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a b s t r a c t

Cooperative control is a key issue for multirobot systems in many practical applications. In this paper,
we address the problem of coordinating a set of mobile robots in the RoboCup soccer middle-size league.
We show how the coordination problem that we face can be cast as a specific coalition formation problem,
and we propose a distributed algorithm to efficiently solve it. Our approach is based on the distributed
computation of a measure of satisfaction (called Agent Satisfaction) that each agent computes for each
task. We detail how each agent computes the Agent Satisfaction by acquiring sensor perceptions through
an omnidirectional vision system, extracting aggregated information from the acquired perception, and
integrating such information with that communicated by the teammates. We empirically validate our
approach in a simulated scenario and within RoboCup competitions. The experiments in the simulated
scenario allow us to analyse the behaviour of the algorithm in different situations, while the use of the
algorithm in real competitions validates the applicability of our approach to robotic platforms involved
in a dynamic and complex scenario.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The growing interest in developing colonies of robots engaged
in complex tasks like search and rescue,monitoring environmental
phenomena and surveillance in security applications, has caused
an increasing interest in coordination approaches which can
provide flexible and reliable solutions. In fact, the coordination of
the robotic platforms’ activities can increase both the efficiency
of the global task execution and the robustness of the system to
individual robot failures.
However, devising flexible and effective coordination methods

for multirobot systems is a very complex and challenging task.
Coordination in these domains is particularly difficult because it
requires the solution to be distributed among the robots to en-
hance robustness and avoid the existence of a central point of fail-
ure; moreover, the environment that robots face is highly dynamic
and unpredictable, and therefore the coordination method should
be able to react to unexpected changes and provide good-quality
solutions minimising the reaction time; finally, robotic platforms
interact with the world through sensors and actuators which are
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inherently noisy and inaccurate; this results in uncertainty both in
perceptions and actions.
Agent-based coordination techniques are widely used to achi-

eve cooperative behaviour in distributed settings, and in particular,
here we focus on coalition formation [1]. In coalition formation, a
set of robots must cooperate to accomplish a set of tasks (or roles).
Each robot can execute one task at a time, but the robots can form
coalitions to cooperate on specific tasks. Coalitions can perform
tasks better (e.g., faster or in a more reliable way) than single
robots, and the quality of the execution of a specific task1 depends
both on the individual capabilities that each robot has for that task,
and on how the capabilities can be combined together. Several
approaches have been studied to address the coalition formation
problem (e.g., [1,2]) which are able to compute the optimal
solution. However, coalition formation is known to be an NP-hard
problem, and even if consistent improvements have been achieved
on the computation time of the optimal solution, such approaches
still have limited applicability in dynamic scenarios where the
value associated with a coalition changes very rapidly over time.
In this paper we present an approach to coalition formation

explicitly targeted for dynamic uncertain environments. The

1 This is usually called the value of the coalition for that task.
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approach is based on [3] and computes, in a distributed way,
a measure of satisfaction called Agent Satisfaction. The Agent
Satisfaction represents the level of satisfaction that each agent has
for a task being executed by a set of agents. Each agent computes
the Agent Satisfaction by acquiring sensory perceptions (which in
our specific case are images coming froman omnidirectional vision
system), extracting aggregated information and integrating it with
information transmitted by other teammates.
The proposed coordination approach is explicitly designed for

scenarios where the tasks to be executed can be ranked according
to priorities. By exploiting this assumption, the method is able
to address the coalition formation problem in an efficient way,
and it is of practical use in dynamic environments, where agent
capabilities to execute the tasks can rapidly change over time.
Specifically, we apply our approach to the RoboCup soccer sce-

nario, and in particular to the middle-size league. In the RoboCup
soccer middle-size league, two teams of robots play a soccer game
against each other. This scenario is particularly interesting as a
benchmark for coordination algorithms, because it is highly dy-
namic and the game evolution is highly unpredictable. Moreover,
RoboCup competitions have become, over the years, a very impor-
tant event, attracting hundreds of researchers from all the world,
to compete with robotic systems in a specific scenario. There-
fore they represent a unique testbed for comparing different sys-
tems and approaches to various robotic problems, and specifically
coordination.
We validated our approach by means of experiments both in

a simulated soccer scenario and in RoboCup competitions. The
simulated experiments allow us to analyse the behaviour of our
algorithm in a controlled setting and under different operative
conditions, while the data collected from RoboCup competitions
validate the applicability of our approach in an autonomous
multirobot system. The coordination method described here was
used by the EIGEN team in RoboCup competitions since 2004, and
the effectiveness of the coordination method is confirmed by the
excellent results that the team achieved during the competitions
(first place in 2004 and 2005, third place in 2006 and second place
in 2007).
The rest of the paper is organised as follows. Section 2 details

a formalisation of the coalition problem that we address, while
Section 3 introduces and discusses the cooperative control method
we propose. Section 4 shows how the aggregated information
needed by the cooperative control method is extracted from
the robot’s perceptions. Section 5 specifies our approach to the
RoboCup scenario and presents the experimental results from
the simulated environment, while Section 6 presents the EIGEN
team control architecture and the validation of the systems during
RoboCup competitions. Section 7discusses relevant previouswork,
and finally, Section 8 concludes the paper.

2. Problem formalisation

In this section we detail a formalisation of the cooperative
control problem that we face. We have a set of robots that must
be assigned to a set of roles (or tasks), and while each robot can
assume only one role, it can be beneficial for robots to assume
the same role. For example, when considering the RoboCup soccer
scenario, a defence role might require two robots to completely
block the opponent and thus prevent it from shooting.
This problemcanbenaturally formalised as a coalition formation

problem [1]. In coalition formation, robots have different capabil-
ities to perform each task, and when they cooperate on the same
task, the utility they gain is a function of their capabilities. The out-
put of the coalition formation problem is a partition of the robot set
into coalitions that are allocated to a specific task. The objective is
to maximise the sum of the utility of the coalition assignment. The
general problem of coalition formation can be cast as an instance
of the Set Partitioning Problem, which is known to be NP-hard [4].
However, in our scenario, we face a specific version for the

coalition formation problem. In particular, we can assume that
roles have a predefined priority. For example, in the RoboCup
soccer domain that we consider here, the role priority is usually
defined by a game strategic layer. The strategic layer assigns
priorities to tasks according to contextual information, e.g., if the
team is winning the strategy layermight assign high priority to the
defence task, in order to maintain the current result and win the
match (see Section 5 for further details). Suppose aDefence schema
is used, where three roles can be performed: Defence, Support and
Offence. Furthermore, suppose that in this schema Defence has
priority over all the other roles, and Support has priority over
Offence. The priority of roles entails that the value that the team
obtains by performing the Defence role is higher than the value
that they can obtain by performing any combination of all the other
roles. This concept of role priority is very natural for the RoboCup
domain and was already used in a previous work on coordination
in this scenario [5].
More precisely, we can formalise our problem as follows. We

have a set of robotic agentsR = {R1, . . . , Rn} and a set of tasks (or
roles) T = {t1, . . . , tm}. Each robotic agent Ri has capabilities to
perform each task represented by a vector Si = 〈s1i , . . . , s

m
i 〉, where

sji ∈ < represents the level of performance that Ri can achieve
when allocated to role tj. Each task tj has a desired achievement
level lj ∈ < that needs to be reached by the agents accomplishing
the task. The level of achievement of a task represents an objective
of the whole system and will therefore be called the System
Objective in the following. Considering this interpretation of the
achievement level, each of the sji can thenbe interpreted as the level
of satisfaction that the agent will obtain if it is allocated to the task
or Self Evaluation of the agent. In other words, the Self Evaluation
is an estimation that each agents computes of its capability to
perform a task.
A coalitionC is a set of agents, and thusC ⊆ P (R), whereP (R)

is the powerset of R. We indicate with Cj the coalition of agents
assigned to task tj, and the set C = {C1, . . . , Cm} represents the
set of coalitions assigned to all tasks; on the set C the following
properties hold: (i) Ci

⋂
Cj = ∅ ∀i, j | i 6= j; (ii)

⋃i=m
i=1 Ci = R;

in other words, the set C is a partition ofR. We define a function
F : P (R) × T ⇒ <, and F(C, ti) represents the amount of work
that agents in coalition C can perform for task ti. This measure is
an aggregation of the sik of all agents Rk in coalition C when the
coalition works on task ti. The aggregation can be any function: for
example, in the RoboCup soccer domain, it is a summation, as will
be detailed in Section 5.2. We represent with Vi(C) the utility that
the system can gain when a coalition successfully accomplishes a
task ti, i.e. when F(C, ti) ≥ li. If a coalition C cannot perform the
required workload for task ti then Vi(C) = 0; otherwise, Vi(C) =
vi, where vi ∈ <+. To model the priority among tasks, we assume
that vi � vi+1 i = 1, . . . ,m − 1. And in particular, we assume
that accomplishing a task of higher priority is always better than
executing any combination of lower priority tasks. The value Vi(C)
represents an aggregation of the individual agents’ Self Evaluations,
and indicates the total level of satisfaction that the agents inside
the coalition have for task ti; we call this value Agent Satisfaction.
Given the above definitions, our objective is then

argmax
C

m∑
i=1

Vi(Ci). (1)

Coalition formation is usually a one-shot problemwhere coalitions
values are known in advance, and once coalitions are formed and
allocated to tasks, robots will simply carry on with their tasks.
However, in our domain robots have to deal with a more complex
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Fig. 1. Allocation procedure.
setting. In fact, since we have an opponent playing against our
team, the situation changes very rapidly; this means that the Self
Evaluation that each robotic agent computes for each task will
change over time as well as the value of coalitions, the priorities
of tasks and the System Objective. In particular, the priorities of
tasks and the System Objective can change due to many domain-
specific issues. For example, role priorities can change because
the context of the game changes, e.g., the team is no longer
winning and thus the defence role is no longer themost important.
Similar considerations hold for the System Objective that can be
different for different game strategic situations. Moreover, since
we are dealing with hardware devices, robots may have wrong
estimation of their Self Evaluation that can be refined over time;
also, robots might fail unexpectedly and messages communicated
among robots might be lost, leading the team to have temporarily
misaligned knowledge about the current situation.

3. Cooperative control method

Hereafter we shall present a cooperative control method to
address the problem outlined in Section 2. The basic idea is to
evaluate and share the Self Evaluation for the roles that the robots
can perform. This evaluation compacts sensory information that
each robot collects from the environment in a single value that is
shared with the teammates.
Based on the evaluation of the teammates, each robot computes

the best allocation of robot coalitions to tasks and then decides
which role it should execute. Such process is iterated over time
to react to environment dynamism, changes in task priorities
and possible robot failures or malfunctioning. In particular, the
algorithm is run at a predefined execution rate, which is specified
according to the application domain, and at each execution all
information required to run the algorithm is acquired by the robots
through sensor perception or through communication. Therefore,
at each execution the algorithm considers the most recently
available information that reflects possible changes in the scenario.
The assumptions underlying this method are the following.

(i) Robots are able to compute their Self Evaluation for each role
depending on their current state and the state of the environment.
This is done every time the algorithm is run, by using the
information acquired through sensors (see Section 4 for details).
(ii) Each robot can estimate the Self Evaluation for each role
and each of their teammates. In particular, in our approach the
estimates are broadcast to all other teammates. (iii) The System
Objective (i.e., the desired achievement level for each role li) is
known to all the robots. (iv) Tasks to be allocated have priorities
which are known to the whole team; task ti has a higher priority
than task ti+1.
Given the above assumptions, the cooperative control method

includes three main steps: (i) each robot computes the Self
Evaluation value for each task; (ii) robots broadcast the computed
Self Evaluation value, for each task, to all team members; (iii) each
robot computes the coalitions to allocate to each task based on the
information received by teammates. The last step uses a greedy
algorithm based on task priority. The three steps are executed
continuously over time, to take into account possible unexpected
changes in the environment the team need to react to.
Fig. 1 reports the pseudo-code description of the allocation

methodwhich is executed by every agent. It takes as input the tasks
to be executed, the available agents (including the one executing
the algorithm), and the desired achievement level for each task; the
output is the task which should be executed by the agent running
the algorithm. Basically, it sorts the tasks according to their priority
(line 1), and then for each task computes the best agent coalition
for that task.
To compute the best coalition, the algorithm sorts agents ac-

cording to their ability to fulfil the task (line 4), and then incremen-
tally builds a set of assigned agents for the task. At each iteration
the algorithm checks whether the achievement level of the task
has been reached (line 7), by computing the current Agent Satisfac-
tion which expresses the coalition value of the current set of allo-
cated agents for that task. The Aggregate(AgentCoalition) function
aggregates the achievement values of the agents and computes the
achievement level of the coalition.
The inner loop terminates either because the algorithm found

a set of agents that satisfies the achievement level of the task,
or because the task is not achievable with the current available
agents. In the latter case the algorithm sets the set of assigned
agents to be empty (line 13); otherwise it removes from the set of
available agents the assigned agents (line 16). Before proceeding
for the second task, the algorithm checks whether the agent
executing the algorithm (mySelf ) is assigned to the current task;
in this case it terminates, returning the task to execute. Otherwise,
the algorithm proceeds to the following task. If the agent is never
assigned a special value, NoTask is returned (line 23).
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Notice that the algorithm always terminates, because at each
iteration of the inner while loop one agent is removed from the
SortedAgents list, and in the while condition at line 7 the algorithm
checks whether the SortedAgents list is empty. Therefore, at most
the algorithm repeats the statements inside thewhile loop until all
agents have been included in the coalition. Similar reasoning holds
for the outer while loop over tasks.
Also, since allocated agents are removed from the list of avail-

able agents (line 16), agents allocated to one task will never be
considered for another task, and thus we will never have an agent
being part of two different coalitions. Finally, all agents have the
same input data, because the set of tasks and the desired achieve-
ment levels are known a priori, and agents communicate their Self
Evaluation for each task. Since all agents execute the same algo-
rithm on the same input data, the allocation to tasks will converge
to a common solution.
As for solution quality, let us consider the following property

of the domain. Given two coalitions and a task tj, if the sum of
the estimated level of performance for the agents in coalition C ′
is greater than the sum of the estimated level of performance for
the agents in coalition C ′′ then the value of allocating coalition C ′ to
tj is higher than allocating coalition C ′′. Considering the formalism
described in Section 2, this amounts to

∀tj ∈ T ,∀C ′, C ′′ ∈ C if
∑
i∈R(C ′)

sji ≥
∑
k∈R(C ′′)

sjk

then F(C ′, tj) ≥ F(C ′′, tj)

where R(C) indicates the set of indexes of the agents in coalition
C . When the above property is verified, the allocation computed
by the agents is optimal with respect to Eq. (1). Notice that this
assumption is verified for example when F(C, tj) is the sum of the
Self Evaluation of the agents forming coalition C to perform task tj.
This is because tasks are sorted according to their priority, and it

is always preferable to accomplish a higher priority task than any
other lower priority task combination (as stated in Section 2). In
addition, for each task, agents to be inserted in the coalition are
sorted according to their ability to perform the task. Therefore, if
the property above holds, by executing the Algorithm 1 we always
evaluate the best coalition for the most important task first, thus
maximising (1).

4. Sensor-driving activation of a collective behaviour

In this section we describe how relevant information for the
coordination process can be extracted from the robot’s sensor
perceptions. In particular, we need to aggregate the reading that
the robots acquire at each time step to recognise environmental
patterns which are relevant for the coordination process, and
specifically to compute the above-mentioned Self Evaluation
measure for each agent.
The computation of the Self Evaluation measure is a key com-

ponent to ensure a correct behaviour of the overall coordination
method. In particular, the data processingmethoddescribedhere is
responsible for filtering out the inherently noisy reading, obtained
from the sensors, and it provides to the cooperative controlmethod
stable and accurate estimates for the Self Evaluation. In the follow-
ing, we detail how this process is realised using an omnidirectional
vision system.

4.1. Vision depth

We represent the robot team as a set of moving points {R1,
R2, . . .} on a plane surface. Now, let us define the objects each robot
perceives in the operating field, considering that the main sensor
system is based on an omnidirectional camera where each object
appears reflected on a conic surfacewith an angle θ , referred to the
forward direction as appears in Fig. 2. So, θ varies on a 2π range,
Fig. 2. Omnidirectional vision system.

namely, −π <= θ <= π , and the object is positioned at a dis-
tance r from the origin of the frame of reference centered on the
robot itself.
We introduce on the arena a fixed frame of reference, and

we consider the positions 〈xi, yi〉 and 〈xj, yj〉 of the robots Ri and
Rj, respectively. The distance d between the points can be easily
computed by means of the well-known Euclidean formula

d2 = (xi − xj)2 + (yi − yj)2

= r2i + r
2
j − 2rirj cos(ϕi − ϕj)

= (ri − rj)2 + 2rirj(1− cos(ϕi − ϕj))

= (ri − rj)2 + rirj(ϕi − ϕj)2

where we have used both Cartesian and polar coordinates, refer-
ring to the standard translation formula, and the first term approx-
imation of the cosine in the last equality.2 Different robot positions
result in different evaluations of the term rirj; however, we could
substitute this quantity for its mean value, p2, where

p2 =
2

N(N − 1)

∑
i6=j

rirj,

over N robot detections in the scene. In this way, the scalar quan-
tityw, defined by the relation

w =
√
r2 + p2θ2, (2)

can be taken as an approximated estimation of the distance d be-
tween robots, where r = ri−rj is the distance evaluationwhen the
position vectors ri and rj belong to the same line3 and θ = ϕi − ϕj
is the relative angle between the two robots.
Now, let us generalise the previously discussed scenario by

introducing a mobile frame of reference for each robot and let us
consider its vision field. If the robot perceives the objectsQ1 andQ2,
they are univocally determined by their position vectors r1 and r2,
respectively. Again, we compute the distance r = r1 − r2 as if the
objects and the robot were on the same straight line and the angle
θ = ϕ1− ϕ2 takes into account their relative position in the vision
field.We can justify the previous approximation by considering the
special case of several objects disseminated around the robot at the
same distance from it.
Because they are visible under different angles but they belong

to the same circle, their displacement can be evaluated along the
circle: their relative position does not change by overestimating
their relative distance. Nevertheless, in the general case, the
objects around the robot are positioned at different distances: we
choose a reference circle with respect to which we evaluate their
relative distance. To this aimwe consider a circular strip,where the
objects of interest are positioned, andwhosemiddle circumference

2 We shall justify this approximation in the next paragraph.
3 Namely, we evaluate the distance between the two circumferences with radii
ri and rj , respectively, and centered on the fixed frame of reference.
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is taken as a reference circle by linking it to the conic surface of
the vision system. Then, we project all objects on it but, first, we
record their relative distance from it; the term r2 is merely used
to correct the approximated distance evaluation on the reference
surface4 by explicitly considering they are positioned on different
conic surfaces.5
Considering this, the parameter p in Eq. (2) denotes the vision

depth of the omnidirectional vision system so that an object
appears reflected as a reference point, with pθ a linear coordinate
expressing the distance on the conic surface6 referred to a well-
specified point ahead of the robot. Moreover, if rmin and rmax are
the radii of the circles7 including all the observed objects, then

p =
rmin + rmax

2
,

so we could assign the vector w = 〈r, pθ〉 to every visible object
falling in the robot vision field. If two or more objects fall in the
vision field we have 〈r1, pθ1, r2, pθ2, r3, pθ3, . . .〉, yielding a more
general coordinate system.

4.2. Focusing lens

The vision depth previously discussed is useful for focalising
the objects of interest for the robot task. Changing the value
of the parameter p, the robot focuses on different environment
configurations as if they were different layers of a complex scene.
A more subtle control of the scene could be implemented if each
layerwere accessiblewith a different focusingproperty. To this aim
we shall introduce a transformation matrix to modify how vision
parameters are acquired. The most general transformation H(ϕ),
which does notwarp the relative angles of an object after a rotation
of an angle ϕ around a vertical axis, takes the form

H(ϕ) = p


1
qC2
cosϕ −

1
pC1
sinϕ

1
qC2
sinϕ

1
pC1
cosϕ,

 (3)

whose effect is to map the vectorw into the new vectorw′ having
the magnitude

w′ = p

√(
r
qC2

)2
+

(
θ

C1

)2
(4)

where p is the vision depth and q is a given constant which
takes into account the distance unit, whereas C1 and C2 are two
dimensionless arbitrary quantities which work as scaling factors.
If we choose the preceding parameters to satisfy the identity

pC1 = qC2, (5)

the transformation matrix given by Eq. (3) simplifies to

H(p) =
1
C1

[
cosϕ − sinϕ
sinϕ cosϕ

]
. (6)

Under this particular condition, the distance w from an object in
the scene, defined in this frame of reference, yields

w′ =
w

pC1
(7)

and it has the following interpretation: a robot while focusing on an
event in the environment, situated around a distance p, can magnify
it by a factor C1.

4 The middle circumference on the circular strip, in our model.
5 Circles in our model.
6 Within our model a circle positioned at distance p from the robot.
7 The circular strip, in the preceding discussion.
4.3. Tracking an object

The task completion of an individual teammate could require a
behaviour to properly track an object Q , initially positioned in the
point represented by the vectorw according to the omnidirectional
vision system of the robot. In many cases only the distance w
from the mobile frame of reference is actually necessary, but the
vision system could magnify it by properly scaling the object. The
required transformation is made by the matrix H(ϕ) applied tow.
In our case, this reduces to Eq. (7), which can be taken as a basis
to estimate the relevance of the object for the task completion, by
considering its negative exponential weight

E(w) = λ exp
(
−
w

kp

)
(8)

where p is the vision depth parameter and k represents the
magnification factor, through which the individual robot is
monitoring the object Q . In fact, Eq. (8) could be assimilated to a
component term of a partition function in almost the same fashion
as appears in statistical mechanics. We shall use this function as a
basis to evaluate the progress of the collective task. In [6], Fujii has
shown actual computations of the quantity E(w) within different
scenarios. Finally, notice that λ plays the role of a normalisation
factor, which could be evaluated by either summing up all the
terms like Eq. (8), where wi is the variable parameter, or by
integrating the same terms on the proper ranges of variability to
include all the points of interest. However, in the applications such
constant values are established experimentally in order to adjust
possible sensor distortions. If we choose the normalisation over
the range 0–1, then we can interpret E(w) as a probability density
function, which resembles the Boltzmann distribution in statistical
mechanics with the temperature substituted for the vision depth,
and kj dimensionless constant quantities.
Some complex situations require two or more objects to be

tracked at the same time; in such cases, different solutions can be
devised, for example, by squaring the relevant components and
also taking into account the possible alignment degree between
objects,

E(w1, w2) = λe
−

√(
w1
k1p1

)2
+

(
w2
k2p2

)2
+

(
θ1−θ2
k12

)2
. (9)

The rationale of this approach is the interpretation of the objects
detected by each individual robot. This is done by comparing the
observed positions of specific reference objectswith their expected
positions. Specifically, the robots evaluate the most probable
distribution of the objects with respect to relevant patterns to be
recognised. The continuous monitoring of such patterns, through
probability distribution evaluation, drives the computation of the
Self Evaluation. The specific computation of the Self Evaluation for
the RoboCup scenario is detailed in the next section.

5. RoboCup scenario

In this section, we specify the computation of the cooperative
control method described in Section 3 and the extraction process
for the required information described in Section 4 for the RoboCup
scenario. In particular, this amounts to specifying how the Agent
Satisfaction and the Self Evaluation are computed. We then present
the simulated environment used to evaluate our approach and the
results obtained.

5.1. Self Evaluation

Let us consider the coalition formation problem from the point
of view of each individual robot, whose movement depends on
the trajectories of all its teammates. In such a general case, Eq. (7)
generalises to
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Fig. 3. Self Evaluation example.

E(w1, w2, . . .) = exp

−
√√√√ N∑
i=1

(
wi

kip

)2 (10)

where N is the number of objects8 to be tracked and we assume
that every object is differently focused by the vision system but no
alignment among objects is taken into consideration.
However, the more objects that are counted the more com-

putation is needed to evaluate the actual probability distribu-
tion against the expected one; so, the implemented coordination
schema considers either one or two objects to be focused on at the
same time. The environmental evaluation E of the event in the
scene is given through Eq. (8) or Eq. (9), and the resulting value can
be understood in terms of probability. Nevertheless, a more useful
quantity is obtained by means of the following definition

S(w) =
αE(w)
1+ E(w)

=
α

1+ λ exp( wkp )
(11)

so that its rate of change due to the objectmovingwithin the vision
field takes the form of the generalised logistic function

S ′(w) = −
S(w)
kp

(
1−

S(w)
α

)
(12)

and it is the basis for the quantitative Self Evaluation of the
Offence, Support and Defence tasks. In the preceding equation, kp
defines the inverse growth rate, whereas α is the asymptotic value
of S(w).
Three compatible instantiations of the sigmoidal function for

the mentioned features are reported in Fig. 3. They are taken as a
basis for the application examples discussed below, where, instead
of using directly the sigmoid function, we have used straight-line
approximations, in the same fashion as they appear in [6], and they
are specified as follows.

- Offence, which refers to the upper line in Fig. 3,

Soff =

{2 if Eoff > 0.5
1 if 0.2 < Eoff ≤ 0.5
0 if Eoff ≤ 0.2.

(13)

- Support, which refers to the lower line in Fig. 3,

Ssupp =
{
1 if Esupp > 0.6
0 if Esupp ≤ 0.6.

(14)

8 For example, number of teammates, opponents, ball when we explicitly
consider the RoboCup scenario.
- Defence, which refers to the middle line in Fig. 3,

Sdef =
{
1 if Edef > 0.5
0 if Edef ≤ 0.5.

(15)

The experimental evidence has suggested to us the choice of the
specified thresholds. The thresholds are also experimentally tuned
to avoid passive oscillations during sensor data acquisitions. More
details on possible implementations are discussed by Fujii in [6].

5.2. Agent Satisfaction

The Agent Satisfaction, discussed in Section 2, drives the task al-
location process as explained in Section 3. However, when applied
to the RoboCup soccer scenario, specific domain knowledge is used
to make the algorithm more effective and efficient.
For example, in the context of RoboCup soccer middle-size

league, robots belonging to the same team are usually heteroge-
neous. In particular, most of the teams have a specialised robot to
act as the goalkeeper. For this role the designed robot is always de-
sirable to any other robot even if the Self Evaluation value for the
role goal keeping of the other robots might be higher.
To take this aspect into account, we introduce the concept of

priority of a robot over the other robots for each task. Conceptually
wewant that if a robotic agent Ri is somewhat specialised for a task
tj, then Ri will always be considered, before all the not-specialised
robotic agents, in the computation of the Agent Satisfaction for
task tj. To this aim we actually order the list of agents for a
given task, based on the agents’ priority first and then on the
Self Evaluation for that task. This results in changing line 6 of
Algorithm 1 to sort agents reflecting their priority. Notice that
priority differs from the Self Evaluation of a robotic agent for a task.
The former represents a static concept that does not change over
a specific game, i.e., a goalkeeper may have specialised hardware
that will help him to defend the goal better than any other robotic
agents in the team. On the other hand, the Self Evaluation depends
on dynamic properties of the robotic agents, which change very
rapidly during the game (e.g., position and orientation). By sorting
the robotic agents according to priority first we ensure that an
agent that is specialised for a task will always be preferred over a
non specialised one. However, by sorting robotic agents that have
the same priority, according to their Self Evaluation, we ensure that,
among robotic agents having the same level of specialisation for a
task, we choose the most capable ones.
Moreover, in the RoboCup scenario the aggregation function

used in 1 to compute the Agent Satisfaction is the sum of each
agent’s Self Evaluation value.
Therefore, summarising, the cooperative control method pro-

ceeds as follows:

Step 1. Each agent computes its own Self Evaluation for all tasks,
according to the current perceived situation.

Step 2. Each agent broadcasts the values of Self Evaluation for all
tasks, to all its teammates.

Step 3. Each agent executes Algorithm 1; the algorithm com-
putes the Agent Satisfaction considering the most recent
available information (e.g., most recent values for Self
Evaluation communicated by teammates). The algorithm
returns the task that agent will execute, according to the
computed Agent Satisfaction and the predefined System
Objective.

Fig. 5 shows a graphical scheme of a specific execution of the
cooperative method described above for a specific task. As one can
see, at the end of the algorithm the coalition for the task includes
agents C and D. Agent D belongs to the coalition because it is the
only one having priority for the task, while agent C belongs to
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the coalition because it has the highest Self Evaluation among the
remaining agents. Agents A and B do not belong to the coalition and
will thus focus on other tasks, because they know that the System
Objective will be reached by the selected coalition and therefore
their contribution is not required.
From a different point of view [7], the execution of Algorithm

1 can be interpreted as a social rule, where each robot is required
to evaluate the achievement level of all other robots by comparing
their behaviour with its own task achievement. This is a kind of
individual social evaluation and it motivates why we use the term
Agent Satisfaction.
As a final remark, we can observe that the robustness of the

method strongly stems from the simplicity of the algorithm so
that its execution is taken at very high rate; data are exchanged
very often, and thus misaligned knowledge appears only for short
time intervals. Moreover, since the allocation is computed very
frequently, the algorithm computes the allocation with freshly
updated values for the Self Evaluation. This ensures good quality
for the allocation even when the system faces abrupt changes of
the system configuration, such as robot failures.

5.3. Simulation environment

In the RoboCup middle-size league scenario, the general situ-
ation described in Sections 2–4 simplifies as follows. The multia-
gent team is made up on three kinds of robot: the Goalkeeper KP,
the Defender DF, both using a differential drive, and the Field Player
FP, equipped with an omnidirectional drive. Because we have four
such kinds of agent we can write

R1 ∈ GK ,
R2 ∈ DF ,
R3, R4, R5, R6 ∈ FP.

(16)

However, the roles (tasks)wewant to assign themareDefence, Sup-
port and Offence, and each agent estimates its own ability9 to per-
form one of the previously listed tasks accordingly to the formulas
(13)–(15). Thus, the agent’s capabilities Si10 to perform each task
istantiates to
Si = {s1i , s

2
i , s

3
i }

= {Sdef , Ssupp, Soff }. (17)
Now, in this specific situation, we can optimise the computation of
the Agent Satisfaction performed in the inner loop of the allocation
procedure 1. Specifically, we can avoid sorting the agents accord-
ing to priorities and then according to their Self Evaluation by com-
puting directly the Agent Satisfaction. We can do this by using the
following formulas:

Vk(l) =
p∑
i=1

ski +
n∑

i=p+1

gki (l)

gki (l) =
{
ski if ski > s

k
l

0 if ski ≤ s
k
l

(18)

where p is the number of the prioritised agents and Vk(l) is the
Agent Satisfaction referred to the task tk computed from the point
of view of the agent Rl. The computation proceeds by considering
that agents R1 and R2 are prioritised agents, while the Self Evalu-
ation values of the others are compared with the Self Evaluation
of the agent which is executing the computation (recall that this
computation is made concurrently by each agent involved in the
coordination process).
This cooperation schema, devised according to the description

given previous sections, is central in controlling the collective

9 Self Evaluation.
10 Which is a vector of real values.
Fig. 4. Simulation environment.

Fig. 5. Effective cooperation among robots.

behaviours of the team, by the activation and maintenance of the
required individual behaviours.
To the aim of a more precise behaviour analysis, we have im-

plemented the cited algorithm in a simulated RoboCup environ-
ment. Before discussing the results obtained, we briefly describe
the simulation environment we used. In Fig. 4, we show the two-
dimensional simulated field where two teams of six individual
robots are disposed at the beginning of the simulation. The ball is
positioned, as in the competition, at the center of the field and data
are collected during a single test as reported below. The opponent
team is just a clone of the evaluating team so that the coordinating
algorithm is equally executed on both teams.
The simulated vision system has been properly devised to

extract all the relevant information to estimate the Self Evaluation
for every agent Ri. This is computed according to the discussion of
Section 4, where each robot must recognise some critical objects,
given the depth of vision field and the relatedmagnification. As has
been already pointed out, some constants have been determined
empirically, and also the thresholdswhich definitely assign integer
values to those quantities.
Each agent knows the System Objective (the desired level of

achievement on the completion of the task).

5.4. Results obtained in the simulated environment

The results reported here are for a scenario involving three
tasks: 〈Defence,Offence, Support〉. The Offence task represents the
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Fig. 6. Role exchange among three robots.

behaviour of carrying the ball towards the goal. A robotic agent is
in the best position to perform this task when it is near the ball
and when the robot position, the ball position and the center of
the goal are aligned. The evaluation of the Support objective is
computed based on the distance between the actual robot position
and the position needed to support other robots. On the contrary,
the Defence objective evaluation only depends on the position of
the robot. Robots have a high defence evaluation value when they
are placed between the ball and the goal. The computed values of
the Self Evaluation are obtained according to Eqs. (13)–(15).
Fig. 6 reports results for three agents cooperating while Fig. 7

reports results for four agents. In both figures, we report the task
that each robot is performing over time. Consequently, on the x axis
we report time while on the y axis we report a numerical code for
the tasks: 1 is Defence, 2 is Offence and 3 is Support.
Fig. 6 shows how the coordination algorithm is able to balance

the effort of the three robots on different tasks. In particular, while
the Defence task is almost always carried out by only one robot,
both the Offence and Support tasks involve more robots forming a
coalition and collaborating on the same task. This is because these
tasks benefit from the cooperation of more robots, and therefore
the coordination algorithm will try to allocate more teammates to
these tasks.
In Fig. 7, it is possible to see that a similar behaviour can be

observedwhen four robots are cooperating. In this case the amount
of time during which more than one robot is executing the same
task is obviously higher, but as before, the Defence task is almost
always carried out by a single robot, while robots cooperate more
on the Offence and Support tasks. As before, the coordination
algorithm is also able to balance the team effort in order to cover
all the roles, and thus results in an effective coordination.

6. The RoboCup middle-size league testbed

In this section we briefly present the control architecture used
by the EIGEN team in RoboCup middle-size soccer competitions.
Moreover, we discuss the results obtained by the application of the
proposed cooperative control method in the competitions.
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Fig. 7. Role exchange among four robots.

Fig. 8. EIGEN Team.

6.1. Cooperative control in the RoboCup scenario

The EIGEN team robots are shown in Fig. 8. Each teammate
has an omnidirectional drive system with four roller wheels. The
motivation is that its employment improves the movement and
the stability of the platform also by increasing its capability to
change direction. Each robot is equipped with an omnidirectional
vision system. This system has the same features as presented
at RoboCup 2005, described in [6,3]. However, since 2007 some
robots have been equipped with two extra cameras and a gyro
sensor in addition to the omnidirectional vision system.
The control architecture is shown in Fig. 11; environment in-

formation, acquired by each robot through its own sensors, is used
mainly to recognise white lines and landmarks. Hence, the robot
calculates its position and orientation, which are communicated
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Fig. 9. The flow of information during cooperation.

to the other robots, allowing it to share information about the ball,
relative teammate positions, task achievement evaluation, and
so on.
Evaluating the task achievement of the group results in select-

ing both a group formation and the task assignment for each robot,
firing the appropriate action module. In particular, the formation
module provides the task assignment algorithm with the priority
on the tasks. These modules are designed as an action schema to
solve a well-specified task, such as Offence, Support, and so on.
Finally, the robot generates the action by the extended Fuzzy
Potential Method [8] according to the environment information.
The cooperative method is the one described in Section 5.2,

but now the environment information is directly acquired from
sensors, and the information required by the cooperative control
method is computed as described in Section 5.1. In particular,
robots do not use any explicit synchronisation; they share infor-
mation at each iteration of the algorithm, using a UDP protocol,
and they use the last received message from each teammate as the
current valid information. To avoid using out of date information,
if messages from a teammember are not received for a predefined
period of time then the information regarding that teammate is
ignored.
Fig. 9 reports a detailed view of the information flow for the

multirobot system used in the actual competitions.

6.2. Experimental results

As previously mentioned, the coordination method described
here was used by the EIGEN team within RoboCup competitions
since 2004. The method was able to effectively coordinate the
robotic platform during the competition, and it constitutes one
of the key reasons for the excellent performance of the team in
RoboCup competitions.
To provide a sample of how the coordination mechanism be-

haved during the actual competition we report in Fig. 10 a se-
quence of images fromRoboCup2007 [9]. In (a) and (b), themarked
robot in the lower left corner tried to get ball from its opponent and
themarked robot in the upper right cornerwas supporting it. In (c),
the lower left marked robot could not get the ball, because of pre-
vention by opponents. In (d), the upper rightmarked robot took the
offence role and eventually got the ball. Similar scenes were often
shown during the competitions.
Videos fromRoboCup competitions showing relevant coordina-

tion actions can be seen at http://www.yt.sd.keio.ac.jp/robocup/
eigen_movie.html.
a b

c d

Fig. 10. Cooperative action at RoboCup 2007.
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Fig. 11. Cooperation architecture.

7. Related work

Cooperation in multirobot systems has been addressed with
several different approaches, as discussed in [10]. Cooperation
approaches range from not coordinated, to weakly coordinated
(where each robot considers only simple state information about
teammates when choosing its actions) and strongly coordinated
approaches (where robots coordinate their action using a specified
coordination protocol). Strongly coordinated approaches are
frequently used when dealing with complex scenarios such as the
one we consider in this paper.
Within the strongly coordinated approaches, ALLIANCE [11]

and BLE [12] are examples of behaviour-based approaches to
multirobot task allocation. In the former motivational behaviours
monitor and dynamically reallocate tasks by providing fault
tolerance and adaptiveness. In the latter, each robot executes a
task through a specific behaviour. Task selection is implemented
by continuously broadcasting locally computed utilities using a
greedy algorithm to determine the most useful task. Another
behaviour-based example of task allocation in multirobot systems
stems from the concept of vacancy chains, as discussed by
Dahl and Mataric [13]. This approach is implemented in groups
of homogeneous robots where vacancy chains emerge through
reinforcement learning.
In contrast to theseworks, our work is based on the higher level

concept of roles and tasks rather than behaviours. Moreover, in our
work, robots explicitly form coalitions to execute tasks.
The task assignment problem has been frequently addressed

in multirobot systems using market-based methods [14–17]. In
market-based approaches, robots bid and negotiate to obtain tasks.
The negotiation process can be of various types, but auctions are
often used. For example, in TraderBots [16], an auctionmechanism,
through a revenue/cost mapping function, greedily assign tasks to
the highest bidders. In this system, a RoboTrader module on each
robot coordinates the activities of the agent and its interactions
with other agents. Specialised dynamic role assignment methods
have been used for robotic soccer, as in Pagello et al. [18] and Stone
and Veloso [19], where the robots dynamically switch between
roles such as attacker and defender or master and supporter.
Burgard et al. [20] consider task allocation and coordination for
multirobot exploration. For each robot, the trade-off between
the utility and cost of potential target points are evaluated for
exploration with the aim of being properly assigned to each robot.
In contrast to these works in this paper, we focused on a

coalition formation problem rather than task assignment.
Coalition formation has been also addressed in multirobot sys-

tems. Parker and Tang [21] address the problem of single-task
robots performing multirobot tasks while developing heteroge-
neous robot coalitions that solve single multirobot tasks. ASyMTRe
(Automated Synthesis of Multirobot Task solutions through
software Reconfiguration) is the paradigm they use to generate
multirobot coalitions using complete information, and it has been
implemented on tasks that require multiple robots to share sen-
sor and effector capabilities. The approach of Vig and Adams [22]
refers to a multirobot coalition formation algorithmwhich uses an
adaptation of the Shehory and Kraus algorithm [1]. The algorithm
comprises two stages: in the first, robots compute the initial coali-
tion values for all possible coalitions in a distributed way; in the
second stage of the algorithm, robots agree on which coalitions
should be formed.
In contrast to these works, here we focus on devising a specific

coalition formation algorithm that is able towork in a very dynamic
and complex scenario. In particular, with respect to [22], we focus
on a simpler setting, where tasks have a predefined priority and
the value of a coalition can be computed by summing up the Self
Evaluation11 of the coalition members; in this way we can avoid
the computation of all the possible coalition values needed for the
algorithm presented in [1] and [22]. Avoiding this computation
in our setting is important, because the value of a coalition is
dependent on variables which are very dynamic (e.g., robot’s
heading, ball position, etc.) and subject to uncertainty in the value
estimation.

8. Conclusions

In this paper we have presented an approach to cooperative
control based on objective achievement. The approach is explic-
itly designed for dynamic uncertain environments, and it solves a
distributed coalition formation problem. This is done by aggregat-
ing the information that each agent acquires from the environment
and the information communicated from the teammates.
We have applied this approach to the RoboCup Soccer domain,

and we show how the aggregated information required by the
algorithm is extracted from the sensor readings of the robotic
platforms. When specialised to the RoboCup soccer domain, our
method is able to optimise the allocation of robot coalitions to tasks
in a distributed and efficient way.
The approach has been empirically evaluated both in a

simulated environment and during RoboCup middle-size league
competitions by the EIGEN team. The results obtained show that
the approach is able to balance the effort of the robotic platform
on different tasks, providing an efficient and effective coordination
mechanism.
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