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37. Simultaneous Localization and Mapping

Sebastian Thrun, John J. Leonard

This chapter provides a comprehensive intro-
duction in to the simultaneous localization and
mapping problem, better known in its abbrevi-
ated form as SLAM. SLAM addresses the problem
of a robot navigating an unknown environment.
While navigating the environment, the robot seeks
to acquire a map thereof, and at the same time it
wishes to localize itself using its map. The use of
SLAM problems can be motivated in two different
ways: one might be interested in detailed envi-
ronment models, or one might seek to maintain
an accurate sense of a mobile robot’s location.
SLAM serves both of these purposes.

We review three major paradigms of algorithms
from which a huge number of recently published
methods are derived. First comes the traditional
approach, which relies on the extended Kalman
filter (EKF) for representing the robot’s best es-
timate. The second paradigm draws its intuition
from the fact that the SLAM problem can be viewed
as a sparse graph of constraints, and it applies
nonlinear optimization for recovering the map and
the robot’s locations. Finally, we survey the particle
filter paradigm, which applies nonparametric
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density estimation and efficient factorization
methods to the SLAM problem. This chapter dis-
cusses extensions of these basic methods. It
elucidates variants of the SLAM problem and
proposes a taxonomy for the field. Relevant re-
search is referenced extensively, and open research
problems are discussed.

37.1 Overview

This chapter provides a comprehensive introduction

into one of the key enabling technologies of mo-

bile robot navigation: simultaneous localization and

mapping (SLAM). SLAM addresses the problem of ac-

quiring a spatial map of a mobile robot environment

while simultaneously localizing the robot relative to

this model. The SLAM problem is generally regarded

as one of the most important problems in the pursuit

of building truly autonomous mobile robots. Despite

significant progress in this area, it still poses great

challenges. At present, we have robust methods for

mapping environments that are static, structured, and of

limited size. Mapping unstructured, dynamic, or large-

scale environments remains largely an open research

problem.

The historical roots of SLAM can be traced back to

Gauss [37.1], who is largely credited with inventing the

least-squares method, for calculating planetary orbits.

In the 20th century, a number of fields outside robotics

have studied the making of environment models from

a moving sensor platform, most notably in photogram-

metry [37.2] and computer vision [37.3,4]. SLAMbuilds
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872 Part E Mobile and Distributed Robotics

on this work, often extending the basic paradigms into

more scalable algorithms.

This chapter begins with a definition of the SLAM

problem, which shall include a brief taxonomy of dif-

ferent versions of the problem. The centerpiece of this

chapter is a layman’s introduction into the three major

paradigms in this field, and the various extensions that

exist. As the reader will quickly recognize, there is no

single best solution to the SLAM problem. The method

chosen by the practitioner will depend on a number of

factors, such as the desired map resolution, the update

time, the nature of the features in the map, and so on.

Nevertheless, the threemethods discussed in this chapter

cover the major paradigms in this field. For an in-depth

study of SLAM algorithms, we refer the reader to a re-

cent textbook on probabilistic robotics, which dedicates

a number of chapters to the topic of SLAM [37.5]. Also

see [37.6, 7] for a recent in-depth tutorial for SLAM.

37.2 SLAM: Problem Definition

37.2.1 Mathematical Basis

The SLAM problem is defined as follows. A mobile

robot roams an unknown environment, starting at a lo-

cation with known coordinates. Its motion is uncertain,

making it graduallymore difficult to determine its global

coordinates. As it roams, the robot can sense its envi-

ronment. The SLAM problem is the problem of building

a map the environment while simultaneously determin-

ing the robot’s position relative to this map.

Formally, SLAM is best described in probabilistic

terminology. Let us denote time by t, and the robot

location by xt . For mobile robots on a flat ground,

xt is usually a three-dimensional vector, consisting of

its two-dimensional coordinate in the plane plus a sin-

gle rotational value for its orientation. The sequence of

locations, or path, is then given as

XT = {x0, x1, x2, . . . xT } . (37.1)

Here T is some terminal time (T might be∞). The initial

location x0 is known; other positions cannot be sensed.

Odometry provides relative information between

two consecutive locations. Let ut denote the odome-

try that characterized the motion between time t −1 and

time t; such data might be obtained from the robot’s

wheel encoders or from the controls given to those

motors. Then the sequence

UT = {u1, u2, u3 . . . xT } (37.2)

characterizes the relative motion of the robot. For noise-

free motion, UT would be sufficient to recover the past

XT from the initial location x0. However, odometry

measurements are noisy, and path-integration techniques

inevitably diverge from the truth.

Finally, the robot senses objects in the environment.

Let m denote the true map of the environment. The

environment may be comprised of landmarks, objects,

surfaces, etc., and m describes their locations. The envi-

ronment mapm is typically assumed to be time invariant

(i. e., static).

The robot measurements establish information be-

tween features in m and the robot location xt . If we,

without loss of generality, assume that the robot takes

exactly one measurement at each point in time, the

sequence of measurements is given as

ZT = {z1, z2, z3, . . . , zT } . (37.3)

Figure 37.1 illustrates the variables involved in the

SLAM problem. It shows the sequence of locations and

sensor measurements, and the causal relationships be-

tween these variables. Such a diagram is known as

a graphical model. It is useful in understanding the

dependencies in the SLAM problem.

The SLAM problem is now the problem of recov-

ering a model of the world m and the sequence of

robot locations XT from the odometry and measure-

zt+1

xt+1xtxt–1

ztzt–1

ut+1utut–1

m

Fig. 37.1 Graphical model of the SLAM problem. Arcs in-

dicate causal relationships, and shaded nodes are directly

observable to the robot. In SLAM, the robot seeks to recover

the unobservable variables
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ment data. The literature distinguishes two main forms

of the SLAM problem, which are both of equal practi-

cal importance. One is known as the full SLAM problem:

it involves estimating the posterior over the entire robot

path together with the map:

p(XT , m|ZT , UT ) . (37.4)

Written in this way, the full SLAM problem is the prob-

lem of calculating the joint posterior probability over XT

and m from the available data. Notice that the variables

right of the conditioning bar are all directly observable to

the robot, whereas those on the left are the ones that we

want. As we shall see, algorithms for the offline SLAM

problem are often batch, that is, they process all data at

the same time.

The second, equally important SLAMproblem is the

online SLAM problem. This problem is defined via

p(xt , m|ZT , UT ) . (37.5)

Online SLAM seeks to recover the present robot loca-

tion, instead of the entire path. Algorithms that address

the online problem are usually incremental and can

process one data item at a time. In the literature such

algorithms are typically called filters.

To solve either SLAMproblem, the robot needs to be

endowed with two more models: a mathematical model

that relates odometrymeasurements ut to robot locations

xt−1 and xt and a model that relates measurements zt

to the environment m and the robot location xt . These

models corresponds to the arcs in Fig. 37.1.

In SLAM, it is common to think of those mathemat-

ical models as probability distributions: p(xt |xt−1, ut)

characterizes the probability distribution of the location

xt assuming that a robot started at a known location xt−1

andmeasured odometry data ut , and likewise p(zt |xt , m)

is the probability for measuring zt if this measurement

is taken at a known location xt in a known environment

m. Of course, in the SLAM problem we do not know

the robot location, and neither do we know the envi-

ronment. As we shall see, Bayes rule takes care of this,

by transforming these mathematical relationships into

a form where we can recover probability distributions

over those latent variables from the measured data.

37.2.2 Example: SLAM in Landmark Worlds

One common setting of SLAM involves the assumption

that the environment is populated by point landmarks.

When building two-dimensional (2-D)maps, point land-

marks may correspond to door posts and corners of

rooms, which, when projected into a 2-D map are char-

acterized by a point coordinate. In a 2-D world, each

point landmark is characterized by two coordinate val-

ues. Hence the world is a vector of size 2N , where N is

the number of point landmarks in the world.

In a commonly studied setting, the robot can sense

three things: the relative range to nearby landmarks,

their relative bearing, and the identity of these land-

marks. The range and bearing may be noisy, but in the

most simple case the identity of the sensed landmarks is

known perfectly.

To model such a setup, one begins with defining the

exact, noise-free measurement function. The measure-

ment function h describes the workings of the sensors: it

accepts as input a description of the environment m and

a robot location xt , and it computes the measurement:

h(xt, m) . (37.6)

Computing h is straightforward in our simplified land-

mark setting; it is a simple exercise in trigonometry.

The probabilistic measurement model is derived

from this measurement function by adding a noise term;

it is a probability distribution that peaks at the noise-free

value h(xt, m) but allows for measurement noise:

p(zt | xt, m)∼ N (h(xt, m), Qt) . (37.7)

Here N denotes the two-dimensional normal distribu-

tion, which is centered at h(xt, m). The 2-by-2 matrix

Qt is the noise covariance, indexed by time.

Themotionmodel is derived from a kinematicmodel

of robot motion. Given the location vector xt−1 and the

motion ut , textbook kinematics tells us how to calculate

xt . Let this function be denoted by g:

g(xt−1, ut) . (37.8)

The motion model is then defined by a normal distri-

bution centered at g(xt−1, ut) but subject to Gaussian

noise:

p(xt | xt−1, ut)= N (g(xt−1, ut), Rt) . (37.9)

Here Q Rt is a covariance; it is of size 3-by-3, since the

location is a three-dimensional vector.

With these definitions, we have all we need to de-

velop a SLAM algorithm. While in the literature, point

landmark problems with range-bearing sensing are by

far the most widely studied, SLAM algorithms are not

confined to landmark worlds. However, no matter what

the map representation and the sensor modality, any

SLAM algorithm needs a similarly crisp definition of
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874 Part E Mobile and Distributed Robotics

the features in m, the measurement model p(zt | xt , m),

and the motion model p(xt | xt−1, ut).

37.2.3 Taxonomy of the SLAM Problem

SLAM problems are distinguished along a number of

different dimensions. Most important research papers

identify the type of problems addressed by making the

underlying assumptions explicit. We already encoun-

tered one such distinction: full versus online. Other

common distinctions are as follows.

Volumetric Versus Feature-Based
In volumetric SLAM, the map is sampled at a resolution

high enough to allow for photorealistic reconstruction of

the environment. Themapm in volumetric SLAMis usu-

ally quite high dimensional, with the result that the com-

putation can be quite involved. Feature-based SLAM

extracts sparse features from the sensor stream. Themap

is then only comprised of features. Our point-landmark

example is an instance of feature-based SLAM. Feature-

based SLAM techniques tend to be more efficient, but

their results may be inferior to volumetric SLAM due to

the fact that the extraction of features discards informa-

tion in the sensor measurements.

Topological Versus Metric
Some mapping techniques recover only a qualitative de-

scription of the environment, which characterizes the

relation of basic locations. Such methods are known as

topological. A topological map might be defined over

a set of distinct places and a set of qualitative rela-

tions between these places (e.g., place A is adjacent

to place B). Metric SLAM methods provide metric in-

formation between the relation of such places. In recent

years, topologicalmethods have fallen out of fashion, de-

spite ample evidence that humans often use topological

information for navigation.

Known Versus Unknown Correspondence
The correspondence problem is the problem of relating

the identity of sensed things to other sensed things. In the

landmark example above, we assumed that the identity

of landmarks is known. Some SLAM algorithms make

such an assumption, while others do not. The algorithms

that do not make this assumption provide special mech-

anisms for estimating the correspondence of measured

features to previously observed landmarks in the map.

The problem of estimating the correspondence is known

as the data association problem, and is one of the most

difficult problems in SLAM.

Static Versus Dynamic
Static SLAM algorithms assume that the environment

does not change over time. Dynamic methods allow for

changes in the environment. The vast majority of the lit-

erature on SLAMassumes static environments; dynamic

effects are often treated just as measurement outliers.

Methods that reason about motion in the environment

are more involved, but they tend to be more robust in

most applications.

Small Versus Large Uncertainty
SLAM problems are distinguished by the degree of lo-

cation uncertainty that they can handle. The most simple

SLAM algorithms allow only for small errors in the lo-

cation estimate. They are good for situations in which

a robot goes down a path that does not intersect itself, and

then returns along the same path. In many environments

it is possible to reach the same location from multiple

directions. Here the robot may accrue a large amount of

uncertainty. This problem is known as the loop-closing

problem. When closing a loop, the uncertainty may be

large. The ability to close loops is a key characteristic of

modern-day SLAM algorithms. The uncertainty can be

reduced if the robot can sense information about its posi-

tion in some absolute coordinate frame, e.g., through the

use of a satellite-based global positioning system (GPS)

receiver.

Active Versus Passive
In passive SLAM algorithms, some other entity controls

the robot, and the SLAM algorithm is purely observing.

The vast majority of algorithms are of this type; they

give the robot designer the freedom to implement ar-

bitrary motion controllers, and pursue arbitrary motion

objectives. In active SLAM, the robot actively explores

its environment in the pursuit of an accurate map. Active

SLAMmethods tend to yield more accurate maps in less

time, but they constrain the robotmotion. There exist hy-

brid techniques in which the SLAM algorithm controls

only the pointing direction of the robot’s sensors, but not

the motion direction.

Single-Robot Versus Multirobot SLAM
Most SLAM problems are defined for a single-robot

platform, although recently the problem of multirobot

exploration has gained in popularity. Multirobot SLAM

problems come in many flavors. In some, robots are able

to observe each other, while in others robots are told their

relative initial locations.Multirobot SLAMproblems are

also distinguished by the type of communication allowed

between the different robots. In some, the robots can
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Simultaneous Localization and Mapping 37.3 The Three Main SLAM Paradigms 875

communicate with no latency and infinite bandwidth.

More realistic are setups in which only nearby robots

can communicate, and the communication is subject to

latency and bandwidth limitations.

As this taxonomy suggests, there exists a flurry

of SLAM algorithms. Most modern-day conferences

dedicate multiple sessions to SLAM. This chapter

focuses on the very basic SLAM setup. In partic-

ular it assumes a static environment with a single

robot. Extensions are discussed towards the end of

this chapter, in which the relevant literature is also

discussed.

37.3 The Three Main SLAM Paradigms

This section reviews three basic SLAMparadigms, from

which most others are derived. The first, known as ex-

tended Kalman filter (EKF) SLAM, is historically the

earliest but has recently become slightly unpopular due

to its limiting computational properties. The second,

which is based on graphical representations, success-

fully applies sparse nonlinear optimization methods to

the SLAM problem, and has become the main paradigm

for solving the full SLAM problem. The third and

finalmethod uses nonparametric statistical filtering tech-

niques known as particle filters. It is a popular method

for online SLAM, and provides a fresh new solution to

the data association problem in SLAM.

37.3.1 Extended Kalman Filters

Historically, the EKF formulation of SLAM is the ear-

liest, and perhaps the most influential. EKF SLAM was

introduced in [37.8–10] and [37.11,12], which were the

first papers to propose the use of a single state vec-

tor to estimate the locations of the robot and a set of

features in the environment, with an associated error

covariance matrix representing the uncertainty in these

estimates, including the correlations between the ve-

hicle and feature state estimates. As the robot moves

through its environment taking measurements, the sys-

tem state vector and covariancematrix are updated using

the the extended Kalman filter [37.13–15]. As new fea-

tures are observed, new states are added to the system

state vector; the size of the system covariance matrix

grows quadratically.

This approach assumes a metrical, feature-based en-

vironmental representation, in which objects can be

effectively represented as points in an appropriate pa-

rameter space. The position of the robot and the locations

of features form a network of uncertain spatial relation-

ships. The development of appropriate representations

is a critical issue in SLAM, and intimately related to

the topics of sensing and world modeling discussed in

Chap. 36 and in Part C in this handbook.

The EKF algorithm represents the robot estimate by

a multivariate Gaussian:

p(xt , m | ZT , UT ) ∼ N (µt , Σt) . (37.10)

The high-dimensional vector µt contains the robot’s

best estimate of its own location and the location of

the features in the environment. In our point-landmark

example, the dimension of µt would be 3+2N , since

we need three variables to represent the robot location

and 2N variables for the N landmarks in the map.

ThematrixΣt is the covariance of the robot’s assess-

ment of its expected error in the guessµt . As a quadratic

matrix,Σt is of size (3+2N)× (3+2N). In SLAM, this

matrix is usually distinctly non-sparse. The off-diagonal

elements capture the correlations in the estimates of

different variables. Nonzero correlations come along be-

cause the robot’s location is uncertain, and as a result the

locations of the landmarks in themaps are uncertain. The

importance of maintaining those off-diagonal elements

is one of the key properties of EKF SLAM [37.16].

The EKF SLAM algorithm is easily derived for our

point-landmark example. Suppose, for amoment that the

motion function g and the measurement function h were

linear in their arguments. Then the vanilla Kalman filter,

as described in any textbook on Kalman filtering, would

be applicable. EKF SLAM linearizes the functions g and

h using Taylor-series expansion – again, this is standard

textbook material. Thus, in its most basic form (and

in the absence of any data association problems), EKF

SLAM is nothing but the application of the vanilla EKF

to the online SLAM problem.

Figure 37.2 illustrates the EKF SLAM algorithm for

an artificial example. The robot navigates from a start

pose that serves as the origin of its coordinate system.

As it moves, its own pose uncertainty increases, as indi-

cated by uncertainty ellipses of growing diameter. It also

senses nearby landmarks and maps them with an uncer-

tainty that combines the fixed measurement uncertainty

with the increasing pose uncertainty. As a result, the un-

certainty in the landmark locations grows over time. The
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a) b)

c) d)

Fig. 37.2a–d EKF applied to the on-

line SLAM problem. The robot’s path

is a dotted line, and its estimates of

its own position are shaded ellipses.

Eight distinguishable landmarks of

unknown location are shown as small

dots, and their location estimates are

shown as white ellipses. In (a–c) the

robot’s positional uncertainty is in-

creasing, as is its uncertainty about

the landmarks it encounters. In (d) the

robot senses the first landmark again,

and the uncertainty of all landmarks

decreases, as does the uncertainty

of its current pose. (Image courtesy

of Michael Montemerlo, Stanford

University)

interesting transition is illustrated in in Fig. 37.2d: Here

the robot observes the landmark it saw in the very begin-

ning of mapping, and whose location is relatively well

known. Through this observation, the robot’s pose error

is reduced, as indicated in Fig. 37.2d – notice the very

small error ellipse for the final robot pose. This obser-

vation also reduces the uncertainty for other landmarks

in the map. This phenomenon arises from a correlation

that is expressed in the covariance matrix of the Gaus-

sian posterior. Since most of the uncertainty in earlier

landmark estimates is caused by the robot pose, and

since this very uncertainty persists over time, the loca-

tion estimates of those landmarks are correlated. When

gaining information on the robot’s pose, this informa-

tion spreads to previously observed landmarks. This

effect is probably the most important characteristic of

the SLAM posterior [37.16]. Information that helps lo-

calize the robot is propagated through the map, and as

a result improves the localization of other landmarks in

the map.

EKF SLAM also addresses the data association

problem. If the identity of observed features is unknown,

the basic EKF idea becomes inapplicable. The solution

here is to reason about the most likely data association

when a landmark is observed. This is usually done based

on proximity: which of the landmarks in the map most

likely corresponds to the landmark just observed? The

proximity calculation considers the measurement noise

and the actual uncertainty in the poster estimate, and

the metric used in this calculation is known as a Maha-

lanobis distance, which is a weighted quadratic distance.

Tominimize the chances of false data associations,many

implementations use visible features to distinguish in-

dividual landmarks and associate groups of landmarks

observed simultaneously [37.17, 18]. Modern-day im-

plementations also maintain a provisional landmark list

and only add landmarks to the internal map when they

have been observed sufficiently frequently [37.19–22].

With an appropriate landmark definition and careful im-

plementation of the data association step, EKF SLAM

becomes a powerful method for feature-based SLAM.

EKF SLAM has been applied successfully to a large

range of navigation problems, involving airborne, under-

water, indoor, and various other vehicles. Figure 37.3a

shows an example result obtained with a state-of-the-

art implementation of EKF SLAM. Shown there is an

underwater map obtained with the underwater robot

Oberon, developed at the University of Sydney, Aus-
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Fig. 37.3 (a) Example of Kalman filter estimation of the map and the vehicle pose. (b) The underwater vehicle Oberon, developed

at the University of Sydney. (Images courtesy of StefanWilliams and Hugh Durrant-Whyte, Australian Centre for Field Robotics)

tralia, and shown in Fig. 37.3b. This vehicle is equipped

with a pencil-beam, mechanically scanned sonar that

can produce high-resolution range and bearing mea-

surements of objects up to 50m away. To facilitate

the mapping problem, researchers have deposited long,

small vertical objects in the water, which can be ex-

tracted from the sonar scans with relative ease. In this

specific experiment, there is a row of such objects,

spaced approximately 10m apart. In addition, a more

distant cliff offers additional point features that can be

detected using the scanning sonar.

The map shown in Fig. 37.3a depicts the robot path,

marked by the triangles connected by a line. Around

each triangle one can see an ellipse, which corresponds

to the covariance matrix of the Kalman filter estimate

projected into the robot location. The ellipse shows the

variance; the larger it is, the less certain the robot is about

its current pose. Various small dots in Fig. 37.3a show

landmark sightings, obtained by searching the sonar scan

for small and highly reflective objects. The majority of

these sightings is rejected using statistical outlier rejec-

tion techniques [37.20]. However, some are believed to

correspond to a landmark and are added to the map. At

the end of the run, the robot has classified 14 such ob-

jects as landmarks, each of which is plotted with the

projected uncertainty ellipse in Fig. 37.3a. These land-

marks include the artificial landmarks put out by the

researchers, but they also include various other terrain

features in the vicinity of the robot. The residual pose

uncertainty is small.

The basic formulation of EKF SLAM assumes that

the location of features in the map is fully observable

from a single position of the robot. The method has

been extended to situations with partial observability,

with range-only [37.23] or angle-only [37.24,25] meas-

urements. The technique has also been utilized using

a featureless representation, in which the state con-

sists of current and past robot poses, and measurements

take the form of constraints between the poses (derived,

for example, from laser scan matching or from camera

measurements) [37.26, 27].

A key concern of the EKF approach to SLAM

lies in the quadratic nature of the covariance matrix.

A number of researchers have proposed extensions to

the EKF SLAM algorithms that gain remarkable scal-

ability by decomposing the map into submaps, for

which covariances are maintained separately. Relevant

literature can be found in [37.19, 28–32]. Other re-

searchers have developed hybrid SLAM techniques,

which combine EKF-style SLAM techniques with vol-

umetric map representation; see [37.33–36]. Finally,

researchers have developed data association techniques

for SLAM [37.37–39] based on advanced statistical

techniques such as Dempster’s EM algorithm [37.40].

37.3.2 Graph-Based
Optimization Techniques

A second family of algorithms solves the SLAM prob-

lem through nonlinear sparse optimization. They draw
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their intuition from a graphical representation of the

SLAM problem. Graph-based techniques were first

mentioned in [37.8, 41], but a seminal paper [37.42]

provided a first working solution. The representation

in this section is closely related to a series of recent

papers [37.43–52]. We note that most contemporary

techniques are offline and address the full SLAM prob-

lem, although some online versions exist and will be

discussed below.

The basic intuition of graph-based SLAM is a fol-

lows. Landmarks and robot locations can be thought of

as nodes in a graph. Every consecutive pair of locations

xt−1, xt is tied together by an arc that represents the in-

formation conveyed by the odometry reading ut . Other

arcs exist between locations xt and landmarks mi , as-

suming that at time t the robot sensed landmark i. Arcs

in this graph are soft constraints. Relaxing these con-

straints yields the robot’s best estimate for the map and

the full path.

m2

x2 x3 x4x1

m3
m4

m1

m4m3m2m1x4x3x2x1

x1

x2

x3

x4

m1

m2

m3

m4

x1

m1

m1x1

x1

m1

a) Observation is landmark m1

c) Several steps later

x2x1

m1

m1x2x1

x1

x2

m1

b) Robot motion from x1 to x2

Fig. 37.4a–c Illustration of the graph construction. The left

diagram shows the graph, the right the constraints in matrix

form

The construction of the graph is illustrated

in Fig. 37.4. Suppose that at time t = 1 the robot senses

landmark m1. This adds an arc in the (yet highly in-

complete) graph between x1 and m1. When caching

the edges in a matrix format (which happens to cor-

respond to a quadratic equation defining the resulting

constraints), a value is added to the elements be-

tween x1 and m1, as shown on the right-hand side

of Fig. 37.4a.

Now suppose the robot moves. The odometry read-

ing u2 leads to an arc between nodes x1 and x2, as shown

in Fig. 37.4b. Consecutive application of these two basic

steps leads to an graph of increasing size, as illustrated

in Fig. 37.4c. Nevertheless this graph is sparse, in that

each node is only connected to a small number of other

nodes. The number of constraints in the graph is (at

worst) linear in the time elapsed and in the number of

nodes in the graph.

If we think of the graph as a spring–mass

model [37.50], computing the SLAM solution is equiva-

lent to computing the state of minimal energy of this

model. To see this, note that the graph corresponds to

the log-posterior of the full SLAM problem (cf. (37.4)):

log p(XT , m | ZT , UT ) . (37.11)

Without derivation, we state that this logarithm is of the

form

log p(XT , m | ZT , UT )= const

+
∑

t

log p(xt | xt−1, ut)

+
∑

t

log p(zt | xt , m) .

(37.12)

Each constraint of the form log p(xt | xt−1, ut ) is the

result of exactly one robot motion event, and it corre-

sponds to an arc in the graph. Likewise, each constraint

of the form log p(zt | xt, m) is the result of one sensor

measurement, to which we can also find a correspond-

ing arc in the graph. The SLAM problem is then simply

to find the mode of this equation.

X∗
t , m∗ = argmaxXT ,m log p(XT , m | ZT , UT ) .

(37.13)

Without derivation, we note that, under the Gaussian

noise assumption that was made in the point-landmark

example, this expression resolves to the following
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quadratic form:

log p(XT , m | ZT , UT )

= const

+
∑

t

[xt − g(xt−1, ut )]
T R−1

t [xt − g(xt−1, ut)]

+
∑

t

[zt −h(xt, m)]T Q−1
t [zt −h(xt, m)] .

(37.14)

This is a sparse function. A number of efficient opti-

mization techniques can be applied. Common choices

include gradient descent, conjugate gradient, and oth-

ers. Most SLAM implementations rely on some sort of

iterative linearizing the functions g and h, in which case

the objective in (37.14) becomes quadratic in all of its

variables.

The graphical paradigm is easily extended to handle

the data association problems. This is because (37.14)

is easily extended to integrate additional knowledge on

data association. Suppose some oracle informed us that

landmarks mi and m j in the map corresponded to one

and the same physical landmark in the world. Then we

can either remove m j from the graph and attach all

adjacent arcs tomi , or we can add a soft correspondence

constraint [37.53] of the form

[m j −mi ]
T Γ [m j −mi ] . (37.15)

Here Γ is a 2-by-2 diagonal matrix whose coefficients

determine the penalty for not assigning identical loca-

tions to two landmarks (hence we want Γ to be large).

Since graphical methods are usually used for the full

SLAM problem, the optimization can be interleaved

a) b)

Fig. 37.5a,b An occupancy grid map

of an abandoned mine: (a) estimates

the data association incrementally,

and only in reference to the most

recent sensor measurement. The right

map (b) is the result of a global data

association search and a graphical

optimization (Images courtesy of Dirk

Hähnel, University of Freiburg)

with the search for the optimal data association. State-

of-the-art implementations rely on RANSAC [37.54] or

branch-and-bound methods [37.55, 56].

Graphical SLAM methods have the advantage that

they scale to much higher-dimensional maps than EKF

SLAM. The key limiting factor in EKF SLAM is the

covariance matrix, which takes space (and update time)

quadratic in the size of the map. No such constraint

exists in graphical methods. The update time of the

graph is constant, and the amount of memory required is

linear (under some mild assumptions). Performing the

optimization can be expensive, however. Technically,

finding the optimal data association is suspected to be

an NP-hard problem, although in practice the number of

plausible assignments is usually small. The continuous

optimization of the log-likelihood function in (37.14)

depends among other things on the number and size of

loops in the map.

Figure 37.5 shows the result of a state-of-the-art

SLAM algorithm based on analyzing the constraint

graph and a nested search of the best data association.

The data for this map was acquired by CMU’s Ground-

hog robot [37.57], built to explore and map abandoned

underground mines. Groundhog is equipped with a laser

range finderwhichmeasures the range to obstacles along

a horizontal slice of the world. The specific map shown

here covers an area of 250m×150m. The form of the

map is known as a occupancy grid map, which is due

to Elfes and Moravec [37.58,59]. Occupancy grid maps

use Bayesian reasoning to estimate the posterior prob-

ability that a cell is free, thereby accommodating noise

in range finders.

As a baseline for comparison, Fig. 37.5a shows

a map constructed in a much simpler way: here scans
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are localized relative to slightly older scans and, once

localized, are added to the map under the assumption

that the estimated location is correct. Such a tech-

nique is called scan matching [37.42]. Scan matching

is a SLAM method, but it can only accommodate very

small amounts of location uncertainties. The failure to

close loops is obvious from Fig. 37.5a. In fact, pair-

wise scan matching can be thought of as a version of

a graphical SLAM algorithm, but correspondence is

only established (and constraints inserted in the graph)

between immediately consecutive scans.

To map this data into a graph of manageable size,

the algorithm decomposes the map into small local

submaps, one for each 5m of robot travel. Within these

5m, the maps are sufficiently accurate, as general drift

is small and hence scan matching performs essentially

flawlessly. Each submap coordinates become a pose

node in the GraphSLAM. Adjacent submaps are linked

through the relative motion constraints between them.

The resulting structure is shown in Fig. 37.5b.

On this graph, we can now perform a branch-and-

bound recursive search for correspondences. For finding

a) b) c)

d) e) f)

Fig. 37.6a–f Data association search. See text

good submaps thatmight correspond, this algorithmuses

a correlation analysis for two overlaying maps. Once

two suitable maps are found, a soft constraint of the

type stated in (37.15) is added to the graph, followed by

an optimization step of the resulting set of constraints.

Figure 37.6 illustrates the process of data association:

each circle corresponds to a new constraint that would

be found in the search. The figure illustrates the iterative

nature of the search: certain correspondences are only

discovered when others have been propagated, and oth-

ers are dissolved in the process of the search. The final

model is stable, in that additional search for new data as-

sociation induces no further changes. The resulting grid

map is shown in Fig. 37.5b.

Other graph-based techniques for SLAM have pro-

duced similar results. Figure 37.7 shows a map of the

same data set generated by [37.26], using an algo-

rithm called Atlas. This algorithm decomposes maps

into submaps whose relation is maintained through

information-theoretic relative link.

We note that the graph-based paradigm is very

closely linked to information theory, in that the soft con-
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straints constitute the information the robot has on the

world (in an information-theoretic sense [37.60]). Most

methods in the field are inherently offline, that is, they

optimize for the entire robot path. If the robot path is

long, the optimization may become cumbersome. This

is one of the disadvantages of the graph-based paradigm.

There exists a number of crossovers that manipulate the

graph online so as to factor our past robot location vari-

ables. The resulting algorithms are filters [37.26,61–63]

and they tend to be intimately related to information filter

methods [37.16, 63–67]. Many of the original attempts

to decompose EKF SLAM representations into smaller

submaps to scale up are based onmotivations that are not

dissimilar to the graphical approach; see [37.29,30,68].

As this chapter is being written, graphical and

optimization-based SLAM algorithm are the subject of

intense research. Recent results show that the paradigm

scales to maps with 108 features [37.26, 43–49, 51, 52,

57]. Arguably, the graph-based paradigm has generated

some the largest SLAM maps ever built, but usually in

an offline fashion.

37.3.3 Particle Methods

The third principal SLAM paradigm is based on particle

filters. Particle filters can be traced back to [37.69], but

they have become popular only in recent years. Particle

filter represent a posterior through a set of particles. For

the novice in SLAM, each particle is best thought as

a concrete guess as to what the true value of the state

may be. By collecting many such guesses into a set of

guesses, or set of particles, the particle filters captures

a representative sample from the posterior distribution.

The particle filter has been shown under mild conditions

to approach the true posterior as the particle set size goes

to infinity. It is also a nonparametric representation that

represents multimodal distributions with ease. In recent

years, the advent of extremely efficient microprocessors

has made particle filters a popular algorithm [37.70–74].

The key problem with the particle filter in the con-

text of SLAM is that the space of maps and robot paths is

huge. Suppose we have a map with 1000 features. How

many particles would it take to populate that space?

In fact, particle filters scale exponentially with the di-

mension of the underlying state space. Three or four

dimensions are thus acceptable, but 100 dimensions are

generally not.

The trick to make particle filters amenable to the

SLAM problem goes back to [37.75, 76]. The trick was

introduced into the SLAM literature in [37.77], followed

by [37.78], who coined the name FastSLAM. Let us
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Fig. 37.7 Mine map generated by the Atlas SLAM algorithm

by [37.26] (after Bosse et al. [37.26])

first explain the basic FastSLAM algorithm on the sim-

plified point-landmark example, and then discuss the

justification for this approach.

At any point in time, FastSLAM maintains K par-

ticles of the type:

X
[k]
t , µ

[k]
t,1, . . . , µ

[k]
t,N , Σ

[k]
t,1 , . . . , Σ

[k]
t,N . (37.16)

Here [k] is the index of the sample. This expression

states that a particle contains

• a sample path X
[k]
t

• a set of N two-dimensional Gaussians with means

µ
[k]
t,n and variances Σ

[k]
t,n , one for each landmark in

the environment

Here n (1≤ n ≤ N) is the index of the landmark. From

this it follows that K particles possess K path samples.

It also possesses K N Gaussians, each of which models

exactly one landmark for one of the particles.

Initializing FastSLAM is simple: just set each par-

ticle’s robot location to its known starting coordinates,

and zero the map. The particle update then proceeds as

follows.

• When an odometry reading is received, new location

variables are generated stochastically, one for each

of the particles. The distribution for generating those

location particles is based on the motion model

x
[k]
t ∼ p(xt | x

[k]
t−1, ut ) . (37.17)
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Here x
[k]
t−1 is the previous location, which is part of

the particle. This probabilistic sampling step is easily

implemented for any robot whose kinematics can be

computed.

• When a measurement zt is received, two things hap-

pen: first, FastSLAM computes for each particle the

probability of the new measurement zt . Let the in-

dex of the sensed landmark be n. Then the desired

probability is defined as

w
[k]
t := N (zt | x

[k]
t , µ

[k]
t,n, Σ

[k]
t,n ) . (37.18)

The factor w
[k]
t is called the importance weight,

since it measures how important the particle is in

the light of the new sensor measurement. As before,

N denotes the normal distribution, but this time it

is calculated for a specific value, zt . The importance

weights of all particles are then normalized so that

they sum to 1.

Next, FastSLAM draws with replacement from the

set of existing particles a set of new particles. The

probability of drawing a particle is its normalized

importance weight. This step is called resampling.

The intuition behind resampling is simple: particles

for which the measurement is more plausible have

a higher chance of surviving the resampling process.

Finally, FastSLAM updates for the new particle set

the mean µ
[k]
t,n and covariance Σ

[k]
t,n , based on the

zt–1 zt+1

xt+1

zt

xt

ut–1 ut+1ut

xt–1

m1 m2

zt+2

xt+2

ut+2

m3

Fig. 37.8 The SLAM problem depicted as a Bayes network graph.

The robot moves from location xt−1 to location xt+2, driven by a se-

quence of controls. At each location xt it observes a nearby feature in

the map m = {m1, m2, m3}. This graphical network illustrates that

the location variables separate the individual features in the map

from each other. If the locations are known, there remains no other

path involving variables whose value is not known, between any

two features in the map. This lack of a path renders the posterior

of any two features in the map conditionally independent (given the

locations)

measurement zt . This update follows the standard

EKF update rules.

This all sounds complex, but FastSLAM is quite easy

to implement. Sampling from the motion model is usu-

ally straightforward, since it involves a simple kinematic

calculation. Computing the importance of a measure-

ment is, too, straightforward, especially for Gaussian

measurement noise. And updating a low-dimensional

particle filter is also straightforward. This makes Fast-

SLAM one of the easiest-to-implement algorithms

presently available.

FastSLAM has be shown to approximate the full

SLAM posterior. The derivation of FastSLAM exploits

three techniques: Rao–Blackwellization, conditional in-

dependence, and resampling. Rao–Blackwellization is

the following concept. Suppose we would like to com-

pute a probability distribution p(a, b), where a and b

are arbitrary random variables. The vanilla particle fil-

ter would draw particles from the joint distributions,

that is, each particle would have a value for a and

one for b. However, if the conditional p(b | a) can be

described in closed form, it is equally legitimate to

just draw particles from p(a), and attach to each par-

ticle a closed-form description of p(b | a). This trick

is known as Rao–Blackwellization, and it yields better

results than sampling from the joint distribution. Fast-

SLAM applies this technique, in that it samples from the

path posterior p(X
[k]
t | Ut , Z t) and represents the map

p(m | X
[k]
t , Ut , Z t) in Gaussian form.

FastSLAM also breaks down the posterior over

maps (conditioned on paths) into sequences of low-

dimensional Gaussians. The justification for this

decomposition is subtle. It arises from a specific con-

ditional independence assumption that is native to

SLAM. Figure 37.8 illustrates the concept graphically.

In SLAM, knowledge of the robot path renders all land-

mark estimates independent. This is easily shown for

the graphical network in Fig. 37.8: we find that if we

remove the path variables from Fig. 37.8 then the land-

mark variables are all disconnected [37.79]. Thus, in

SLAM any dependence between multiple landmark es-

timates is mediated through the robot path. This subtle

but important observation implies that, even if we used

a large, monolithic Gaussian for the entire map (one

per particle, of course), the off-diagonal element be-

tween different landmarks would simply remain zero.

It is therefore legitimate to implement the map more

efficiently, using N small Gaussians, one for each land-

mark. This explains the efficient map representation in

FastSLAM.
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a) b) c)Raw vehicle path FastSLAM (solid), GPS path (dashed) Path and map with aerial image

Fig. 37.9 (a) Vehicle path predicted by the odometry; (b) True path (dashed line) and FastSLAM 1.0 path (solid line);

(c) Victoria Park results overlaid on aerial imagery with the GPS path in blue (dashed), average FastSLAM 1.0 path in

yellow (solid), and estimated features as yellow dots (Data and aerial image courtesy of José Guivant and Eduardo Nebot,

Australian Center for Field Robotics)

We also note that FastSLAM uses a particle filter.

Derivations of the particle filter can be found in the lit-

erature referenced above. Here we note that both steps –

the motion and the measurement steps – retain the prop-

erty that (asymptotically) samples are drawn from the

full SLAM posterior. This is quite easy to see for the

motion update step. For the measurement step, the prop-

erty is retained through resampling, which adjusts the

particle population in response to the new information

added by the measurement.

Figure 37.9 shows results for a point-feature prob-

lem; here the point features are the centers of tree trunks

as observed by an outdoor robot. The dataset used here is

known as the Victoria Park dataset [37.80]. Figure 37.9a

shows that the path of the vehicle obtained by integrat-

ing the vehicle controls, without perception controls, are

a poor predictor of location for this vehicle; after 30min

of driving, the estimated position of the vehicle is well

over 100m away from its GPS position.

The FastSLAM algorithm has a number of remark-

able properties, which may not be intuitive to the

untrained eye. First, it solves both the full and the on-

line SLAM problems. Each particle has a sample of an

entire path (and in fact, conditioning on the entire path

is required for its mathematical derivation), but the ac-

tual update equation only uses the most recent pose.

This makes FastSLAM a filter, similar to the EKF. Sec-

ond, FastSLAM makes it easy to pursue multiple data

association hypotheses. It is straightforward to make

data association decisions on a per-particle basis, in-

stead of having to adopt the same hypothesis for the

entire filter. While we will not give any mathematical

justification, we note that the resulting FastSLAM al-

gorithm samples the correct posteriors even for SLAM

problems with unknown data association – something

that neither of the previous two algorithms can claim.

And third, FastSLAM can be implemented very effi-

ciently: using advanced tree methods to represent the

map estimates, the update can be performed in time log-

arithmic in the size of the map N , and linear in the

number of particles M. These properties, along with the

relative ease of implementation, has made FastSLAM

a popular choice.

FastSLAM has been extended in great many ways.

One important variant is a grid-based version of Fast-

SLAM, in which the Gaussians are replaced by an

occupancy gridmap [37.81]. This variant is illustrated in

Figs. 37.10 and 37.11. Figure 37.10 shows the situation

just before closing a large loop. The three different par-

ticles each stand for different paths, and they also posses

their own local maps. When the loop is closed, im-

portance resampling selects those particles whose maps

are most consistent with the measurement. A resulting

large-scale map is shown in Fig. 37.11.

Significant extensions of the FastSLAMmethod can

be found in [37.82, 83], whose methods DP-SLAM and

ancestry trees provide efficient tree update methods for

grid-based maps. The work in [37.84] provides a way to

incorporate new observations into the location sampling

process, based on prior work in [37.85].
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Fig. 37.10 Application of the grid-based variant of the FastSLAM algorithm. Each particle carries its own map, and the

importance weights of the particles are computed based on the likelihood of the measurements given the particle’s own

map

Fig. 37.11 Occupancy grid map generated from laser range data and based on pure odometry (All images courtesy of Dirk

Hähnel, University of Freiburg)

37.3.4 Relation of Paradigms

The three paradigms just discussed cover the vast

majority of work in the field of SLAM. As dis-

cussed, EKF SLAM comes with a computational

hurdle that poses serious scaling limitations. The most

promising extensions of EKF SLAM are based on

building local submaps; however, in many ways the

resulting algorithms resemble the graph-based ap-

proach.

Graph-based methods address the full SLAM prob-

lem, and hence are by nature not online. They draw

their intuition from the observation that SLAM can

be modeled by a sparse graph of soft constraints,
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where each constraint either corresponds to a motion

or a measurement event. Due to the availability of

highly efficient optimization methods for sparse non-

linear optimization problems, graph-based SLAM has

become the method of choice for building large-scale

maps offline. Data association search is quite easily

incorporated into the basic mathematical framework,

and a number of search techniques exist for finding

suitable correspondences. There are also extensions of

the graph-based SLAM for the online SLAM prob-

lem. Those tend to remove old robot locations from the

graph.

Particle filter methods sidestep some of the issues

arising from the natural interfeature correlations in the

map, which plagued the EKF. By sampling from robot

poses, the individual landmarks in the map become

independent, and hence are decorrelated. As a result,

FastSLAM can represent the posterior by a sampled

robot pose, and many local, independent Gaussians for

its landmarks. The particle representation of FastSLAM

has a number of advantages. Computationally, Fast-

SLAM can be used as a filter, and its update requires

linear–logarithmic time where EKF needed quadratic

time. Further, FastSLAM can sample over data asso-

ciation, which makes it a prime method for SLAM

with unknown data association. On the negative side,

the number of necessary particles can grow very large,

especially for robots seeking to map multiple nested

loops. We discussed extensions of FastSLAM that use

occupancy grid maps instead of Gaussian landmarks,

and showed state-of-the-art examples in large map

building.

37.4 Conclusion and Future Challenges

This chapter provided a comprehensive introduction

to the SLAM problem and its primary solutions. The

SLAM problem was defined as the problem faced

by a mobile platform roaming an unknown environ-

ment, and seeking to localize and map its environment

at the same time. The chapter discussed three main

paradigms in SLAM, which are based on the ex-

tended Kalman filter, graph-based sparse optimization

techniques, and particle filters. It pointed out some

of the advantages and disadvantages of those meth-

ods. For a more in-depth discussion, the interested

reader should refer to a recent textbook covering

SLAM [37.5].

Interestingly, the field of SLAM is still relatively

young, and it hasmade enormous progresswithin just the

past decade. In fact, nearly every method described here

has been developed within the past few years. Despite

all this progress, there remains a great number of open

research issues that warrant future research.

In particular, SLAM techniques mostly deal with

static environments, yet nearly every actual robot en-

vironment is dynamic. Early applications of SLAM

methods to dynamic environments can be found

in [37.86–88]. More work is needed to understand

the interaction of moving and nonmoving objects in

SLAM.

Most SLAM work addresses single-robot map-

ping, yet sometimes one is given a team of robots.

Early and highly restrictive work on multirobot SLAM

can be found in [37.89, 90]. More recent methods

include those in [37.91–93]. Multirobot SLAM has

benefited greatly from substantial recent interest; nev-

ertheless, the existing methods have not yet matured to

a level where they can be used by nonexperts in the

field.

One of the primary challenges in SLAM is to

pursue significant implementations. While the the-

ory of SLAM is now quite well developed, SLAM

has not yet been used extensively in industrial or

commercial applications. There exist promising pro-

totypes, including methods for building large-scale

three-dimensional (3-D) volumetric maps [37.94–97],

detailed underwater reconstruction [37.31, 98, 99], and

mapping of abandoned underground mines [37.57].

Nevertheless, the authors feel that more work is needed

to mature the technology into industrial-strength appli-

cations.

An ultimate goal is to realize the challenge of persis-

tent navigation and mapping – the capability for a robot

to perform SLAM robustly for days, weeks, or months

at a time with minimal human supervision, in com-

plex, dynamic environments. Taking the limit as t → ∞

poses difficult challenges to most current algorithms;

in fact, most robot mapping and navigation algorithms

are doomed to fail with the passage of time, as er-

rors inevitably accrue. Research is needed to develop

techniques that can recover from mistakes and enable

robots to deal with changes in the environment and to re-

cover from mistakes, enabling a long-term autonomous

existence.
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37.5 Suggestions for Further Reading

The following references provide an in-depth tutorial

on SLAM and much greater depth of coverage on the

details of current SLAM algorithms:

• H. Durrant-Whyte, T. Bailey: Simultaneous local-

ization and mapping: Part I, IEEE Robot. Autom.

Mag., 99–108 (2006)

• T. Bailey, H. Durrant-Whyte: Simultaneous local-

ization and mapping: Part II, IEEE Robot. Autom.

Mag., 108–117 (2006)

• S. Thrun,W.Burgard,D. Fox:Probabilistic Robotics

(MIT Press, Cambridge 2005)
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