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Behavior-Bas38. Behavior-Based Systems

Maja J. Matarić, François Michaud

Nature is filled with examples of autonomous
creatures capable of dealing with the diversity,
unpredictability, and rapidly changing conditions
of the real world. Such creatures must make
decisions and take actions based on incomplete
perception, time constraints, limited knowledge
about the world, cognition, reasoning and physical
capabilities, in uncontrolled conditions and with
very limited cues about the intent of others.
Consequently, one way of evaluating intelligence
is based on the creature’s ability to make the most
of what it has available to handle the complexities
of the real world. The main objective of this
chapter is to clarify behavior-based systems and
their use in single- and multi-robot autonomous
control problems and applications. The chapter is
organized as follows. Section 38.1 overviews robot
control, introducing behavior-based systems in
relation to other established approaches to robot
control. Section 38.2 follows by outlining the basic
principles of behavior-based systems that make
them distinct from other types of robot control
architectures. The concept of basis behaviors, the
means of modularizing behavior-based systems,
is presented in Sect. 38.3. Section 38.4 describes
how behaviors are used as building blocks for
creating representations for use by behavior-
based systems, enabling the robot to reason
about the world and about itself in that world.
Section 38.5 presents several different classes of
learning methods for behavior-based systems,
validated on single-robot and multi-robot sys-
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tems. Section 38.6 provides an overview of various
robotics problems and application domains that
have successfully been addressed with behavior-
based control. Finally, Sect. 38.7 concludes the
chapter.

38.1 Robot Control Approaches

Situated robotics deals with embodied machines in

complex, challenging, often dynamically changing en-

vironments. Situatedness thus refers to existing in

a complex, challenging environment, and having one’s

behavior strongly affected by it. In contrast, robots

that exist in static, unchanging environments are usu-
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892 Part E Mobile and Distributed Robotics

ally not thought to be situated. These include assembly

robots operating in complex but highly structured, fixed,

and strongly predictable environments, specifically en-

gineered and controlled to enable the robot accomplish

very specific tasks. The predictability and stability of

the environment has a direct impact on the complex-

ity of the robot that must operate in it; situated robots

therefore present a significant challenge for the designer.

Robot control, also referred to as robot decision-

making or robot computational architecture, is the

process of taking information about the environment

through the robot’s sensors, processing it as necessary

in order to make decisions about how to act, and execut-

ing actions in the environment. The complexity of the

environment, i. e., the level of situatedness, has a direct

impact on the complexity of control, which is, in turn,

directly related to the robot’s task. Control architectures

are covered in Part I, Chap. 8, of the Handbook.

While there are infinitely many possible ways to

program a robot, there are fundamentally four classes of

robot control methods, described below.

38.1.1 Deliberative – Think, Then Act

In deliberative control, the robot uses all of the avail-

able sensory information, and all of the internally stored

knowledge, to reason about what actions to take next.

The control system is usually organized using a func-

tional decomposition of the decision-making processes,

consisting of a sensory processing module, a modeling

module, a planning module, a value judgment module,

and an execution module [38.1]. Such functional decom-

position allows complex operations to be performed, but

implies strong sequential interdependencies between the

decision-making modules.

Reasoning in deliberative systems is typically in

the form of planning, requiring a search of possible

state–action sequences and their outcomes. Planning,

a major component of artificial intelligence, is known to

be a computationally complex process. The process re-

quires the robot to perform a sequence of sense–plan–act

steps (e.g., combine the sensory data into a map of the

world, then use the planner to find a path in the map, then

send steps of the plan to the robot’s wheels) [38.2–4].

The robot must construct and then potentially evalu-

ate all possible plans until it finds one that enables it

to reach its goal, solve the task, or decide on a trajec-

tory to execute. Shakey, an early mobile robot that used

Strips, a general planner, is an example of such a sys-

tem applied to the problem of avoiding obstacles and

navigating based on vision data [38.5].

Planning requires the existence of an internal, sym-

bolic representation of the world, which allows the robot

to look ahead into the future and predict the outcomes

of possible actions in various states, so as to generate

plans. The internal model, thus, must be kept accurate

and up to date. When there is sufficient time to generate

a plan and the world model is accurate, this approach

allows the robot to act strategically, selecting the best

course of action for a given situation. However, being

situated in a noisy, dynamic world usually makes this im-

possible [38.6, 7]. Today, no situated robots are purely

deliberative. The advent of alternative architectures was

driven by the need for faster yet appropriate action in

response to the demands of complex and dynamically

changing real-world environments.

38.1.2 Reactive – Don’t Think, (Re)Act

Reactive control is a technique for tightly coupling sen-

sory inputs and effector outputs, typically involving

no intervening reasoning [38.8] to allow the robot to

respond very quickly to changing and unstructured en-

vironments [38.9]. Reactive control is inspired by the

biological notion of stimulus–response; it does not re-

quire the acquisition or maintenance of world models, as

it does not rely on the types of complex reasoning pro-

cesses utilized in deliberative control. Rather, rule-based

methods involving a minimal amount of computation,

and no internal representations or knowledge of the

world are typically used. Reactive systems achieve rapid

real-time responses by embedding the robot’s controller

in a collection of preprogrammed, concurrent condition–

action rules with minimal internal state (e.g., if bumped,

stop; if stopped, back up) [38.8,10]. This makes reactive

control especially well suited to dynamic and unstruc-

tured worlds where having access to a world model is

not a realistic option. Furthermore, the minimal amount

of computation involved means that reactive systems are

able to respond in a timely manner to rapidly changing

environments.

Reactive control is a powerful and effective control

method that abounds in nature; insects, which vastly

outnumber vertebrates, are largely reactive. However,

limitations to pure reactivity include the inability to store

(much if any) information or have memory or internal

representations of the world [38.11], and therefore the

inability to learn and improve over time. Reactive con-

trol trades off complexity of reasoning for fast reaction

time. Formal analysis has shown that, for environments

and tasks that can be characterized a priori, reactive con-

trollers can be very powerful, and if properly structured,
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Behavior-Based Systems 38.1 Robot Control Approaches 893

capable of optimal performance in particular classes of

problems [38.12,13]. In other types of environments and

tasks, where internal models, memory, and learning are

required, reactive control is not sufficient.

38.1.3 Hybrid – Think and Act Concurrently

Hybrid control aims to combine the best aspects of re-

active and deliberative control: the real-time response

of reactivity and the rationality and optimality of

deliberation. As a result, hybrid control systems con-

tain two different components, the reactive/concurrent

condition–action rules and the deliberative ones, which

must interact in order to produce a coherent output. This

is challenging because the reactive component deals

with the robot’s immediate needs, such as moving while

avoiding obstacles, and thus operates on a very fast time

scale and uses direct external sensory data and signals.

In contrast, the deliberative component uses highly ab-

stracted, symbolic, internal representations of the world,

and operates on them on a longer time scale, for example

to perform global path planning or plan for high-level

decision-making. As long as the outputs of the two

components are not in conflict, the system requires no

further coordination. However, the two parts of the sys-

tem must interact if they are to benefit from each other.

Consequently, the reactive system must override the de-

liberative one if the world presents some unexpected

and immediate challenge. Analogously, the deliberative

component must inform the reactive one in order to

guide the robot toward more efficient and optimal tra-

jectories and goals. The interaction of the two parts of

the system requires an intermediate component, which

reconciles the different representations used by the other

two and any conflicts between their outputs. The con-

struction of this intermediate component is typically the

greatest challenge of hybrid system design.

Hybrid systems are referred to as using three-layer

architectures, because of their structure, which consists

of the reactive (execution) layer, intermediate (coord-

ination) layer, and deliberative (organization/planning)

layer, and which is organized according to the principle

of increasing precision of control in the lower layers with

decreasing intelligence [38.14]. A great deal of research

has been invested into the design these components and

their interactions [38.2, 15–21].

Three-layer architectures aim to harness the best of

reactive control in the form of dynamic, concurrent, and

time-responsive control, and the best of deliberative con-

trol, in the form of globally efficient actions over a long

time scale. However, there are complex issues involved

in interfacing these fundamentally differing components

and the manner in which their functionality should be

partitioned is not yet well understood [38.22].

38.1.4 Behavior-Based Control –
Think the Way You Act

Behavior-based control employs a set of distributed, in-

teracting modules, called behaviors, that collectively

achieve the desired system-level behavior. To an ex-

ternal observer, behaviors are patterns of the robot’s

activity emerging from interactions between the robot

and its environment. To a programmer, behaviors are

control modules that cluster sets of constraints in order

to achieve and maintain a goal [38.22,23]. Each behavior

receives inputs from sensors and/or other behaviors in

the system, and provides outputs to the robot’s actuators

or to other behaviors. Thus, a behavior-based controller

is a structured network of interacting behaviors, with no

centralized world representation or focus of control. In-

stead, individual behaviors and networks of behaviors

maintain any state information and models.

Well-designed behavior-based systems take advan-

tage of the dynamics of interaction among the behaviors

themselves, and between the behaviors and the environ-

ment. The functionality of behavior-based systems can

be said to emerge from those interactions and is thus

neither a property of the robot or the environment in

isolation, but rather a result of the interplay between

them [38.22]. Unlike reactive control, which utilizes

collections of reactive rules with little if any state and

no representation, behavior-based control utilizes col-

lections of behaviors, which have no such constraints;

behaviors do have state and can be used to construct rep-

resentations, thereby enabling reasoning, planning, and

learning.

Each of the above approaches to robot control has

its strengths and weaknesses, and all play important and

successful roles in certain robot control problems and ap-

plications. Each offers interesting but different insights,

and no single approach should be seen as ideal or other-

wise in the absolute; rather, the choice of robot control

methodology should be based on the particular task,

environment, and robot.

For example, reactive control is the best choice for

environments demanding immediate response, but such

speed of reaction comes at the price of being myopic,

not looking into the past or the future. Reactive sys-

tems are also a popular choice in highly stochastic

environments, and environments that can be properly

characterized so as to be encoded in a reactive input–
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output mapping. Deliberative systems, on the other hand,

are the only choice for domains that require a great

deal of strategy and optimization, and in turn search and

planning. Such domains, however, are not typical of situ-

ated robotics, but more so of scheduling, game playing,

and system configuration, among others. Hybrid sys-

tems are well suited for environments and tasks where

internal models and planning are needed, and the real-

time demands are few, or sufficiently independent of the

higher-level reasoning. Behavior-based systems, in con-

trast, are best suited for environments with significant

dynamic changes, where fast response and adaptivity

are crucial, but the ability to do some looking ahead and

avoid past mistakes is required. Those capabilities are

spread over the active behaviors, using active represen-

tations if necessary [38.23], as discussed later in this

Chapter.

Characterizing a given robot computational archi-

tecture based on these four classes of control is often

a matter of degree, as architectures attempt to com-

bine the advantages of these paradigms, especially

the responsiveness, robustness, and flexibility of the

behavior-based approach with the use of abstract repre-

sentational knowledge for reasoning and planning about

the world [38.22] or for managing multiple conflicting

goals. For example, AuRA uses a planner to select be-

haviors [38.22] and 3T uses behaviors in the execution

layer of a three-level hierarchical architecture [38.24];

both of these architectures dynamically reconfigure be-

haviors according to reasoning based on available world

knowledge [38.22].

Robot control presents fundamental tradeoffs having

to do with time scale of response, system organization,

and modularity: thinking allows looking ahead to avoid

mistakes, but only as long as sufficient, accurate, up-to-

date information is available, otherwise reacting may be

the best way to handle the world. As a consequence of

these inherent tradeoffs, it is important to have different

methodologies at our disposal rather than having to fit

all controller needs into a single methodology. Select-

ing an appropriate control methodology and designing

an architecture within it is best determined by the situat-

edness properties of the problem, the nature of the task,

the level of efficiency or optimality needed, and the cap-

abilities of the robot, both in terms of hardware, world

modeling, and computation.

38.2 Basic Principles of Behavior-Based Systems

The basic principles of behavior-based control can be

summarized briefly as follows:

• Behaviors are implemented as control laws (some-

times similar to those used in control theory), either

in software or hardware, as a processing element or

as a procedure.

• Each behavior can take inputs from the robot’s sen-

sors (e.g., proximity sensors, range detectors, contact

sensors, camera) and/or from other modules in the

system, and send outputs to the robot’s effectors

(e.g., wheels, grippers, arm, speech) and/or to other

modules.

• Many different behaviors may independently re-

ceive input from the same sensors and output action

commands to the same actuators.

• Behaviors are encoded to be relatively simple, and

are added to the system incrementally.

• Behaviors (or subsets thereof) are executed con-

currently, not sequentially, in order to exploit

parallelism and speed of computation, as well as the

interaction dynamics among behaviors and between

behaviors and the environment.

Behavior-based robotics was developed for situ-

ated robots, allowing them to adapt to the dynamics

of real-world environments without operating upon ab-

stract representations of reality [38.11], but also giving

them more computational capability and expressivity

than are available to reactive robots. Behavior-based

systems maintain a tight coupling of sensing and ac-

tion through behaviors, and use the behavior structure

for representation and learning. Therefore, it is uncom-

mon for a behavior to perform extensive computation or

reasoning relying on a traditional world model, unless

such computation can be done in a timely manner in re-

sponse to dynamic and fast-changing environment and

task demands.

Behaviors are designed at a variety of abstraction

levels, facilitating bottom-up construction of behavior-

based systems. New behaviors are introduced into the

system incrementally, from the simple to the more

complex, until their interaction results in the desired

overall capabilities of the robot. In general, behaviors

encode time-extended processes, not atomic actions that

are typical of feedback control (e.g., go-forward-by-a-

small-increment or turn-by-a-small-angle). As a first
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Fig. 38.1 A general schematic of one type of behavior-based systems

step, survival behaviors, such as collision-avoidance,

are implemented. These behaviors are often reactive in

nature, since reactive rules can and often do form com-

ponents of simple behaviors. Figure 38.1 summarizes

the general components of low-level behavior-based

systems. Note that there is a distinction between acti-

vation conditions, which allow the behavior to generate

actions, and stimuli, from which actions are gener-

ated.

Next, behaviors are added that provide more com-

plex capabilities, such as wall-following, target-chasing,

homing, find-object, get-recharged, avoid-the-light,

aggregate-with-group, pick-up-object, find-landmark.

Depending on the system being designed, behaviors im-

plementing distributed representations may be added,

as may be behaviors capable of learning about the

world and/or the robot itself, and operating on those

representations and learned information. Representa-

tion and learning are addressed in more detail in

Sect. 38.4.

The interaction and integration of temporal and

spatial effects is of key importance in behavior-based

systems. Merely having one process controlling an ac-

tuator for predetermined intervals of time, or using as

many processes as there are effectors to control them,

does not suffice as the basis for behavior-based control.

It is the combined effect of concurrent processes over

time and driven by perception and internal states that cre-

ates the relevant behavior-based dynamics in a control

system.

Behavior-based systems are typically designed so

the effects of the behaviors interact largely in the en-

vironment rather than internally through the system,

taking advantage of the richness of the interaction dy-

namics by exploiting the properties of situatedness.

These dynamics are sometimes called emergent be-

haviors because they emerge from the interactions

and are not internally specified by the robot’s pro-

gram. Therefore, the internal behavior structure of

a behavior-based system need not necessarily mir-

ror its externally manifested behavior. For example,

a robot that flocks with other robots may not have

a specific flocking behavior; instead, its interaction

with the environment and other robots may re-

sult in flocking, although its only behaviors may

be avoid-collisions, stay-close-to-the-group, and keep-

going.

For such an approach to work, a behavior-based sys-

tem must resolve the issue of choosing a particular action

or behavior from multiple options, a process known

as action selection or the behavior coordination prob-

lem [38.25]. This is one of the central design challenges

of behavior-based systems. One approach to action se-

lection is the use of a predefined behavior hierarchy,

in which commands from the highest-ranking active

behavior are sent to the actuator and all others are ig-

nored. Numerous approaches based on other principles

as well as ad hoc methods for addressing the action se-

lection problem have been developed and demonstrated

on robotic systems. These methods aim to provide in-

creased flexibility but, in some cases, may do so at the

cost of reducing the efficiency or the analyzability of

the resulting control systems. Developed methods in-

clude varieties of motor schemas [38.16], command
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fusion [38.26], spreading of activation through a be-

havior network [38.27, 28], and fuzzy logic [38.29, 30],

among many others. For a survey of action selection

mechanisms, see [38.31].

38.2.1 Misconceptions

Because behavior-based systems are not always simple

to describe or implement, they are also often misun-

derstood. The most common misconception equates

reactive and behavior-based systems. Historically, the

advent of behavior-based systems was inspired by

reactive systems, and both maintain real-time cou-

plings between sensing and action [38.18, 32], and

are structured and developed bottom-up, consisting of

distributed modules. However, behavior-based systems

are fundamentally more powerful than reactive sys-

tems, because they can store representations [38.33],

while reactive systems cannot. Reactive systems are

limited by their lack of internal state; they are inca-

pable of using internal representations and learning.

Behavior-based systems overcome this limitation be-

cause their underlying unit of representation, the

behavior, can store state internally, in a distributed

fashion.

The means by which state and representation are dis-

tributed in behavior-based systems is one of the sources

of the flexibility of the control methodology. Repre-

sentations in behavior-based systems are distributed,

so as to best match and utilize the underlying be-

havior structure that causes the robot to act. This is

how thinking can be organized in much the same way

as acting. Thus if a robot needs to plan ahead, it

does so in a network of communicating behaviors,

rather than a single centralized planner. If a robot

needs to store a large map, the map might be dis-

tributed over multiple behavior modules representing

its components, such as a network of landmarks, as

in [38.34], or a network of parameterized navigation

behaviors, as in [38.35, 36], so that reasoning about the

map/environment/task can be done in an active fash-

ion, through using message passing within the behavior

network. The planning and reasoning components of

the behavior-based system use the same mechanisms as

the sensing- and action-oriented behaviors, and as a re-

sult do not operate on a fundamentally different time

scale and representation relative to one another. Various

forms of distributed representations are used, ranging

from static table structures and networks, to active

procedural processes implemented within the behavior

networks.

Another area of common misconception relates to

the comparison between behavior-based systems and

hybrid systems. Because the two use such different

modularization strategies, it is often assumed that one

approach (usually hybrid) has improved expressive cap-

abilities. In fact, behavior-based and hybrid systems

have the same expressive and computational capabil-

ities: both can exploit representations and look ahead,

but they do so in very different ways. This has re-

sulted in different application domains being best suited

to behavior-based versus hybrid systems. Specifically,

hybrid systems dominate the domain of single-robot

control, unless the task is so time-demanding that a re-

active system must be used. Behavior-based systems

dominate the domain of multi-robot control because

the notion of collections of behaviors within the system

scales well to collections of such robots, resulting in ro-

bust, adaptive group behavior [38.37, 38]. See Chap. 40

on multiple mobile robot systems for more details.

Like hybrid systems, behavior-based systems may be

organized in layers, but unlike hybrid systems, the lay-

ers do not differ from each other drastically in terms of

time scale and representation used. Behavior-based sys-

tems typically do not employ the hierarchical/sequential

division favored by hybrid approaches. Behavior-based

systems do provide both low-level control and high-

level deliberation; the latter can be performed by one

or more distributed representations that compute(s) over

the other behaviors or modules, often directly utiliz-

ing low-level behaviors and their outputs. The resulting

systems, built from the bottom up, do not divide into

differently represented and independent components

and consist of elements directly tied in some ways

to behaviors. The power, elegance, and complexity of

behavior-based systems all stem from the ways in which

their constituent behaviors are designed, coordinated,

and used.

To summarize briefly, behavior-based systems:

1. use behaviors as the building block of both decision-

making and action execution processes;

2. use distributed parallel evaluation and concurrent

control over behaviors, which take real-time inputs

from sensory data and send real-time commands to

effectors; and

3. have no centralized components, each module carry-

ing out its own responsibilities. The following

sections describe and illustrate in more detail how

behavior-based basic principles can be used to con-

trol robots.
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38.3 Basis Behaviors

The process of designing a set of behaviors for a robot

is referred to as behavior synthesis, and is typically per-

formed by hand, although some methods for automated

synthesis behaviors have been developed and success-

fully demonstrated [38.39, 40]. In all cases, behaviors

perform a particular activity, attain a goal, or maintain

some state. The notion of defining an optimal behavior

set for a given robot or task has been considered, but it

is generally accepted that such a notion is not realistic

as it is dependent on too many specifics of a given sys-

tem and environment that cannot currently be effectively

formalized.

Matarić et al. [38.38, 41] describe basis behaviors,

also referred to as primitive behaviors, as a tool for struc-

turing and thus simplifying behavior synthesis. Basis

behaviors are a set of behaviors such that each is neces-

sary, in the sense that each either achieves, or helps to

achieve, a relevant goal that cannot be achieved without

it by other members of that set. Furthermore, the basis

behavior set is sufficient for achieving the goals man-

dated for the controller. The term basis was chosen to

be indicative of the similar notion within linear algebra.

The property of necessity or parsimony is analogous to

the idea of linear independence; the idea of sufficiency

is similar to the linear algebraic concept of span. Basis

behaviors should be simple, stable, robust, and scalable.

Another organizational principle of basis behaviors

is orthogonality. Two behaviors are orthogonal if they

do not interfere with one another, each inducing no

side-effects in the other. This is often achieved by hav-

ing behaviors take mutually exclusive sensory inputs.

Another method is to have different behaviors control

separate effectors. This form of factorization is only

feasible when the robot’s dynamics do not inhibit their

separability. In contrast, autonomous helicopter control

is an example of a highly coupled system; Saripalli

et al. [38.42] demonstrated how behavior-based con-

trol can be effectively applied to robust autonomous

helicopter flight.

Basis behavior design principles have been applied

to single-robot as well as multi-robot behavior-based

systems in a variety of applications, ranging from navi-

gation to foraging, coordinated group movement, box

pushing, and others.

38.4 Representation in Behavior-Based Systems

Embedding representation into behavior-based systems

involves the challenge of conserving the basic principles

of the approach at all levels of system decision-making.

Combining abstract reasoning processes with behaviors

must be done in a way that exploits interaction dynamics

and desirable emergent system properties.

Matarić et al. [38.33,43] describe work with a robot

named Toto, which introduced the use of distributed

representation into behavior-based systems. Toto’s cap-

abilities included safe navigation, landmark detection,

map learning, and path planning in the learned map rep-

resentation, all within the behavior-based framework. To

exploit the principles underlying behavior-based con-

trol, Toto’s representation was not a centralized map.

Instead, any newly discovered landmark in the environ-

ment was assigned to a new map representation behavior,

which stored the landmark descriptor (type, estimated

Cartesian location, and compass orientation). When-

ever sensory inputs matched the landmark descriptor,

the robot localized to that particular landmark and the

behavior became active. The following is pseudo-code

for each landmark behavior:

Algorithm 38.1

my-behavior-type: C
my-compass-direction: 0
my-approximate-location: (x,y)
my-approximate-length: 6.5
whenever received (input)
if input(behavior-type) = my-behavior-type

AND
input(compass-direction) =
my-compass-direction

then
active <- true

As new landmarks are discovered, they are added to

the map representation behavior network. In this way,

the topology of the resulting map network is isomorphic

to the topology of the network graph in the physical

environment Toto has explored. The edges in the net-

work graph are also communication links in the behavior

network, allowing landmark behaviors to communicate

through local message passing. Consequently, a cur-
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rently active map behavior can send a message to its

topological neighbor(s), thereby indicating expectation

of it being the next recognized landmark and facilitating

Toto’s localization. Planning in the network takes place

through the use of the same message-passing mechan-

ism. The goal landmark (which could be selected by

the user as part of the task, such as go to this particu-

lar corridor or go to the nearest north-facing wall),

sends messages (i. e., spreads activation) from itself to

its neighbors, which pass it on throughout the network.

As messages are passed, the length of each landmark

in the graph is accrued, thereby estimating the length

of each path. The shortest path arriving at the currently

active network behavior indicates the best direction to

pursue toward the goal. This is equivalent to a distributed

Dijkstra search. Importantly, because this search is not

a static process as it would be in a centralized map

representation, but an active ongoing process within

a behavior map, if the robot is picked up and moved to

another location, as soon as it localizes, it will continue

on the optimal path to the goal; because each landmark

makes a local decision as to where to go next toward

the goal, no unique global path is stored in any central

location/representation. Thus, the path is constantly re-

freshed and updated; if any route is blocked, the link in

the graph is disconnected and the shortest path is updated

dynamically.

Toto exemplifies how, in behavior-based systems,

representations can be stored in a distributed fashion,

so as to best match the underlying behavior structure

that produces the robot’s external goal-driven activity.

If a robot needs to make high-level decisions (such as

planning ahead to a distant goal), it does so in a net-

work of communicating behaviors, rather than a single

centralized component. This results in scalable and ef-

ficient computation for the system as a whole, since

the typically slower decision-making processes such

as planning are distributed and modularized in a way

that makes them more consistent with the time scale

and representation of the rest of the system. Note the

fundamental difference between this general attempt of

behavior-based systems to homogenize their representa-

tion through the use of behaviors as universal modules,

compared to hybrid systems, which rely on inherently

different representations and time scales at different

levels of the system.

38.5 Learning in Behavior-Based Systems

The ability to improve performance over time and to

reason about the world, in the context of a chang-

ing and dynamic environment, is an important area of

research in situated robotics. Unlike in classical ma-

chine learning, where the goal is typically to optimize

performance over a long period of time, in situated

learning the aim is to adapt relatively quickly, toward

attaining efficiency in the light of uncertainty. Models

from biology are often considered, given its proper-

ties of learning directly from environmental feedback.

Variations and adaptations of machine learning, and in

particular reinforcement learning, have been effectively

applied to behavior-based robots, which have demon-

strated learning to walk [38.44], communicate [38.45],

navigate and create topological maps [38.33, 46], di-

vide tasks [38.23, 47], behave socially [38.48], and

even identify opponents and score goals in robot soc-

cer [38.49]. Methods from artificial life, evolutionary

computation/genetic algorithms, fuzzy logic, vision and

learning, multi-agent systems, and many other research

areas continue to be actively explored and applied to

behavior-based robots as their role in animal modeling

and practical applications continues to develop.

When operating in unpredictable and partially ob-

servable environments, an autonomous robot must

examine the evolution of its general states, and try to

capture what emerges from the interaction dynamics

with its environment. Temporal integration of differ-

ent types of observations is an important aspect of

that capability [38.50, 51]. Work on motivational sys-

tems [38.52–56] has shown that a balance between

planning and reactivity for goal management can be

achieved using internal variables activated or inhibited

by different factors [38.37, 57–59]. Motivations can be

cyclic (e.g., circadian rhythms) or change in various

temporally dependent ways [38.55]. In general, the no-

tion of motivations is used to efficiently balance the

need to adapt to the contingencies of the world and to

accomplish the robot’s goals.

In the following subsections, we discuss three suc-

cessfully validated classes of learning approaches in

behavior-based systems:

1. reinforcement learning over behaviors

2. learning behavior networks for task planning

3. learning from history of behavior use
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The approaches differ in what is learned and where learn-

ing algorithms are applied, but in all cases behaviors are

used as the underlying building blocks for the learning

process.

38.5.1 Reinforcement Learning
in Behavior-Based Systems

Behaviors are recognized as excellent substrates for

speeding up reinforcement learning (RL), which is

known to suffer from the curse of dimensional-

ity. The earliest examples of RL in behavior-based

systems demonstrated hexapod walking [38.44] and

box-pushing [38.60]. Both decomposed the control sys-

tem into a small set of behaviors, and used generalized

input states, thereby effectively reducing the size of the

state space. In the box-pushing example, the learning

problem was broken up into modularized policies for

learning separate mutually exclusive behaviors: for get-

ting out when stuck, for finding the box when lost and

not stuck, and for pushing the box when in contact with

one and not stuck. The modularization into behaviors

resulted in greatly accelerated as well as more robust

learning.

Scaling up reinforcement learning to multi-robot

behavior-based systems was explored by [38.23]

and [38.61]. In multi-robot systems, the environment

presents further challenges of nonstationarity and credit

assignment, due to the presence of other agents and

concurrent learners. The problem was studied in the

context of a foraging task with four robots, each initially

equipped with a small set of basis behaviors (search-

ing, homing, picking-up, dropping, following, avoiding)

and learning individual behavior selection policies, i. e.,

which behavior to execute under which conditions. Due

to interference among concurrent learners, this problem

could not be solved directly by standard RL. Shaping,

a concept from psychology [38.62], was introduced; it

was subsequently adopted in robot RL [38.63]. Shaping

pushes the reward closer to the subgoals of the behav-

ior, and thus encourages the learner to incrementally

improve its behaviors by searching the behavior space

more effectively. Matarić [38.61] introduced shaping

through progress estimators, measures of progress to-

ward the goal of a given behavior during its execution.

This form of reward shaping addresses two issues as-

sociated with delayed reward: behavior termination and

fortuitous reward. Behavior termination is event-driven;

the duration of any given behavior is determined by

the interaction dynamics with the environment, and can

vary greatly. Progress estimators provide a principled

means for deciding when a behavior may be terminated

even if its goal is not reached and an externally gen-

erated event has not occurred. Fortuitous reward refers

to reward ascribed to a particular situation–behavior (or

state–action) pair which is actually a result of previous

behaviors/actions. It manifests as follows: previous be-

haviors lead the system near the goal, but some event

induced a behavior switch, and subsequent achievement

of the goal is ascribed most strongly to the final behav-

ior, rather than the previous ones. Shaped reward in the

form of progress estimators effectively eliminates this

effect. Because it provides feedback during behavior

execution, it rewards the previous beneficial behaviors

more strongly than the final one, thus more appropriately

assigning credit.

In summary, reinforcement learning has been

successfully applied to behavior-based robotics, in par-

ticular at the level of behavior selection. The learning

process is accelerated by the behavior structure, which

provides a higher-level representation of actions and

time-extended dynamics.

38.5.2 Learning Behavior Networks

The modularization of behavior-based systems as net-

works of behaviors allows for learning to be applied at

the network level as well. Nicolescu et al. [38.35,36] de-

veloped the notion of abstract behaviors, which separate

the activation conditions of a behavior from its output

actions (so-called primitive behaviors, which share the

same principles as basis behaviors described Sect. 38.3);

this allows for a more general set of activation conditions

to be associated with the primitive behaviors. While this

is not necessary for any single task, it is what provides

generality to the representation. An abstract behavior is

a pairing of a given behavior’s activation conditions (i. e.,

preconditions) and its effects (i. e., postconditions); the

result is an abstract and general operator much like those

used in classical deliberative systems (Fig. 38.2). Primi-

tive behaviors, which typically consist of a small basis

set, may involve one or an entire collection of sequential

or concurrently executing behaviors.

Networks of such behaviors are then used to spe-

cify strategies or general plans in a way that merges

the advantages of both abstract representations and

behavior-based systems. The nodes in the networks are

abstract behaviors, and the links between them repre-

sent precondition and postcondition dependencies. The

task plan or strategy is represented as a network of such

behaviors. As in any behavior-based system, when the

conditions of a behavior are met, the behavior is acti-
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Fig. 38.2 Behavior network

vated. Analogously, when the conditions of an abstract

behavior are met, the behavior activates one or more

primitive behaviors which achieve the effects speci-

fied in its postconditions. The network topology at the

abstract behavior level encodes any task-specific behav-

ior sequences, freeing up the primitive behaviors to be

reused for a variety of tasks. Thus, since abstract behav-

ior networks are computationally lightweight, solutions

for multiple tasks can be encoded within a single system

and dynamically switched.

Nicolescu et al. [38.35, 36] introduced a means for

automatically generating such networks offline as well

as at runtime. The latter enables a learning robot to

acquire task descriptions dynamically, while observing

its environment, which can include other robots and/or

a teacher. The methodology was validated on a mobile

robot following a human and acquiring a representation

of the human-demonstrated task by observing the activa-

tion of its own abstract behavior pre- and postconditions,

thus resulting in a new abstract behavior network rep-

resenting the demonstrated task [38.64]. The robot was

able to acquire novel behavior sequences and combina-

tions (i. e., concurrently executing behaviors), resulting

in successful learning of tasks involving visiting various

targets in particular order, picking up, transporting, and

delivering objects, dealing with barriers, and maneuver-

ing obstacle courses in specific ways.

38.5.3 Learning from History
of Behavior Use

Most deliberative approaches derive knowledge for rea-

soning about the world from sensor inputs and actions

taken by the robot. This results in complex state-space

representations of the world and does not take into con-

sideration the context in which these sensations/actions

are taken. As already discussed, behaviors, which are

readily used as low-level control blocks driven by what

is experienced from the interactions with the environ-

ment, can also serve as an abstract representation to

model those interactions. One approach is to use history

information [38.65], i. e., to explicitly take into consid-

eration the time sequence of observations in order to

make a decision. Applying this idea to behavior-based

systems, by knowing the purpose of each of the behav-

iors and by observing their history of use, the robot can

reason and ground its intentions in what it is experienc-

ing in its operating environment. The concept of abstract

behavior is exploited here as well, to activate behaviors

and as a representation on which to learn.

Learning from history has been validated in

behavior-based systems capable of making the robot

change its behavior selection strategy for foraging

colored objects (blocks) to a homing region in nonsta-

tionary, dynamically changing environments involving

multiple concurrently learning robots [38.66,67]. In that

foraging task, the robot is given two subtasks: search

for a block (searching task), and bring it to the home

region (homing task). The robot is given behaviors to

accomplish these tasks: one behavior for the searching

task, called searching-block, and two for the homing

task, homing and drop-block. A velocity control behav-

ior is also used in both of these tasks to make the robot

move. All these behaviors are referred to as task be-

haviors. Conditions for activating task behaviors are

preprogrammed based on the presence or absence of

a block in front of the robot and the proximity of the

home region.

The robot also needs to navigate safely in the en-

vironment. In this approach, an avoidance behavior is

activated unless the robot is near home and carrying

a block; otherwise it is disabled, to allow the robot to

approach the home region. This type of behavior, used

for handling harmful situations and interference while

accomplishing a task, is referred to as a maintenance be-

havior. The designer determines the conditions in which

maintenance behaviors should be used, but cannot indi-

cate when they will occur during the task, as that is tied

to the dynamics of the interaction between the robot and

its environment.

The robot learns to use alternative behaviors (follow-

side, rest, and turn-randomly), which introduce variety

into its action repertoire that changes the way it accom-

plishes its tasks. In contrast to other types of behaviors,
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these have no a priori activation conditions; the objec-

tive is to allow the robot to learn when to activate these

behaviors according to past experiences, for some pre-

set periods of time, when it is experiencing interference

in accomplishing its task. Figure 38.3 illustrates how the

behaviors are prioritized using a fixed suppression mech-

anism, similar to the subsumption architecture [38.9]

but with the difference that the activated behaviors, i. e.,

those allowed to issue outputs, change dynamically. Fol-

lowing behavior-based principles, an activated behavior

may or may not be used to control the robot, depending

on the sensory conditions it monitors and the arbitration

mechanism. An activated behavior is used only when

it provides commands that actually control the robot.

Whenever a behavior is used, its corresponding symbol

is sent to the interaction model, generating the sequence

of behaviors used over time. Separate learning trees are

used for each task; determining which one to use is done

based on the activated task behavior.

The algorithm uses a tree structure to store the his-

tory of behavior use. The upper part of Fig. 38.3 shows

a typical tree with nodes storing the behavior (H for use

by homing and drop-block) used for controlling the robot

while accomplishing its task, and n, the number of times

a transition between the node itself and its successor has

been made (as observed from behavior use). Initially, the

tree for a particular task is empty and is incrementally

constructed as the robot goes about its task. Leaf nodes

are labeled with E (for end-node) and store the total per-

formance of the particular tree path. Whenever a path is

completely reused, when the same sequence of behav-

iors is used, the E node is updated with the average of

the stored and current performances for recent trials.

Learning is done through reinforcement. Depending

on the domains and the tasks, a variety of factors can be

used to evaluate performance, and different metrics can

be used with this learning algorithm. To see how far the

idea of self-evaluation and learning by observing behav-

ior use can be taken, the evaluation function used here

is not based on characteristics about the environment or

the task. Instead, it is based on the amount of time be-

haviors are used. Comparison between the time spent

using behaviors associated with the tasks and the time

spent exploiting maintenance behaviors is used to derive

the evaluation criterion. Consequently, behavioral selec-

tion strategy is derived from what can be learned from

the experiences of the robot in its environment, without

having to characterize a priori what can be considered

to be optimal operating conditions in the environment.

Using the tree and the evaluation function, the algo-

rithm has two options for using a maintenance behavior:

Behavior sequence

...FFFAAAAAASSSSYYYYYHHH...SSSSAAAA

Activation of  an alternative-behavior

Interaction model level

Behavior level
RestR

AvoidanceA

Drop-blockD

Follow-sideF

Searching-blockS

HomingH

Turn-randonlyT

Velocity-controlV

Tree representation of  history of  behavior use

A,3 S,3 E,3S,3A,5S,5 60 %

T,1 S,1 E,1A,2F,2 70 %

S,1 E,1 80 %

S
e
a
r
c
h
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n
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n
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(Wires)

Commands

(velocity, rotation)

Fig. 38.3 Organization of the behavior level and the interaction

model level. Behavior on colored background represent an example

of activated behaviors for the searching task, with Turn-randomly as

a chosen alternative behavior. For clarity, sensory inputs to behaviors

are not shown

1. not to make any changes in its active behavior set

(the observe option)

2. to activate an alternative behavior

The sequence of nodes in a tree path characterizes the

interactions experienced by the robot in the world. Dif-

ferent selection criteria can be used by comparing the

performance at the current position in the tree with

the expected performance, following an exploration (to

learn the effects of alternative behaviors) then exploita-

tion (to exploit what was learned in previous trials)

strategy. The expected performance of a given node is

the sum of the stored end-node performances in its sub-

paths, multiplied by the frequency of use of the subpaths

relative to the current position in the tree. Finally, since

this algorithm is used in noisy and nonstationary condi-

tions, deleting paths is necessary to keep the interaction

model up to date. This is done by keeping only a fixed

number of the most recent paths in the tree.

Results obtained with this approach show that the

robot is able to learn unanticipated strategies (like resting

in front of a static obstacle to increase the turning angle
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and locate a target) and original ones (like yielding when

close to other robots or following walls when the center

of the pen is crowded). Developing such capabilities

is important in general, because it makes it possible for

robots to learn in nonstationary environments, which are

common in the world applications.

38.6 Continuing Work

Behavior-based robots have demonstrated various

standard capabilities, including obstacle avoidance,

navigation, terrain mapping, following, chasing/pursuit,

object manipulation, task division and cooperation, and

learning maps, navigation and walking. They have also

demonstrated some novel applications like large-scale

group behaviors including flocking, foraging, and soc-

cer playing, human–robot interaction, and modeling

insect and even human behavior [38.68–70]. Behavior-

based methods span mobile robots, underwater vehicles,

planetary rovers for space exploration, interactive and

social robots, as well as robots capable of grasp-

ing, manipulation, walking, running, and many others.

Broadly adopted consumer market products, such as

the iRobot Roomba Robotic Floorvac [38.71], also use

behavior-based control, demonstrating its broad appli-

cability.

The use of behavior-based architectures for robot

control has evolved from single-system implementations

to approaches that combine forms of learning, state es-

timation, and distributed computation. Behaviors have

been combined with a fuzzy inference system for in-

door navigation using mobile robots [38.29, 30, 72, 73],

where a command fusion module acts as an arbiter that

combines multiple fuzzy behavior outputs into a single

control signal. This strategy ensures the robot is capable

of making inferences in the face of uncertainty.

Behavior-based methods have been employed in

multi-robot systems from the outset [38.38]. More re-

cently, multi-robot researchers have begun to consider

tasks requiring tightly coupled cooperation; see [38.74]

for an overview and discussion. Such tasks typically re-

quire low-level sensor-sharing and/or for higher-level

explicit coordination. Behavior-based controllers have

been developed and extended in order to address

these challenges. For example, Parker et al. [38.75]

considered reusable behavior units that can be automati-

cally redistributed for low-level information processing.

Werger et al. [38.76] described broadcast of local eligi-

bility (BLE) to enable higher-level group behaviors by

allowing communications to influence each robot’s lo-

cal action selection mechanism. Gerkey et al. [38.77,78]

demonstrated scalable and efficient market-based co-

ordination algorithms for multi-robot coordination in

a variety of tasks, including tightly coupled ones (e.g.,

box-pushing [38.79]).

Several researchers have shown that behavior-based

controllers allow for sophisticated coordination through

a utility-centered model of the collective task. Behaviors

use this representation to produce actions that consider

each robot’s impact on the performance of the group as

a whole. Iocchi et al. [38.80] have shown this in hetero-

geneous multi-robot system, while Batalin et al. [38.81]

demonstrated that complex, interrelated and dynamic

tasks can be performed in coordinated ways in robots

with behavior-based controllers interacting with a sen-

sor network. Stroupe et al. [38.82] considered a mapping

task and developed move value estimation for robot

teams (MVERT), essentially a behavior-based method

for maximizing group knowledge.

Because behavior-based methods lend itself natu-

rally to multi-robot control problems, they have had

a significant influence on that field of research. Simmons

et al. [38.83] described a hybrid architecture designed

for group-level coordination which employs behaviors

as a method for organizing low-level safety-critical con-

troller code. Behaviors have also been used to structure

controllers and networked communication in minimal-

ist systems [38.84]. Some multi-robot research with

a control-theoretic flavor has used separate executable

processes that can be switched on and off dynamically

depending on task constraints, in a manner very similar

to behavior-based control [38.85].

Learning by demonstration has also been combined

with behavior-based systems to produce one-shot learn-

ing and teaching mechanisms for robot control [38.35].

Furthermore, this type of behavior-based architecture

has been used to learn ship navigation strategies [38.86];

during a learning phase, an instructor selects behaviors

for a ship to execute in order to reach a specific goal, and

a subsequent offline stage then generates dependency

links between the behaviors that it witnessed during the

learning phase.

Another form of learning by demonstration has used

probabilistic methods to select and combine multiple

behaviors [38.87]. There, the problem of learning what
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behaviors to execute during autonomous navigation is

treated as a state estimation problem. During a learning

phase, the robot observes commands used by a teacher.

A particle filter then fuses the control commands that

were demonstrated by the teacher to estimate behavior

activation. The method produces a robust controller that

is well suited for dynamic environments.

Behavior-based architectures have also been used

in complex vision systems, for identification rather

than control. In those contexts, each behavior repre-

sents a small unit of visual computation, such as frame

differencing, motion detection, and edge detection, re-

sulting in biologically inspired vision and attention

behavior [38.88, 89].

Behavior-based architectures have also been de-

veloped for the control and learning in humanoid

robots. Figure 38.4 illustrates two robots used in

ongoing projects. In the past, the Cog project demon-

strated behavior-based control for articulated manual

and eye–hand coordination [38.90,91]. Edsinger [38.92]

developed a lightweight behavior architecture for orga-

nizing perception and control of Domo. The architecture

allows for specification of time-contingent behaviors

and distributed computation, resulting in a real-time con-

troller that allows Domo to operate in an environment

with humans. Kismet [38.93] involved several behavior-

based systems that controlled perception, motivation,

attention, behavior, and movement in a human–robot

interaction (HRI) context. Each behavior represented

Kismet’s individual drives and motivations. Situated

modules and episode rules were introduced as part of an

HRI architecture by Ishiguro et al. [38.94] and Kanda

et al. [38.95]; they employed an ordered set of general-

use situated modules and behaviors that are contingent

a) b)

Fig. 38.4a,b Examples of behavior-based control systems

used in human–robot interaction: USC Bandit (a) and Uni-

versity of Sherbrooke Melvin (b)

on a condition, used in sequences defined by a set of

task-specific episode rules.

38.6.1 Motivated Configuration
of Behaviors

Designing robots capable of safely and effectively inter-

acting with humans in real-world settings is one of the

ultimate challenges in robotics. Representation and ab-

stract reasoning may become necessary to keep up with

and adapt to the inherently complex properties of such

environments and tasks.

One possible solution currently being developed and

validated is to add to a behavior-based architecture the

idea of intentionally activating, monitoring, and config-

uring behaviors. Behaviors are considered basic control

components that are selected and modified according to

the intentions of the robot [38.57, 96, 97]. Such inten-

tions can also comply with the distributed philosophy

of behavior-based system by having multiple sources

of influences. The motivated behavioral architecture

(MBA) uses motivational modules to derive the robot’s

intentions.

Motivational modules recommend the use or the

inhibition of tasks to be accomplished by the robot.

Tasks are data structures associated with particular

configuration and activation of one or more behav-

iors. The processing of the robot’s intentions is done

through the dynamic task workspace (DTW), which or-

ganizes tasks in a tree-like structure according to their

interdependencies, from high-level abstract tasks (e.g.,

deliver message) to primitive behavior-related tasks

(e.g., avoid obstacles). Through the DTW and task

representation, motivational modules exchange infor-

mation asynchronously on how to activate, configure,

and monitor behaviors, by submitting modification re-

quests and queries or subscribe to events regarding

the task’s status. With multiple tasks being issued by

the motivational modules, the behavior activation and

configuration module determines which behaviors are

to be activated according to recommendations made

by motivational modules, with or without a particular

configuration (e.g., a destination to go to). A recom-

mendation can either be negative, neutral, or positive, or

take on real values within this range to reflect the de-

sirability of the robot to accomplish specific tasks. The

decisional process implemented in the behavior acti-

vation and configuration module (which can be based

on different methods of action selection, as set by the

designer) takes these information to activate behaviors.

Activation values reflect the resulting robot’s intentions
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derived from interactions between the motivational mod-

ules. Behavior use and other information (useful for task

representation and for monitoring how the behaviors

are used by the robot to interact with the world) are

also communicated through the behavior activation and

configuration module.

Motivational modules are categorized as instinctual,

rational, or emotional. Instinctual motivations provide

basic operation of the robot through the use of sim-

ple rules. Rational motivations are related to cognitive

processes, such as navigation and planning. Emotional

motivations monitor conflicting or transitional situa-

tions between tasks, such as changes in commitments

the robot establishes with other agents (humans or

robot) in its environment. The manifested robot behavior

can thus be appropriately influenced by direct percep-

tion, by reasoning, or by managing commitments and

choices. By distributing motivational modules and dis-

tinguishing their roles, it is possible to more efficiently

exploit and combine the various influences on the tasks

the robot must accomplish. It is also by exchanging

information through the DTW that motivational mod-

ules are kept generic and independent from each other,

allowing for behavior configurations to arise in a dis-

tributed fashion, based on the capabilities available to

the robot. For instance, one instinctual motivation may

monitor the robot’s energy level to issue a recharging

task in the DTW, which activates a recharge behavior

that would make the robot detect and dock to a charg-

ing station. Meanwhile, if the robot knows where it is

and can determine a path to a nearby charging station,

Chargers

Laser range 3nder

Wireless router

Speakers

Card dispenser

Touchscreen

Microphones (  )

Color camera

Laptops

LED display

a) b)

Fig. 38.5a,b Spartacus (front view (a), back view (b))

a path-planning rational motivation can add a subtask

of navigating to this position, using a goto behavior.

Otherwise, the recharge behavior will at least allow the

robot to recharge opportunistically, when it perceives

a charging station.

The described architecture was used to integrate

a number of intelligent decision-making capabilities

on a robot named Spartacus, shown in Fig. 38.5. In

the American Association for Artificial Intelligence

(AAAI) mobile robot competition, Spartacus was used

to demonstrate how a behavior-based system could in-

tegrate planning and sequencing tasks under temporal

constraints and spatial localization capabilities, using

a previously generated metric map. The system also

used behavioral message reading [38.98], sound pro-

cessing capabilities with an eight-microphone system

for source localization, tracking, real-time sound sep-

aration [38.99, 100], and a touch screen interface to

allow the robot to acquire information about where it

is in the world, what it should do, and how it should do

it [38.101, 102].

Figure 38.6 illustrates the navigation portion of the

architecture implemented on Spartacus. Behavior action

selection scheme used is priority based, and behavior

recommendation and activation are binary. The behav-

iors used are: stop/rest, stopping the robot when the

emergency stop or interacting with people using the

graphical interface is required; avoid, making the robot

move safely in the environment; obey, executing vocal

navigation requests; recharge, stopping the robot while

waiting to be connected to a charging station; goto, di-

recting the robot to a specific location; follow-sound,

making the robot follow an audio source; follow-wall,

making the robot follow a wall (or corridor) when de-

tected, otherwise generating a constant forward velocity.

Only instinctual and rational motivations are imple-

mented in this version, with rational motivations having

greater priority over instinctual ones in case of conflicts.

For instinctual motivations, the task selector selects one

high-level task when none has yet been prioritized. For

instance, between tasks that require the robot to go to

a specific location, this motivation selects the task where

the location is physically closest to the robot. Safe navi-

gation urges the robot to maintain its physical integrity

by recommending obstacle avoidance. For the ratio-

nal motivations, planner determines which primitive

tasks and sequences thereof are necessary to accomplish

high-level tasks under temporal constraints and limited

capabilities. The first implementation was a simple re-

active planning module that interleaves planning and

execution [38.103], as in [38.104] and [38.105]. Naviga-
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Fig. 38.6 Behavior-based architec-

ture with distributed motivational

modules

tor determined the path to a specific location, as required

for tasks in the DTW. Agenda generated predetermined

sequences of tasks to accomplish.

The underlying principles of the described archi-

tecture have also been applied to robots with different

capabilities, such as a robot that uses activation vari-

ables, topological localization and mapping, and fuzzy

behaviors to explore and characterize an environ-

ment [38.57, 97], and on an autonomous rolling robot

that only uses simple sensors and a microcontroller to

generate purposeful movements used in a study regard-

ing interaction with toddlers [38.106, 107]. The MBA

architecture is now being used on robots with increas-

ing perceptual and action capabilities, in an attempt to

provide robots with the necessary skills to be useful and

efficient in daily life.

38.7 Conclusions and Further Reading

This chapter has described behavior-based control,

a methodology for single- and multi-robot control

aimed at situated robots operating in unconstrained,

challenging, and dynamic conditions in the real

world. While inspired by the philosophy of react-

ive control, behavior-based systems are fundamentally

more expressive and powerful, enabling representa-

tion, planning, and learning capabilities. Distributed

behaviors are used as the underlying building blocks

for these capabilities, allowing behavior-based systems

to take advantage of dynamic interactions with the

environment rather than rely solely on explicit rea-

soning and planning. As the complexity of robots

continues to increase, behavior-based principles and

their applications in robot architectures and de-

ployed systems will evolve as well, demonstrating

P
a
rt

E
3
8
.7



906 Part E Mobile and Distributed Robotics

increasingly higher levels of situated intelligence and

autonomy.

Interested readers can find more information regard-

ing behavior-based systems in other chapters of this

Handbook, as well as in Brooks [38.108], Arkin [38.22],

in artificial intelligence and robotics textbooks [38.109,

110], and in introductory textbooks on mobile robot

control [38.111–113].
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