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2. Dynamics

Roy Featherstone, David E. Orin

The dynamic equations of motion provide the re-
lationships between actuation and contact forces
acting on robot mechanisms, and the accelera-
tion and motion trajectories that result. Dynamics
is important for mechanical design, control, and
simulation. A number of algorithms are important
in these applications, and include computation
of the following: inverse dynamics, forward dy-

namics, the joint-space inertia matrix, and the
operational-space inertia matrix. This chapter
provides efficient algorithms to perform each of
these calculations on a rigid-body model of a robot
mechanism. The algorithms are presented in their
most general form and are applicable to robot
mechanisms with general connectivity, geome-
try, and joint types. Such mechanisms include
fixed-base robots, mobile robots, and parallel
robot mechanisms.

In addition to the need for computational
efficiency, algorithms should be formulated with
a compact set of equations for ease of development
and implementation. The use of spatial notation
has been very effective in this regard, and is used in
presenting the dynamics algorithms. Spatial vector
algebra is a concise vector notation for describ-
ing rigid-body velocity, acceleration, inertia, etc.,
using six-dimensional (6-D) vectors and tensors.

The goal of this chapter is to introduce the
reader to the subject of robot dynamics and to
provide the reader with a rich set of algorithms,
in a compact form, that they may apply to their
particular robot mechanism. These algorithms are
presented in tables for ready access.
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2.1 Overview

Robot dynamics provides the relationships between ac-

tuation and contact forces, and the acceleration and

motion trajectories that result. The dynamic equations

of motion provide the basis for a number of computa-

tional algorithms that are useful in mechanical design,

control, and simulation. A growing area of their use is in

computer animation of mobile systems, especially using

human and humanoidmodels. In this Chapter, the funda-

mental dynamic relationships for robot mechanisms are

presented, along with efficient algorithms for the most

common computations. Spatial vector notation, a con-

cise representation which makes use of 6-D vectors and

tensors, is used in the algorithms.

This chapter presents efficient low-order algorithms

for four major computations:

1. inverse dynamics, in which the required joint actua-

tor torques/forces are computed from a specification

of the robot’s trajectory (position, velocity, and ac-

celeration),

2. forward dynamics in which the applied joint actuator

torques/forces are specified and the joint accelera-

tions are to be determined,

3. the joint-space inertia matrix, which maps the joint

accelerations to the joint torques/forces, and

4. the operational-space inertia matrix, which maps

task accelerations to task forces in operational or

Cartesian space.

Inverse dynamics is used in feedforward control.

Forward dynamics is required for simulation. The joint-

space inertia (mass) matrix is used in analysis, in

feedback control to linearize the dynamics, and is an

integral part of many forward dynamics formulations.

The operational-space inertia matrix is used in control

at the task or end-effector level.

2.1.1 Spatial Vector Notation

Section 2.2 presents the spatial vector notation, which

is used to express the algorithms in this chapter in

a clear and concise manner. It was originally developed

by Featherstone [2.1] to provide a concise vector no-

tation for describing rigid-body velocity, acceleration,

inertia, etc., using 6-D vectors and tensors. Section 2.2

explains the meanings of spatial vectors and operators,

and provides a detailed tabulation of the correspondence

between spatial and standard three-dimensional (3-D)

quantities and operators, so that the algorithms in the

later sections can be understood. Formulae for efficient

computer implementation of spatial arithmetic are also

provided. Effort is taken in the discussion of spatial vec-

tors to distinguish between the coordinate vectors and

the quantities they represent. This illuminates some of

the important characteristics of spatial vectors.

2.1.2 Canonical Equations

The dynamic equations of motion are provided in

Sect. 2.3 in two fundamental forms: the joint-space for-

mulation and the operational-space formulation. The

terms in the joint-space formulation have traditionally

been derived using a Lagrangian approach in which they

are developed independently of any reference coordinate

frame. The Lagrange formulation provides a description

of the relationship between the joint actuator forces and

the motion of the mechanism, and fundamentally oper-

ates on the kinetic and potential energy in the system.

The resulting joint-space formulation has a number of

notable properties that have proven useful for develop-

ing control algorithms. The equations to relate the terms

in the joint-space and operational-space formulations,

along with an impact model, are also provided in this

section.

2.1.3 Dynamic Models
of Rigid-Body Systems

The algorithms in this chapter are model-based and re-

quire a data structure describing a robot mechanism as

one of their input arguments. Section 2.4 gives a descrip-

tion of the components of this model: a connectivity

graph, link geometry parameters, link inertia parame-

ters, and a set of joint models. The description of the

connectivity is general so that it covers both kinematic
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Dynamics 2.2 Spatial Vector Notation 37

trees and closed-loop mechanisms. Kinematic trees and

the spanning tree for a closed-loop mechanism share

a common notation. In order to describe the link and

joint geometry, two coordinate frames are associated

with each joint, one each attached to the predecessor

and successor links. The successor frame is defined to

be compatible with the modified Denavit–Hartenberg

convention of Craig [2.2] for single-degree-of-freedom

(DOF) joints. The predecessor frame may be defined

in a convenient manner to describe a general multi-

DOF joint. The relationship between connected links

is described using the general joint model of Roberson

and Schwertassek [2.3]. A humanoid robot is given as

an example to illustrate the link and joint numbering

scheme, as well as the assignment of coordinate frames

to describe the links and joints. The example includes

a floating base, and revolute, universal, and spherical

joints.

2.1.4 Kinematic Trees

The algorithms presented in Sect. 2.5 calculate the in-

verse dynamics, forward dynamics, joint-space inertia

matrix, and operational-space inertia matrix for any

robot mechanism that is a kinematic tree. An O(n) al-

gorithm for inverse dynamics is provided, where n is

the number of degrees of freedom in the mechanism.

It uses a Newton–Euler formulation of the problem,

and is based on the very efficient recursive Newton–

Euler algorithm (RNEA) of Luh,Walker, and Paul [2.4].

Two algorithms are provided for forward dynamics.

The first is the O(n) articulated-body algorithm (ABA)

which was developed by Featherstone [2.1]. The second

is the O(n2) composite-rigid-body algorithm (CRBA),

developed by Walker and Orin [2.5], to compute the

joint-space inertia matrix (JSIM). This matrix, together

with a vector computed using the RNEA, provide

the coefficients of the equation of motion, which can

then be solved directly for the accelerations [2.5]. The

operational-space inertia matrix (OSIM) is a kind of

articulated-body inertia, and two algorithms are given

to calculate it. The first uses the basic definition of the

OSIM, and the second is a straightforward O(n) algo-

rithm which is based on efficient solution of the forward

dynamics problem. The inputs, outputs, model data, and

pseudocode for each algorithm are summarized in tables

for ready access.

2.1.5 Kinematic Loops
The above algorithms apply only to mechanisms having

the connectivity of kinematic trees, including un-

branched kinematic chains. A final algorithm is provided

in Sect. 2.6 for the forward dynamics of closed-loop

systems, including parallel robot mechanisms. The al-

gorithm makes use of the dynamic equations of motion

for a spanning tree of the closed-loop system, and

supplements these with loop-closure constraint equa-

tions. Three different methods are outlined to solve

the resulting linear system of equations. Method 2 is

particularly useful if n ≫ nc, where nc is the num-

ber of constraints due to the loop-closing joints. This

method offers the opportunity to use O(n) algorithms

on the spanning tree [2.6]. The section ends with an

efficient algorithm to compute the loop-closure con-

straints by transforming them to a single coordinate

system. Since the loop-closure constraint equations are

applied at the acceleration level, standard Baumgarte

stabilization [2.7] is used to prevent the accumula-

tion of position and velocity errors in the loop-closure

constraints.

The final section in this chapter provides a conclu-

sion and suggestions for further reading. The area of

robot dynamics has been, and continues to be, a very

rich area of investigation. This section outlines the ma-

jor contributions that have been made in the area and

the work most often cited. Unfortunately, space does

not permit us to provide a comprehensive review of the

extensive literature in the area.

2.2 Spatial Vector Notation

There is no single standard notation for robot dynam-

ics. The notations currently in use include 3-D vectors,

4×4 matrices, and several types of 6-D vector: screws,

motors, Lie algebra elements, and spatial vectors. Six-

dimensional vector notations are generally the best,

being more compact than 3-D vectors, and more pow-

erful than 4×4 matrices. We therefore use 6-D vectors

throughout this chapter. In particular, we shall use the

spatial vector algebra described in [2.8]. This section

provides a brief summary of spatial vectors. Descrip-

tions of 4×4 matrix notations can be found in [2.2, 9],

and descriptions of other 6-D vector notations can be

found in [2.10–12].

In this handbook, vectors are usually denoted by bold

italic letters (e.g., f , v). However, to avoid a few name

clashes, we shall use upright bold letters to denote spatial
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38 Part A Robotics Foundations

vectors (e.g., f, v). Note that this applies only to vectors,

not tensors. Also, in this section only, we will underline

coordinate vectors to distinguish them from the vectors

that they represent (e.g., v and v, representing v and v).

2.2.1 Motion and Force

For mathematical reasons, it is useful to distinguish be-

tween those vectors that describe the motions of rigid

bodies, and those that describe the forces acting upon

them. We therefore place motion vectors in a vector

space called M
6, and force vectors in a space called

F
6. (The superscripts indicate the dimension.) Motion

vectors describe quantities like velocity, acceleration,

infinitesimal displacement, and directions of motion

freedom; force vectors describe force, momentum, con-

tact normals, and so on.

2.2.2 Basis Vectors

Suppose that v is a 3-D vector, and that v = (vx, vy, vz)
T

is the Cartesian coordinate vector that represents v in the

orthonormal basis {x̂, ŷ, ẑ}. The relationship between v

and v is then given by the formula

v = x̂vx + ŷvy + ẑvz .

This same idea applies also to spatial vectors, except

that we use Plücker coordinates instead of Cartesian co-

ordinates, and a Plücker basis instead of an orthonormal

basis.

Plücker coordinates were introduced in Sect. 1.2.6,

but the basis vectors are shown in Fig. 2.1. There are

12 basis vectors in total: six for motion vectors and six

for forces. Given a Cartesian coordinate frame, Oxyz ,

the Plücker basis vectors are defined as follows: three

unit rotations about the directed lines Ox, Oy, and Oz,

denoted by dOx , dOy, and dOz , three unit translations

in the directions x, y, and z, denoted by dx , dy, and

dz , three unit couples about the x, y, and z directions,

dz

dy

O

dx

dOz

dOy

dOx

ez

ey

Oex

eOz

eOy

eOx

a) b)

Fig. 2.1a,b Plücker basis vectors for motions (a) and

forces (b)

denoted by ex , ey, and ez , and three unit forces along the

lines Ox, Oy, and Oz, denoted by eOx , eOy, and eOz .

2.2.3 Spatial Velocity and Force

Given any point O, the velocity of a rigid body can be

described by a pair of 3-D vectors, ω and vO , which

specify the body’s angular velocity and the linear ve-

locity of the body-fixed point currently at O. Note that

vO is not the velocity of O itself, but the velocity of the

body-fixed point that happens to coincide with O at the

current instant.

The velocity of this same rigid body can also be de-

scribed by a single spatial motion vector, v ∈ M
6. To

obtain v from ω and vO , we first introduce a Carte-

sian frame, Oxyz , with its origin at O. This frame

defines a Cartesian coordinate system for ω and vO ,

and also a Plücker coordinate system for v. Given these

coordinate systems, it can be shown that

v = dOxωx +dOyωy +dOzωz +dxvOx

+dyvOy +dzvOz , (2.1)

where ωx, . . . , vOz are the Cartesian coordinates of ω

and vO in Oxyz . Thus, the Plücker coordinates of v are

the Cartesian coordinates of ω and vO . The coordinate

vector representing v in Oxyz can be written

vO =









ωx

...

vOz









=

(

ω

vO

)

. (2.2)

The notation on the far right of this equation is sim-

ply a convenient abbreviation of the list of Plücker

coordinates.

The definition of spatial force is very similar. Given

any point O, any system of forces acting on a single

rigid body is equivalent to a single force f acting on

a line passing through O, together with a pure couple,

nO , which is the moment of the force system about

O. Thus, the two vectors f and nO describe the force

acting on a rigid body in much the same way that ω

and vO describe its velocity. This same force can also

be described by a single spatial force vector, f ∈ F
6.

Introducing the frame Oxyz , as before, it can be shown

that

f = exnOx + eynOy + eznOz + eOx fx

+ eOy fy + eOz fz , (2.3)

where nOx , . . . , fz are the Cartesian coordinates of nO

and f in Oxyz . The coordinate vector representing f in
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Dynamics 2.2 Spatial Vector Notation 39

Oxyz can then be written

fO =









nOx

...

fz









=

(

nO

f

)

. (2.4)

Again, these are the Plücker coordinates of f in Oxyz ,

and the notation on the far right is simply a convenient

abbreviation of the list of Plücker coordinates.

2.2.4 Addition and Scalar Multiplication

Spatial vectors behave in the obviousway under addition

and scalar multiplication. For example, if f1 and f2 both

act on the same rigid body, then their resultant is f1+ f2;

if two different bodies have velocities of v1 and v2, then

the velocity of the second body relative to the first is

v2 −v1; and if f denotes a force of 1N acting along

a particular line in space, then α f denotes a force of α N

acting along the same line.

2.2.5 Scalar Product

A scalar product is defined between any two spatial

vectors, provided that one of them is a motion and the

other a force. Given any m ∈ M
6 and f ∈ F

6, the scalar

product can be written either f ·m or m · f, and expresses

the work done by a force f acting on a body with motion

m. Expressions like f · f and m ·m are not defined. If m

and f are coordinate vectors representing m and f in the

same coordinate system, then

m · f = mT f . (2.5)

2.2.6 Coordinate Transforms

Motion and force vectors obey different transformation

rules. Let A and B be two coordinate frames, each

defining a coordinate system of the same name; and

let mA, mB , fA, and fB be coordinate vectors represent-

ing the spatial vectors m ∈ M
6 and f ∈ F

6 in A and B

coordinates, respectively. The transformation rules are

then

mB = BXAmA (2.6)

and

fB = BXF
A fA , (2.7)

where BXA and BXF
A are the coordinate transformation

matrices from A to B for motion and force vectors,

respectively. These matrices are related by the identity

BXF
A ≡ (BXA)

−T ≡ (AXB)
T . (2.8)

Suppose that the position and orientation of frame A

relative to frame B is described by a position vector Bp
A

and a 3×3 rotationmatrix BRA, as described in Sect. 1.2.

The formula for BXA is then

BXA =

(

1 0

S(BpA) 1

)(

BRA 0

0 BRA

)

=

(

BRA 0

S(BpA)
BRA

BRA

)

, (2.9)

and its inverse is

AXB =

(

ARB 0

0 ARB

)(

1 0

−S(BpA) 1

)

. (2.10)

The quantity S(p) is the skew-symmetric matrix that

satisfies S(p)v = p×v for any 3-D vector v. It is defined

by the equation

S(p)=







0 −pz py

pz 0 −px

−py px 0






. (2.11)

2.2.7 Vector Products

There are two vector (cross) products defined on spatial

vectors. The first takes two motion-vector arguments,

and produces a motion-vector result. It is defined by the

formula

m1 ×m2 =

(

m1

m1O

)

×

(

m2

m2O

)

=

(

m1 ×m2

m1 ×m2O +m1O ×m2

)

. (2.12)

The second takes a motion vector as left-hand argument

and a force vector as right-hand argument, and produces

a force-vector result. It is defined by the formula

m× f =

(

m

mO

)

×

(

f
O

f

)

=

(

m× f
O

+mO × f

m× f

)

. (2.13)

These products arise in differentiation formulae.
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It is possible to define a spatial cross-product opera-

tor, in analogy with (2.11), as follows:

S(m)=

(

S(m) 0

S(mO) S(m)

)

, (2.14)

in which case

m1 ×m2 = S(m1)m2 , (2.15)

but

m× f = −S(m)T f . (2.16)

Observe that S(m) maps motion vectors to motion vec-

tors, but S(m)T maps force vectors to force vectors.

2.2.8 Differentiation

The derivative of a spatial vector is defined by

d

dx
s(x)= lim

δx→0

s(x + δx)− s(x)

δx
, (2.17)

where s here stands for any spatial vector. The derivative

is a spatial vector of the same kind (motion or force) as

that being differentiated.

The formula for differentiating a spatial coordinate

vector in a moving coordinate system is
(

d

dt
s

)

A

=
d

dt
sA +vA × sA , (2.18)

where s is any spatial vector, ds/dt is the time deriva-

tive of s, A is the moving coordinate system, (ds/dt)A

is the coordinate vector that represents ds/dt in A coor-

dinates, sA is the coordinate vector that represents s in A

coordinates, dsA/dt is the time derivative of sA (which

is the componentwise derivative, since sA is a coordi-

nate vector), and vA is the velocity of the A coordinate

frame, expressed in A coordinates.

The time derivative of a spatial vector that changes

only because it is moving is given by

d

dt
s = v× s , (2.19)

where v is the velocity of s. This formula is useful for

differentiating quantities that do not change in their own

right, but are attached to moving rigid bodies (e.g., joint

axis vectors).

2.2.9 Acceleration

Spatial acceleration is defined as the rate of change of

spatial velocity. Unfortunately, this means that spatial

acceleration differs from the classical textbook defi-

nition of rigid-body acceleration, which we shall call

classical acceleration. Essentially, the difference can be

summarized as follows:

a =

(

ω̇

v̇O

)

and a′ =

(

ω̇

v̇′
O

)

, (2.20)

where a is the spatial acceleration, a′ is the classical

acceleration, v̇O is the derivative of vO taking O to be

fixed in space, and v̇′
O is the derivative of vO taking O

to be fixed in the body. The two accelerations are related

by

a′ = a+

(

0

ω×vO

)

. (2.21)

If r is a position vector giving the position of the body-

fixed point at O relative to any fixed point, then

vO = ṙ ,

v̇′
O = r̈ ,

v̇O = r̈ −ω×vO . (2.22)

The practical difference is that spatial accelerations

are easier to use. For example, if the bodies B1 and B2

have velocities of v1 and v2, respectively, and vrel is the

relative velocity of B2 with respect to B1, then

v2 = v1 +vrel .

The relationship between their spatial accelerations is

obtained simply by differentiating the velocity formula:

d

dt
(v2 = v1 +vrel) ⇒ a2 = a1 +arel .

Observe that spatial accelerations are composed by ad-

dition, exactly like velocities. There are no Coriolis or

centrifugal terms to worry about. This is a significant

improvement on the formulae for composing classical

accelerations, such as those in [2.2, 13, 14].

2.2.10 Spatial Momentum

Suppose that a rigid body has a mass of m, a center

of mass at C, and a rotational inertia of Īcm about C

(Fig. 2.2). If this body is moving with a spatial velocity

of vC = (ωT vT
C)

T , then its linearmomentum is h = mvC ,

and its intrinsic angular momentum is hC = Īcmω. Its

moment of momentum about a general point, O, is

hO = hC +c×h, where c =
−→
OC. We can assemble these

vectors into a spatial momentum vector as follows:

hC =

(

hC

h

)

=

(

Īcmω

mvC

)

(2.23)
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O

C

c

Momentum:

Mass:  m

Rotational

inertia:  I
– cm

Linear h = mυC

υC

Angular

Spatial






hC = I
– cm

ω

ω

hC
h

Fig. 2.2 Spatial momentum

and

hO =

(

hO

h

)

=

(

1 S(c)

0 1

)

hC . (2.24)

Spatial momentum is a force vector, and transforms

accordingly.

2.2.11 Spatial Inertia

The spatial momentum of a rigid body is the product of

its spatial inertia and velocity:

h = Iv , (2.25)

where I is the spatial inertia. Expressed in Plücker

coordinates at C, we have

hC = ICvC , (2.26)

which implies

IC =

(

Īcm 0

0 m1

)

. (2.27)

This is the general formula for the spatial inertia of

a rigid body expressed at its center of mass. To express

it at another point, O, we proceed as follows. From

(2.24), (2.26), and (2.27)

hO =

(

1 S(c)

0 1

)(

Īcm 0

0 m1

)

vC

=

(

1 S(c)

0 1

)(

Īcm 0

0 m1

)(

1 0

S(c)T 1

)

vO

=

(

Īcm +mS(c)S(c)T mS(c)

mS(c)T m1

)

vO ;

but we also have that hO = IOvO , so

IO =

(

Īcm +mS(c)S(c)T mS(c)

mS(c)T m1

)

. (2.28)

This equation can also be written

IO =

(

ĪO mS(c)

mS(c)T m1

)

, (2.29)

where

ĪO = Īcm +mS(c)S(c)T (2.30)

is the rotational inertia of the rigid body about O.

Spatial inertia matrices are symmetric and positive-

definite. In the general case, 21 numbers are required

to specify a spatial inertia (e.g., for an articulated-body

or operational-space inertia); but a rigid-body inertia

needs only 10 parameters: the mass, the coordinates of

the center of mass, and the six independent elements of

either Īcm or ĪO .

The transformation rule for spatial inertias is

IB = BXF
A IA

AXB , (2.31)

where A and B are any two coordinate systems. In prac-

tice, we often need to calculate IA from IB , given only
BXA. The formula for this transformation is

IA = (BXA)
T IB

BXA . (2.32)

If two bodies, having inertias I1 and I2, are rigidly con-

nected to form a single composite body, then the inertia

of the composite, Itot, is the sum of the inertias of its

parts:

Itot = I1 + I2 . (2.33)

This single equation takes the place of three equations in

the traditional 3-D vector approach: one to compute the

composite mass, one to compute the composite center

of mass, and one to compute the composite rotational

inertia. If a rigid body with inertia I is moving with

a velocity of v, then its kinetic energy is

T =
1

2
v · Iv . (2.34)

If a rigid body, B, is part of a larger system, then

it is possible to define an apparent-inertia matrix for B,

which describes the relationship between a force acting

on B and its resulting acceleration, taking into account

the effects of the other bodies in the system. Such quan-

tities are called articulated-body inertias. If B happens

to be the end-effector of a robot, then its apparent inertia

is called an operational-space inertia.

2.2.12 Equation of Motion

The spatial equation of motion states that the net force

acting on a rigid body equals its rate of change of

momentum:

f =
d

dt
(Iv)= Ia+ İv .
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It can be shown that the expression İv evaluates to (v×

Iv) [2.8, 15], so the equation of motion can be written

f = Ia+v× Iv . (2.35)

This single equation incorporates both Newton’s and

Euler’s equations of motion for a rigid body. To verify

this, we can recover them as follows. Expressing (2.35)

at the body’s center of mass, and using (2.16), (2.14),

and (2.22), we have
(

nC

f

)

=

(

Īcm 0

0 m1

)(

ω̇

v̇C

)

−

(

S(ω)T S(vC)
T

0 S(ω)T

)(

Īcmω

mvC

)

=

(

Īcm 0

0 m1

)(

ω̇

c̈−ω×vC

)

+

(

ω× Īcmω

mω×vC

)

=

(

Īcmω̇+ω× Īcmω

mc̈

)

. (2.36)

2.2.13 Computer Implementation

The easiest way to implement spatial vector arithmetic

on a computer is to start with an existing matrix arith-

metic tool, like MATLAB r© and write (or download

from the Web) routines to do the following:

1. calculate S(m) from m according to (2.14)

2. compose X from R and p according to (2.9)

3. compose I from m, c, and Īcm according to (2.28)

All other spatial arithmetic operations can be

performed using standard matrix arithmetic routines.

However, some additional routines could usefully be

added to this list, such as:

• routines to calculate R from various other represen-

tations of rotation

• routines to convert between spatial and 4×4 matrix

quantities

This is the recommended approach whenever human

productivity is more important than computational effi-

ciency.

If greater efficiency is required, then a more elabo-

rate spatial arithmetic library must be used, in which

1. a dedicated data structure is defined for each kind of

spatial quantity, and

2. a suite of calculation routines are provided, each im-

plementing a spatial arithmetic operation by means

of an efficient formula.

Some examples of suitable data structures and ef-

ficient formulae are shown in Table 2.1. Observe that

the suggested data structures for rigid-body inertias and

Plücker transforms contain only a third as many num-

bers as the 6×6 matrices they represent. The efficient

arithmetic formulae listed in this table offer cost savings

ranging from a factor of 1.5 to a factor of 6 relative to

the use of general 6×6 and 6×1 matrix arithmetic. Even

more efficient formulae can be found in [2.16].

Table 2.1 Summary of spatial vector notation

Spatial quantities:

v velocity of a rigid body

a spatial acceleration of a rigid body (a = v̇)

a′ classical description of rigid-body acceleration

expressed as a 6-D vector

f force acting on a rigid body

I inertia of a rigid body

X Plücker coordinate transform for motion vectors

XF Plücker coordinate transform for force vectors

(XF = X−T )
BXA Plücker transform from A coordinates to B coordinates

m a generic motion vector (any element of M
6)

3-D quantities:

O coordinate system origin

r position of the body-fixed point at O relative to any

fixed point in space

ω angular velocity of a rigid body

vO linear velocity of the body-fixed point at O (vO = ṙ)

ω̇ angular acceleration of a rigid body

v̇O the derivative of vO taking O to be fixed in space

v̇′
O the derivative of vO taking O to be fixed in the body;

the classical acceleration of the body-fixed point

at O (v̇′
O = r̈)

f linear force acting on a rigid body, or the resultant

of a system of linear forces

nO moment about O of a linear force or system of

linear forces

m mass of a rigid body

c position of a rigid body’s centre of mass, measured

relative to O

h first moment of mass of a rigid body, h = m c;

can also denote linear momentum

Īcm moment of inertia about a body’s centre of mass

Ī moment of inertia about O
BRA orthonormal rotation matrix transforming from

A coordinates to B coordinates
ApB location of the origin of B coordinates relative to the

origin of A coordinates, expressed in A coordinates
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Table 2.1 (continued)

Equations:

v =

(

ω

vO

)

a =

(

ω̇

v̇O

)

=

(

ω̇

r̈ −ω× ṙ

)

f =

(

nO

f

)

a′ =

(

ω̇

v̇′
O

)

=

(

ω̇

r̈

)

= a+

(

0

ω×vO

)

I =

(

Ī S(h)

S(h)T m 1

)

=

(

Īcm +mS(c)S(c)T mS(c)

mS(c)T m 1

)

BXA =

(

BRA 0
BRA S(ApB)

T BRA

)

=

(

BRA 0

S(BpA)
BRA

BRA

)

v · f = f ·v = vT f = ω ·nO +vO · f

v×m =

(

ω×m

vO ×m+ω×mO

)

=

(

S(ω) 0

S(vO ) S(ω)

) (

m

mO

)

v× f =

(

ω×nO +vO × f

ω× f

)

=

(

S(ω) S(vO )

0 S(ω)

) (

nO

f

)

Compact computer representations:

Mathematical Size Computer Size

object representation
(

ω

vO

)

6×1 (ω ; vO) 3+3

(

nO

f

)

6×1 (nO ; f ) 3+3

(

Ī S(h)

S(h)T m 1

)

6×6 (m ; h ; Ī) 1+3+9

(

R 0

R S(p)T R

)

6×6 (R ; p) 9+3

2.2.14 Summary

Table 2.1 (continued)

Efficient spatial arithmetic formulae:

Expression Computed value

X v (Rω ; R(vO − p×ω))

XF f (R(nO − p× f ) ; R f )

X−1 (RT ; −R p)

X−1 v (RT ω ; RT vO + p× RT ω)

(XF )−1 f (RT nO + p× RT f ; RT f )

X1X2 (R1R2 ; p2 + RT
2 p1)

I1 + I2 (m1 +m2 ; h1 +h2 ; Ī1 + Ī2)

I v ( Ī ω+h×vO ; m vO −h×ω)

XT IX (m ; RT h+m p ; RT Ī R−

S(p)S(RT h)− S(RT h+m p)S(p))

For meaning of XT IX see (2.32)

Spatial vectors are 6-D vectors that combine the linear

and angular aspects of rigid-body motion, resulting in

a compact notation that is very suitable for describing

dynamics algorithms. To avoid a few name clashes with

3-D vectors, we have used bold upright letters to denote

spatial vectors, while tensors are still denoted by ital-

ics. In the sections that follow, upright letters will be

used to denote both spatial vectors and vectors that are

concatenations of other vectors, like q̇.

Table 2.1 presents a summary of the spatial quan-

tities and operators introduced in this section, together

with the formulae that define them in terms of 3-D quan-

tities and operators. It also presents data structures and

formulae for efficient computer implementation of spa-

tial arithmetic. This table should be read in conjunction

with Tables 1.5 and 1.6, which shows how to compute

the orientation, position, andspatial velocities for a vari-

ety of joint types. Note that j Ri and
j pi in these tables

correspond to B RT
A and A pB , respectively, when read in

conjunction with Table 2.1.

2.3 Canonical Equations

The equations of motion of a robot mechanism are

usually presented in one of two canonical forms: the

joint-space formulation,

H(q)q̈+C(q, q̇)q̇+τg(q) = τ , (2.37)

or the operational-space formulation,

Λ(x)v̇+µ(x, v)+ρ(x) = f . (2.38)

These equations show the functional dependencies ex-

plicitly: H is a function of q, Λ is a function of x,

and so on. Once these dependencies are understood,

they are usually omitted. In (2.38), x is a vector of

operational-space coordinates, while v and f are spa-

tial vectors denoting the velocity of the end-effector and

the external force acting on it. If the robot is redundant,

then the coefficients of this equation must be defined as

functions of q and q̇ rather than x and v.

These two equations are further explained below,

along with a description of the Lagrange formulation of

(2.37), and the impulsive equations ofmotion for impact.
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2.3.1 Joint-Space Formulation

The symbols q, q̇, q̈, and τ denote n-dimensional vectors

of joint position, velocity, acceleration and force vari-

ables, respectively, where n is the number of degrees of

motion freedom of the robot mechanism. H is an n ×n

symmetric, positive-definite matrix, and is called the

generalized, or joint-space, inertia matrix (JSIM). C is

an n×n matrix such thatC q̇ is the vector of Coriolis and

centrifugal terms (collectively known as velocity prod-

uct terms); and τg is the vector of gravity terms. More

terms can be added to this equation, as required, to ac-

count for other dynamical effects (e.g., viscous friction).

The effects of a force f exerted on the mechanism at the

end-effector can be accounted for by adding the term

JT f to the right side of (2.37), where J is the Jacobian

of the end-effector (Sect. 1.8.1).

q specifies the coordinates of a point in the

mechanism’s configuration space. If the mechanism is

a kinematic tree (see Sect. 2.4), then q contains every

joint variable in the mechanism, otherwise it contains

only an independent subset. The elements of q are gen-

eralized coordinates. Likewise, the elements of q̇, q̈, and

τ are generalized velocities, accelerations, and forces.

2.3.2 Lagrange Formulation

Various methods exist for deriving the terms in (2.37).

The two that are most commonly used in robotics are

the Newton–Euler formulation and the Lagrange for-

mulation. The former works directly with Newton’s

and Euler’s equations for a rigid body, which are con-

tained within the spatial equation of motion, (2.35).

This formulation is especially amenable to the devel-

opment of efficient recursive algorithms for dynamics

computations, such as those described in Sections 2.5

and 2.6.

The Lagrange formulation proceeds via the La-

grangian of the robot mechanism,

L = T −U , (2.39)

where T andU are the total kinetic and potential energy,

respectively, of the mechanism. The kinetic energy is

given by

T =
1

2
q̇T Hq̇ . (2.40)

The dynamic equations of motion can then be devel-

oped using Lagrange’s equation for each generalized

coordinate:
d

dt

∂L

∂q̇i

−
∂L

∂qi

= τi . (2.41)

The resulting equation can be written in scalar form:

n
∑

j=1

Hij q̈ j +

n
∑

j=1

n
∑

k=1

Cijkq̇ j q̇k + τgi = τi , (2.42)

which shows the structure of the velocity-product terms.

Cijk are known as Christoffel symbols of the first type,

and are given by

Cijk =
1

2

(

∂Hij

∂qk

+
∂Hik

∂q j

−
∂H jk

∂qi

)

. (2.43)

They are functions of only the position variables, qi . The

elements of C in (2.37) can be defined as

Cij =

n
∑

k=1

Cijkq̇k . (2.44)

However, C is not unique, and other definitions are

possible.

With the choice of C given in (2.44), it is possible to

show that the matrix N, given by

N(q, q̇)= Ḣ(q)−2C(q, q̇) , (2.45)

is skew-symmetric [2.17]. Thus, for any n ×1 vector α,

αT N(q, q̇)α = 0 . (2.46)

This property is quite useful in control, especially when

considering α = q̇, which gives

q̇T N(q, q̇) q̇ = 0 . (2.47)

By applying the principle of conservation of energy, it

can be shown that (2.47) holds for any choice of the

matrix C [2.17, 18].

2.3.3 Operational-Space Formulation

In (2.38), x is a 6-D vector of operational-space coordi-

nates giving the position and orientation of the robot’s

end-effector; v is the velocity of the end-effector; and f is

the force exerted on the end-effector. x is typically a list

of Cartesian coordinates, and Euler angles or quater-

nion components, and is related to v via a differential

equation of the form

ẋ = E(x)v . (2.48)

Λ is the operational-space inertia matrix, which is the

apparent inertia of the end-effector taking into account

the effect of the rest of the robot’s mechanism (i. e., it

is an articulated-body inertia). µ and ρ are vectors of

velocity-product and gravity terms, respectively.
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Operational space (also known as task space) is

the space in which high-level motion and force com-

mands are issued and executed. The operational-space

formulation is therefore particularly useful in the con-

text of motion and force control systems (Sect. 6.2 and

Sect. 7.2). Equation (2.38) can be generalized to oper-

ational spaces with dimensions other than six, and to

operational spaces that incorporate the motions of more

than one end-effector [2.19].

The terms in (2.37) and (2.38) are related by the

following formulae

v = Jq̇ , (2.49)

v̇ = Jq̈+ J̇q̇ , (2.50)

τ = JT f , (2.51)

Λ = (JH−1JT )−1 , (2.52)

µ = Λ(JH−1Cq̇− J̇q̇) , (2.53)

and

ρ = ΛJH−1τg . (2.54)

These equations assume that m ≤ n (m is the dimension

of operational-space coordinates), and that the Jacobian

J has full rank. More details can be found in [2.20].

2.3.4 Impact Model

If a robot strikes a rigid body in its environment, then

an impulsive force arises at the moment of impact and

causes a step change in the robot’s velocity. Let us as-

sume that the impact occurs between the end effector

and a rigid body in the environment, and that a spatial

impulse of f ′ is exerted on the end-effector. This im-

pulse causes a step change of ∆v in the end-effector’s

velocity; and the two are related by the operational-space

equation of impulsive motion [2.21],

Λ∆v = f ′ . (2.55)

In joint space, the equation of impulsive motion for

a robot mechanism is

H∆q̇ = τ′ , (2.56)

where τ′ and ∆q̇ denote the joint-space impulse and

velocity change, respectively. In the case of a collision

involving the robot’s end-effector, we have

τ′ = JT f ′
(2.57)

and

∆v = J∆q̇ , (2.58)

which follow from (2.51) and (2.49). Equations (2.55)–

(2.57) imply that

∆q̇ = J̄∆v , (2.59)

where J̄ is the inertia-weighted pseudoinverse of J and

is given by

J̄ = H−1JT Λ . (2.60)

J̄ is also known as the dynamically consistent gener-

alized inverse of the Jacobian matrix [2.20]. Note that

the expression ΛJH−1, which appears in (2.53) and

(2.54), is equal to J̄T since H and Λ are both symmet-

ric. Although we have introduced J̄ in the context of

impulsive dynamics, it is more typically used in normal

(i. e., nonimpulsive) dynamics equations.

2.4 Dynamic Models of Rigid-Body Systems

A basic rigid-body model of a robot mechanism has

four components: a connectivity graph, link and joint

geometry parameters, link inertia parameters, and a set

of joint models. To this model, one can add various

force-producing elements, such as springs, dampers,

joint friction, actuators, and drives. The actuators and

drives, in particular, may have quite elaborate dynamic

models of their own. It is also possible to add extra

motion freedoms to model elasticity in the joint bear-

ings or links (Chap. 13). This section describes a basic

model. More on this topic can be found in books such

as [2.3, 8, 22].

2.4.1 Connectivity

A connectivity graph is an undirected graph in which

each node represents a rigid body and each arc repre-

sents a joint. The graph must be connected; and exactly

one node represents a fixed base or reference frame. If

the graph represents a mobile robot (i. e., a robot that

is not connected to a fixed base), then it is necessary

to introduce a fictitious 6-DOF joint between the fixed

base and any one body in the mobile robot. The chosen

body is then known as a floating base. If a single graph

is to represent a collection of mobile robots, then each
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robot has its own floating base, and each floating base

has its own 6-DOF joint. Note that a 6-DOF joint im-

poses no constraints on the two bodies it connects, so

the introduction of a 6-DOF joint alters the connectivity

of the graph without altering the physical properties of

the system it represents.

In graph-theory terminology, a loop is an arc that

connects a node to itself, and a cycle is a closed path that

does not traverse any arc more than once. In the connec-

tivity graph of a robotmechanism, loops are not allowed,

and cycles are called kinematic loops. A mechanism

that contains kinematic loops is called a closed-loop

mechanism; and a mechanism that does not is called an

open-loopmechanism or a kinematic tree. Every closed-

loop mechanism has a spanning tree, which defines an

open-loop mechanism, and every joint that is not in the

spanning tree is called a loop-closing joint. The joints in

the tree are called tree joints.

The fixed base serves as the root node of a kine-

matic tree, and the root node of any spanning tree on

a closed-loop mechanism. A kinematic tree is said to be

branched if at least one node has at least two children,

and unbranched otherwise. An unbranched kinematic

tree is also called a kinematic chain, and a branched

tree can be called a branched kinematic chain. A typi-

cal industrial robot arm, without a gripper, is a kinematic

chain, while a typical humanoid robot is a kinematic tree

with a floating base.

In a system containing NB moving bodies and NJ

joints, where NJ includes the 6-DOF joints mentioned

above, the bodies and joints are numbered as follows.

First, the fixed base is numbered body 0. The other bod-

ies are then numbered from1 to NB in any order such that

each body has a higher number than its parent. If the sys-

tem contains kinematic loops then one must first choose

a spanning tree, and commit to that choice, since the

identity of a body’s parent is determined by the span-

ning tree. This style of numbering is called a regular

numbering scheme.

Having numbered the bodies, we number the tree

joints from 1 to NB such that joint i connects body i to its

parent. The loop-closing joints, if any, are then numbered

from NB +1 to NJ in any order. Each loop-closing joint

k closes one independent kinematic loop, andwe number

the loops from 1 to NL (where NL = NJ − NB is the

number of independent loops) such that loop l is the

one closed by joint k = NB + l. Kinematic loop l is the

unique cycle in the graph that traverses joint k, but does

not traverse any other loop-closing joint.

For an unbranched kinematic tree, these rules pro-

duce a unique numbering in which the bodies are

numbered consecutively from base to tip, and the joints

are numbered such that joint i connects bodies i and

i −1. In all other cases, regular numberings are not

unique.

Although the connectivity graph is undirected, it is

necessary to assign a direction to each joint for the

purpose of defining joint velocity and force. This is

necessary for both tree joints and loop-closing joints.

Specifically, a joint is said to connect from one body to

another. We may call them the predecessor p(i) and suc-

cessor s(i) for joint i, respectively. Joint velocity is then

defined as the velocity of the successor relative to the

predecessor; and joint force is defined as a force acting

on the successor. It is standard practice (but not a neces-

sity) for all tree joints to connect from the parent to the

child.

The connectivity of a kinematic tree, or the spanning

tree on a closed-loopmechanism, is described by an NB-

element array of parent body numbers, where the i-th

element p(i) is the parent of body i. Note that the parent
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Fig. 2.3 Humanoid robot example. Note: to distinguish be-

tween body numbers and joint numbers in this figure, body

numbers are preceded by a ‘B’ for clarity

P
a
rt

A
2
.4



Dynamics 2.4 Dynamic Models of Rigid-Body Systems 47

Table 2.2 Loop-closing joints and roots of loops for the

humanoid example

Loop l Loop-closing p(k) s(k) Root

joint k

1 17 0 5 0

2 18 16 1 1

3 19 0 13 0

p(i) for body i is also the predecessor p(i) for joint i,

and thus the common notation. Many algorithms rely

on the property p(i) < i to perform their calculations in

the correct order. The set of all body numbers for the

children of body i, c(i), is also useful in many recursive

algorithms.

The connectivity data for kinematic loops may be

described in a variety of ways. A representation that

facilitates use in recursive algorithms includes the fol-

lowing conventions. Loop-closing joint k joins bodies

p(k) (the predecessor) and s(k) (the successor). The set

L R(i) for body i gives the numbers of the loops for

which body i is the root. Using the property p(i)< i for

bodies in the spanning tree, the root of a loop is cho-

sen as the body with the lowest number. In addition, the

set L B(i) for body i gives the numbers of the loops to

which body i belongs but is not the root.

An example of a closed-loop system is given in

Fig. 2.3. The system consists of a humanoid mechanism

with topologically varying contacts, with the environ-

ment and within the mechanism, which form closed

loops. The system has NB = 16 moving bodies and

NJ = 19 jointswith NL = NJ − NB = 3 loops. Themain

body (1) is considered to be a floating base for this mo-

bile robot system. It is connected to the fixed base (0)

through a fictitious 6-DOF joint (1). To complete the

example, the loop-closing joint and the body numbers

p(k) and s(k) as well as the root body for each loop

are given in Table 2.2. The body-based sets c(i) and

L B(i) are given in Table 2.3. Note that L R(0) = {1, 3}
and L R(1) = {2} and all other L R sets are null for this

example.

2.4.2 Link Geometry

When two bodies are connected by a joint, a complete

description of the connection consists of a description

of the joint itself, and the locations of two coordinate

frames, one in each body, which specify where in each

body the joint is located. If there are NJ joints in the

system, then there are a total of 2NJ joint-attachment

frames. One half of these frames are identified with the

Table 2.3 Body-based sets for the humanoid example

Body i c(i) LB(i) Body i c(i) LB(i)

0 1

1 2, 9 1, 3 9 10, 11, 14 2, 3

2 3, 6 1 10

3 4 1 11 12 3

4 5 1 12 13 3

5 1 13 3

6 7 14 15 2

7 8 15 16 2

8 16 2

numbers 1 to NJ , and the remainder with the labels J1

to JNJ . Each joint i connects from frame Ji to frame

i. For joints 1 to NB (i. e., the tree joints), frame i is

rigidly attached to body i. For joints NB +1 to NJ ,

frame k for loop-closing joint k will be rigidly attached

to body s(k). The second coordinate frame Ji is attached

to the predecessor p(i) for each joint i, whether it is

a tree joint or a loop-closing joint. Coordinate frame Ji

provides a base frame for joint i in that the joint rotation

and/or translation is defined relative to this frame.

Figure 2.4 shows the coordinate frames and trans-

forms associated with each joint in the system. The

overall transform from frame p(i) coordinates to frame

i coordinates for a tree joint is given by:

iXp(i) = iXJi
JiXp(i) = XJ (i)XL (i) . (2.61)

The transform XL (i) is a fixed link transform which sets

the base frame Ji of joint i relative to p(i). It may be

used to transform spatial motion vectors from p(i) to

Ji coordinates. The transform XJ (i) is a variable joint

transform which completes the transformation across

joint i from Ji to i coordinates.

Similarly, the overall transform from frame p(k) co-

ordinates to frame k coordinates for a loop-closing joint

XJ(i)

XL(i)

Link i

Link p(i)

Joint i

i

i

p(i)

XJ(k)

XL1(k)

XL2(k)

Link s(k)

Link p(k)

Joint k

k
s(k)

Jk

p(k)

a) b)

Fig. 2.4a,b Coordinate frames and transforms associatedwith a tree

joint (a) and a loop-closing joint (b)
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is given by:

kXp(k) = kXJk
JkXp(k) = XJ (k) XL1(k) . (2.62)

An additional transform XL2(k) is defined from frame

s(k) coordinates to frame k coordinates and is given by:

XL2(k) = kXs(k) . (2.63)

Link and joint geometry data can be specified in

a variety of different ways. The most common method

is to use Denavit–Hartenberg parameters [2.23]. How-

ever, standard Denavit–Hartenberg parameters are not

completely general, and are insufficient for describ-

ing the geometry for a branched kinematic tree, or for

a mechanism containing certain kinds of multi-DOF

joints. A modified form of Denavit–Hartenberg param-

eters [2.2] is used for single-DOF joints in thisHandbook

(Sect. 1.4). The parameters have been extended for

branched kinematic trees [2.22] and closed-loop mech-

anisms.

2.4.3 Link Inertias

The link inertia data consists of the masses, positions

of centers of mass, and rotational inertias of each link

in the mechanism. The inertia parameters for link i

are expressed in coordinate frame i, and are therefore

constants.

2.4.4 Joint Models

The relationship between connected links is described

using the general joint model of Roberson and Schw-

ertassek [2.3]. For a kinematic tree or spanning tree on

a closed-loopmechanism, an ni ×1 vector, q̇i , relates the

velocity of link i to the velocity of its parent, link p(i),

where ni is the number of degrees of freedom at the

joint connecting the two links. For a loop-closing joint

in a closed-loop mechanism, the relationship is between

the velocity of link s(i) (the successor) and the velocity

of link p(i) (the predecessor). In either case, the rela-

tionship is between the velocity of coordinate frames i

and Ji.

Let vrel and arel denote the velocity and acceleration

across joint i, that is, the velocity and acceleration of

link s(i) relative to p(i). The free modes of the joint are

represented by the 6×ni matrix Φi , such that vrel and

arel are given as follows:

vrel = Φi q̇i (2.64)

and

arel = Φi q̈i + Φ̇i q̇i , (2.65)

where Φi and Φ̇i depend on the type of joint [2.3].

The matrix Φi has full column rank, so we can define

a complementary matrix, Φc
i , such that the 6×6 matrix

(

ΦiΦ
c
i

)

is invertible. We can regard the columns of this

matrix as forming a basis on M
6 such that the first ni

basis vectors define the directions in which motion is

allowed, and the remaining 6−ni = nci vectors define

directions in which motion is not allowed. Thus, Φc
i

represents the constrained modes of joint i.

The force transmitted across joint i from its prede-

cessor to its successor, fi , is given as follows:

fi =
(

ΨiΨ
c
i

)

(

τi

λi

)

, (2.66)

where τi is the ni ×1 vector of applied forces along the

free modes, λi is the (6−ni ) × 1 vector of constraint

forces, and Ψi and Ψ c
i are computed as follows:

(

ΨiΨ
c
i

)

=
(

ΦiΦ
c
i

)−T
. (2.67)

For most common joint types, it is possible to choose

Φi and Φc
i such that the matrix (ΦiΦ

c
i ) is numeri-

cally orthonormal, so that (ΨiΨ
c
i ) is numerically equal

to (ΦiΦ
c
i ). Note that (2.67) implies the following

relationships: (Ψi )
T Φi = 1ni×ni

, (Ψi )
T Φc

i = 0ni×(6−ni ),

(Ψ c
i )

T Φi = 0(6−ni )×ni
, and (Ψ c

i )
T Φc

i = 1(6−ni )×(6−ni ).

When applied to (2.66), the following useful relationship

results:

τi = ΦT
i fi . (2.68)

The value of Φ̇i in (2.65) depends on the type of

joint. The general formula is

Φ̇i =
◦

Φi +vi ×Φi , (2.69)

where vi is the velocity of link i, and
◦

Φi is the apparent

derivative of Φi , as seen by an observer moving with

link i, and is given by

◦

Φi =
∂Φi

∂qi

q̇i . (2.70)

For most common joint types,
◦

Φi = 0.

Single-DOF joints (ni = 1) are especially straight-

forward to work with when using the Denavit–

Hartenberg convention. Motion is chosen along (pris-

matic) or about (revolute) the ẑi coordinate axis. In

this case, Φi = ( 0 0 0 0 0 1 )T for a prismatic joint and

Φi = ( 0 0 1 0 0 0 )T for a revolute joint. Also,
◦

Φi = 0.

The fictitious 6-DOF joint for a floating base for

a mobile robot is also handled relatively easily. For this

case, Φi = 1 (6×6 identity matrix) and
◦

Φi = 0.
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Fig. 2.5 Coordinate frames for the first five links and joints

of the humanoid robot example

The revolute joint and floating-base joint, as well as

the universal joint (ni = 2) and spherical joint (ni = 3)

are illustrated in the example in the next section. For

additional details on joint kinematics, see Sect. 1.3.

2.4.5 Example System

In order to illustrate the conventions used for the link

and joint models, coordinate frames are attached to the

first five links (bodies) and fixed base of the humanoid

robot as shown in Fig. 2.5. Note that frame Ji is attached

to link p(i) = i −1 for each of the five joints. For this

example, the origin of frame J1 is set coincident with

the origin of frame 0, and the origins of frames J2, J3,

J4, and J5 are coincident with the origins of frames 2,

3, 4, and 5, respectively. Note that J1 could be set at

any position/orientation on the fixed base (B0) to permit

the most convenient representation for the motion of the

Table 2.4 Number of degrees of freedom (ni ), fixed rota-

tion
(

JiRp(i)

)

and position
(

p(i)pJi

)

from frame p(i) to base

frame Ji for joint i of the example system. Note that 2li is

the nominal length of link i along its long axis

Joint ni
JiRp(i)

p(i)pJi

1 6 13×3 03×1

2 1 13×3







0

0

−l1







3 3







1 0 0

0 0 −1

0 1 0













0

−l2

0







4 1 13×3







0

2l3

0







5 2







0 −1 0

1 0 0

0 0 1













0

2l4

0







floating base (B1) relative to the fixed base. Also, the

origin of J2 could be set anywhere along ẑ2.

The number of degrees of freedom, andfixed rotation

and position of the base frames Ji for each joint of the

example system, are given in Table 2.4. The rotation
JiRp(i) transforms 3-D vectors in p(i) coordinates to Ji

coordinates. The position p(i)pJi is the vector giving the

position of the origin OJi relative to Op(i), expressed in

p(i) coordinates. The spatial transform XL (i) = Ji X p(i)

may be composed from these 3-D quantities through

the equation for BXA in Table 2.1. The humanoid has

a floating base, the torso, a revolute joint between the

torso and pelvis (about ẑ2), a spherical joint at the hip,

a revolute joint at the knee, and a universal joint at the

ankle. As shown in Fig. 2.5, the leg is slightly bent and

the foot is turned out to the side (≈ 90◦ rotation about

ŷ3 at the hip).
The free modes, velocity variables, and position

variables for all of the joint types in the humanoid

are given in Tables 1.5 and 1.6. The expressions for
j Ri and

j pi in these tables give
i RT

Ji and
Ji pi , respec-

tively, through which the joint transform XJ (i) = i XJi

may be composed. Revolute joints follow the Denavit–

Hartenberg convention with rotation about the ẑi axis.

The ankle has a pitch rotation of α5 about the ẑ J5 axis

followed by a roll rotation of β5 about the ŷ5 axis

(see the Z–Y–X Euler angle definitions in Table 1.1).

The hip is modeled as a ball-and-socket, spherical

joint. To avoid the singularities that are associated

with Euler angles, the quaternion ǫi may be used
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to represent the orientation at the hip. The relation-

ship between the quaternion rate ǫ̇i and the relative

rotation rate ωi rel is given in (1.7) of the Hand-

book.

The floating base uses the position of the torso 0p1
and quaternion ǫ1 for its position and orientation state

variables, respectively. The position of the torso may

be computed by integrating the velocity for the link, as

expressed in fixed base coordinates: 0v1 = 0R1v1, where

v1 is the velocity of the torso in moving coordinates.

Note that
◦

Φi = 0 for all joints except the universal

joint. Since the components of ẑ J5 in link 5 coordinates

vary with β5,
◦

ẑ J5 6= 0. See Sect. 1.3 of the Handbook for

further details of the joint kinematics.

2.5 Kinematic Trees

The dynamics of a kinematic tree is simpler, and eas-

ier to calculate, than the dynamics of a closed-loop

mechanism. Indeed, many algorithms for closed-loop

mechanisms work by first calculating the dynamics of

a spanning tree, and then subjecting it to the loop-closure

constraints.

This section describes the following dynamics algo-

rithms for kinematic trees: the recursive Newton–Euler

algorithm (RNEA) for inverse dynamics, the articulated-

body algorithm (ABA) for forward dynamics, the

composite-rigid-body algorithm (CRBA) for calculating

the joint-space inertia matrix (JSIM), and two algo-

rithms to calculate the operational-space inertia matrix

(OSIM).

2.5.1 The Recursive Newton–Euler
Algorithm

This is an O(n) algorithm for calculating the inverse dy-

namics of a fixed-base kinematic tree, and is based on the

very efficient RNEA of Luh et al. [2.4]. A floating-base

version can be found in [2.8, 15]. Given the joint posi-

tion and velocity variables, this algorithm calculates the

applied joint torque/force variables required to produce

a given set of joint accelerations.

The link velocities and accelerations are first com-

puted through an outward recursion from the fixed base

to the leaf links of the tree. The resultant forces on each

link are computed using the Newton–Euler equations

(2.35) during this recursion. A second, inward recursion

uses the force balance equations at each link to compute

the spatial force across each joint and the value of each

joint torque/force variable. The key step for computa-

tional efficiency is to refer most quantities to local link

coordinates. Also, the effects of gravity on each link are

efficiently included in the equations by accelerating the

base of the mechanism upward.

The calculation proceeds in four steps, as follows,

with two steps in each of the two recursions.

Step 1
Calculate the velocity and acceleration of each link in

turn, starting with the known velocity and acceleration

of the fixed base, and working towards the tips (i. e., the

leaf nodes in the connectivity graph).

The velocity of each link in a kinematic tree is given

by the recursive formula

vi = vp(i) +Φi q̇i , (v0 = 0) , (2.71)

where vi is the velocity of link i,Φi is the motion matrix

of joint i, and q̇i is the vector of joint velocity variables

for joint i.

The equivalent formula for accelerations is obtained

by differentiating (2.71), giving

ai = ap(i) +Φi q̈i + Φ̇i q̇i , (a0 = 0) (2.72)

where ai is the acceleration of link i, and q̈i is the vector

of joint acceleration variables.

The effect of a uniform gravitational field on the

mechanism can be simulated by initializing a0 to −ag
instead of zero, where ag is the gravitational acceleration

vector. In this case, ai is not the true acceleration of link

i, but the sum of its true acceleration and −ag.

Step 2
Calculate the equation of motion for each link. This step

computes the forces required to cause the accelerations

calculated in step 1. The equation of motion for link i is

f ai = Iiai +vi × Iivi , (2.73)

where Ii is the spatial inertia of link i, and f ai is the net

force acting on link i.

Step 3
Calculate the spatial force across each joint. Referring

to Fig. 2.6, the net force acting on link i is

f ai = f ei + fi −
∑

j∈c(i)

f j ,
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Joint i

c (i ) = {c1, c2, ...., cm}

p (i )
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cm

f
e
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fc2

fcm

.

.

.
Link i

Fig. 2.6 Forces acting on link i

where fi is the force transmitted across joint i, f ei is

the sum of all relevant external forces acting on link

i, and c(i) is the set of children of link i. Rearranging

this equation gives the following recursive formula for

calculating the joint forces:

fi = f ai − f ei +
∑

j∈c(i)

f j , (2.74)

where i iterates from NB to 1.

f ei may include contributions from springs, dampers,

force fields, contact with the environment, and so on,

but its value is assumed to be known, or at least to

be calculable from known quantities. If gravity has not

been simulated by a fictitious base acceleration, then

Table 2.5 Coordinate-free recursive Newton–Euler algo-

rithm (RNEA) for inverse dynamics

v0 = 0

a0 = −ag

for i = 1 to NB do

vi = vp(i) +Φi q̇i

ai = ap(i) +Φi q̈i + Φ̇i q̇i

fi = Ii ai +vi × Ii vi − f ei
end

for i = NB to 1 do

τi = ΦT
i fi

if p(i) 6= 0 then

fp(i) = fp(i) + fi

end

end

the gravitational force acting on link i must be included

in f ei .

Step 4
Calculate the joint force variables, τi . By definition, they

are given by the equation

τi = ΦT
i fi . (2.75)

Coordinate-Free Algorithm
Equations (2.71)–(2.75) imply the algorithm shown in

Table 2.5, which is the coordinate-free version of the

RNEA. This is the simplest form of the algorithm,

and it is suitable for mathematical analysis and re-

lated purposes. However, it is not suitable for numerical

computation because a numerical version must use co-

ordinate vectors.

Link-Coordinates Algorithm
In general, we say that an algorithm is implemented

in link coordinates if a coordinate system is defined

for each link, and the calculations pertaining to link i

are performed in the coordinate system associated with

link i. The alternative is to implement the algorithm in

absolute coordinates, in which case all calculations are

performed in a single coordinate system, typically that

of the base link. In practice, the RNEA is more computa-

tionally efficient when implemented in link coordinates,

and the same is true of most other dynamics algorithms.

To convert the RNEA to link coordinates, we first

examine the equations to see which ones involve quan-

tities from more than one link. Equations (2.73) and

(2.75) each involve quantities pertaining to link i only,

and therefore need no modification. Such equations are

said to be local to link i. The remaining equations in-

volve quantities from more than one link, and therefore

require the insertion of coordinate transformation matri-

ces. The modified versions of (2.71), (2.72), and (2.74)

are

vi = iXp(i) vp(i) +Φi q̇i , (2.76)

ai = iXp(i) ap(i) +Φi q̈i + Φ̇i q̇i , (2.77)

and

fi = f ai − iXF
0
0f ei +

∑

j∈c(i)

iXF
j f j . (2.78)

Equation (2.78) assumes that external forces are ex-

pressed in absolute (i. e., link 0) coordinates.

The complete algorithm is shown in Table 2.6. The

function jtype returns the type code for joint i; the
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Table 2.6 RecursiveNewton–Euler algorithm using spatial

vectors

inputs: q, q̇, q̈, model , 0f ei
output: τ

model data : NB , jtype(i), p(i), XL (i), Ii

v0 = 0

a0 = −ag

for i = 1 to NB do

XJ(i) = xjcalc(jtype(i), qi )
iXp(i) = XJ (i) XL (i)

if p(i) 6= 0 then
iX0 = iXp(i)

p(i)X0

end

Φi = pcalc(jtype(i), qi )
◦

Φci = pdcalc(jtype(i), qi , q̇i )

vi = iXp(i) vp(i) +Φi q̇i

ζi =
◦

Φci q̇i +vi ×Φi q̇i

ai = iXp(i) ap(i) +Φi q̈i + ζi

fi = Iiai +vi × Iivi −
iX−T

0
0f ei

end

for i = NB to 1 do

τi = ΦT
i fi

if p(i) 6= 0 then

fp(i) = fp(i) +
iXT

p(i) fi

end

end

function xjcalc calculates the joint transformation

matrix for the specified type of joint; and the functions

pcalc and pdcalc calculateΦi and
◦

Φi . The formulae

used by these functions for a variety of joint types can

be found in Tables 1.5 and 1.6. In the general case, both

pcalc and pdcalc are needed. However, for most

common joint types, Φi is a known constant in link co-

ordinates, and
◦

Φi is therefore zero. If it is known in

advance that all joints will have this property, then the

algorithm can be simplified accordingly. The quantities

Ii and XL (i) are known constants in link coordinates,

and are part of the data structure describing the robot

mechanism.
The last assignment in the first loop initializes each

fi to the expression f ai − iXF
0
0f ei (using the identity

iXF
0 = iX−T

0 ). The summation on the right-hand side of

(2.78) is then performed in the second loop. This al-

Table 2.7 Recursive Newton–Euler algorithm in 3-D vec-

tors, for revolute joints only

inputs: q, q̇, q̈, model

output: τ

model data : NB , p(i), RL (i),
p(i)pi , mi , ci , Īcmi

ω0 = 0

ω̇0 = 0

v̇′
0 = −v̇′

g

for i = 1 to NB do
iRp(i) = rotz(qi ) RL (i)

ωi = iRp(i) ωp(i) + ẑi q̇i

ω̇i = iRp(i) ω̇p(i) +
(

iRp(i) ωp(i)

)

× ẑi q̇i + ẑi q̈i

v̇′
i = iRp(i)

(

v̇′
p(i) + ω̇p(i) ×

p(i)pi

+ωp(i) ×ωp(i) ×
p(i)pi

)

fi = mi (v̇
′
i + ω̇i × ci +ωi ×ωi × ci )

ni = Īcmi ω̇i +ωi × Īcmi ωi + ci × fi

end

for i = NB to 1 do

τi = ẑT
i ni

if p(i) 6= 0 then

fp(i) = fp(i) +
iRT

p(i) fi

np(i) = np(i) +
iRT

p(i) ni +
p(i)pi ×

iRT
p(i) fi

end

end

gorithm includes code to calculate iX0, which is used

to transform the external forces to link coordinates. If

there are no external forces, then this code can be omit-

ted. If there is only a single external force (e.g., a force

at the end-effector of a robot arm) then this code can

be replaced with code that transforms the external force

vector successively from one link coordinate system to

the next, using iXp(i).

Note: although the phrase ‘link coordinates’ sug-

gests that we are using moving coordinate frames,

the algorithm is in fact implemented in stationary co-

ordinates that happen to coincide with the moving

coordinates at the current instant.

3-D Vector RNEA
The original version of the RNEAwas developed and ex-

pressed using 3-D vectors (e.g. [2.2,4]). Table 2.7 shows

a special case of this algorithm, in which the joints are

assumed to be revolute, and the joint axes are assumed
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to coincide with the z axes of the link coordinate sys-

tems. (Without these assumptions, the equations would

be a lot longer.) It also assumes that the external forces

are zero.

In this algorithm, v̇′
g is the linear acceleration due

to gravity, expressed in base (link 0) coordinates; rotz

computes a rotation matrix representing a rotation of the

coordinate frame about the z axis; RL (i) is the rotational

component of XL (i);
iRp(i) is the rotational component

of iXp(i); pcalc and pdcalc are not used because Φi

is the known constant (ẑT 0T )T ; v̇′
i is the linear acceler-

ation of the origin of link i coordinates (Oi ), and is the

linear component of the classical acceleration of link i;
p(i)pi is the position of Oi relative to Op(i) expressed

in p(i) coordinates; and mi , ci , and Īcmi are the inertia

parameters of link i. (See Table 2.1 for the equations re-

lating these 3-D quantities to the corresponding spatial

quantities.)

At first sight, the 3-D vector algorithm looks sig-

nificantly different from the spatial vector algorithm.

Nevertheless, it can be obtained directly from the spatial

vector algorithm simply by expanding the spatial vec-

tors to their 3-D components, restricting the joint type

to revolute, converting spatial accelerations to classical

accelerations (i. e., replacing each instance of v̇i with

v̇′
i −ωi ×vi as per (2.22)), and applying some 3-D vec-

tor identities to bring the equations into the form shown

in the table. The conversion from spatial to classical ac-

celeration has one interesting side-effect: vi cancels out

of the equation of motion, and therefore does not need

to be calculated. As a result, the 3-D version of the al-

gorithm has a slight speed advantage over the spatial

version.

2.5.2 The Articulated-Body Algorithm

The ABA is an O(NB) algorithm for calculating the

forward dynamics of a kinematic tree. However, under

normal circumstances, O(NB)= O(n), so we shall refer

to it as an O(n) algorithm. The ABA was developed

by Featherstone [2.1] and is an example of a constraint-

propagation algorithm.Given the joint position, velocity,

and applied torque/force variables, this algorithm calcu-

lates the joint accelerations. With the joint accelerations

determined, numerical integration may be used to pro-

vide a simulation of the mechanism.

The key concept in the ABA is illustrated in Fig. 2.7.

The subtree rooted at link i interacts with the rest of the

kinematic tree only through a force fi that is transmitted

across joint i. Suppose we break the tree at this point,

and consider only the motion of the subtree subject to an

Link p (i )

Rest of
kinematic tree

Break
at joint i

Subtree rooted at link i
= articulated body i

fi

ai

Link i

Fig. 2.7 Definition of articulated body i

unknown force, fi , acting on link i. It is possible to show

that the acceleration of link i is related to the applied

force according to the equation

fi = I A
i ai +pA

i , (2.79)

where I A
i is called the articulated-body inertia of link

i in the subtree (which we can now call an articulated

body), and pA
i is the associated bias force, which is the

force required to produce zero acceleration in link i.

Note that pA
i depends on the velocities of the individual

bodies in the articulated body. Equation (2.79) takes into

account the complete dynamics of the subtree. Thus, if

we happened to know the correct value of fi , then (2.79)

would immediately give us the correct acceleration of

link i.

The reason we are interested in the quantities I A
i and

pA
i is that they allow us to calculate q̈i from ap(i), which

in turn allows us to calculate ai , which then allows us to

calculatemore joint accelerations, and so on.Combining

(2.79) with (2.75) and (2.72) gives

τi = ΦT
i fi = ΦT

i

(

I A
i (ap(i) +Φi q̈i + Φ̇i q̇i )+pA

i

)

,

which can be solved for q̈i to give

q̈i = Di

(

ui −UT
i ap(i)

)

, (2.80)

where

Ui = I A
i Φi ,

Di =
(

ΦT
i Ui

)−1
=

(

ΦT
i I A

i Φi

)−1
,

ui = τi −UT
i ζi −ΦT

i pA
i

and

ζi = Φ̇i q̇i =
◦

Φi q̇i +vi ×Φi q̇i .

ai can then be calculated via (2.72).

It turns out that the articulated-body inertias and

bias forces can be calculated efficiently via the recursive

formulae

I A
i = Ii +

∑

j∈c(i)

(

I A
j −U j D jU

T
j

)

(2.81)
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and

pA
i = pi +

∑

j∈c(i)

(

pA
j + I A

j ζ j +U j D ju j

)

, (2.82)

where

pi = vi × Iivi − f ei .

These formulae are obtained by examining the relation-

ship between fi and ai in Fig. 2.7 and assuming that I A
j

Table 2.8 Articulated-body algorithm for forward dynam-

ics

inputs: q, q̇, τ, model, 0f ei
output: q̈

model data: NB , jtype(i), p(i), XL (i), Ii

v0 = 0

a0 = −ag

for i = 1 to NB do

XJ (i)= xjcalc( jtype(i), qi )
iXp(i) = XJ (i) XL (i)

if p(i) 6= 0 then
iX0 = iXp(i)

p(i)X0

end

Φi = pcalc( jtype(i), qi )
◦

Φci = pdcalc( jtype(i), qi , q̇i )

vi = iXp(i) vp(i) +Φi q̇i

ζi =
◦

Φci q̇i +vi ×Φi q̇i

I A
i = Ii

pA
i = vi × Ii vi −

iX−T
0

0f ei
end

for i = NB to 1 do

Ui = I A
i Φi

Di =
(

ΦT
i Ui

)−1

ui = τi −UT
i ζi −ΦT

i pA
i

if p(i) 6= 0 then

I A
p(i) = I A

p(i) +
iXT

p(i)

(

I A
i −Ui Di UT

i

)

iXp(i)

pA
p(i) = pA

p(i) +
iXT

p(i)

(

pA
i + I A

i ζi +Ui Di ui

)

end

end

for i = 1 to NB do

ai = iXp(i) ap(i)

q̈i = Di

(

ui −UT
i ai

)

ai = ai +Φi q̈i + ζi

end

and pA
j are already known for every j ∈ c(i). For more

details see [2.1, 8, 15, 24].

The complete algorithm is shown in Table 2.8. It

is expressed in link coordinates, as per the RNEA in

Table 2.6. It makes a total of three passes through the

kinematic tree. The first pass iterates from the base out

to the tips; it calculates the link velocities using (2.76),

the velocity-product term ζi = Φ̇i q̇i , and it initializes the

variables I A
i and pA

i to the values Ii and pi (= vi × Iivi −
iXF

0
0f ei ), respectively. The second pass iterates from the

tips back to the base; it calculates the articulated-body

inertia and bias force for each link using (2.81) and

(2.82). The third pass iterates from the base to the tips;

it calculates the link and joint accelerations using (2.80)

and (2.77).

2.5.3 The Composite-Rigid-Body Algorithm

TheCRBA is an algorithm for calculating the joint-space

inertia matrix (JSIM) of a kinematic tree. Themost com-

mon use for the CRBA is as part of a forward dynamics

algorithm. It first appeared as method 3 in [2.5].

Forward dynamics, in joint space, is the task of cal-

culating q̈ fromq, q̇, and τ. Starting from (2.37), themost

obvious way to proceed is to calculate H and Cq̇+τg,

and then solve the linear equation

Hq̈ = τ − (Cq̇+τg) (2.83)

for q̈. If the mechanism is a kinematic tree, then H and

Cq̇+τg can be computed in O(n2) and O(n) operations,

respectively, and (2.83) can be solved in O(n3) opera-

tions. Algorithms that take this approach are therefore

known collectively as O(n3) algorithms. However, this

figure of O(n3) should be regarded as the worst-case

complexity, since the actual complexity depends on the

amount of branching in the tree [2.25]. Furthermore,

even in theworst case, the n3 termhas a small coefficient,

and does not dominate until approximately n = 60.

Cq̇+τg can be calculated using an inverse dynam-

ics algorithm. If ID(q, q̇, q̈) is the result of an inverse

dynamics calculation with arguments q, q̇ and q̈, then

ID(q, q̇, q̈) = τ = Hq̈+Cq̇+τg ,

so

Cq̇+τg = ID(q, q̇, 0) . (2.84)

Thus, the value of Cq̇+τg for a kinematic tree can be

calculated efficiently using the RNEA with q̈ = 0.

The key concept in the CRBA is to note that the JSIM

only depends on the joint positions, and not their rates.

The CRBA makes the simplifying assumption that the
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rate at each joint is zero. By also assuming that gravity

is zero, Cq̇+τg is eliminated from (2.83). Furthermore,

for a revolute joint, a unit of joint acceleration applied

at the j-th joint produces the j-th column of the JSIM.

This partitions the mechanism into two composite rigid

bodies connected by the j-th joint, and simplifies the

dynamics considerably. This concept has been general-

ized so that the CRBA may be applied to any joint type

within a kinematic tree structure.

It can be shown that the general form of the JSIM

for a kinematic tree is

Hij =















ΦT
i ICi Φ j if i ∈ c∗( j )

ΦT
i ICj Φ j if j ∈ c∗(i)

0 otherwise,

(2.85)

where c∗(i) is the set of links in the subtree rooted at

link i, including link i itself, and

ICi =
∑

j∈c∗(i)

I j . (2.86)

Table 2.9 Composite-rigid-body algorithm for calculating

the JSIM

inputs: model , RNEA partial results

output: H

model data : NB , p(i), Ii

RNEA data : Φi ,
iXp(i)

H = 0

for i = 1 to NB do

ICi = Ii

end

for i = NB to 1 do

F = ICi Φi

Hii = ΦT
i F

if p(i) 6= 0 then

ICp(i) = ICp(i) +
iXT

p(i) ICi
iXp(i)

end

j = i

while p( j ) 6= 0 do

F = jXT
p( j) F

j = p( j )

Hij = FT Φ j

Hji = HT
ij

end

end

1

32

7 . . . . . . .

. . 0 . . 0 0

. 0 . 0 0 . .

. . 0 . 0 0 0

. . 0 0 . 0 0

. 0 . 0 0 . 0

. 0 . 0 0 0 .

654

0 JSIM

Fig. 2.8 Branch-induced sparsity: branches in the kine-

matic tree cause certain elements in the JSIM to be zero

See [2.8, 15]. In fact, ICi is the inertia of the composite

rigid body formed by the rigid assembly of all the links

in c∗(i), and this is where the algorithm gets its name.

Equations (2.85) and (2.86) are the basis of the al-

gorithm shown in Table 2.9, which is the CRBA in link

coordinates. This algorithm assumes that the matrices
iXp(i) and Φi have already been calculated, e.g., during

the calculation of Cq̇+τg. If this is not the case, then

the relevant lines from Table 2.6 can be inserted into

the first loop. The matrix F is a local variable. The first

step, H = 0, can be omitted if there are no branches in

the tree.

Having calculated Cq̇+τg and H, the final step is

to solve (2.83) for q̈. This can be done using a standard

Cholesky or LDLT factorization. Note that H can be

highly ill-conditioned [2.26], reflecting an underlying

ill-conditioning of the kinematic tree itself, so it is rec-

ommended to use double-precision arithmetic for every

step in the forward dynamics calculation. (This advice

applies also to the ABA.)

Exploiting Sparsity
Equation (2.85) implies that some elements of H will

automatically be zero if there are branches in the kine-

matic tree. An example of this effect is shown in Fig. 2.8.

Observe that nearly half of the elements are zero. It is

possible to exploit this sparsity using the factorization al-

gorithms described in [2.25]. Depending on the amount

of branching in the tree, the sparse algorithms can run

many times faster than the standard algorithms.

2.5.4 Operational-Space Inertia Matrix

Two different algorithms are presented to calculate the

OSIM. The first is an O(n3) algorithm that uses the basic

definition of the OSIM along with efficient factoriza-

tion of the JSIM. The second is an O(n) algorithm that

is based on efficient solution of the forward dynamics

problem.
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Algorithm Using Basic Definition
If a robot has a relatively small number of freedoms

(e.g., six), then the most efficient method for calculating

the OSIM is via (2.52). The procedure is as follows.

1. Calculate H via the CRBA.

2. Factorize H into H = LLT (Cholesky factorization).

3. Use back-substitution to calculate Y = L−1 JT .

4. Λ−1 = YT Y.

5. Factorize Λ−1 (optional).

The final step is only possible if the end-effector has

a full six DOFs, and is only necessary if the application

requiresΛ rather thanΛ−1. In the second step, an LDLT

factorization can be used instead of Cholesky, or one can

use one of the efficient factorizations described in [2.25]

for branched kinematic trees.

The other terms in (2.38) can be calculated via (2.53)

and (2.54). In particular, (2.38) can be rewritten in the

form

v̇+Λ−1(x)[µ(x, v)+ρ(x)] = Λ−1(x) f , (2.87)

and the quantity Λ−1(µ+ρ) can be calculated from the

formula

Λ−1(µ+ρ) = JH−1(Cq̇+τg)− J̇q̇ . (2.88)

The term J̇q̇ is the velocity-product acceleration of the

end-effector (2.50). It is calculated as a by-product of

calculating Cq̇+τg via the RNEA (2.84). Specifically,

J̇q̇ = aee −a0, where aee is the calculated acceleration

of the end-effector (expressed in the same coordinates

as v̇) and a0 is the acceleration of the base (−ag).

O(n) Algorithm
For a sufficiently large value of n, it becomes more

efficient to use an O(n) algorithm. Several such algo-

rithms can be found in [2.27–29]. In this section, a more

straightforward algorithm is given, which is based on

an O(n) calculation of the joint-space forward dynam-

ics problem, e.g., via the ABA. It is a variation of the

unit force method [2.28] and computes the inverse of the

OSIM.

Startingwith (2.87), observe thatΛ−1 is a function of

position only, and certain terms in the dynamic equations

can be neglectedwithout affecting its value. Specifically,

if the joint rates, q̇, joint forces, τ, and gravitational

forces are all set to zero, the value of Λ will remain

unchanged. Under these conditions,

v̇ = Λ−1f . (2.89)

Let us define êi to be a 6-D coordinate vector with

a 1 in the i-th coordinate and zeros elsewhere. If we set

f = êi in (2.89), then v̇ will equal column i of Λ−1. Let

us also define the function FD(i, j, q, q̇, a0, τ, f), which

performs a forward-dynamics calculation and returns the

true acceleration of link i (i. e., ai −a0), expressed in the

same coordinates as f (typically the base coordinates).

The arguments q, q̇ and τ set the values of the joint

position, velocity, and force variables, while j and f

specify that an external force of f is to be applied to link j.

The argument a0 specifies a fictitious base acceleration

to include gravitational effects, and is set to either 0

or −ag.

With these definitions, we have

(Λ−1)i = FD(ee, ee, q, 0, 0, 0, êi ) (2.90)

and

Λ−1(µ+ρ) = −FD(ee, ee, q, q̇, −ag, τ, 0) ,

(2.91)

where (Λ−1)i is column i of Λ−1, and ee is the body

number of the end-effector. It therefore follows that

the coefficients of (2.87) can be calculated using the

algorithm shown in Table 2.10. This algorithm is O(n).

The efficiency of the algorithmmay be increased sig-

nificantly when computing Λ−1 by noting that: (1) vi ,

ζi , and τi in the ABA calculation (Table 2.8) may be set

to zero, and (2) I A
i and the quantities that depend upon

it (Ui and Di ) need only be computed once, since they

do not vary with the applied force. Also, note that the

algorithm may be applied to multiple end-effectors by

modifying FD to accept a list of end-effector body num-

bers in its first argument, and return a composite vector

containing the accelerations of all the specified bodies.

The algorithm in Table 2.10 is then enclosed in a for

loop that controls the second argument to FD, and it-

erates over all the end-effector body numbers [2.19].

However, with several end-effectors, the force propa-

gation method of Lilly [2.28] should probably be used

for enhanced computational efficiency. If there are m

end-effectors, then the complexity is O(m n).

Table 2.10 Algorithm to compute the inverse of the

operational-space inertia matrix and other terms

for j = 1 to 6 do

v̇ j = FD(ee, ee, q, 0, 0, 0, ê j )

end

Λ−1 =
[

v̇1 v̇2 · · · v̇6
]

Λ−1 (µ+ρ) = −FD(ee, ee, q, q̇, −ag, τ, 0)
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2.6 Kinematic Loops

All of the algorithms in the last section were for

kinematic trees. In this section, a final algorithm

is provided for the forward dynamics of closed-

loop systems. The algorithm supplements the dynamic

equations of motion for a spanning tree of the

closed-loop system, with the loop-closure constraint

equations. Three different methods are given to solve

the resulting linear system of equations. An efficient

algorithm is given to compute the loop-closure con-

straints.

Systems with closed kinematic loops exhibit more

complicated dynamics than kinematic trees. For exam-

ple:

1. The degree of motion freedom of a kinematic tree is

fixed, but that of a closed-loop system can vary.

2. The degree of instantaneous motion freedom is al-

ways the same as the degree of finitemotion freedom

in a kinematic tree, but they can be different in

a closed-loop system.

3. Every force in a kinematic tree can be determined,

but some forces in a closed-loop system can be in-

determinate. This occurs whenever a closed-loop

system is overconstrained.

Two examples of these phenomena are shown in

Fig. 2.9. The mechanism in Fig. 2.9a has no finite

motion freedom, but it has two degrees of infinites-

imal motion freedom. The mechanism in Fig. 2.9b

has one degree of freedom when θ 6= 0, but if θ = 0

then the two arms, A and B, are able to move in-

dependently, and the mechanism has two degrees of

freedom. Moreover, at the boundary between these

two motion regimes, the mechanism has three degrees

of infinitesimal motion freedom. Both these mecha-

nisms are planar, and are therefore overconstrained.

θ

A B

a) b)

Fig. 2.9 Pathological closed-loop systems

As a result, the out-of-plane components of the joint

constraint forces are indeterminate. This kind of in-

determinacy has no effect on the motions of these

mechanisms, but it does complicate the calculation of

their dynamics.

2.6.1 Formulation
of Closed-Loop Algorithm

A closed-loop system can be modeled as a spanning tree

subject to a set of loop-closure constraint forces. If

Hq̈+Cq̇+τg = τ

is the equation of motion of the spanning tree on its own,

then the equation of motion for the closed-loop system

is

Hq̈+Cq̇+τg = τ +τa +τc , (2.92)

where τa and τc are vectors of loop-closure active and

constraint forces, respectively, expressed in the general-

ized force coordinates of the spanning tree. τa is a known

quantity, and τc is unknown. τa comes from the force ele-

ments acting at the loop-closing joints (springs, dampers

and actuators). If there are no such force elements, then

τa = 0.

The loop-closure constraints restrict the motion of

the spanning tree. At the acceleration level, these con-

straints can be expressed in the form of a linear equation,

Lq̈ = l , (2.93)

where L is an nc ×n matrix. nc is the number of con-

straints due to the loop-closing joints, and is given by

the formula

nc =

NJ
∑

k=NB+1

nck , (2.94)

where nck is the number of constraints imposed by joint

k. If rank(L) < nc then the loop-closure constraints are

linearly dependent, and the closed-loop mechanism is

overconstrained. The mobility of a closed-loop system

(i. e., its degree of motion freedom) is given by the

formula

mobility= n − rank(L) . (2.95)
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Given a constraint equation in the form of (2.93), it

follows that the constraint forces can be expressed in the

form

τc = LT λ , (2.96)

where λ =
(

λT
NB+1 · · · λT

NJ

)T
is an nc ×1 vector of

unknown constraint-force variables (or Lagrange mul-

tipliers). If the mechanism is overconstrained, then LT

will have a null space, and the component of λ lying in

this null space will be indeterminate.

It is often possible to identify redundant constraints

in advance. For example, if a kinematic loop is known to

be planar, then the out-of-plane loop-closure constraints

are redundant. In these circumstances, it is advantageous

to remove the corresponding rows of L and elements of

l and λ. The removed elements of λ can be assigned

a value of zero.

Combining (2.92), (2.93), and (2.96) produces the

following equation of motion for a closed-loop system:

(

H LT

L 0

)(

q̈

−λ

)

=

(

τ +τa − (Cq̇+τg)

l

)

. (2.97)

The system matrix is symmetric, but indefinite. If L has

full rank, then the system matrix will be nonsingular,

otherwise it will be singular, and one or more elements

of λ will be indeterminate.

Equation (2.97) can be solved in any of the following

ways:

1. solve it directly for q̈ and λ

2. solve for λ first, and then use the result to solve for

q̈

3. solve (2.93) for q̈, substitute the result into (2.92),

eliminate the unknown constraint forces, and solve

for the remaining unknowns

Method 1 is the simplest, but generally also the least

efficient. This method is appropriate when the system

matrix is nonsingular. As the size of the system matrix

is (n +nc) × (n +nc), this method is O((n +nc)3).

Method 2 is particularly useful if n ≫ nc, and offers

the opportunity to use O(n) algorithms on the spanning

tree [2.6]. From (2.97),

LH−1LT λ = l− LH−1
[

τ +τa − (Cq̇+τg)
]

.

(2.98)

This equation can be formulated in O(n (nc)2) oper-

ations via O(n) algorithms, and solved in O((nc)3).

Once λ is known, τc can be calculated via (2.96) in

O(n nc) operations, and (2.92) solved by an O(n) al-

gorithm; so the total complexity is O(n (nc)2 + (nc)3).

If L is rank deficient, then LH−1LT will be singu-

lar; but it is still a positive-semidefinite matrix, and

presents a slightly easier factorization problem than

a singular instance of the indefinite system matrix in

(2.97).

Method 3 is useful if n −nc is small, or if L is

expected to be rank deficient. Equation (2.93) is solved

using a special version of Gaussian elimination (or simi-

lar procedure), which is equipped with a numerical rank

test, and which is designed to solve underdetermined

systems. The solution is an equation of the form

q̈ = Ky + q̈0 ,

where q̈0 is any particular solution to (2.93), K is an

n × (n − rank(L)) matrix with the property LK = 0, and

y is a vector of n − rank(L) unknowns. (Typically, y

is a linearly independent subset of the elements of q̈.)

Substituting this expression for q̈ into (2.92), and pre-

multiplying both sides by K T to eliminate τc, produces

K T H K y = K T
(

τ +τa − (Cq̇+τg)− Hq̈0
)

.

(2.99)

This method also has cubic complexity, but it can be the

most efficient if n −nc is small. It is also reported to be

more stable than method 1 [2.30].

2.6.2 Closed-Loop Algorithm

Algorithms for calculating H and Cq̇+τg can be found

in Sections 2.5.3 and 2.5.1, respectively, which just

leaves L, l and τa. To keep things simple, we will as-

sume that all loop-closing joints are zero-DOF joints.

There is no loss of generality with this assumption: one

simply breaks open the loops by cutting links instead

of joints (see Fig. 2.10). However, there may be some

loss of efficiency. With this assumption, we only need

to calculate L and l, since τa = 0.

Zero
DOF
joint

I2

I I1

For dynamic equivalence, I1 + I2 = I

Fig. 2.10 Inserting a zero-DOF joint in preparation for

cutting the loop open at that joint
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Loop Constraints
In the general case, the velocity constraint equation for

loop k is

(

Ψ c
k

)T
(vs(k) −vp(k))= 0 , (2.100)

and the acceleration constraint is

(

Ψ c
k

)T
(as(k) −ap(k))+

(

Ψ̇ c
k

)T
(vs(k) −vp(k))= 0 .

(2.101)

However, if every loop-closing joint has zero DOF, then

these equations simplify to

vs(k) −vp(k) = 0 (2.102)

and

as(k) −ap(k) = 0 . (2.103)

Let us define a loop Jacobian, Jk, with the property

that

vs(k) −vp(k) = Jkq̇ . (2.104)

Jk is a 6×n matrix defined by the formula

Jk = (e1kΦ1 · · · eNBkΦNB
) , (2.105)

where

eik =















+1 if s(k) ∈ c∗(i) and p(k) /∈ c∗(i) ,

−1 if p(k) ∈ c∗(i) and s(k) /∈ c∗(i) ,

0 otherwise.

In other words, eik = +1 if joint i lies on the path to s(k)

but not the path to p(k); eik = −1 if joint i lies on the

path to p(k) but not the path to s(k); and eik = 0 if joint

i lies on both paths or on neither.

The loop acceleration constraint can now be written

0 = as(k) −ap(k)

= Jkq̈+ J̇kq̇

= Jkq̈+a
vp

s(k) −a
vp

p(k) , (2.106)

where a
vp
i is the velocity-product acceleration of link

i, which is the acceleration it would have if q̈ were

zero. The velocity-product acceleration of every link is

calculated during the calculation of the vector Cq̇+τg
(2.84). If the RNEA is used to calculate Cq̇+τg, then

a
vp
i will be the value of ai calculated by the RNEA with

its acceleration argument set to zero.

The matrices L and l can now be expressed as

follows:

L =









LNB+1

...

LNJ









and l =









lNB+1

...

lNJ









, (2.107)

where

Lk = Jk (2.108)

and

lk = a
vp

p(k) −a
vp

s(k) . (2.109)

Constraint Stabilization
In practice, it is necessary to stabilize loop-closure con-

straints, or they will simply fly apart during simulation

because of numerical integration errors. The standard

technique is due to Baumgarte [2.3, 7, 31], and consists

of replacing each constraint equation of the form

ae = 0

with one of the form

ae + Kvve + Kp pe = 0 ,

where ae, ve, and pe are the acceleration, velocity, and

position errors, respectively, and Kv and Kp are positive

constants. Typically, one chooses a time constant, tc,

according to how quickly one wants the position and

velocity errors to decay. Kp and Kv are then given by

the formulae Kv = 2/tc and Kp = 1/t2c . However, there

is no good rule for choosing tc. If tc is too long, then

loop-constraint errors accumulate faster than they decay;

if tc is too short, then the equations of motion become

excessively stiff, causing a loss of numerical integration

accuracy. A reasonable value for a large, slow industrial

robot is tc = 0.1, while a smaller, faster robot might need

tc = 0.01.

To incorporate stabilization terms into the loop con-

straint equation, we replace (2.109) with

lk = a
vp

p(k) −a
vp

s(k) − Kv(vs(k) −vp(k))− Kppek ,

(2.110)
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where pek is a vector representing the position error in

loop k. In absolute coordinates (i. e., link 0 coordinates),

pek is given by

pek =x to vec(0Xp(k) X−1
L1 (k) XL2(k)

s(k)X0) , (2.111)

where the XL1(k) and XL2(k) transforms are defined

in (2.62) and (2.63), and shown in Fig. 2.4 for joint k,

and x to vec
(

BXA

)

computes a vector approximating the

displacement from frame A to frame B, assuming this

displacement to be infinitesimal. x to vec can be defined

as

x to vec(X)=
1

2





















X23 − X32

X31 − X13

X12 − X21

X53 − X62

X61 − X43

X42 − X51





















. (2.112)

Algorithm
Table 2.11 shows an algorithm for calculating L and

l for the special case when all the loop-closing joints

have zeroDOF. It combines simplicitywith good perfor-

mance by transforming every quantity that is needed to

formulate the loop-closure constraints into a single coor-

dinate system, in this case absolute (link 0) coordinates,

so that no further transforms are needed.

Thefirst loop calculates the transforms fromabsolute

to link coordinates, and uses them to transform Φi to

absolute coordinates. Only the Φi that are needed in the

loop-closure constraints are transformed.

The second loop calculates the nonzero elements of

L (which can be sparse), according to (2.105). The inner

while loop terminates on the root of the loop, which is

the highest-numbered common ancestor of links p(k)

and s(k). It could be the fixed base if they have no

other common ancestor. The second loop ends with the

calculation of l, in absolute coordinates, according to

(2.110).

Table 2.11 Algorithm to calculate loop-closure constraints

inputs: model , RNEA partial results

outputs: L, l

model data : NB , p(i), NJ , p(k), s(k), L B(i),

XL1(k), XL2(k), Kp, Kv

RNEA data : Φi ,
iXp(i), vp(k), vs(k), a

vp

p(k), a
vp

s(k)

for i = 1 to NB do

if p(i) 6= 0 then
iX0 = iXp(i)

p(i)X0

end

if L B(i) 6= null then
0Φi = iX−1

0 Φi

end

end

L = 0

for k = NB +1 to NJ do

i = p(k)

j = s(k)

while i 6= j do

if i > j then

Lk,i = −0Φi

i = p(i)

else

Lk, j = 0Φ j

j = p( j)

end

end

ae = s(k)X−1
0 a

vp

s(k) −
p(k)X−1

0 a
vp

p(k)

ve = s(k)X−1
0 vs(k) −

p(k)X−1
0 vp(k)

pe = x to vec
(

p(k)X−1
0 X−1

L1 (k) XL2(k)
s(k)X0

)

lk = −ae − Kv ve − Kp pe

end

2.7 Conclusions and Further Reading

This chapter has presented the fundamentals of rigid-

body dynamics as they apply to robotmechanisms. It has

covered the following topics: the spatial vector algebra,

which provides a concise notation for describing and

implementing dynamics equations and algorithms; the

canonical equations of motion that are most frequently

used in robotics; how to construct a dynamic model of

a robot; and several efficient model-based algorithms for

calculating inverse dynamics, forward dynamics, and the

joint-space and operational-space inertia matrices.

There are many topics in dynamics that have not

been mentioned in this chapter, but can be found in later

chapters of this handbook. The dynamics of robots with

elastic links and joints is covered in Chap. 13; the prob-
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lem of identifying the parameters of a dynamic model

is covered in Chap. 14; the dynamics of physical con-

tact between a robot and the objects in its environment is

described in Chap. 27; and the dynamics of robots with

floating bases is described in Chap. 45.

We conclude this chapter by noting that a brief his-

tory of robot dynamics can be found in [2.32], and that

a more extensive treatment of robot dynamics can be

found in books such as [2.8, 10, 15, 28, 33–35]. Finally,

some suggestions for further reading are listed below.

2.7.1 Multibody Dynamics

Robot dynamics can be regarded as a subset (or

a specific application) of the broader discipline of

multibody dynamics. Books on multibody dynamics

include [2.3, 14, 31, 36–41]. Of course, multibody dy-

namics is, in turn, a subset of classical mechanics; and

themathematical foundations of the subject can be found

in any good book on classical mechanics, such as [2.13].

2.7.2 Alternative Representations

This chapter has used spatial vectors to express the equa-

tions of motion. There are various alternatives to the use

of spatial vectors: other kinds of 6-D vector, 3-D vec-

tors, 4×4 matrices, and the spatial operator algebra. All

6-D vector formalisms are similar, but are not exactly

the same. The main alternatives to spatial vectors are:

screws [2.10–12], motors [2.42], Lie algebras [2.12,43],

and ad hoc notations. (An ad hoc notation is one in

which 3-D vectors are grouped into pairs for the purpose

of reducing the volume of algebra.) Three-dimensional

vectors are the formalism used in most classical me-

chanics and multibody texts, and are also a precursor

to 6-D vector and 4×4 matrix formalisms. 4×4 matri-

ces are popular in robotics because they are very useful

for kinematics. However, they are not so useful for dy-

namics. 4×4 matrix formulations of dynamics can be

found in [2.33, 44, 45]. The spatial operator algebra

was developed at the Jet Propulsion Laboratory (JPL)

by Rodriguez, Jain, and others. It uses 6N-dimensional

vectors and 6N ×6N matrices, the latter regarded as lin-

ear operators. Examples of this notation can be found

in [2.46–48].

2.7.3 Alternative Formulations

This chapter used a vectorial formulation of the equa-

tions of motion that is usually called the Newtonian

or Newton–Euler formulation. The main alternative is

the Lagrangian formulation, in which the equations

of motion are obtained via Lagrange’s equation. Ex-

amples of the Lagrangian formulation can be found

in [2.9, 10, 17, 49, 50]. Kane’s method has also been

applied in robotics [2.51, 52].

2.7.4 Efficiency

Because of the need for real-time implementation, es-

pecially in control, the robotics community has focused

on the problem of computational efficiency. For inverse

dynamics, the O(n) recursive Newton–Euler algorithm

(RNEA) of Luh et al. [2.4] remains the most impor-

tant algorithm. Further improvements to the algorithm

are given in [2.53, 54]. For forward dynamics, the two

algorithms presented in this chapter remain the most

important for computational considerations: the O(n)

articulated-body algorithm (ABA) developed by Feath-

erstone [2.1] and the O(n3) algorithm based on the

composite-rigid-body algorithm (CRBA) of Walker and

Orin [2.5]. Improvements were made in the ABA over

the years [2.15,16,24] so that it was more efficient than

the CRBA-based algorithm for decreasingly smaller val-

ues of n. However, recent application of the CRBA to

branched kinematic trees [2.25] and robotic systems

with motion-controlled appendages [2.55] continue to

show the viability of the CRBA approach.

For the joint-space inertia matrix, the CRBA [2.5]

is the most important algorithm. A number of improve-

ments and modifications have been made over the years

to increase its computational efficiency [2.15, 56–58].

For the operational-space inertia matrix, efficient O(n)

algorithms have been developed [2.27–29] and applied

to increasingly complex systems [2.19].

2.7.5 Accuracy

Concerns can arise over the numerical accuracy of a dy-

namics algorithm, the accuracy of a simulation (i. e.,

numerical integration accuracy), or the accuracy of a dy-

namic model. The numerical accuracy of dynamics

algorithms has received relatively little attention com-

pared with efficiency. The RNEA, CRBA, and ABA

have all been tested for accuracy on a large variety

of rigid-body systems, but the same cannot be said

of most other algorithms. Rigid-body systems are of-

ten ill-conditioned, in the sense that a small change

in the applied force (or a model parameter) can pro-

duce a large change in the resulting acceleration. This

phenomenon was studied by Featherstone [2.26], who

discovered that the ill-conditioning gets worse with in-
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creasing body count, and that it can grow in proportion

to O(n4) in the worst case. Other publications on this

topic include [2.8, 30, 59, 60].

2.7.6 Software Packages

A number of software packages have been developed to

provide dynamic simulation capabilities for multibody

systems, and in particular, robotic systems. Several have

been written in MATLAB r© for ease of integration with

other analysis, control, and simulation programs. While

many of these are open source, some are offered at a rela-

tively low cost to the user. They differ in their capabilities

in a variety of ways including: speed, topologies and

joint models supported, accuracy, underlying dynamic

formulation and associated order of complexity, user in-

terface, graphics support, numerical integration routines,

integration with other code, application support, and

cost. Among those commonly cited are: Adams [2.61],

Autolev [2.62], DynaMechs [2.63], Open Dynamics

Engine [2.64], Robotics Studio [2.65], Robotics Tool-

box [2.66], SD/FAST [2.67], SimMechanics [2.68], and

Webots [2.69].

2.7.7 Symbolic Simplification

The technique of symbolic simplification takes

a general-purpose dynamics algorithm, and applies it

symbolically to a specific dynamic model. The result

is a list of assignment statements detailing what the

algorithm would have done if it had been executed

for real. This list is then inspected and pruned of all

unnecessary calculations, and the remainder is output

to a text file in the form of computer source code.

This code can run as much as ten times faster than

the original general-purpose algorithm, but it is spe-

cific to one dynamic model. Both Autolev [2.62] and

SD/FAST [2.67] use this technique. Other publications

on symbolic simplification for dynamics include [2.70–

75].

2.7.8 Algorithms for Parallel Computers

In order to speed up the common dynamics compu-

tations, a number of algorithms have been developed

for parallel and pipelined computers. For inverse dy-

namics, early work focused on speeding up the O(n)

RNEA on up to n processors [2.76, 77] while subse-

quent work resulted in O(log2 n) algorithms [2.78, 79].

For the O(n2) CRBA to compute the joint-space iner-

tia matrix, early work resulted in O(log2 n) algorithms

for n processors to compute the composite-rigid-body

inertias and diagonal elements of the matrix [2.80, 81].

Subsequent work resulted in O(log2 n) algorithms for

O(n2) processors to compute the entire matrix [2.82,

83]. For forward dynamics, speedup was obtained for

a multiple manipulator system on a parallel/pipelined

supercomputer [2.84]. The first O(log2 n) algorithm

for n processors was developed for an unbranched se-

rial chain [2.85]. More recent work has focused on

O(log2 n) algorithms for more complex structures [2.60,

86, 87].

2.7.9 Topologically-Varying Systems

There are many robot mechanisms whose topology

varies over time because of a change of contact con-

ditions, especially with the environment. In legged

vehicles, use of a compliant ground-contact model to

compute the contact forces reduced the closed-loop

structure to a tree structure [2.88]. However, for cases in

which the contacts are very stiff, numerical integration

problems may result. In more recent work [2.35, 89] in

which hard contact constraints are assumed, an efficient

method was used to reduce the large number of coor-

dinate variables from that which may be necessary in

general-purpose motion analysis systems [2.38]. Also,

they were able to automatically identify the variables as

the structure varied and developed a method for comput-

ing the velocity boundary conditions after configuration

changes [2.35, 89].
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