environment to develop adaptive

characters ontogenetically without necessarily discov-

ering these characters through genetic variations and

without encoding these characters in their genome. To

understand the importance of this aspect, we should

consider that evolutionary adaptation is based on an ex-

plicit but concise indication of how well an individual

robot coped with its environment – the fitness value

of a robot. Ontogenetic adaptation, on the contrary, is

based on extremely rich information – the state of the

sensors while the robot interacts with its environment.

This huge amount of information encodes very indirectly

how well an individual is doing in different phases of its

lifetime or how it should modify its behavior to increase

its fitness. However, evolving robots that have acquired

a predisposition to exploit this information to produce

adaptive changes during their lifetime might be able to

develop adaptive characteristics on the fly, thus leading

to the possibility to produce complex phenotypes on the

basis of parsimonious genotypes. Finally, learning can

help and guide evolution. Although physical changes of

the phenotype, such as strengthening of synapses dur-

ing learning, cannot be written back into the genotype,

Baldwin [61.96] and Waddington [61.97] suggested that

learning might indeed affect the evolutionary course in

subtle but effective ways. Baldwin’s argument was that

learning accelerates evolution because suboptimal indi-

viduals can reproduce by acquiring during life necessary

features for survival. However, variation occurring dur-

ing successive generation might lead to the discovery of

genetic traits that lead to the establishment of the same

characteristics that were previously acquired thorough

lifetime learning. This latter aspect of Baldwin’s effect,

namely indirect genetic assimilation of learned traits, has

been later supported by scientific evidence and defined

by Waddington [61.97] as a canalization effect.

Learning however, also has costs such as: (1) a de-

lay in the ability to acquire fitness (due to the need to

develop fit behavior ontogenetically), and (2) increased

unreliability due to the fact that the possibility to develop

certain abilities ontogenetically is subjected to partially

unpredictable characteristics of the robot–environment

interaction [61.98]. In the next two subsections we de-

scribe two experiments that show some of the potential

advantages of combining evolution and learning.

61.7.1 Learning to Adapt
to Fast Environmental Variations

Consider the case of a Khepera robot that should explore

an arena surrounded by black or white walls to reach

a target placed in a randomly selected location [61.95].

Evolving robots are provided with eight sensory neurons

that encode the state of the four corresponding infrared

sensors and two motor neurons that control the desired

speed of the two wheels. Since the color of the walls

change every generation and since the color significantly

affects the intensity of the response of the infrared sen-

sors, evolving robots should develop an ability to infer

whether they are currently located in an environment

with white or black walls and learn to modify their be-

havior during lifetime. That is, robots should avoid walls

only when the infrared sensors are almost fully activated

in the case of arenas with white walls, while they should

avoid walls even when the infrared sensors are slightly

activated in the case of arenas with black walls.

Robots were provided with a neural controller

(Fig. 61.22) including four sensory neurons that encoded
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Motors Teaching

Sensors

Fig. 61.22 A self-teaching network. The output of the two

teaching neurons is used as a teaching value for the two

motor neurons. The weights that connect the sensory neu-

rons to the teaching neurons do not vary during the robots’

lifetime while the weights that connect the sensory neurons

to the motor neurons are modified with an error-correction

algorithm

the state of four corresponding infrared sensors; two

motors neurons that encoded the desired speed of the

two wheels; and two teaching neurons that encoded the

teaching values used to modify the connection weights

from the sensory neurons to the motor neurons dur-

ing the robots’ lifetime. This special architecture allows

evolving robots to transform the sensory states experi-

enced by the robots during their lifetime into teaching

signals that might potentially lead to adaptive variations

during lifetime. Analysis of evolved robots revealed that

they developed two different behaviors that are adapted

to the particular arena where they happen to be born

(surrounded by white or black walls). Evolving robots

did not inherit an ability to behave effectively, but rather

a predisposition to learn to behave. This predisposition to

learn involves several aspects such as a tendency to expe-

rience useful learning experiences, a tendency to acquire

useful adaptive characters through learning, and a ten-

dency to channel variations toward different directions

in different environmental conditions [61.95].

61.7.2 Evolution of Learning

In the previous example, the evolutionary neural net-

work learned using a standard learning rule that was

applied to all synaptic connections. Floreano and col-

laborators [61.99] explored the possibility of genetically

encoding and evolving the learning rules associated to

the different synaptic connections of a neural network

embedded in a real robot. The main motivation of this

line of work was to evolve robots capable of adapting

to a partially unknown environment, rather than robots

adapted to the environment(s) seen during evolution. In

Pre-synaptic
unit

Post-synaptic
unit

Synapse

Sign

Strength

Genetically
determined

Adaptive

Sign

Learning
rule

Learning
rate

Fig. 61.23 Two methods for genetically encoding a synap-

tic connection. Genetically determined synapses cannot

change during the lifetime of the robot. Adaptive synapses

instead are randomly initialized and can change during life-

time of the robot according to the learning rules and rates

specified in the genome

order to prevent evolutionary tuning of the neural net-

work to the specificities of the evolutionary environment

(which would limit transfer to different environments

or transfer from simulation to reality), the synaptic

weight values were not genetically encoded. Instead,

each synaptic connection in the network was described

by three genes that defined its sign, its learning rule, and

its learning rate (Fig. 61.23). Every time a genome was

decoded into a neural network and downloaded onto the

robot, the synaptic strengths were initialized to small

random values and could change according to the genet-

ically specified rules and rates while the robot interacted

with the environment. Variations of this methodology

included a more compact genetic encoding where the

learning properties were associated to a neuron instead

of a synapse. All synapses afferent to a neuron used its

genetically specified rules and rates. Genes could en-

code four types of Hebbian learning that were modeled

upon neurophysiological data and were complementary

to each other [61.100].

Experimental results in a nontrivial, multitask envi-

ronment (Fig. 61.24) indicated that this methodology has

a number of significant advantages with respect to the

evolution of synaptic strengths without learning [61.45].

Robots evolved faster and obtained better fitness val-

ues. Furthermore, evolved behaviors were qualitatively

different, notably in that they did not exploit minimal
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a) b)

Fig. 61.24 (a) A mobile robot Khepera equipped with a vision mod-

ule can gain fitness points by staying on the gray area only when

the light is on. The light is normally off, but it can be switched on

if the robot passes over the black area positioned on the other side

of the arena. The robot can detect ambient light and wall color, but

not the color of the floor. (b) Behavior of an individual evolved in

simulation with genetic encoding of learning rules

solutions tuned to the environment (such as turning only

on one side, or turning in circles tuned to the dimensions

of the evolutionary arena). Most important, these robots

displayed remarkable adaptive properties after evolu-

tion. Best evolved individuals: (1) transferred perfectly

from simulated to physical robots, (2) accomplished the

task when the light and reflection properties of the envi-

ronment were modified, (3) accomplished the task when

key landmarks and target areas of the environment were

displaced, and (4) transferred well across morphologi-

cally different robotic platforms. In other words, these

robots were selected for their ability to solve a partially

unknown problem by adapting on the fly, rather than for

being a solution to the problem seen during evolution.

In further experiments where the genetic code for

each synapse of the network included one gene whose

value caused its remaining genes to be interpreted as con-

nection strengths or learning rules and rates, 80% of the

synapses made the choice of using learning, reinforcing

the fact that this genetic strategy has a comparatively

stronger adaptive power [61.100]. This methodology

could also be used to evolve the morphology of neu-

ral controllers were synapses are created at runtime and

therefore their strengths cannot be genetically speci-

fied [61.101]. Recently, the adaptive properties of this

type of adaptive genetic encoding were confirmed also

in the context of evolutionary spiking neurons for robot

control [61.102].

61.8 Competition and Cooperation

In the previous sections, we limited our analysis to indi-

vidual behaviors, i. e., to the evolution of robots placed

in an environment that does not include other robots.

The evolutionary method, however, can also be applied

to develop collective behaviors in which evolving robots

are placed in an environment that also contains other in-

dividual robots and are selected for the ability to display

competitive or cooperative behavior.

In this section we briefly review two examples in-

volving competitive and cooperative behaviors. As we

see, the evolution of collective behavior is particularly

interesting from the point of view of synthesizing pro-

gressively more complex behaviors and from the point of

view of developing solutions that are robust with respect

to environmental variations.

61.8.1 Coevolving Predator and Prey Robots

Competitive coevolution, for example the coevolution

of two populations of predator and prey robots that

are evolved for the ability to catch prey and to escape

predators, respectively, has two characteristics that are

particularly interesting from an evolutionary robotics

perspective. The first aspect is that the competition

between populations with different interests might spon-

taneously lead to a sort of incremental evolutionary

process where evolving individuals are faced with pro-

gressively more complex challenges (although this is not

necessarily the case). Indeed, in initial generations the

task of the two populations is relatively simple because

opponents have simple and poorly developed abilities on

average. After a few generations, however, the abilities

of the two populations increase and, consequently, the

challenges for each population become more difficult.

The second aspect consists of the fact that the envi-

ronment varies across generations because it includes

other coevolving individuals. This implies that coevolv-

ing individuals should be able to adapt to ever-changing

environments and to develop behaviors that are robust

with respect to environmental variations.

The potential advantages of competitive coevolu-

tion for evolutionary robotics have been demonstrated

by a set of experiments conducted by Floreano and

Nolfi [61.94,103] where two populations of robots were

evolved for the ability to catch prey and escape predators,

respectively (Fig. 61.25).

The results indicated that both predator and prey

robots tended to vary their behavior throughout gen-
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Fig. 61.25 Experimental setup. The predator and prey robot

(from left to right) are placed in an arena surrounded by

walls and are allowed to interact for several trials starting

at different randomly generated orientations. Predators are

selected on the basis of the percentage of trials in which they

are able to catch (i. e., to touch) the prey, and prey on the

basis of the percentage of trials in which they were able to

escape (i. e., to not be touched by) predators. Predators have

a vision system, whereas the prey have only short-range

distance sensors, but can go twice as fast as the predator.

Collision between the robots is detected by a conductive

belt at the base of the robots

erations without converging on a stable strategy. The

behavior displayed by individuals at each generation

tended to be tightly adapted to the counter-strategy ex-

hibited by the opponent of the same generation. This

evolutionary dynamic however does not really lead to

long-lasting progress because, after an initial evolu-

tionary phase, the coevolutionary process led to a limit

cycle dynamic where the same small set of behavioral

strategies recycled over and over again along genera-

tions [61.94]. This limit cycle dynamic can be explained

by considering that prey robots tended to vary their

behavior in order to disorient predators as soon as preda-

tors become effective against the current behavioral

strategies exhibited by prey robots.

However, experiments [61.103] where robots were

allowed to change their behavior on the fly on the basis

of unsupervised Hebbian learning rules showed that the

evolutionary phase where coevolving robots were able

to produce real progress was significantly longer, and

evolved predators displayed an ability to effectively cope

with prey exhibiting different behavioral strategies by

adapting their behavior on the fly to the prey’s behavior.

Prey instead tended to display behavior that changed in

unpredictable ways.

Further experiments showed that competitive coevo-

lution can solve problem that the evolution of a single

population cannot. Nolfi and Floreano [61.94] demon-

strated that the attempt to evolve predators robot for the

ability to catch a fixed pre-evolved prey produced lower

performance with respect to control experiments where

predators and prey were coevolved at the same time.

61.8.2 Evolving Cooperative Behavior

Cooperative behavior refers to the situation where

a group of robots sharing the same environment coordi-

nate and help each other to solve a problem that cannot be

solved by a single robot [61.104]. Although the synthe-

sis of cooperative robots through evolutionary methods

is a rather recent enterprise, obtained results are very

promising. When it comes to evolving a population of

robots for cooperative behaviors, it is necessary to decide

the genetic relation among members of a team and the

method for selective reproduction. Robots in a team can

be genetically homogeneous (clones) or heterogeneous

(they differ from each other). Furthermore, the fitness

can be computed at the level of the team (in which case,

the entire team of robots is reproduced) or at the level

of the individual (in which case, only individuals of the

team are selected for reproduction). The combination of

two variables, genetic relatedness and level of selection,

generates at least four different conditions, with a vari-

ety of mixed conditions in between. It has been shown

experimentally that the choice of homogeneous teams

with team-level selection is the most efficient for gen-

erating robots that display altruistic cooperation where

individual robots are willing to pay a cost for the benefit

of the entire team [61.105, 106].

Recent research showed that teams of evolved robots

can:

1. develop robust and effective behavior [61.107–109]

2. display an ability to differentiate their behavior in

order to better cooperate [61.107, 109]

3. develop communication capabilities and a shared

communication system [61.110, 111]

Here we briefly review one of these experiments

where swarm-bots [61.112], i. e., teams of autonomous

robots capable of dynamically assembling by physically

connecting together, were evolved for displaying coor-

dinated motion, navigation on rough terrains, collective

negotiation of obstacles and holes, and dynamical shape

reorganization in order to go through narrow passages.
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Fig. 61.26 An s-bot and a simulated swarm-bot consisting of four

s-bots assembled in chain formation

Each s-bot consisted of a main platform (chassis) and

turret that could actively rotate with respect to each other

(Fig. 61.26). The chassis included tracks with teethed

wheels for navigation on both rough and flat terrain, and

four infrared sensors pointing to the ground. The turret

included a gripper, a loudspeaker, 16 infrared sensors,

three microphones, and a traction sensor placed between

the turret and the chassis to detect the direction and the

intensity of the traction force that the turret exerts on the

chassis. Each s-bot was provided with a simple neural

controller where sensory neurons were directly con-

nected to the motors neurons that controlled the desired

speed of the tracks and whether or not a sound signal was

produced. The team of s-bots forming a swarm-bot was

homogeneous and evolved with team-level selection.

Swarm-bots of four s-bots assembled in chain for-

mation (Fig. 61.26) were evolved for the ability to move

coordinately on a flat terrain. Evolved neural controllers

were also capable of producing coordinated movements

when the swarm-bot was augmented by additional s-bots

and reorganized in different shapes. Swarm-bots also dy-

namically rearranged their shape in order to effectively

negotiate narrow passages and were capable of moving

on rough terrains by negotiating situations that could

not be handled by a single robot. Such robots also col-

lectively avoided obstacles and coordinated to transport

heavy objects [61.107, 108, 113].

61.9 Evolutionary Hardware

The work described so far was mainly conducted on

robots that did not change shape during evolution, with

the exception of self-assembling robots where several

a) b)

c)

d)

Fig. 61.27a–d Wall-avoidance behavior of a robot with an evolved

hardware controller in virtual reality and (d) the real world

individuals can connect to become a superorganism of

variable shape. In recent years, technology advance-

ments have allowed researchers to explore evolution

of electronic circuits and morphologies. In this section,

we briefly summarize some foundational work in this

direction.

61.9.1 Evolvable Hardware Robot
Controllers

In most of the work discussed so far some form of

genetically specified neural network, implemented in

software, has been at the center of the robot control sys-

tem. Work on a related approach of evolving control

systems directly onto hardware dates back to Thomp-

son’s work in the mid 1990s [61.114]. In contrast to

hardware controllers that are designed or programmed to

follow a well-defined sequence of instructions, evolved

hardware controllers are directly configured by evolu-

tion and then allowed to behave in real time according

to semiconductor physics. By removing standard elec-

tronics design constraints, the physics can be exploited

to produce highly nonstandard and often very efficient

and minimal systems [61.115].

Thompson [61.114] used artificial evolution to de-

sign an onboard hardware controller for a two-wheeled
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autonomous mobile robot engaged in simple wall-

avoidance behavior in an empty arena. Starting from

a random orientation, and position near the wall, the

robot had to move to the center of the arena and stay

there using limited sensory input (Fig. 61.27). The DC

motors driving the wheels were not allowed to run in

reverse and the robot’s only sensors were a pair of time-

of-flight sonars rigidly mounted on the robot, pointing

left and right.

Thompson’s approach made use of a so-called dy-

namic state machine (DSM) – a kind of generalized

read-only memory (ROM) implementation of a finite-

state machine where the usual constraint of strict

synchronization of input signals and state transitions are

relaxed (in fact put under evolutionary control). The sys-

tem had access to a global clock whose frequency was

also under genetic control. Thus evolution determined

whether each signal was synchronized to the clock or al-

lowed to flow asynchronously. This allowed the evolving

DSM to be tightly coupled to the dynamics of interaction

between the robot and environment and for evolution to

explore a wide range of systems dynamics. The process

took place within the robot in a kind of virtual reality in

the sense that the real evolving hardware controlled the

real motors, but the wheels were just spinning in the air.

The movements that the robot would have actually per-

formed if the wheels had been supporting it were then

simulated and the sonar echo signals that the robot was

expected to receive were supplied in real time to the

hardware DSM. Excellent performance was attained af-

ter 35 generations, with good transfer from the virtual

environment to the real world (Fig. 61.27).

Shortly after this research was performed, particu-

lar types of field programmable gate arrays (FPGAs)

which were appropriate for evolutionary applications

became available. FPGAs are reconfigurable systems

allowing the construction of circuits built from basic

logic elements. Thompson exploited their properties to

demonstrate evolution directly in the chip. By again re-

laxing standard constraints, such as synchronizing all

elements with a central clock, he was able to develop

very novel forms of functional circuits, including a con-

troller for a Khepera robot using infrared sensors to avoid

obstacles [61.115, 116].

Following Thompson’s pioneering work, Keymeulen

evolved a robot control system using a Boolean function

approach implemented on gate-level evolvable hard-

ware [61.117]. This system acted as a navigation system

for a mobile robot capable of locating and reaching

a colored ball while avoiding obstacles. The robot was

equipped with infrared sensors and an vision system

giving the direction and distance to the target. A pro-

grammable logic device (PLD) was used to implement

a Boolean function in its disjunctive form. This work

demonstrated that such gate-level evolvable hardware

was able to take advantage of the correlations in the input

states and to exhibit useful generalization abilities, thus

allowing the evolution of robust behavior in simulation

followed by a good transfer into the real world.

In a rather different approach, Ritter et al. used

an FPGA implementation of an onboard evolution-

ary algorithm to develop a controller for a hexapod

robot [61.118]. Floreano and collaborators devised

a multicellular reconfigurable circuit capable of evolu-

tion, self-repair, and adaptation [61.119], and used it as

a substrate for evolving spiking controllers of a wheeled

robot [61.120]. Although evolved hardware controllers

are not widely used in evolutionary robotics, they still

hold out the promise of some very useful properties,

such as robustness to faults, which make them inter-

esting for extreme condition applications such as space

robotics.

61.9.2 Evolving Bodies

In the work described so far there has been an

overwhelming tendency to evolve control system for

pre-existing robots: the brain is constrained to fit a par-

ticular body and set of sensors. Of course in nature the

nervous system evolved simultaneously with the rest of

the organism. As a result, the nervous system is highly

integrated with the sensory apparatus and the rest of

the body: the whole operates in a harmonious and bal-

anced way – there are no distinct boundaries between

control system, sensors and body. From the start, work

at Sussex University incorporated the evolution of sen-

sor properties, including positions, but other aspects of

the physical robot were fixed [61.15]. Although the lim-

itations of not being able to control body morphology

genetically were acknowledged at this stage, there were

severe technical difficulties in overcoming them, so this

issue was somewhat sidelined.

Karl Sims started to unlock these possibilities

in his highly imaginative work on evolving simu-

lated 3-D creatures in an environment with realistic

physics [61.121]. In this work, the creatures coevolved

under a competitive scenario in which they were required

to try and gain control of a resource (a cube) placed in the

center of an arena. Both the morphology of the creatures

and the neural system controlling their actuators were

under evolutionary control. Their bodies were built from

rigid 3-D primitives with the overall morphology being
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determined by a developmental process encoded as a di-

rected graph. Various kinds of genetically determined

joints were allowed between body parts. A variety of

sensors could be specified for a specific body part. The

simulated world included realistic modeling of gravity,

frictions, collisions, and other dynamics such that be-

haviors were restricted to be physically plausible. Many

different styles of locomotion evolved along with a va-

riety of interesting, and often entertaining, strategies to

capture the resource, including pushing the opponent

away and covering up the cube.

With the later developments of sophisticated physics

engines for modeling a variety of physical bodies, Sims’

work inspired a rash of evolved virtual creatures, in-

cluding realistic humanoid figures capable of a variety

of behaviors [61.30].

In what might be regarded as a step towards evolv-

ing robot bodies, Funes and Pollack explored the use of

evolutionary algorithms in the design of physical struc-

tures taking account of stresses and torques [61.122].

They experimented with evolving structures assembled

from elementary components (LEGO bricks). Evolution

took place in simulation and the designs were verified

in the real world. Stable 3-D brick structures such as ta-

bles, cranes, bridges, and scaffolds were evolved within

the restrictions of maximum stress torques at each joint

between brick pairs. Each brick was modeled as exert-

ing an external load with a lever arm from its center of

mass to the supporting joint, resulting in a network of

masses and forces representing the structure. A genetic

programming approach was taken using tree structures

to represent the 3-D LEGO structures. A mutation oper-

ator acted on individual brick parameters while subtree

crossover allowed more radical changes to the structure.

As well as fitness functions designed to encourage par-

ticular types of structures, an additional low-level fitness

factor favoring the fewest bricks successfully weeded

out many of the redundant bricks that inevitably arose.

LEGO proved to be a predictable building tool with

modes of breakage and linkage that could be relatively

easily modeled. While this work was successful, produc-

ing very strong designs, it focused on static structures,

so was limited in terms of its relevance to functional

robotic body parts. However, it did demonstrate a viable

approach to evolving physical structures.

While various researchers advocated the use of fully

evolvable hardware to develop not only a robot’s control

circuits, but also its body plan, which might include

the types, numbers, and positions of the sensors, the

body size, the wheel radius, actuator properties and so

on [61.123], this was still largely confined to theoretical

discussion until Lipson and Pollack’s work on the Golem

project [61.124], which was a significant step on from

the earlier LEGO work [61.122].

Lipson and Pollack, working at Brandeis Univer-

sity, pushed the idea of fully evolvable robot hardware

about as far as is reasonably technologically feasible at

present. In an important piece of research, directly in-

spired by Sims’ earlier simulation work, autonomous

creatures were evolved in simulation out of basic build-

ing blocks (neurons, plastic bars, actuators) [61.124].

The bars could connect together to form arbitrary truss

structures with the possibility of both rigid and artic-

ulated substructures. Neurons could be connected to

each other and to bars whose length they would then

control via a linear actuator. Machines defined in this

way were required to move as far as possible in a lim-

ited time. The fittest individuals were then fabricated

robotically using rapid manufacturing technology (plas-

tic extrusion 3-D printing) to produce results such as

that shown in Fig. 61.28). They thus achieved auton-

omy of design and construction using evolution in

a limited-universe physical simulation coupled to au-

tomatic fabrication. The fitness function employed was

simply the Euclidean distance moved by the center of

mass of a machine over a fixed small number of cycles

of its neural controller. A number of different mutation

operator acted in concert: small changes to bar or neuron

properties, additions and deletions of bars or neurons,

changes to connections between neurons and bars, and

the creation of new vertices. The highly unconventional

designs thus performed as well in reality as in simu-

lation. The success of this work points the way to new

possibilities in developing energy-efficient fault-tolerant

machines.

Pfeifer and colleagues at Zurich University have ex-

plored issues central to the key motivation for fully

Fig. 61.28 A locomoting creature evolved by Lipson and

Pollack in research which achieved an autonomous design

and fabrication process

P
a
rt

G
6
1
.9



Evolutionary Robotics References 1447

evolvable robot hardware: the balanced interplay be-

tween body morphology, neural processing, and the

generation of adaptive behavior [61.125, 126]. Work

from this group has involved a number of approaches,

including evolutionary robotics. One focus is on study-

ing how to exploit the dynamic interaction between the

embodied agent and the environment. Pfeifer uses the

term morphological computation to draw attention to

the fact that some of the control of behavior can be

performed by the dynamic interaction derived from mor-

phological properties (e.g., the passive forward swing

of the leg in walking and the spring-like properties of

muscles). By taking morphological computation into ac-

count, it is very likely that more robust, energy efficient

robots can be developed. Pfeifer has developed a set

of design principles for intelligent systems that take into

account this balance between environment, morphology,

and behavior [61.125].

61.10 Closing Remarks

Evolutionary robotics is a young and integrated

approach to robot development without human interven-

tion where machines change and adapt by capitalizing on

the interactions with their environment. Despite initial

skepticism by mainstream and applied robotics practi-

tioners and even by pioneers of this approach [61.127],

over the years the field has been constantly growing

with new methods and approaches for evolving more

complex, efficient, and sometimes surprising robotic

systems. In some areas, such as morphology and self-

assembly, evolutionary robotics is still the most widely

used and powerful approach.

Evolutionary robotics is not only a method for au-

tomatic robot development inspired by biology, but

also a tool for investigating open questions in biology

concerning evolutionary, developmental, and brain dy-

namics. Its richness and fecundity make us believe that

this approach will continue to grow and progress to-

wards the creation of a new species of machines capable

of self-evolution.
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