
Institute for Research in Cognitive Science

IRCS Technical Reports Series

University of Pennsylvania Year

An Architecture For Behavioral

Locomotion

Barry D. Reich
University of Pennsylvania

University of Pennsylvania Institute for Research in Cognitive Science Technical Re-
port No. IRCS-98-04.

This paper is posted at ScholarlyCommons.

http://repository.upenn.edu/ircs reports/51

AN ARCHITECTURE FOR BEHAVIORAL LOCOMOTION

BARRY D. REICH

A DISSERTATION
in

COMPUTER AND INFORMATION SCIENCE

Submitted to the Department of Computer and Information Science in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy.

1997

Dr. Norman I. Badler
Dissertation Supervisor

Dr. Mark Steedman
Graduate Group Chairperson

c� Copyright 1997
by

Barry D. Reich

Acknowledgments

I would like to begin by thanking my parents, my brothers and sister, and all my friends for their

encouragement over the years. This work would not have been possible without their support.

I would like to acknowledge Ken Noble for his help in producing videos and slides for various

presentations of this work, and Hyeongseok Ko for the walking code that increased its realism.

Thanks to the “Zaroff” group, particularly Chris Geib, Mike Moore, and Drs. Norman Badler

and Bonnie Webber, for all the guidance, criticism, and contributions to the project which motivated

a large portion of this work.

I wish to thank my thesis committee, Drs. Richard Paul, Benjamin Kuipers, Dimitris Metaxas,

Mark Steedman, and Bonnie Webber, for constructive criticism that greatly improved the quality

of this dissertation.

Thanks to Harold Sun for help in debugging the Locomotion Engine, testing the Locomotion

Control System, and for discussions and insights concerning the theoretical formalism.

I thank Brett Douville for discussions and suggestions and for all his help with the editing of

both the proposal and this document.

Many thanks to Tripp Becket for providing an excellent environment in which to do this work

and for countless hours of help of all kinds over the years.

I would especially like to thank my advisor, Dr. Norman Badler, for years of advice, discussions,

encouragement, opportunities, and the motivation to do this work.

This research is partially supported by ARO DURIP DAAH04-95-1-0023, DARPA AASERT

DAAH04-94-G-0362, DARPA DAMD17-94-J-4486, DARPA through the Franklin Institute,

DMSO DAAH04-94-G-0402, JustSystem Japan, NSF IRI95-04372, ONR through the Univer-

sity of Houston K-5-55043/3916-1552793, the U.S. Air Force DEPTH through Hughes Missile

Systems F33615-91-C-0001, and the U.S. Air Force through BBN F33615-91-D-0009/0008.

iii

ABSTRACT

AN ARCHITECTURE FOR BEHAVIORAL LOCOMOTION

BARRY D. REICH

NORMAN I. BADLER

We present a complete architecture for behavioral control of locomotion for both real and

simulated agents and provide a design methodology for building the locomotion control systems

that embody the architecture. A low-level locomotion engine controls an agent’s actions directly

based on intermediate-level reactive behaviors such as attraction and avoidance. High-level state

machines schedule and control the reactive behaviors allowing for more “intelligent” decision

processes, and an agent model provides a mechanism for varying locomotion according to agent

state and personality attributes.

In addition to providing specifications for a locomotion engine, we address the problem of

selecting and organizing an appropriate set of behaviors. We present selection criteria and a

method for partitioning the behaviors to aid in implementation. We discuss the challenges specific

to human locomotion and explain how to overcome them in the system design process. Finally,

we introduce the notion of anticipation to the field of behavioral control and use it extensively

throughout the system to produce agents whose actions are more realistic.

iv

Contents

Acknowledgments iii

Abstract iv

List of Figures ix

I Background 1

1 Introduction 3

1.1 What is Behavioral Control? � 6

1.2 Thesis Overview � 8

2 Motivation 9

2.1 Biology and Ethology � 9

2.2 Computer Graphics � 10

2.3 Entertainment � 11

2.4 Robotics � 11

3 History 13

3.1 Prior to Behavioral Control � 14

3.2 The Advent of Behavioral Control � 14

3.2.1 Emergent Behavior � 15

3.2.2 Plans as Advice � 15

3.3 Survey of Control Strategies � 16

v

3.3.1 Purely Reactive Strategies � 16

3.3.2 Behavior-Based Strategies � 17

3.3.3 Planner-Based Strategies � 18

3.3.4 Hybrid Strategies � 19

3.4 The Move Toward Layered Architectures � 19

4 Statement of Work 23

4.1 Minimizing the Active Behavior Set � 24

4.2 Anticipation � 25

4.3 Scope � 25

II The Architecture 27

5 System Requirements 29

6 Design Methodology 35

6.1 Creating the Locomotion Engine � 36

6.2 Choosing the Behaviors � 38

6.2.1 Selection Criteria � 38

6.2.2 Additional Properties � 39

6.3 Partitioning the Behaviors � 39

6.3.1 Instantaneous Behaviors � 40

6.3.2 Memory-Reliant Behaviors � 41

6.4 Creating the Agent Model � 43

6.4.1 System Parameters � 43

6.4.2 Attributes � 44

6.4.3 Establishing the Correspondence � 44

6.4.4 Degrees � 46

6.4.5 Calculating the Results � 46

6.5 Building the State Machine � 48

6.6 Extensibility � 50

vi

6.7 Design Summary � 51

III A Concrete Example 53

7 A Human Locomotion Control System 55

7.1 Development Environment � 55

7.2 Locomotion Engine � 56

7.2.1 The Simulation Sense-Control-Act Loop � � � � � � � � � � � � � � � � � 56

7.2.2 Perception � 57

7.2.3 Control and Action � 59

7.3 Basic Sensors � 59

7.3.1 Object � 59

7.3.2 Location � 61

7.3.3 Line � 62

7.3.4 Proximity � 63

7.4 Control Behaviors � 64

7.4.1 Attract � 64

7.4.2 Avoid � 69

7.5 Behaviors � 71

7.5.1 Level 0: Reflexive and Physics-Based Behaviors � � � � � � � � � � � � � 73

7.5.2 level 1: Goal-Based Behaviors � 76

7.6 State Machines � 77

7.6.1 Turning � 78

7.6.2 Path Following � 80

7.6.3 Chasing � 87

7.6.4 Combining the State Machines � 89

7.7 Agent Model � 90

8 Issues 95

8.1 Limited Perception � 95

8.2 Anticipation � 97

vii

8.2.1 Locomotion Engine � 98

8.2.2 Terrain Awareness � 98

8.2.3 Attraction � 101

8.2.4 Avoidance � 106

8.2.5 Planner-Based � 111

9 Results 113

9.1 Description � 113

9.2 Adherence to System Requirements � 115

9.3 Examples � 119

9.4 Performance Analysis � 124

IV Conclusion 127

10 Discussion 129

11 Research Summary 131

12 Future 135

V Appendices 139

A Additional Behaviors 141

A.1 Attraction to Deep Spaces � 141

A.2 Field-of-View Avoidance � 144

B Groups 147

B.1 Why Do Animals Group? � 147

B.2 Group Research � 148

Bibliography 151

viii

List of Figures

6.1 The Architecture � 35

6.2 The Behavior Function Template � 36

6.3 Partitioning the Set of Behaviors � 40

6.4 Partitioning the Set of Instantaneous Behaviors � � � � � � � � � � � � � � � � � � 40

6.5 The Memory-Reliant Behavior Template � 42

6.6 The Agent Model � 44

6.7 Sample Agent Model Entries � 45

6.8 Sample Parameter Value Calculations: The Initial Conditions � � � � � � � � � � � 48

6.9 Sample Parameter Value Calculations: The Results � � � � � � � � � � � � � � � � 48

6.10 The Locomotion Control System Flow Diagram � � � � � � � � � � � � � � � � � � 49

7.1 The Behavioral Simulation System’s Central Simulation Loop � � � � � � � � � � 57

7.2 Calculating the Set of Possible Next Foot Positions � � � � � � � � � � � � � � � � 58

7.3 The Sensor Function Template � 59

7.4 The Mathematics of an Object Sensor � 60

7.5 Asymmetry Caused by the Use of Bounding Cylinders � � � � � � � � � � � � � � 61

7.6 The Mathematics of a Location Sensor � 61

7.7 The Mathematics of a Line Sensor � 62

7.8 An Undetected Wall � 63

7.9 The Mathematics of a Proximity Sensor � 64

7.10 The Proximity Sensor’s Simulated Object � 65

7.11 The Control Behavior Function Template � 65

7.12 An object sensor and an attract control behavior combine to form an attraction

behavior which draws the agent to the goal � 66

ix

7.13 Walking Past the Goal � 68

7.14 An Orbital Approach � 68

7.15 A proximity sensor and an avoid control behavior combine to form an avoidance

behavior. While an attraction behavior draws the agent to the goal, the avoidance

behavior steers it around obstacles. � 69

7.16 Two Agents Colliding � 71

7.17 The Behavior Function Template � 71

7.18 The Ducking Behavioral State Machine � 74

7.19 The Ducking Function � 75

7.20 An Agent Ducking Under Objects � 75

7.21 The Inertia Behavior Function: A Slow Agent (a) and a Fast Agent (b) � � � � � � 76

7.22 The Attraction Behavioral State Machine � 77

7.23 A Sample PaT-Net Shown Graphically � 78

7.24 The Turning Behavioral State Machine � 79

7.25 Turning to Face the Goal vs. Not Turning � 80

7.26 The Path-Following Behavioral State Machine � � � � � � � � � � � � � � � � � � 80

7.27 The Initial Conditions of the Path-Following Example � � � � � � � � � � � � � � � 81

7.28 The environment obstacle map before (a) and after (b) expansion � � � � � � � � � 82

7.29 The expanded-obstacle map after wave-propagation � � � � � � � � � � � � � � � � 83

7.30 The Weight Map � 84

7.31 The Path to the Goal � 84

7.32 The waypoints (a) - The waypoints drawn on the original obstacle map for clarity (b) 85

7.33 The necessary waypoints (a) - The necessary waypoints drawn on the original

obstacle map for clarity (b) � 86

7.34 The Agent Following the Path � 88

7.35 The Chasing Behavioral State Machine � 89

7.36 The BSM Preconditions � 90

7.37 The Locomotion Control Machine Flow Diagram � � � � � � � � � � � � � � � � � 91

7.38 How the Agent Model Affects the Agent � 92

7.39 An agent exhibiting “drunk-like” behavior through the use of the agent model � � 93

x

7.40 The Inertia Behavior Function: An Intoxicated Agent � � � � � � � � � � � � � � � 93

8.1 Enforcing the Limited Perception Policy: (a) The environment (b) The agent’s

view (c) Attraction only (d) Attraction and wall avoidance (e) The path (f) The

agent arriving at the goal � 96

8.2 (a) A sawtooth path due to potential field discontinuities, and (b) Better results

through anticipating the state of the world after the agent has taken the step � � � � 99

8.3 Attraction, avoidance, and terrain awareness behaviors combine to draw the three

agents to the goal in the upper left corner � 100

8.4 A close-up view of an attract behavior combining with a terrain awareness behavior

to guide the agent to the goal � 100

8.5 The lower agent is attracted to the upper agent using a traditional attraction behavior101

8.6 The Mathematics of the Predictive Attraction Behavior � � � � � � � � � � � � � � 102

8.7 The First Attempt at Predictive Attraction � 102

8.8 Initial Conditions for Predicting an Intersection � � � � � � � � � � � � � � � � � � 103

8.9 The Second Attempt at Predictive Attraction � 105

8.10 A Visual Comparison of All Three Attraction Behaviors � � � � � � � � � � � � � � 106

8.11 The Results of a Short, Wide Avoidance Sensor � � � � � � � � � � � � � � � � � � 107

8.12 The Results of a Long, Narrow Avoidance Sensor � � � � � � � � � � � � � � � � � 107

8.13 The Mathematics of a Predictive Avoidance Behavior � � � � � � � � � � � � � � � 108

8.14 A Comparison of Traditional and Predictive Avoidance Behaviors: The Start of

the Simulation � 109

8.15 The Middle of the Simulation � 110

8.16 The End of the Simulation � 110

9.1 The Locomotion Control System � 114

9.2 The Locomotion Control Machine � 114

9.3 The Architecture and the Interface � 116

9.4 The User Interface � 117

9.5 An Example � 123

9.6 Sensor Time Complexity Analysis � 124

9.7 Control Behavior Time Complexity Analysis � � � � � � � � � � � � � � � � � � � 125

xi

9.8 Behavior Time Complexity Analysis � 125

9.9 Simulation Time Complexity Analysis � 126

A.1 A Depth Sensor � 142

A.2 A 2-Bit Range Sensor � 142

A.3 Range Sensor Weighting Functions � 143

A.4 An agent maneuvering through a maze using only a depth sensor for navigation � 144

A.5 Attraction, avoidance, and field-of-view avoidance combine to guide the agent to

the goal without it being seen by the hostile agent hiding at the bottom � � � � � � 145

xii

Part I

Background

1

Chapter 1

Introduction

A beginning is the time for taking the most delicate care that the balances are correct.

– Frank Herbert, Dune –

The recent increase in the use of robots and simulated agents has motivated the search for

better control strategies. Autonomous robots are used for such tasks as factory automation or the

exploration of dangerous or inaccessible environments. Autonomous simulated agents are used

in such applications as training simulations, movie special effects, or video games. Controlling

the motion of robots or animating the motion of simulated agents can be challenging. Scripting

the motion of animated agents can be difficult and time-consuming, especially in multiple-agent

simulations with complex interactions among agents. Since the mid-1980’s, the trend has been

away from traditional AI control systems for these tasks, and toward more automatic behavior-

based systems that produce agents who appear to make intelligent decisions with minimal user

interaction.

Behavioral control is a well-established, convenient way to model and generate interesting

behavior with very little user input. The aim of this work is to provide a complete agent architecture

that employs behavioral control techniques for locomotion and to present a design methodology

for system construction. The resulting locomotion control systems provide reactive, robust control

of real or simulated agents locomoting from place to place while interacting with each other and

with the environment.

3

This thesis addresses the following problems:

1. Providing a design methodology for a complete locomotion control system

2. Selecting and organizing an appropriate set of behaviors

3. Approaching the challenges specific to human locomotion

4. Using anticipation in behavioral control

As Sloman and Poli observe [140], much of the early work in AI was concerned with architec-

tural sub-components such as vision, language, planning, or learning, rather than with complete

agent architectures. Interest in complete architectures for both physical robots and simulated agents

has grown recently, as exemplified by Bates [17], Georgeff [65], and Hayes-Roth [72]. Following

their lead, we present a complete agent architecture for behavioral locomotion.

Behavioral control (defined and discussed in Section 1.1) is based on mathematical models of

behaviors such as attraction or avoidance that are observed in animals. In the design methodology

chapter (Chapter 6), we present principles for choosing an appropriate set of behaviors and for

partitioning these behaviors into subsets. First, behaviors are classified according to the architec-

tural level at which they are best implemented, either at the behavioral level, or at a higher level.

Then, the behavioral-level behaviors are further partitioned into two subsets of reflexive, instinc-

tive behaviors (typically avoidances) and goal-based behaviors (typically attractions). Section 4.1

explains why we limit the number of goal-based behaviors active at any given time to one, and

justifies this restriction.

Choosing an effective set of behaviors for a system depends primarily on the type of agent

it controls. Different types of agents require different types of locomotion. Reynolds’ birds

require general behaviors, such as collision avoidance, as well as behaviors specific to flocking,

such as matching the velocity of neighboring birds and keeping to the center of the flock [130].

Wilhelms and Skinner use jet motors to propel abstract geometric objects [157] and are therefore

less constrained in the behaviors they may choose. Since we have no general preconceptions about

the behavior of flying tetrahedra, it is difficult to make one appear either realistic or unrealistic.

Human agents require behaviors specific to walking or running unlike rolling robots, swimming

fish, or flying birds. The locomotion engine we advocate is fully capable of handling the specific

4

challenges posed by human locomotion. Much of our discussion will relate to the domain of

simulated human locomotion, but the ideas are independent of that particular domain. The

architecture supports general locomotion (with some restrictions as discussed in Section 4.3).

The notion of anticipation is noticeably lacking in the field of behavioral control. Regardless

of the domain, most systems incorporate attraction and avoidance models that sense and react to

the immediate world with little or no concern for the future. This is particularly unrealistic for

simulating human agents who “think ahead” while navigating. We introduce anticipation at all

levels of the architecture.

The locomotion control system embodying our architecture controls locomotion at three levels.

At the lowest level, a locomotion engine controls agent locomotion directly. Based on a set of

reactive behaviors associated with the agent, it makes final choices about where the agent will

place its feet at each step, how the agent will fly, where the agent will roll, etc. The set of reactive

behaviors constitutes the intermediate level. Each of the reactive behaviors can be active or

inactive; the locomotion engine ignores those that are inactive. The highest architectural level is a

state-machine implementation of behavioral schemata which controls agent locomotion indirectly

by activating, deactivating, and parameterizing the reactive behaviors according to a state-based

decision process.

In addition to the three main architectural levels, we use an agent model to configure the state-

machine and to contribute to the parameterization of the behaviors and the locomotion engine.

The resulting locomotion style reflects the agent’s personality as well as its physical and mental

state. Just as Cremer et al. use state and personality attributes such as velocity, patience, and

aggression to parameterize their virtual drivers, giving different vehicles different observable

behavioral characteristics [45, 46], we use attributes such as velocity, inertia, awareness, and

caution to parameterize our agents, resulting in varied observed behavior.

The locomotion engine (based on Becket’s behavioral simulation system [18]) communicates

directly with a system that calculates joint angles to simulate walking [82, 83, 84], choosing each

footstep for the agent based on a set of behaviors associated with that agent. The behaviors

are variations of attraction and avoidance and are parameterized by such attributes as awareness,

curiosity, fatigue, and intoxication. The agent’s observed behavior is the result of the choice of

behaviors and parameters which are themselves the results of choices made at higher levels.

5

There are limits to what low-level reactive behaviors can achieve. When the desired complexity

of an agent’s behavior increases beyond this limit, higher-level locomotion reasoning must be

introduced. Locomotion reasoning determines the characteristics of an agent’s locomotion: i.e.,

what types of attractions and avoidances with what choice of parameters will achieve the goal. An

effective implementation of relatively complex behaviors requires a multi-level approach: one or

more high-level organizational structures atop the low-level locomotion engine.

Our state-machine level provides this high-level organizational structure and supports loco-

motion reasoning. It makes decisions necessary for complex behaviors such as path-following

(Section 7.6.2) and chasing (Section 7.6.3) where behaviors and parameters change over time. In

addition to changing behaviors and parameters, the state-machine structure allows us to evaluate

arbitrary conditions, passed as arguments, increasing the system’s flexibility. If any one of these

conditions is ever achieved, the state-machine takes an appropriate action. These conditions allow

the agent to interrupt the current plan when an unexpected situation occurs, e.g., when something

of interest enters the agent’s field-of-view. An appropriate message is passed up to the user or

calling system allowing it to replan, potentially taking advantage of an opportunity.

One of our design goals was to create a cognitive research tool, a system that could be

used as a testbed for cognitive theories, experimental algorithms, or heuristics. To that end we

emphasized modularity and extensibility. Behaviors, for example, are not hard-wired, but can be

added, removed, or modified with ease. Therefore, it is possible to test new behaviors or new

implementations of existing behaviors by adding or swapping in the appropriate modules. The

same is true of other parts of the system such as the state machines and the agent model. The

path-generation mechanism (part of the path-following behavior, Section 7.6.2), the extrapolation

or exploration algorithm (part of the chasing behavior, Section 7.6.3), and the set of agent attributes

and system parameters (part of the agent model, Sections 6.4 and 7.7) may all be modified, removed,

or replaced for the sake of experimentation.

1.1 What is Behavioral Control?

Behavioral Control has established itself in the fields of robotics and computer animation as a

viable method of controlling real and simulated autonomous agents. Individual behaviors connect

6

sensors to effectors and combine and interact, producing complex observed behavior with desired

properties (Brooks’ notion of emergent behavior [29]). Behavior-based agents are more reliable

than classical, artificial intelligence-based agents when adapting to a changing environment.1 They

require less computation, little or no memory, and minimal resources.

Behavioral control is a more general term for behavioral animation which includes real agents

such as robots as well as simulated, animated agents. It is a control strategy for real or simulated

agents that is usually applied to locomotion. Neither path-planning nor explicit instructions drive

agent locomotion; agent control and apparent behavioral complexity result from the interaction of

a few simple “behaviors” with a complex and changing environment. A behavior (Section 7.5) is

a function mapping an agent’s state in the environment to the stress of being in that state. An agent

learns about its state in the environment through the use of a network of simulated sensors. Based on

the information gathered by these sensors, the path through the terrain is computed incrementally,

allowing the agent to react to unexpected events such as moving obstacles, changing terrain, a

moving goal, or the effects of limited perception [85, 128].

Simulated sensors detect environmental features such as terrain type and obstacle and agent

locations. A locomotion engine (Section 7.2) analyzes the combined sensory input and decides

where the agent should move. This decision is made after each step the agent takes to support a

dynamic environment.

Brooks explains two of behavioral control’s central ideas as they relate to robotics [33]:

Situatedness: The robots are situated in the world - they do not deal with abstract descriptions,

but with the “here” and “now” of the environment that directly influences the behavior of the

system.

Embodiment: The robots have bodies and experience the world directly - their actions are

part of a dynamic with the world, and the actions have immediate feedback on the robots’ own

sensations.

These ideas apply equally well to simulated agents situated in a simulated world. These

agents perceive the world with sensors that mimic the actions of real sensors, reporting the same

information under similar circumstances. Furthermore, these agents affect the world in the same

way. Their actions are part of a dynamic with the simulated world.

1See discussions in Chapters 2 and 3 for justification.

7

1.2 Thesis Overview

This thesis consists of four parts: background information, a presentation of the architecture and

design methodology, complete examples of the architecture and a thorough description of all its

parts, and a conclusion.

The next chapter discusses motivations for behavioral control techniques in a variety of different

fields from Artificial Intelligence to Robotics. Chapter 3 gives a detailed history of the study of

locomotion from Eadweard Muybridge’s work in the nineteenth century [116] to the simulations

of the present and includes a survey of control strategies. Part 1, Background, concludes with the

statement of work.

Part 2, The Architecture, presents the architecture, its motivating system requirements (Chap-

ter 5), and a detailed design methodology for building a system (Chapter 6).

In Part 3, A Concrete Example, we build a locomotion control system for simulated human

agents giving a full description of every part of the system (Chapter 7). Chapter 8 discusses

limited perception and anticipation, important issues in achieving realism. Part 3 concludes

with our results including examples of the system in use (Chapter 9.3) and a performance analysis

(Chapter 9.4).

We conclude in chapters 10, 11, and 12 with a discussion, a research summary including the

scientific contributions of this work, and suggestions for future work.

8

Chapter 2

Motivation

If endowed with interesting, realistic behaviors, autonomous agents should appear to make intel-

ligent decisions indistinguishable1 from those of a real agent in the same situation. Additionally,

they should do so with minimal user interaction; as much of the process as possible should be

controlled by the system. As Wilhelms and Skinner observe, behavioral control conveniently

generates interesting locomotion with relatively little user input [156, 157].

Behavioral control techniques are motivated by Biology and Ethology, Computer Graphics,

Entertainment, and Robotics, discussed in subsequent sections.

2.1 Biology and Ethology

A growing dissatisfaction with “classical” AI control systems has led autonomous agent research

to the field of biology, and more specifically the field of ethology (or ecological psychology [51]).

The idea of emulating nature enjoys a long tradition in many scientific fields and has been found

to be vital to behavioral control. Researchers attempt to understand the mechanisms animals use

to demonstrate successful adaptive behavior and then simulate and utilize these behaviors in their

control systems [21, 97]. In robotics, for example, the study of how animals grasp, manipulate

objects, and locomote has led to improved robotic versions of the same tasks.

Anderson and Donath present a detailed and interesting review of relevant research in the

field of animal behavior [7]. They motivate the use of such architectural components as low-level

1Although we accept less, this is behavioral control’s ultimate goal.

9

reflexive behaviors, a variety of basic sensors and behaviors, a state-based architectural level,

and preconditions for complex behaviors by examining how each of these is exhibited by and

advantageous to different animals. Our system also exhibits and benefits from these components.

2.2 Computer Graphics

The field of computer graphics, or more specifically, computer simulation, motivates behavioral

control both in combination with other fields and in its own right. Often when robotics researchers

wish to use behavioral control techniques in their robots, they will first simulate the robots.

Simulations are useful for initial testing because of the following desirable properties [20]:

� It is cheaper and faster to construct and modify the agent.

� Execution can be much faster. If the goal is to develop a control strategy for a robot, more

simulations may lead to a better control strategy.

� The designer can abstract over limitations in hardware speed by running in simulation time

as opposed to real time.

Boulic et al. and Renault et al. discuss synthetic vision, an animation approach where a

simulated visual sense is used for navigation by a synthetic actor. Vision is the only channel

of information between the actor and its environment [25, 129]. Ullman and Steels explain that

despite enormous efforts to extract general purpose symbolic descriptions from visual data [99],

no such “visual module” is expected to arrive soon [143, 152]. Another advantage of simulation

is the ability to abstract over the unavailability of general machine perception. Agents embedded

in a simulation can be supplied with high-level results of perception directly [14].

Behavioral control can be seen in several computer simulation domains. It can be used to

animate and analyze human motion [75], and to create interesting autonomous agents for simulators

for training purposes [97]. Simulation of autonomous agents is an end in itself. Simulations are

used in military training, and in driving and flight simulators. Cremer et al., for example, have been

working on the creation of autonomous driving behavior for interactive driving simulations [45, 46].

Maes discusses software agents that have been proposed as one mechanism to help computer users

deal with work and information overload [96, 97].

10

Possibly the strongest motivation is that of multiple-agent animations. Multiple agents along

with complex, dynamic environments result in more interaction and require careful choreography.

An animator may have to make a series of adjustments until everything looks right. Reynolds

explains that scripting the path of a large number of individual objects using traditional computer

animation techniques would be tedious. Given the complex paths that birds follow, for example, it

is doubtful this specification could be made without error [130, 132]. Behavioral control obviates

this tedious and time-consuming animation technique.

2.3 Entertainment

Behavioral control and autonomous agents are beginning to make their way into the realm of

entertainment. Examples include video games, simulation rides, movies, animation, animatronics,

theater, puppetry, toys, and even party lines [97]. Maes mentions one researcher who incorporated

an autonomous agent into a text-based Multi-User Simulation Environment (MUSE) system [107].

Reynolds created an animation called “Stanley and Stela in Breaking the Ice” [131] in which he

modeled flocks of birds and schools of fish using a behavioral control system. His algorithms were

later applied to bats in Batman II and to the stampede in The Lion King. Tu and Terzopoulos,

and Terzopoulos et al. modeled realistic fish behavior producing entertaining, short, animated

movies such as “Go Fish!” [150, 146]. Chris Crawford, a noted game designer, complains that

“Artificial Intelligence is almost always the weakest part of game design” [44]. The quest for

better “monster AI” has resulted in an increasing use of behavioral control techniques throughout

the game industry.

2.4 Robotics

In robotics, behavioral control systems control all kinds of robot locomotion from rolling and

hopping to walking and running. The primary motivation is autonomy. The goal is to develop real-

time, autonomous robots that can operate in general, unstructured, unconstrained environments.

In many instances, behavioral control has successfully achieved this goal.

Motivation for real-time, autonomous robots includes factory automation, navigation and

retrieval tasks in outdoor environments, and map building. In addition, there is much interest in

11

extraterrestrial autonomous rovers [63, 110], robots for surveillance, exploration, and other tasks

in environments that are inaccessible or dangerous for humans [97]. Bonasso, Antonisse, and

Slack use a reactive system with layered control modeled after Brooks’ subsumption architecture

(explained in Section 3.3.1) which they find to be useful in an unpredictable, partially unknown

environment [24]. This work is comparable to Miller’s efforts on the JPL Rover [109, 110] which

combined Firby’s RAPs [54] with Gat’s ALFA circuit language [56, 58].

12

Chapter 3

History

Locomotion is an active process by which one moves from place to place [76]. Locomotion

attributes include: starting, stopping, changes in speed, alterations in direction, and modifications

for changes in slope or for maneuvering over, under, or around obstacles. The type of terrain and

its slope effect the energy cost of walking [134]. Humans tend to minimize the metabolic energy

required to get from one place to another [77], walking or running depending on size and speed.

For example, adults start running at about 2�5 meters per second, children at lower speeds [6, 145].

Eadweard Muybridge1 (1830-1904), known as “the father of motion pictures,” pioneered the

application of photography to the study of human and animal locomotion. He took photo sequences

and then projected them onto a screen with a device he called a “zoopraxiscope” resulting in the

world’s first illusion of moving pictures [117, 118, 119, 120].

1For more information on Eadweard Muybridge that is presented in a nice format, start at
“http://www.linder.com/muybridge.html” on the world-wide web.

13

Animal locomotion has been a subject of serious study for over a century. Since the early days

of computers and computer science, researchers have been trying to apply their observations in

an attempt to get simulated animals and robots to navigate automatically. They applied control

strategies such as behavioral control and planner-based techniques, embedded in simple or layered

architectures, to individual agents and to groups. This chapter discusses their results.

3.1 Prior to Behavioral Control

Prior to behavioral control, researchers, particularly in the field of robotics, treated the problem

of obstacle avoidance statically. They analyzed the environment and made a plan assuming the

environment would not change. At best, if an environmental change was detected, the robot would

stop, replan, and then start again, operating with the same assumption (Adams cites the work of

Cox and Elfes as examples [43, 52]) [1].

Previous techniques often involved symbolic reasoning which attempts to construct a plan

to achieve a goal using logical transformations on symbols that represent a model of the world.

Symbolic reasoning techniques began with STRIPS [53] and ended with Chapman’s proofs of the

intractability of the general planning problem [36] (see the discussion in Section 3.3.3). They were

abandoned for many reasons (e.g., their combinatorial expense and brittleness) and replaced by

behavioral control techniques which do not suffer from the same problems.

3.2 The Advent of Behavioral Control

Recent work, first in robotics and then in computer animation, has motivated the search for

more automatic methods of controlling motion. Duchon et al. [51] describe a revolution from

the slow, intensely computational “sense-model-plan-act” architecture of such robotic systems

as SRI’s Shakey [122] and Moravec’s CART [114] to the current architectures that remove the

“model-plan” part of the loop, replacing it with simple, fast “control.”

Out of discontent with traditional methods and increasing willingness to sacrifice complete

control for realism grew the increasing popularity of behavioral control [14]. Previously, for

computer animation, the animator was responsible for scripting an agent’s path. This awarded

absolute control over all locomotion components, but was time-consuming and repetitive [69] and

14

did not promote thinking about locomotion in natural qualitative terms [98].

The behavioral control method of designing autonomous agents derives from ethology, the

scientific study of animal behavior. Agents are endowed with simple behaviors such as attraction

and avoidance. A behavioral engine, often implemented as a sense-control-act (S-C-A) loop,

evaluates the state of the environment and generates motion according to certain rules of behavior.

Rather than scripting an agent’s exact movements, the user need only choose an appropriate set

of behaviors (not always an easy task). The system takes care of the details of simulating these

behaviors; the agent discovers its own path through the environment.

3.2.1 Emergent Behavior

A key idea in behavioral control systems is that of emergent behavior [29]. Brooks’ modern notion

of emergent behavior can be traced back at least as far as Herbert Simon who pointed out, in the late

1960’s, that complex observed agent behavior is often due to a feedback mechanism interacting

with a complex environment and not complexity in the agent itself or in the control system [137].

It may be an observer who ascribes complexity to an organism, not necessarily its designer. More

recently, emergent behavior was popularized by Braitenberg who claimed that simple networks can

produce complex motion from which observers infer intelligence. Braitenberg described vehicles

whose seemingly intelligent, even emotional behavior results from sensory stimuli passed through

a network of nodes, eventually driving motors [26].

Emergent behavior is a result of the interaction of an agent with a dynamic environment. It

is characterized by the manifestation of global states or patterns which are not explicitly pro-

grammed in, but result from local interactions among the system’s components and with the

environment [102]. Because emergent phenomena are by definition observed at a global level,

they depend on the existence of an observer [105]. It is the observer who attributes emotions,

intelligence, or will to the resulting observed behavior. For further relevant discussions on this

topic, see Langton [88, 89], Maturana and Varela [106], or Steels [144].

3.2.2 Plans as Advice

One of the important ways in which behavioral control differs from planning is that behavioral

control uses plans to guide, not control action [4]. Gat and others strongly advocate Agre and

15

Chapmans’ plans-as-advice or plans-as-communication theory which suggests influencing action

rather than controlling it. Slack’s Navigation Templates for mobile robot control are an example of

the plans-as-advice theory. He uses constraints to bound the robot’s motions, rather than dictating

a particular trajectory. In that way the plan adapts to the robot’s changing perceptions of the

world [139].

This is similar to Gat’s ATLANTIS [59] architecture where a traditional planning system is

combined with a reactive control mechanism. He uses the results of planning to guide the robot’s

actions but not to control them directly. A sequencer uses the planner’s output only as advice

and also takes into consideration other sensory information in making its decisions. This too

can be viewed as a concrete implementation of Agre and Chapman’s plans-as-advice theory. In

addition to implicit use through the utilization of behavioral control, we use the plans-as-advice

theory explicitly; see, for example, our path-following implementation discussed in detail in

Section 7.6.2.

3.3 Survey of Control Strategies

Autonomous agents, whether simulated or real, are controlled through an architecture embodying a

particular control strategy. We survey purely reactive, behavior-based, planner-based, and hybrid

control strategies that combine two or more of these approaches. For an excellent, detailed

discussion, see Matarić [101].

3.3.1 Purely Reactive Strategies

The simplest control strategy, conceptually, is the purely reactive one implemented as a set of

condition-action pairs (e.g., Brooks and Connell [34, 41] and Agre and Chapman [3]). The biggest

advantage of these systems is their speed, due to their minimal computation. They consist of a set

of purely reactive rules, containing little or no internal state. They simply use sensor readings to

index into this set, selecting and executing the corresponding action. A direct coupling between

the sensors and actions results in fast, efficient operation [101].

A number of researchers, including Connell [41] and Gat [62], have demonstrated purely

reactive robots with various degrees of navigational ability. One of the most prominent and

16

ground-breaking researchers in the field, Brooks began publishing papers on his subsumption

architecture for mobile robots, the most famous of the purely reactive control strategies, in 1986.

Brooks argues that to create artificial intelligence:

We must incrementally build up the capabilities of intelligent systems, having

complete systems at each step of the way and thus automatically ensure that the pieces

and their interfaces are valid [32].

Brooks’ subsumption architecture is a layered control system where higher-level layers can

subsume the roles of lower levels by suppressing their outputs. However, in general, lower levels

continue to function as higher levels are added [29, 30]. The lowest level is the collision avoidance

level. Robots steer around objects locally and halt in emergency situations, a behavior Brooks finds

necessary in a dynamic environment. The next level is goal-oriented through the use of attraction;

it allows robots to go places.

Opponents of purely reactive control systems feel that they are limited and less powerful than

behavior and planner-based systems. The designer must be able to predict all relevant world states

that can be sensed and all corresponding actions relative to the agent’s goals. All the agent’s

goals must be defined at design-time, a significant limitation. Sufficiently general reactive systems

would be prohibitively complex according to Matarić [101]. For example, in reactive systems

where agents have no internal models, it is often the case that a goal can be achieved only through

fixation. If at any time the goal is imperceivable (as when an obstacle obscures the agent’s view),

the goal will be lost [143]. A behavior such as chasing (Section 7.6.3), where at times an agent

loses sight of its target, can not be implemented effectively with a purely reactive control system.

The next step in the evolution of these control systems is clear. Many researchers have examined

the prospect of combining reactive and deliberative control including Arkin [11], Georgeff [66],

Kaelbling [79], Payton [124], and Soldo [141], to name a few. We discuss this new direction in

Section 3.4.

3.3.2 Behavior-Based Strategies

Behavior-based control systems are commonly viewed as a superset of reactive systems. As

opposed to the reactive approach, which uses condition-action pairs, behavior-based systems are

17

based on combinations of “behaviors.” Combinations of behaviors yield a more general, and thus

more powerful, framework on which to build a control strategy.

Behavioral control has proven to be an effective control strategy, succeeding in complex

domains where symbolic reasoning fails. Particularly in the domain of collision-free navigation,

behavior-based agents are typically much more reliable than classical agents while requiring only

a small fraction of the computational power [61]. Behavioral control is fast, often supporting

real-time implementations; it is robust, allowing for a wide range of domains; and it makes local,

incremental decisions, allowing for a dynamic environment. There are, however, several problems

with pure behavioral systems: they lack intelligence and decision-making capabilities; they can be

very difficult to design; they often produce highly non-optimal solutions; and they can get stuck in

behavioral local minima or cyclical behavioral patterns.

These problems have forced behavioral control systems to evolve toward the layered control

systems, discussed in Section 3.4, in the same way that reactive systems have evolved. Behavioral

control is combined with deliberative, often state-based control resulting in an overall improvement

in operation through high-level mediation and intervention.

3.3.3 Planner-Based Strategies

Planner-based strategies employ a centralized world model for sensory information, verification,

and action generation (e.g., Chatila and Laumond [39], Giralt et al. [68], and Moravec and

Cho [115]). The biggest difference between planner-based strategies and other strategies is that a

planner uses information in the world model to generate a sequence of actions, a complete plan

(e.g., Nilsson [121]), as opposed to the generation of a single action such as a footstep [101, 121].

As a result, planners require a large amount of information about the world to be effective.

While planners used in concert with other control systems have had promising results, the

feeling that pure planning systems are unsuited to autonomous agent control is pervasive in the

literature (e.g., Beer, Chiel, and Sterling [21], Brooks [28, 30], Chapman [37], Ginsberg [67], and

Matarić [101]). Real situations generally cannot be completely represented because planning is

inherently combinatorially explosive, making the systems relying on these limited models brittle,

inflexible, and slow [4, 32, 36, 94, 143].

Agre and Chapman observe that real situations are characteristically complex, uncertain, and

18

immediate requiring the ability to decide what to do now, so speed and short-term decision-making

are important:

Life is fired at you point blank: when the rock you step on pivots unexpectedly,

you have only milliseconds to react. Proving theorems is out of the question [4].

Kaelbling stresses the need for intelligent systems operating in complex, unpredictable envi-

ronments to be reactive:

A robot that blindly follows a program or plan without verifying that its opera-

tions are having their intended effects is not reactive. For simple tasks in carefully

engineered domains, non-reactive behavior is acceptable; for more intelligent agents

in unconstrained domains, it is not [80].

Gat agrees, pointing out that unexpected changes in the environment can invalidate the stored

information and lead to erroneous actions [61].

3.3.4 Hybrid Strategies

Hybrid architectures are a compromise between purely reactive or behavior-based approaches

and pure planner-based approaches. They include both, combining a low-level behavioral or

reactive system with a high-level planner for decision making. The low level is responsible for the

agent’s instinctive behavior (e.g., collision avoidance), as well as goal-oriented attraction-based

behaviors. The high level introduces “intelligence” into the system allowing for action selection

and increased control over the low level. Hybrid architectures have recently increased in popularity

(e.g., Arkin [10], Payton [125], and Connell [42]). They have been found to successfully overcome

the limitations exhibited by the individual strategies, discussed in previous sections.

3.4 The Move Toward Layered Architectures

Two common complaints with pure behavioral control are that users cannot control behaviors at

a high level of abstraction and that selecting and correcting behavioral parameters is difficult;

hand coding them as needed is a laborious process. The limitations of reactive behavioral control

19

suggest that “intelligent” behavior requires both reactive behavior with response to stimuli and a

certain amount of stored information [12, 13, 15, 20, 70]. As Gat notes:

Avoiding internal state is tantamount to assuming that nothing about the world can

usefully be predicted [60].

Clearly, this assumption is invalid; several researchers have pointed out that everyday activity

is mostly routine and predictable. Furthermore, stored information such as the layout of a building

in which an agent is situated is necessary for non-local navigation such as walking from one room

to another. This task is impossible using only local, instantaneous sensor information because in

most places, no information is available to indicate the direction of the destination. Some state

information (that is, a world model) is required: a map, prior knowledge about the layout of the

halls, and so on.

Added intelligence or decision-making capabilities can be achieved through the combination

of a reactive or behavioral control layer with a layer for storing information. Many systems of

the last decade have used this kind of “layered control” including: Ahmad et al. [5], Cremer et

al. [45, 46], Firby [54], Gat et al. [57, 59, 63], Georgeff and Lansky [66], Kaelbling [78], Kuipers

and Levitt [87], Soldo [141], Tyrell [151], and Wilhelms and Skinner [157]. Reactive behaviors

configuring a sense-control-act loop drive an agent at the lowest level or levels; various kinds of

planning or decision-making structures make up the highest level. Becket argues persuasively for

the two-level approach [20] as do Wilhelms and Skinner:

A combination of high-level and low-level techniques combined in an intelligent

fashion will distinguish the animation systems of the future [157].

A wide range of high-level techniques have been used for encoding, scheduling, and controlling

low-level reactive behaviors including programming languages, planners (hybrid architectures),

and state-machines. Gat’s ALFA [56] is a programming language for reactive control mechanisms

for autonomous mobile robots similar to Kaelbling’s REX [78], except that it can also support a

subsumption architecture. Firby’s Reactive Action Packages (RAPs) are the basic building blocks

for a situation-driven execution system. A RAP completely describes the execution of a task. It

contains the task’s goal satisfaction test and methods to achieve the goal in different situations [54].

20

The Hide and Seek project [12, 13, 15, 112, 113, 149] 2 demonstrated the usefulness of an

AI planner in introducing reasoning to a behavioral control system. It also motivated the addition

of the state machine layer to the architecture. The Hide and Seek system required complex

path-following and chasing behaviors that could not be simulated with pure behavioral control.

A higher-level organizational structure was required. Following the lead of researchers such as

Matarić [104], we chose the popular state-machine paradigm which successfully introduced the

needed intelligence into our system.

2The Hide and Seek project combines Geib’s hierarchical planner, ItPlanS [64], and Moore’s search planner [111]
with the locomotion control system (LCS), presented in Chapter 7, to produce a fully automatic simulation of the game
of Hide and Seek. The system (Zaroff) employs a layered architecture to control player locomotion. LCS controls
locomotion directly. The planner level achieves indirect control by sending locomotion requests to LCS. LCS controls,
schedules, and coordinates reactive behaviors to simulate the requested locomotion.

21

22

Chapter 4

Statement of Work

The problem this work addresses is that of synthesis and control of locomotion for simulated

agents or robots. Synthesis includes complete navigation from the starting point to the goal and all

decisions contributing to agent locomotion choices. Control includes manipulation of locomotion

parameters affecting the resulting observed agent behavior. The interface to the control system

must be high-level and easy to use; commands such as go to location X or go to object X

should be sufficient to generate realistic, reactive, robust locomotion taking the agent to the goal.

The solution is to provide specifications for a locomotion control system combining behavioral

control, state-based reasoning, and an agent model to parameterize the system.

We present a complete layered locomotion control system along with a discussion of each

part of the system and a detailed design methodology to facilitate construction. Beginning with a

set of requirements to which the system must adhere, we present design methodologies for each

architectural layer, keeping the requirements in mind. We explain how to build a locomotion

engine, how to choose an appropriate set of behaviors for the task at hand, how to build a state

machine to introduce high-level decision-making capabilities, and how to incorporate an agent

model to parameterize all system layers.

Although the majority of what is presented in this thesis can be generalized to any animal or

robot, some of the discussion is motivated by and addresses issues specific to human locomotion.

Simulating humans differs from simulating robots, fish, birds, or abstract objects due to our

unique locomotion. No system addressed these differences adequately until Becket developed his

Behavioral Simulation System in 1993 [18]. Building on Becket’s work, we have extended his

23

system to reflect the human decision-making process more accurately while retaining the ability

to model other animals or robots.

The following sections discuss minimizing the active behavior set, the notion of anticipation

in behavioral control, and the scope of this work.

4.1 Minimizing the Active Behavior Set

A common objection to the traditional approach to behavioral control is that an implementation

requires an unreasonable amount of weight “fiddling” or parameter tweaking [14]. Emergent

behavior becomes overwhelmingly difficult to control when the behavioral set becomes large

as a result of the combinatorial complexity of specifying interactions among behaviors or in

finding reasonable behavior weights. Many researchers have pointed out this problem including

Brooks [31], Chapman [38], Maes [93], and Matarić [101].

Some have tried to solve this problem through the application of learning algorithms. Unfor-

tunately, current learning algorithms tend to be too general, requiring domain-specific knowledge

to be effective in the particular domain. Our solution is parsimony. We claim that a small set of

avoidance behaviors combined with at most one active attraction behavior is sufficient to achieve

realistic locomotion.

Two competing attraction behaviors will cause an agent to wander back and forth between the

two goals in a “figure eight.” When a human agent, for example, must go to the post office and

to the bank, it is unrealistic for that agent to combine these goals at the behavioral level. Clearly,

the agent should not be attracted to the weighted average of the two locations. A better solution,

one that more accurately reflects the human decision-making process, is to have a higher level

system resolve the problem into a sequence of single-goal attractions, configuring the lower level

to appropriately generate locomotion. We use a prioritized queue of goals where only the first is

the active attractant. If an opportunity to satisfy another goal presents itself, the priorities can be

changed, possibly resulting in queue reordering.

Anderson and Donath agree that it is necessary to separate the mechanism which allows for

control of agent behavior from the actual devices which affect each reflexive behavior [7]. We

24

therefore assign the task of scheduling and controlling low-level behaviors to a high-level state-

machine. We minimize the set of active behaviors by implicitly encoding the behavioral hierarchy

into the state machine, reducing the problem from an O�n2� behavior interaction to an O�n�

behavior choice.

4.2 Anticipation

Matarić discusses the implications of homogeneous agents embodied with similar abilities and

goal structures [104]. “Identical and similar agents have innate knowledge of each other ... their

behavior is implicitly or explicitly predictable to each other.” The following example is attributed

to Brooks:

If when driving on a two-lane road we encounter an oncoming car, we are confident

that the right behavior is to stay in our lane, since the other car will follow the same

strategy. However, if instead of a car an elephant is approaching, there is no clearly

right behavior since there is no way of predicting what the elephant will do.

Humans understand the way other humans behave and tend to use this understanding, con-

sciously or unconsciously, in their locomotion choices. Humans anticipate each other. A significant

contribution of this work is to introduce the notion of anticipation to the field of behavioral control.

4.3 Scope

We limit the scope of this work by allowing no learning, planning, or interagent communication.

Our approach differs from that of Ridsdale, for example, whose agents used neural networks to

learn skills [133]. As discussed in Section 4.1, learning techniques for behavioral weighting are

not yet powerful enough for our domain. Instead we solve the problem of behavioral weighting by

minimizing the number of active behaviors at any given time. Our architecture does not include

a planner, but supports one through a high-level interface. As discussed in Section 3.4, the Hide

and Seek project demonstrated this capability.

Although we discuss an implementation of a terrain awareness behavior in Section 8.2.2, we

do not attempt to build up a map of the environment. Our agents are goal oriented and are only

25

interested in getting from here to there. The system activates, guides the agent to its goal, and then

deactivates; information is not retained from one activation to the next. This was our choice in an

attempt to support a dynamic environment including changing terrain. For references on mapping,

see Elfes [52], Kuipers [87], Matarić [100], and Miller and Slack [109].

Brogan and Hodgins’ work, among others’, includes explicit communication through message

passing [27]. We use no explicit interagent communication. All information is acquired through

the use of simulated sensors that probe the environment and, in the case of computerized agents, is

filtered to limit an agent’s perception to that which a real agent in a similar situation would be able

to sense (Section 8.1). This derives from the ethological concept of stigmergic communication

that is exhibited by some animals and insects who exchange information only indirectly by sensing

each other’s external state [102].

Our architecture is designed, primarily, to support unaided, discrete, legged locomotion. By

unaided, we mean that we have not attempted to support locomotion such skiing or skating. By

discrete, we mean that we have not tried to model flying, unless that flying is discretizable (for

birds, one cycle of flapping might be a discrete unit). By legged, we mean that we have not

attempted to model swimming, for example. Some of these locomotion types may be simulated

using modified versions of our system, however, we leave that to future work.

No existing system claims to produce provably accurate, realistic animal behavior that is

indistinguishable from real animal behavior, nor is it likely that any system of the near future

will make this claim. Our system is no exception; accuracy is left to the designer. Our goal

is to provide a layered architecture that facilitates realism and accuracy through versatility and

modularity, providing the designer with the tools necessary to model a wide variety of behaviors

and an architectural structure and design methodology well suited to experimentation and quick,

intuitive adjustments.

26

Part II

The Architecture

27

Chapter 5

System Requirements

We present here a complete agent architecture for behavioral locomotion and a design methodology

for constructing it. We begin, in this chapter, by presenting the system requirements that motivated

its design. The system must be:

Aware Fault Tolerant Purposeful
Dynamic Flexible Realistic
Easy to Use Modular Robust
Efficient Opportunistic
Extensible Parameterizable

Aware: An agent must be made aware of its environment. Achieving this sort of awareness

is an easy problem to solve, typically through the use of a network of simulated or real

sensors. When polled, the sensors sense the environment and report their results. The

greatest challenge is to choose the set of sensors that best reflects a real agent’s sensory

capabilities, or the set that provides the robot with the most useful information appropriate

to its assigned tasks (the latter being a problem with no single clear solution).

Dynamic: The agent must be able to cope with a changing environment in a timely fashion.

This is subtly different from achieving environmental awareness. To support a dynamic

environment, the agent must remain aware of the environment at all times, even when its

controlling architecture is involved in intense computation. It is dangerous to invoke time-

consuming systems such as planners or vision systems without providing a mechanism of

awareness during that time. For example, imagine a chicken crossing the road. Suddenly

29

and unexpectedly, a car turns the corner and heads toward the chicken. A chicken that is

aware of its surroundings would be able to speed up to get to the other side before being hit,

while one whose locomotion control system was involved in intense computation would not

be so lucky. Clearly it is important for the chicken to remain aware of its surroundings, even

while pondering something else.

The problem of supporting a dynamic environment through maintained awareness can be

solved in two ways. The first is to establish a limit to the amount of computation allowed

during each phase of the S-C-A loop (assuming a behavioral control implementation). A

tighter loop decreases the time between successive environmental samples. The second

solution is to parallelize the system; computationally intensive processes may be performed

in parallel. Meanwhile the agent continues to interact with its environment; it remains aware

of the world.

Easy to Use: One of the major motivations behind behavioral control is to provide a way to

generate reasonable animation (or robot control) with very little user input. The motivation

behind architectures for behavioral control systems is to further reduce the user’s burden by

insulating him or her from system details. These architectures must be easy to use; once the

user inputs a request the agent must operate autonomously. An animator or operator would

not choose to use a system involving constant intervention if doing the work by hand were

easier.

Good systems are versatile, providing the user with many options for a variety of observed

behaviors, but these options should not be a hindrance. Default values should be provided.

Furthermore, upon request from the user, the system should provide detailed information on

what is occurring internally to facilitate generating the desired results. Few systems work

perfectly every time.

Efficient: We want the system to run quickly and efficiently. To that end we advocate simplicity at

every stage of design, a view shared by Agre and Chapman [3], Brooks [32], Soldo [141], and

others. Algorithms should be constant time whenever possible and should require minimal

computation to support a real-time implementation.

30

Extensible: The system must be extensible at every level. Methods should be established for

adding to each system module that take into account the effect of the new part on the existing

system. It is not always sufficient to allow for the addition of a new behavior, for example,

without putting careful thought into how it will interact with the existing set of behaviors.

Flexible: The architecture should support as wide a variety of behaviors as possible. The recent

trend in maximizing flexibility has been to combine two or more control strategies into one

hybrid architecture, or to layer the architecture employing a form of decision-making atop a

low-level reactive or behavioral layer.

Fault Tolerant: The real world is rife with uncertainty. Actions sometimes fail to produce

desired effects, unexpected events occur, and robotic sensor data can be noisy, incomplete,

and imprecise. A robot acting in the real world or a simulated agent acting in a simulated

world must anticipate problems that may arise and plan for them. First demonstrated by

Firby [54], this is known as both cognizant failure and flexible plans and is discussed by

many researchers including Agre and Chapman [3], Gat et al. [60, 61], and Slack [139].

According to Gat, obtaining reliable sensor data is one of the thorniest problems in mobile

robot navigation. Often, this problem is resolved by applying the notion of cognizant failure,

typically through a high-level reasoning process. Another problem solved by this technique

is that of “getting unstuck.” When an agent is stopped by a combination of obstacles, it must

turn away from the obstacles so that it can proceed. If this problem were anticipated, the

system would detect the situation and resolve it. Otherwise, the agent might halt or wander

in a circle, getting caught in a local minimum. Gat and Slack note that the choice of whether

to turn right or left to avoid the obstacles is non-trivial [57, 138].

Modular: At times one must abstract over the unavailability of certain parts of the system. For

example, in computer graphics, vision is often simulated through ray casting or z-buffering

algorithms combined with database queries, for lack of sufficiently powerful or efficient

image processing techniques. We claim that although we make these simplifications, we do

not lose generality if we take a modular approach to system design; as replacements become

available, they can be plugged in. In robotics applications, sensors can be replaced when

better ones become available. Kaelbling strongly advocates modularity, pointing out that it

31

makes a system easy to implement and understand [80].

Opportunistic: As an agent locomotes through its environment, it may have a single goal or it

may have multiple goals. As discussed in Section 4.1, although we limit the size of the

active goal set to one at any given time, we acknowledge the possibility of multiple goals.

An opportunistic system maintains a single goal while considering others as well and reacts

when advantageous circumstances arise, possibly switching to another goal.

Agre and Chapman [3], Brooks [32], and Webber and Badler [154] advocate opportunistic

agents. As a motivating example, imagine a simulated elephant in search of a bag of peanuts.

As part of its search pattern it is to walk to the end of a hallway. Its two goals are to walk

to the end of the hallway and to find a bag of peanuts. At the system level the first goal is

active, so the system takes the elephant down the hallway. Imagine that there is a bag of

peanuts along the way. An opportunistic system would have a mechanism for interrupting

itself before the elephant walked past the peanuts and could take advantage of the situation

immediately while a non-opportunistic system would have to wait until the elephant achieved

its current goal.

Parameterizable: Although one of the design goals is simplicity, control over the agent’s loco-

motion style must not be sacrificed. To this end, the system designer should make as much of

the system parameterizable as is reasonably possible. Varying the parameters should result

in variable perceived agent behavior, making it possible to simulate state or personality

attributes.

For example, imagine an elephant walking through a field. A system providing only a single

locomotion style would be limited and uninteresting. The elephant’s walk would always

look the same. A parameterized system providing access to such parameters as locomotion

speed and agent inertia would allow for much more interesting, varied behavior. A “rushed”

elephant might walk faster and an elephant that had too much to drink at the local bar might

stagger as a result of its lowered inertia.

Purposeful: According to Brooks [32], a creature should do something in the world; it should

have some purpose in being. An agent should have a goal. The goal may be survival-oriented

with no specific desired location as in foraging, or it may be more concrete as in walking to

32

a specific location, agent, or object. In either case, the agent’s locomotion is motivated; it

does not wander aimlessly.

Realistic: An agent must exhibit correct observed behavior, the notion of perceived realism or

correctness. It should appear to do what a real human (or other animal) would do in a similar

situation. This requirement applies to the gamut of behaviors ranging from the blatant, such

as interobject penetration, to the subtle, such as foot placement. It is obvious to any observer

that something is wrong when an agent walks through a wall. However, when the physical

simulation of a human’s walk is incorrect, even by a small amount, the resulting animation

will look “wrong” to an observer who has spent his or her entire life passively noticing

how humans walk. “Because people are attuned to the subtleties of human appearance and

motion, they are very demanding of graphical representations of human figures” [75]. Both

of these situations can be equally damaging to the final animation.

With the goal of achieving realism, we enforce the policy of limiting an agent’s perception

(Section 8.1) and we introduce the notion of anticipation (Section 8.2) throughout the

system. Limited Perception prevents an agent, whose sensors are potentially omniscient in

a simulated environment, from reacting to stimuli of which it should not be aware. Attraction

to an object the agent can “see” is reasonable whereas attraction to an object that is hidden

behind a building is not. Anticipation extends the system from the traditional approach of

reacting to the world at the moment it is sensed to the novel approach of reacting to the state

in which the world is predicted to be at some point in the future.

Robust: Nearly all modern systems include robustness as a system requirement. A robust system

is one in which an agent’s behavior is maintained despite minor changes to the environment.

Furthermore, an agent’s behavior must not collapse even when it is moved to a completely

new environment. A properly designed, properly built system should allow for a wide

variety of interesting environments.

We were careful to consider all of these requirements in designing our locomotion control

architecture. We are now ready to present the architecture itself and its design methodology.

33

34

Chapter 6

Design Methodology

State Machine

Behaviors

Locomotion Engine

Agent Model

Figure 6.1: The Architecture

This chapter presents a formal description of the architectural design methodology. The goal is

to build a behavior-based locomotion control system that adheres to the system requirements laid

out in Chapter 5. The choice of behavioral control has the advantage of speed, addressing the

system’s efficiency requirement. Figure 6.1 illustrates the architecture. The following sections

present design methodologies for the locomotion engine, the behaviors, the state machine, and the

agent model.

At the lowest level, the locomotion engine acts as a liaison between the system and the

environment, controlling agent locomotion directly based on active behaviors and insulating the

user from system details. At the highest level, the state machine is capable of a discrete decision

process and is responsible for scheduling and controlling the set of behaviors, thereby controlling

35

agent locomotion indirectly. Adding an agent model to the architecture to contribute to the state-

machine’s configuration and the behaviors’ and locomotion engine’s parameterization allows for

a locomotion style reflecting the agent’s physical state and personality.

6.1 Creating the Locomotion Engine

State Machine

Behaviors

Locomotion Engine

Agent Model

Effectively an embodiment of a sense-control-act loop, the locomotion engine is responsible for

controlling agent locomotion based on the agent’s set of active behaviors. In this context, we

model the abstract notion of a behavior as a function that maps a state of the world to the stress of

being in that state (Figure 6.2). More specifically, we refer to this as an instantaneous behavior

as described in Section 6.3.1.

World State Stress

Figure 6.2: The Behavior Function Template

We define an operation on the world to be a mapping from the current world state to a new

world state where a particular action has occured. In the case of legged locomotion, the agent

takes a discrete step. In the case where action is continuous such as a flying bird or a rolling robot,

action is discretized, usually by choosing a small, fixed time increment. The agent rolls or flies for

this amount of time according to a chosen velocity vector. In either case we must choose a small

number of operations (corresponding to actions) which we will consider for the agent during the

next time increment. The locomotion engine evaluates each of these operations during its sense

phase. During its control phase it selects the one corresponding to the least stressful new world

state and applies the selected operation during its action phase.

36

The following is a formal description of the locomotion engine’s central S-C-A loop as it

applies to a single agent. Given the current state of the world, Wt, a set, O, of m operations on

the world, and a set, B, of n behavior functions associated with an agent in the world, we wish to

calculate the set, F (for future), of possible next states of the world and the associated stresses, S
and T .

World State at Time t Wt

Operations O : fo1� � � � � omg
Behavior Functions B : fb1� � � � � bng
Next World States at Time t� 1 F : ff1� � � � � fmg
Stresses S : fs11� � � � � smng
Total Stresses T : ft1� � � � � tmg

In each of the following, i � [1� m] and j � [1� n]. First, we calculate the set of next world

states by applying the set of operations to the current world state (F � O �Wt):

fi � oi (Wt) (6.1)

Next, we calculate the set of stresses by applying the set of behavior functions to the set of

next world states (S � B � F):

sij � bj (fi) (6.2)

Finally, we calculate the set of total stresses for each next world state by summing the subset

of stresses associated with that state:

ti �
nX
j�1

sij (6.3)

Now we choose a next world state of minimal total stress and the corresponding operation:

Wt�1 � oi (Wt) where oi �
��
�o j

nX
j�1

bj (o (Wt)) � min (ti)

��
� (6.4)

To achieve the chosen next world state, apply the operation to the current world state.

37

The locomotion engine’s sense phase is simply the application of the behavior functions. The

remaining calculations including choosing which operation to apply make up the control phase,

and the application of the chosen operation occurs as the action phase.

6.2 Choosing the Behaviors

State Machine

Behaviors

Locomotion Engine

Agent Model

The most important step in constructing this type of system is selecting a set of behavioral

competences. This set determines the agent’s locomotion repertoire and contributes to design

decisions for the remainder of the system. We now address the issue of how to choose an

appropriate set of behaviors, including conditions for selection and properties the behaviors should

enjoy. Much of this discussion was motivated by Matarić [105].

6.2.1 Selection Criteria

We adopt Matarić’s selection criteria:

We postulate that, for each domain, a set of behaviors can be found that are basic

in that they are required for generating other behaviors, as well as being a minimal set

the agent needs to reach its goal repertoire.

Essentially we choose a set of behaviors which form a basis, in the mathematical sense, for

the universe of agent responses. Each behavior must be necessary and the complete set must be

sufficient for the task at hand.

Necessity: Each behavior we choose for a particular domain must be necessary for that domain.

There must exist a goal that cannot be achieved by any of the other basic behaviors or their

combinations. A basic behavior is one that cannot be reduced to a combination of other

behaviors.

38

Sufficiency: The entire set of behaviors we choose for a particular domain must be sufficient for

that domain. Every desired response must be expressible through some combination of basic

behaviors, i.e., no other behaviors are necessary.

6.2.2 Additional Properties

In addition to necessity and sufficiency, we propose the following additional properties each

behavior should possess:

Locality: A behavior must obey the principle of limited perception discussed in Section 8.1.

Simply put, a simulated agent must not have access to information that would be unavailable

to a real agent in an identical situation.

Robustness: Under reasonable conditions, a behavior should induce intended results regardless

of changes made to the environment. An agent moved from one environment to another

should exhibit similar observed behavior.

Scalability: The behavior should be robust with respect to environment size.

Simplicity: The implementation should be as simple as possible while still accurately simulating

the behavior. Complex behaviors are more difficult to write, debug, and apply.

6.3 Partitioning the Behaviors

As discussed in Section 3.3, three approaches to building control systems prevail: traditional

planner-based approaches, purely reactive or behavioral approaches, and combinations of the two.

In some cases, a state-based decision process replaces or is combined with a planner. We advocate

a combined, layered approach allowing for both reactive and state-based control.

We partition the set of behaviors into two subsets, referring to behaviors that do not require

stored information, i.e., memoryless behaviors, as instantaneous behaviors (this is consistent

with Gat’s notion of reactive behaviors that continuously react to the environment [61]), and

to those that do require memory as memory-reliant behaviors (Figure 6.3). These two types of

behaviors require two different implementations, both provided by the architecture. We implement

instantaneous behaviors through the combination of the locomotion engine and behavior layers,

39

and memory-reliant behaviors through the state-machine layer. To determine in which way the

behavior is more appropriately implemented, the system designer must simply decide whether or

not the behavior requires memory.

Behaviors

Instantaneous

Memory−Reliant

Figure 6.3: Partitioning the Set of Behaviors

6.3.1 Instantaneous Behaviors

For each instantaneous behavior the system designer must provide a behavior function which maps

the instantaneous (current) world state to a measure of stress (Figure 6.2). The locomotion engine

applies these functions during its sense phase.

We now partition the set of instantaneous behaviors into two subsets: level 0 and level 1

behaviors (Figure 6.4).

Behaviors

Instantaneous

Memory−Reliant

Reflexive Goal−Based

Figure 6.4: Partitioning the Set of Instantaneous Behaviors

40

level 0: Reflexive and Physics-Based Behaviors

Level 0 behaviors are named after Brooks’ subsumption architecture’s level 0 [32]. They are the

set of instinctive reflexes which guarantee “survival,” generally through collision avoidance [101],

exhibiting a fixed behavioral pattern in response to stimuli [7, 108]. Level 0 behaviors are always

active while the agent locomotes, but can be inhibited or overridden entirely by higher levels (the

state machine or the agent model).

We also add “physics-based” behaviors to this set. Physics-based behaviors make up the subset

that implement the agent’s physical properties (such as inertia) and affect the perceived realism of

the agent’s locomotion. We add them at this level because they too are always active and are often

affected by higher levels.

level 1: Goal-Based Behaviors

Level 1 behaviors are named after Brooks’ subsumption architecture’s level 1. They are the set

of goal-based behaviors, generally variations of attraction, that allow the agent to go places. As

previously discussed in Section 4.1, our novel approach to goal-based behaviors is to allow only

one to be active at any time. An agent who is to walk to both the bank and the post office, for

example, must choose between the two goals at any given time rather than combine or average

them. We relegate goal arbitration and opportunistic responses to the state-machine level.

6.3.2 Memory-Reliant Behaviors

Memory-reliant behaviors require mechanisms for storing local information and for maintaining

state. Therefore, we choose the state-machine paradigm as a natural way to implement each

behavior’s discrete decision processes. The chasing behavior is a good example and is described

in more detail in Section 7.6.3. Chasing alternates between two states: an attraction to the target

when it is visible, and an attraction to the target’s last known location when it is occluded. The

location-attraction state requires remembering where the target was last seen as well as its last

observed velocity.

For each memory-reliant behavior the designer must provide: a set of preconditions (applica-

bility conditions), a set of interruption conditions, a set of termination conditions, and a behavior

state machine (BSM) for that behavior (Figure 6.5).

41

Behavior
State Machine

Preconditions

Interruption
Conditions

Termination
Conditions

Figure 6.5: The Memory-Reliant Behavior Template

Before the locomotion control system (LCS) executes a BSM, its preconditions must be

achieved. When this set is empty, it is achieved vacuously. The sole precondition for chasing in

our system is that the target must be visible to the agent. Otherwise, the agent would not know

where to begin to search for the target and another behavior, such as path-following, might be more

appropriate to the situation.

During execution, if at any time either the set of interruption conditions or the set of termination

conditions is achieved, LCS halts the BSM. In the former case, LCS chooses and executes a new

BSM based on preconditions. In the latter case, LCS “cleans up after itself” and exits. Interruption

and termination conditions are not required, but add to the system’s flexibility. They are a set of

arbitrarily complex expressions passed to the system as an optional parameter. An example of an

interruption condition is a situation in which the agent’s priorities have changed based on newly

acquired information. A condition arises where it is more appropriate for the agent to change its

current behavior, but not so drastic a change that termination is necessary. A seeker in the game of

hide and seek might be chasing one agent only to discover that another agent is suddenly a better

target (maybe it is closer). If the same seeker’s target were to be observed arriving at the safe

“home” location, then, although chasing would still be possible, a termination condition would

halt the unnecessary chasing and allow the calling user or system to make a new plan.

The BSM schedules and controls the set of level 1 goal-based behaviors to simulate the

memory-reliant behavior and simulates memory in the form of local variables. All the information

provided here will be used to build a single state-machine that combines these behaviors, and

activates and deactivates each of the instantaneous behaviors.

42

6.4 Creating the Agent Model

State Machine

Behaviors

Locomotion Engine

Agent Model

A behavioral control system composed of behaviors and state machines is sufficient for generating

locomotion. However, this locomotion is unvaried and hence uninteresting. Matarić’s groups

of robots use identical software, but they behave differently due to their slightly varied physical

properties [104]. In the case of identical physical or simulated agents, something else is needed

to differentiate the agents. Our aim is to design a system that includes an agent model, including

state and personality attributes over which the user has control.

Without the agent model the agents would have the undesirable tendency to look personality-

free, approaching each challenge without variation. With the addition of an agent model the

architecture allows for the effects of agent state and personality. Each part of the architecture uses

the agent model for parameterization. In this way we are able to encode a visual impression of

personality as advocated by Badler et al. [15] and Perlin [126, 127].

Figure 6.6 illustrates the agent model. The system designer is responsible for choosing a set of

system parameters and a set of model attributes, and for establishing a correspondence between the

two sets. The user will be required to choose the degrees to which the attributes affect the system.

Finally, the system itself calculates the parameter values, based on the established correspondence

and chosen degrees, which are then used to adjust various aspects of the agent’s locomotion.

6.4.1 System Parameters

The first step in designing the agent model is to choose a set, P , of n system parameters which,

when adjusted, have an observable effect on the agent’s locomotion style. This set might include

parameters that affect the locomotion’s physics such as speed or inertia, or parameters that affect

“cognitive” choices made by the state machine. It is important to restrict the set to parameters that

might be affected by the agent’s state or personality. Environmental parameters such as gravity,

43

a1

a2

am

d1

d2

dm

p
2

p
1

p
n

v
2

v
1

v
n

Attributes

System Parameters

Parameter Values

Degrees

System
Designer

User

Calculated

Figure 6.6: The Agent Model

while potentially useful, are inappropriate here.

6.4.2 Attributes

The next step is to choose a set, A, of m state and personality attributes. Examples include state

attributes such as fatigue or intoxication, and personality attributes such as curiosity or caution.

This set may vary significantly from one domain to another or even from one implementation to

another, so we leave the selection process as a design decision. The one piece of advice we offer is

to keep it simple. It is unnecessary to keep the set small so long as the user limits his or her choice

of active attributes to a reasonably small number.

6.4.3 Establishing the Correspondence

Given P and A, the system designer’s final responsibility is to establish the correspondence

between them. Since each attribute affects each parameter in a different way, this involves filling

out the matrix from Figure 6.6 as illustrated in Figure 6.7. Each matrix entry contains all the

information necessary to produce a recommended parameter value, given the user-defined set,

D, of degrees (Section 6.4.4). We describe the three parts of each matrix entry in the following

sections.

44

a1

a2

am

d1

d2

dn

p
2

p
1

p
n

v
2

v
1

v
m

Attributes

System Parameters

Parameter Values

Degrees

0

100

P

C

50

85

I

D 5

Figure 6.7: Sample Agent Model Entries

Range of Values

For the sake of simplicity and without loss of generality, the agent model treats all system parameter

values as being in the range [0� 100] with 50 often being the default. Although the system maps

this range, usually linearly1, to the actual implemented range, we keep this mapping transparent at

the agent-model level.

The range of values, made up by the first two numbers in each matrix entry, specifies the

subrange of valid parameter values for the entry. The exact value in this subrange is based on

the attribute’s degree. Consider the speed-parameter/rushed-attribute entry as an example. A

reasonable subrange for this combination might be [55� 90] where a slightly rushed agent might

travel at a rate of 60 while an agent in a “big” rush might move at a rate of 85 or even 90.

Proportional or Inversely Proportional

As another example, consider the speed-parameter/fatigued-attribute entry. A reasonable subrange

for this combination might be [10� 40] where a slightly fatigued agent might travel at a rate of

1The linear mapping has proven to be sufficiently general while still being intuitive. It may be interesting, however,
to experiment with non-linear mappings in the future.

45

35 while an extremely fatigued agent might move at a rate as slow as 10. This example differs

from the rushed example in that as fatigue increases the value decreases. In this case we call the

relationship “inversely proportional” and specify it as such with an “I” (as opposed to a “P”) as the

third datum in the appropriate entry.

Combinatorial or Dominant

The final part of each entry specifies how to arbitrate among it and all the other recommended

parameter values in the corresponding parameter’s column. An attribute may have one of three

types of effects on a parameter. It may have no effect (N), a combinatorial effect (C), or a dominant

effect (D). If all the entries in one column are marked as having no effect, the parameter is assigned

the predefined default value, usually 50. Otherwise, if all the contributing values are combinatorial,

they are simply averaged, their relative contributions already having been scaled according to their

degrees. When one or more entries are dominant, the value of the one with the highest priority

(the value next to the “D” in the figures) is taken and the other entries’ values are ignored.

6.4.4 Degrees

As with system parameters, for consistency, we choose to limit each degree to the range (0� 100].

This value represents the “degree” to which the agent is to exhibit the attribute. Note that this set

does not include zero. We reserve zero to represent an inactive attribute where the system ignores

the corresponding row of entries for parameter value calculations. The system presents the user

with a set of attributes and requests a corresponding set of degrees, possibly through an interface

including input boxes or slider bars. This is the extent to which the user is exposed to the system.

He or she remains insulated from the implementation details.

6.4.5 Calculating the Results

The algorithm for calculating the results, V , is as follows. First, calculate each recommended

value by mapping the row’s degree over the specified range, either proportionally or inversely

proportionally.

Given the low and high recommended values and the proportional flag for each entry and the

set of degrees:

46

Set of Low Recommended Values L : fl11� � � � � lmng
Set of High Recommended Values H : fh11� � � � � hmng
Set of Proportional Flags P : fp11� � � � � pmng
Set of Degrees D : fd1� � � � � dng

We wish to calculate the set of recommended parameter values:

Set of Recommended Parameter Values R : fr11� � � � � rmng

In each of the following, i � [1� m] and j � [1� n]. The algorithm for calculating rij is as

follows. If pij � “P”, indicating a proportional correspondence, then:

rij �
di � 1

99

�
hij � lij

�
� lij (6.5)

Otherwise pij � “I”, indicating an inversely proportional correspondence:

rij �
100� di

99

�
hij � lij

�
� lij (6.6)

Then, for each parameter, examine the contribution entries. If they are all “N”s (or are all

of degree zero and thus inactive), then set the parameter value to its default value. If there is

at least one active dominant attribute, set the parameter value to the recommended value of the

dominant entry of highest priority. Otherwise, set the parameter value to the average of all the

active combinatorial attributes.

As an example, see Figure 6.8. Row 3 is ignored in all three cases because its degree of zero

indicates that it is inactive. r11, r21, and v1 are calculated as follows:

r11 �
100� 70

99
(85� 50) � 50 � 61 (6.7)

r21 �
15� 1

99
(100� 0) � 14 (6.8)

v1 �
61 � 14

2
� 37 (6.9)

47

a1

a2

a3

p
1

p
2

p
3

0

70

15
0

100

50

85

27

100

30

90

25

99

40

80

21

88

P

I

I

P

P

P

I

C

C

D 3

C

D 5

D 2

N N D 7

v1 v2 v3

d

d

d

1

2

3

Figure 6.8: Sample Parameter Value Calculations: The Initial Conditions

Figure 6.9 shows all the recommended parameter values. Since a2 is the active dominant

attribute of highest priority for parameters p2 and p3, the parameter values are assigned the

respective recommended parameter values from row 2. Note that activating attribute a3 would

only affect parameter value v3.

a1

a2

a3

p
1

p
2

p
3

0

70

15

359037

C

C

D 3

C

D 5

D 2

N N D 7

−− −−−−

90 3514

72 6861

v1 v2 v3

d

d

d

1

2

3

Figure 6.9: Sample Parameter Value Calculations: The Results

6.5 Building the State Machine

In the previous sections we presented methods for creating a locomotion engine and an agent

model. We also outlined methods for choosing a set of behaviors and for partitioning it into

48

State Machine

Behaviors

Locomotion Engine

Agent Model

three subsets: level 0 reflexive and physics-based behaviors, level 1 goal based behaviors, and

memory-reliant behaviors. Now we explain how to build the state machine that will combine

all the parts, implementing the selected set of behaviors and embodying the desired locomotion

control system. Figure 6.10 illustrates the design. Because every system will differ, we omit

implementation details, describing the design abstractly.

START EXIT
Set Parameters

Based on
Agent Model

Select a BSM
Based on

Preconditions

Call the
BSM

Activate
Level 0

Behaviors

Deactivate
Level 0

Behaviors

Figure 6.10: The Locomotion Control System Flow Diagram

As part of its initialization process, LCS first adjusts system parameters based on the agent

model to give the resulting locomotion an appearance that reflects the selected state and personality

attributes. For example, if the agent were intoxicated, both its speed and inertia would be decreased.

The other parts of the system should include a way to adjust the necessary parameters based on the

agent model. Also as part of system initialization, LCS activates the set of level 0 behaviors which

will remain active for the duration of the agent’s locomotion (except when affected by a BSM).

Next, LCS enters its main loop (highlighted in the figure) where it selects and executes BSMs.

The selection process is based on the sets of preconditions. Each BSM’s preconditions are evaluated

in the current context in a predefined order. The first BSM whose preconditions are satisfied is

executed. If none of the preconditions are satisfied, the state machine deactivates the level 0

behaviors and exits reporting its “failure” status. If at any time during the execution of a BSM

its termination conditions are achieved, LCS halts its execution, deactivates the level 0 behaviors

and exits reporting its “success” status. When a BSM terminates normally or when its interruption

49

conditions are achieved, LCS halts its execution if necessary and returns to the selection process.

Since there are cases where a level 1 behavior alone will achieve the goal, the set of level 1

behaviors must be made available during LCS’s selection process. For consistency, sets of

preconditions, interruption conditions and termination conditions, and a simple memoryless BSM

must be provided for each one. These networks are then added to LCS’s set of BSMs and executed

when appropriate.

6.6 Extensibility

Each of the four architectural components of our system can be modified or extended as we will

explain in this section. At the lowest level, the locomotion engine can be modified in two ways

to support different locomotion styles or different gaits. The footstep-generation module can

be modified by changing the shape of the region reflecting where the agent can be in the next

simulation step (after applying an operation to the current world state, or after taking the current

step). For example, a rolling robot may be able to move in any direction, thus requiring a circular

region instead of the fan-shaped region used for walking. Also, the action module can be replaced

with another action module that supports a different gait such as running, hopping, or skipping.

Integrating a new behavior into an existing system depends on the type of behavior being

added: reflexive, goal-based, or memory-reliant. In each case, the required behavioral elements

must be written, i.e., the behavioral function or the behavioral state machine and its associated

conditions. To add a new reflexive behavior to the system, it is sufficient to add it to the system

state machine’s list of level 0 behaviors. It will then get executed whenever the pre-existing level 0

behaviors are executed. To add a new goal-based behavior, it need only be made available for

execution. The system state machine is responsible for scheduling this new behavior as it is for

any level 1 behavior. The system designer should examine each existing behavioral state machine

and decide if it should be modified to accommodate this new level 1 behavior. To add a new

memory-reliant behavior to the system, its set of preconditions must be inserted into the list of

BSM preconditions considered by the system state machine. During the BSM selection phase, the

preconditions will be evaluated in the proper order.

Adding a new system parameter requires inserting parameterizable code at the appropriate

50

place in the system, and then integrating the new parameter into the agent model. The code

can be part of the locomotion engine, the behaviors, the state machine, or any other part of the

system so long as there is an accessible parameter to be modified by the agent model. Integration

into the agent model requires the system designer to establish the correspondence between the

existing attributes and the new system parameter. Adding a new attribute is simpler, only requiring

the system designer to establish the correspondence between it and the existing set of system

parameters.

6.7 Design Summary

To summarize, the design process consists of these steps:

1. Locomotion Engine

Implement the S-C-A loop

2. Behaviors

Choose the set of behaviors

Partition the set of behaviors into instantaneous and memory-reliant subsets

Partition the set of instantaneous behaviors into level 0 and level 1 subsets

Write behavior functions and state machines

3. Agent Model

Choose the set of system parameters

Choose the set of attributes

Establish the correspondence between them

Provide a mechanism for user interaction

4. State Machine

Build the state machine

In the chapters that follow we demonstrate the design process by designing and building a

human locomotion control system and presenting the results.

51

52

Part III

A Concrete Example

53

Chapter 7

A Human Locomotion Control System

We demonstrate the design process by building a locomotion control system (LCS) for simulated

human agents. LCS endows the agents with reflexive avoidance, goal-based attraction, chasing, and

path-following behaviors and provides an agent model allowing manipulation of such parameters

as agent speed and inertia. LCS adheres to the limited perception policy and exhibits anticipation

at every level of the architecture (see Issues, Chapter 8).

7.1 Development Environment

Running on Silicon Graphics Iris (SGI) workstations, Jack R�1 is a human modeling and simulation

program under development at the Center for Human Modeling and Simulation at the University

of Pennsylvania. We use Jack’s framework for general object locomotion. Jack features anthro-

pometrically reasonable human models and general, real-time, visually realistic and dynamically

sound locomotion [82, 83, 84, 128]. Additionally, Jack includes Becket’s Behavioral Simulation

System [18, 20] and PaT-Nets [13, 85], a facility for writing state machines which run in parallel

with simulations. These features combine to produce realistic looking simulations.

1Jack is a registered trademark of the University of Pennsylvania

55

7.2 Locomotion Engine

Becket’s simulation architecture exhibits several features also found in the subsumption archi-

tecture [29], nouvelle AI [30], reactive planning [66], situated agents [3, 95], computational

neuro-ethology [95], and behavioral control/behavioral animation [71, 129, 130, 157], namely:

� A bottom-up approach

� Motivated by the animal sciences

� Tightly coupled sensors and effectors

� Integrated behaviors which, if used in isolation, have observable, beneficial effects

� Emergent behavior

The Behavioral Simulation System (BSS), the motivation for our locomotion engine, provides

general locomotion of objects in Jack; we use it to generate human locomotion. Central to BSS

is a sense-control-act loop. In the sense phase simulated sensors sense the environment. This

information determines where the agent should step in the control phase. The agent takes the

chosen step in the act phase.

Behaviors determine how an agent acts. In BSS, a sensor (Section 7.3) and a control behavior

(attraction or avoidance - Section 7.4) combine to form a behavior (Figure 7.17 - Section 7.5). A

behavior maps a potential new foot position to the “stress” of stepping there. From among the

possible choices, the control phase leads the agent to take the least stressful step.

A behavior activates when “bound” to an agent. While active, its output contributes to the

stress calculations. Behaviors may be bound or unbound at any time during a simulation, and thus

activated or deactivated. Locomotion is performed indirectly by binding behaviors to humans.

BSS, constantly monitoring the environment, immediately initiates the appropriate locomotion.

7.2.1 The Simulation Sense-Control-Act Loop

Webber and Badler discuss Sense-Control-Act (S-C-A) loops in depth [154]. Each iteration

of BSS’s S-C-A loop includes perception, control, and action phases (Figure 7.1). Three stages

compose the perception phase: (1) generation of possible footsteps, (2) polling of active behaviors,

56

Perception

Control

Action

Figure 7.1: The Behavioral Simulation System’s Central Simulation Loop

and (3) calculation of overall stress. The first stage determines a set of points to which the agent

can step. Then, in the second stage, behavior function evaluation determines stress values for each

point; stress is proportional to an agent’s desire not to step at a given point. Finally, given the

active behaviors, the sum of the stress values for each point determines the overall stress for that

point.

The control phase selects the least stressful potential point and directs the action phase to

execute the locomotion. Formally, Becket’s BSS functions as the locomotion engine described

in Section 6.1, so it is a good lowest level for our system. When simulating human locomotion,

operations consist of footsteps. Each time through the S-C-A loop the agent takes one step.

7.2.2 Perception

Perception includes the generation of possible steps, the active behavior evaluation, and the

calculation of overall stress.

Generation of Possible Steps

Robotics often employs a pure potential-field approach where the robot is viewed as a point-mass

subject to attractive and repulsive forces [7, 8, 81, 147]. Unlike robots or more abstract objects

which can move in any direction, human locomotion is generally limited to a small set of possible

next footsteps. The first part of perception generates candidate foot positions. Three parameters

determine the set of possible positions:

� Minimum Step Length (MIN)

� Maximum Step Length (MAX)

57

� Maximum Turning Angle (�)

Given the agent’s position and orientation, these parameters define a fan-shaped region in front

of the agent (Figure 7.2). The agent can step anywhere within this region. The set of the agent’s

possible new states, P , corresponds to the set of points to which the agent can step next. The set

of points is the intersections of concentric arcs and uniformly spaced radii. The number of arcs

and radii can be varied.

θ θ

Agent

MIN

MAX

Figure 7.2: Calculating the Set of Possible Next Foot Positions

The agent’s current location may also be added to this set. If this point is selected as the point

to which to step, the agent does not move. Care must be taken when choosing this option to avoid

situations where the agent may get stuck in a local minimum. When side-stepping and backing

up are desired as additional gait options, the fan-shaped region can be modified to include regions

behind and to the side of the agent. If a point in either of these regions is selected as the point to

which to step, BSS selects side-stepping or backing up for the agent as appropriate.

Active Behavior Evaluation

For each state p � P the system simulates p and then polls the behaviors. In this way, the system is

anticipating the state of the agent one step in the future. Each behavior returns a stress value which

is proportional to the undesirability of the state. The stress value is multiplied by a user-defined

scalar and raised to a user-defined power giving the user control over the relative contributions

58

of the behaviors. Sometimes a behavior computes two stress values: one based on the agent’s

position and one based on its orientation. This requires two sets of user-defined constants.

Behaviors have access to the entire environmental database and are effectively omniscient.

For the sake of realism, the designer should limit the amount or type of knowledge extracted.

Section 8.1 addresses this issue of limited perception.

Calculation of Overall Stress

The overall stress of a particular state is the sum of the weighted stresses output by each active

behavior where the weights are the user-defined scalars and powers.

7.2.3 Control and Action

After computing each state’s overall stress, BSS selects the state with the lowest overall stress in

the control step. In the action step, invocation of the locomotion system causes the agent to step

to the appropriate point. The agent enters a new state and the S-C-A loop continues.

7.3 Basic Sensors

Angle
DistanceSensorPotential

New State

Figure 7.3: The Sensor Function Template

Sensors simulate the perceptual part of a behavior by sensing an element of the environment [18,

20, 70, 85, 113]. They are functions that return the distance and angle to this element from the

agent in the potential new state (Figure 7.3). The following sections discuss object, location, line,

and proximity sensors.

7.3.1 Object

An object sensor senses a single object in the environment and usually combines with an attract

control behavior forming an attraction behavior. The sensing is global; there are no restrictions

such as visibility limitations. As a result, care must be taken when using this sensor: the agent will

59

walk through walls or other objects to get to the object unless bound with the proper avoidances,

and realism may be compromised by an attraction to an occluded object. Since an object sensor

always senses the object’s current location, following or chasing behaviors are possible.

Implementation

Agent

Object

Orientation

D

R

R

O

A

θ

Figure 7.4: The Mathematics of an Object Sensor

In Figure 7.4, RO and RA are the radii of the object and agents’ bounding cylinders. An object

sensor outputs D and � as indicated. D is the distance between the agent’s and object’s bounding

cylinders and � is the angle to the object relative to the agent’s orientation.

Discussion

The research that led to our architecture required surmounting many obstacles along the way.

Although many authors choose to omit these implementation details, we feel that it is our respon-

sibility to present them in order to aid the reader who wishes to build our system. Therefore we

present some of the pitfalls that befell us and how we overcame them.

When people write papers about these things a lot gets shoveled under the rug. The

rug often looks like the Himalayas.

– Max Mintz –

Basing D on the distance between bounding cylinders speeds up calculations and is a good

approximation in general, however, it introduces severe asymmetries for oblong objects. Figure 7.5

60

R2 Agent 2

Agent 1
R1

Goal Object

Bounding Cylinder

Error

Figure 7.5: Asymmetry Caused by the Use of Bounding Cylinders

shows that, depending on its approach direction, an agent will stop at different distances from the

object. This error distance is clearly visible when the goal is large. An agent walking to a car will

stop several feet away from the car if it approaches from the side.

Our solution is to associate both bounding cylinders and bounding boxes with each object,

both centered at the object’s centroid. Distance is approximated based on the bounding shape that

better fits the object. This solution increases the system’s accuracy far more than it decreases its

speed.

7.3.2 Location

Agent

Location Orientation

D

RA

θ

Figure 7.6: The Mathematics of a Location Sensor

A location sensor is nearly identical to an object sensor, usually forming part of an attraction

behavior (Figure 7.6). It differs by sensing a fixed point in space, not corresponding to an object.

Since a location is a point, a location sensor does not suffer from the same problems as an

61

object sensor. However, the original implementation did not allow precise control over the agent’s

final position. The agent is was only guaranteed to arrive within about half a meter (the radius of

a human’s bounding cylinder) of the goal location.

We found it useful to improve the location sensor’s accuracy by basing the sensor’s output on

the distance between the forward foot and the goal location. This allows more precise control over

the agent’s final location with little reduction in the system’s speed. The agent ends the simulation

standing at the goal instead of near it.

7.3.3 Line

A line sensor senses a single line segment which must be associated with an object. If the object

moves, the line segment moves, maintaining its position relative to the object. Line sensors

typically sense long, narrow objects such as walls, sidewalks, or streets. When combined with an

attract control behavior, they can keep an agent on a sidewalk, a path, or on the right side of a

hallway; when combined with an avoid control behavior, they can prevent an agent from walking

into a busy street or from walking through a wall.

Implementation

Agent

Orientation

D

RA

θ

Line
Segment

FOVFOV

Figure 7.7: The Mathematics of a Line Sensor

In Figure 7.7, D is the distance from the agent’s bounding cylinder to the closest point on the line

segment. If the angle, �, to this point is within FOV (the sensor’s field-of-view) of the agent’s

orientation, the sensor outputs D and �. Otherwise, its output is zero, indicating that the segment

is not in the specified field-of-view.

62

Discussion

Agent

Orientation

D

RA

θ

FOVFOV

Wall

Line
Segment

Figure 7.8: An Undetected Wall

When an agent approached a wall at an angle greater than FOV from the wall’s normal vector, the

wall remained undetected and the agent walked through it (Figure 7.8). Additionally, because of

discrete sensing, an agent’s bounding cylinder was sometimes on one side of a segment at the end

of one step and on the other side at the end of the next step; the agent walked through the segment.

Our first solution to the first problem was to restrict FOV to �
2 or greater. While this prevented

walls from going undetected it also prevented an agent from walking parallel to a wall without

getting pushed away. We discovered that a better solution was to develop a collision prevention

behavior that output infinite stress when the agent penetrated another object. When combined with

a line sensor, this solved the second problem as well.

7.3.4 Proximity

A proximity sensor senses a predetermined set of objects. This sensing is local; the sensor is

only sensitive to objects which intersect a fan-shaped region roughly corresponding to the agent’s

field-of-view (Figure 7.9).

An “intrusion” distance, �, is calculated for each object sensed by the proximity sensor whose

bounding cylinder intersects its region of sensitivity. Shown as �1 and �2 in Figure 7.9, an object’s

intrusion distance is the distance from the outer radius of the region to the point on the object’s

bounding cylinder nearest the agent. A simulated object is calculated as the weighted average of

63

Agent

Orientation

RA

Radius

FOV

R1

R2

θ1

θ2

Object 1

Object 2

D1

D2

α
α1

2
RU

Object
An Undetected

Figure 7.9: The Mathematics of a Proximity Sensor

all the detected objects where the contribution of object i is proportional to �i (Figure 7.10); an

agent is more sensitive to closer objects. The sensor outputs are based on this simulated object and

are identical to those of an object sensor sensing the simulated object.

Proximity sensors are used almost exclusively to create avoid behaviors due to the local nature

of avoidance. Section 7.4.2 contains an analysis of proximity sensors combined with avoid control

behaviors and Section 8.2.4 contains an analysis of the effects of varying the proximity sensor’s

region of sensitivity including pictorial examples.

7.4 Control Behaviors

A control behavior, such as attract or avoid, is a function that maps the angle and distance to an

object or location to a stress value (Figure 7.11).

7.4.1 Attract

An attract control behavior combines with a sensor, usually an object or location sensor, to form

an attraction behavior that draws an agent toward a goal. If the goal moves, the point of attraction

64

Agent

Orientation

RA

Radius

FOV

RS

θS

DS

Figure 7.10: The Proximity Sensor’s Simulated Object

Angle
Distance

Control
Behavior Stress

Figure 7.11: The Control Behavior Function Template

65

moves appropriately since the distance and angle output by the sensor will change. An attract

control behavior’s output (stress value) is high when the angle or distance is high. As the agent

nears the goal, stress decreases.

Figure 7.12: An object sensor and an attract control behavior combine to form an attraction
behavior which draws the agent to the goal

Figure 7.12 shows an agent walking from the lower right corner of the image to the goal in

the upper left. An object sensor and an attract control behavior constitute the attraction behavior

which guides the agent. In the absence of other behaviors, the least stressful step always takes the

agent closer to the goal.

Implementation

A transfer function converts an angle or a distance into a stress value. Equations 7.2 and 7.4 are

the transfer functions for angle and distance respectively.

�� � � � �min (7.1)

Stress� � S�

�
(� � 1)T� � 1

	
(7.2)

D� � D �Dmin (7.3)

66

StressD � SD

��
D� � 1

�TD � 1
	

(7.4)

S� � T�� SD� TD� Dmin� and �min are user-defined constants. StressD is based on the distance

from the agent’s current location to a distance Dmin away from the goal location or the goal

object’s bounding cylinder. Thus StressD will drop to zero when the agent is within a tolerable

distance (Dmin) and facing within a tolerable angle (�min) of the goal.

S� � T�� SD� and TD affect the individual stress’s contribution to the overall stress of an agent’s

potential new state. The agent attempts to arrive within Dmin of the goal, oriented within �min of

the goal.

If the agent is not within Dmin of the goal or is not oriented within �min of the goal (D� � 0

or �� � 0), the control behavior’s output is the sum of the squares of the distance and angle stress

values, otherwise, it is zero.

Stress �

�
�

�

Stress2
d � Stress2

� if D� � 0 or �� � 0

0 otherwise
(7.5)

To summarize, the greater the distance to the object and the greater the angle between the

agent’s orientation and the goal, the greater the stress.

Discussion

To control the agent’s final position, particularly when attracted to a point, a low arrival threshold

value is necessary. Unfortunately, using a low arrival threshold may cause the agent to step past the

goal and then circle back trying to achieve the goal, due to the discrete nature of BSS in choosing

possible next foot locations. In Figure 7.13, the emphasized point is chosen for the next step. If

the arrival threshold is less than the distance between the agent in the new state and the goal, the

agent has not arrived and will continue walking past the goal.

Ensuring that Dmin is at least half the maximum of the distance between concentric arcs and

adjacent radii prevents the agent from passing the goal. Alternatively, adding the goal location to

the set of possible next foot locations when it is within the fan-shaped region where the agent is

67

θ θ

Agent

MIN

MAX

Goal

Figure 7.13: Walking Past the Goal

able to step is a better solution. It solves the problem without sacrificing control over the agent’s

final location.

Using the conditionD� � 0 or �� � 0 to determine whether the agent has arrived can cause the

agent to spiral in towards the goal, especially when the agent’s maximum turning angle is low due

to momentum, for example. When the agent is very close, but faces away from the goal, it will

take a step that does not bring it significantly closer. It may even step away from the goal as shown

in Figure 7.14. The agent will orbit the goal chaotically until it approaches the goal at a low angle.

θ θ

Goal

Goal

θ θ

Agent

MIN

MAX

Step 1

Step 2

Step 3

Step 4

Figure 7.14: An Orbital Approach

68

Changing the condition to D� � 0 and choosing Dmin sufficiently large prevents the agent

from orbiting the goal, however, this solution reduces control over the agent’s final position and

orientation. A better solution interrupts the S-C-A formalism, performing a higher-level, more

appropriate response. PaT-Nets are used to monitor the attraction. If the angle to the goal increases

beyond a predefined threshold (when the agent is near the goal), the PaT-Net suspends the agent’s

controller, turns the agent toward the goal, and then resumes the agent’s control system. We note

here that this problem only occurs when the maximum turning angle per step is relatively low,

significantly less than 90 degrees. More flexible animals or robots do not suffer from this problem.

7.4.2 Avoid

An avoid control behavior combines with a sensor, usually a line or proximity sensor, to form an

avoidance behavior. Avoidance behaviors prevent agents from colliding with other agents, objects,

or walls.

Figure 7.15: A proximity sensor and an avoid control behavior combine to form an avoidance
behavior. While an attraction behavior draws the agent to the goal, the avoidance behavior steers
it around obstacles.

Figure 7.15 shows an agent walking to the goal on the left of the image. An object sensor and

an attract control behavior constitute the attraction behavior which guides the agent to the goal. A

proximity sensor and an avoid control behavior constitute the avoidance behavior which guides

the agent around the obstacles.

69

Implementation

The implementation of an avoid control behavior is similar to that of an attract control behavior.

Equations 7.7 and 7.9 are the transfer functions for angle and distance respectively.

�� � signum (�)
�
� � j�j� (7.6)

Where:

signum (x) �

�
�

�

x
jxj if x �� 0

1 if x � 0

Stress� � S�

��
�� � 1

�T� � 1
	

(7.7)

D� � Dmax �D � RA (7.8)

StressD � SD

��
D� � 1

�TD � (1 �RA)
	

(7.9)

RA is the agent’s bounding cylinder’s radius. S�� T�� SD� and TD affect the individual stress’

contribution to the overall stress of a state in the same way as for attract. StressD is based on how

far an object extends into the avoidance radius, Dmax; the more it extends, the greater the stress.

Stress� is greatest when the agent is facing the obstacle (� � 0).

Discussion

Adjusting the FOV angle changes the agent’s reaction to peripheral activity. When FOV is large,

the agent will react to objects it passes. Combining avoidance with such a proximity sensor can

result in unrealistic behavior. The agent will attempt to avoid objects already passed or objects that

it would have avoided had it continued to walk in a straight line. In coordinated behavior such as

group walking, an agent would not want to avoid other agents to its side. Figure 7.16 shows the

problem with using a small FOV. The two agents, oriented as shown by the arrows, are unaware

of each other and will collide if they both choose to step in the shaded region. Predictive sensors

and behaviors that anticipate, described in Section 8.2, do not suffer from these problems.

70

R1

Agent 1 Agent 2

R2

Figure 7.16: Two Agents Colliding

7.5 Behaviors

Sensor Control
Behavior StressPotential

New State

Figure 7.17: The Behavior Function Template

Behaviors influence an agent’s actions in specified circumstances or reactions to specified situations

(Figure 7.17). In BSS, a behavior combines a sensor and a control behavior. The resulting function

maps agent position and orientation in the environment to a stress value; lower values represent

more desirable states.

When designing behaviors, realism, generality, and efficiency are important considerations,

but robustness and control precision are paramount. Control precision includes specifying exactly

where an agent should be at the end of a simulation. BSS originally allowed control precision on the

order of one meter. We found this error in the agent’s final location to be unacceptable. By making

the changes discussed in the previous sections, we were able to increase control precision by a

factor of 20. This is important since the agent often locomotes to a goal location as a prerequisite

to accomplishing a task at that location. An improperly positioned agent may not even be able to

71

attempt the task.

The first step in creating the behavior layer is to choose the set of behaviors. We choose the

following set:

� Various Avoidances

� Ducking

� Inertia

� Various Attractions

� Turning

� Path Following

� Chasing

The second step is to partition the set of behaviors.

� Instantaneous

Level 0

Reflexive: Various Avoidances

Reflexive: Ducking

Physics-Based: Inertia

Level 1

Various Attractions

� Memory-Reliant

Turning

Path Following

Chasing

72

The various avoidances include object avoidance (e.g., walls, tables, and trees) and agent

avoidance using anticipation, discussed in detail in Section 8.2.4. The various attractions include

location, object, and agent attraction, the last of these using anticipation as described in Sec-

tion 8.2.3. In practice we have found this set of behaviors to be sufficient for nearly all of our

human locomotion requirements. Necessity and the additional properties outlined in Section 6.2.2

(locality, robustness, scalability, and simplicity) will be discussed in subsequent sections.

7.5.1 Level 0: Reflexive and Physics-Based Behaviors

Reflexive (instinctive) behaviors are necessary for collision prevention and physics-based behaviors

are necessary for added realism. We discuss various avoidance, ducking, and inertia behavior

implementations in this section, including the behavioral functions, and examples of the behaviors

in use.

Avoidance

We treat avoidance as a default behavior that is always active as the agent explores its environment.

This parallels Brooks’ approach whose lowest layer of control insures that his robots do not come

into contact with other objects: they achieve zero-level competence [28, 29, 30, 32]. For a good

discussion on avoidance concerns and techniques, see Reynolds [132].

Both Agre [2] and Wehner [155] observe that animals do not have guaranteed general-purpose

collision avoidance strategies. Instead they use simple basic avoidance techniques that are effective

most of the time in concert with a small set of special-purpose avoidance techniques for specific

cases. When avoidance fails, collision prevention halts an agent’s locomotion so that it does not

penetrate another object. We provide general avoidance behaviors for both stationary and moving

objects including anticipating behaviors that predict where an object (or another agent) will be one

or more steps in the future. In practice these behaviors are effective. However, when special cases

arise, they are handled at the state machine level.

LCS uses three avoidance behaviors: general object avoidance using proximity sensors, oblong

object avoidance using line sensors, and avoidance of moving objects using predictive avoidance.

Each of the avoidance behavioral functions maps the state of the world through the corresponding

sensor to the stress output by an avoid control behavior as described in previous sections (predictive

73

avoidance is described in Section 8.2.4).

Ducking

Ducking is an example of a zero-level reflexive behavior that we include both for the sake of

realism and to demonstrate the architecture’s flexibility. It can support behaviors that are not

directly locomotion-based, but serve to enhance a simulation’s perceived realism. A ducking

behavior prevents an agent from colliding with low hanging objects such as tree branches or door

frames. This behavior differs from the others in that it does not contribute to the choice of the

next footstep. It is implemented as a state machine running in parallel with LCS, a child process

spawned whenever level 0 behaviors are activated, and killed whenever they are deactivated. The

ducking BSM (Figure 7.18) monitors the simulation and makes postural changes when appropriate.

An agent ducks by bending its spine forward, though severe ducking includes bending the knees

as well.

EXITDuck Termination
Signal

Figure 7.18: The Ducking Behavioral State Machine

A function determines how much the agent should duck to avoid a particular object. Initially, all

objects which are potentially “duckable” are tagged. Then, during each simulation cycle, the duck

function is applied to each duckable object which returns the height to which the agent must duck.

The function first calculates the distance from the agent to the object. If this distance is less than

the minimum threshold, the minimum height of the object minus a “clearance” value is returned.

If the distance is greater than the maximum threshold, infinity is returned; this object requires no

ducking. Otherwise, when the distance is between the minimum and maximum thresholds, the

return value is calculated using linear interpolation (Figure 7.19). Once the duck-heights have

been calculated for each duckable object, the agent ducks to the minimum height returned by the

functions.

Using linear interpolation allows the agent to duck smoothly over time as the distance between

it and an obstacle decreases rather than ducking “all at once.” It reacts appropriately when

74

0

Instantaneous Distance to Object

Max

Amount
of

Ducking

Min
Threshold

Max
Threshold

0

Figure 7.19: The Ducking Function

approaching an object and equally appropriately to an approaching object.

Figure 7.20: An Agent Ducking Under Objects

Figure 7.20 shows an agent ducking under four obstacles while walking to the goal on the left.

The fifth, leftmost obstacle is far enough to the agent’s right that it does not require ducking. A

site on the head was traced to show the path.

Inertia

Inertia is an example of a physics-based instantaneous behavior used for the sake of realism.

Binding an inertia behavior to an agent causes the agent to prefer to move in straight lines,

suppressing its tendency to meander. Stress is proportional to the angle turned by the agent during

the step and is multiplied by a function of velocity. The faster the agent is moving, the more

difficult it is to turn significantly during a single step. Figures 7.21a and 7.21b show the inertia

functions for a slow and a fast agent, respectively.

We note the similarity between our inertia behavior and Anderson and Donath’s forward

75

090 Left 90 Right
Angle in Degrees

Stress

0

Max

090 Left 90 Right
Angle in Degrees

Stress

0

Max

(a) (b)

Figure 7.21: The Inertia Behavior Function: A Slow Agent (a) and a Fast Agent (b)

attraction behavior which sustains an agent’s forward motion regardless of detected objects in

the environment [7]. The only difference between the two behaviors is the extent to which they

contribute to the agent’s observed behavior. Forward attraction tends to be more dominant than

inertia.

7.5.2 level 1: Goal-Based Behaviors

Goal-based behaviors are necessary for giving the agent a purpose, for guiding the agent to a

goal. LCS uses three variants of attraction as its goal-based behaviors: general object attraction

using object sensors, location attraction using location sensors, and attraction to moving humans

using predictive attraction. Each of the attraction behavioral functions maps the state of the world

through the corresponding sensor to the stress output by an attract control behavior as described in

previous sections (predictive attraction is described in Section 8.2.3).

As discussed in Section 6.5, there are cases where a level 1 behavior alone will suffice in

achieving the goal, so we make them available to LCS’s selection process by providing BSMs

for each one. Attraction’s BSM is illustrated in Figure 7.22. The preconditions are twofold. The

goal must be visible, otherwise path-following would be required, and the goal must be stationary

(i.e., a location or an object known to be fixed), otherwise chasing would be required. When

the preconditions are satisfied, LCS selects and executes the attraction BSM which binds the

appropriate attraction to the agent and then transitions into a monitoring state. It remains in this

76

state until the agent arrives at the goal (or until a user-defined interruption or termination condition

is achieved) when it unbinds the attraction and exits. The example in Figure 7.12 was generated

using the attraction behavioral state machine.

Activate
Attraction EXIT

Monitor
Agent’s
Progress

Deactivate
Attraction

Figure 7.22: The Attraction Behavioral State Machine

7.6 State Machines

Many modern systems include a state machine implementation. Brooks implemented each layer of

his subsumption architecture as a LISP augmented finite state machine (AFSM) [29, 30]. Hodgins

et al. use state machines to enforce control laws in their simulated athletes [74]. Parallel Transition

Nets (PaT-Nets) introduce high-level decision-making into our agent architecture [19, 149, 154].

As finite state machines that run in parallel with a simulation, they monitor the S-C-A loop (which

can be thought of as modeling instinctive or reflexive behavior) and make decisions in special

circumstances.

The observed behavior resulting from the combined use of different behaviors can sometimes

fail; for example, an agent may get caught in a local minimum. Actions sometimes fail and

unexpected events sometimes occur. A PaT-Net can be used to recognize one of these situations,

modify the agent’s behavioral mode by binding and unbinding the appropriate behaviors or by

changing system parameters, and then return to a monitoring state.

Figure 7.23 shows a sample PaT-Net. PaT-Nets comprise nodes representing states, and

transitions between these states. A condition is associated with each transition. When a condition

is achieved, the associated transition is made. Each time a state is entered or reentered the PaT-Net

performs the action associated with that state. In addition to states and transitions, a PaT-Net may

include one or more monitors. Regardless of the current state, a monitor will perform an action

when a general condition associated with it is achieved.

77

State 1

Action 1

State 2

Action 2
EXIT

Monitor 1

Action 3

C4

default

C1

C2

C3

Parameters: p1 p2 p3...
Locals: l1 l2 l3...

Net Class: class−name

Figure 7.23: A Sample PaT-Net Shown Graphically

The actions performed by PaT-Nets are arbitrary LISP expressions. They may include spawning

new nets or killing or communicating with other nets. Communication may be accomplished

through the use of semaphores, priority queues, or by waiting until a condition is met. For

example, a net may spawn another net and then wait for it to exit before continuing, acting

effectively as a subroutine call [49].

Scheduling behaviors is based on the state of the agent and the environment. Given behaviors’

state-based nature, behavioral state machines implemented as PaT-Nets are a natural structure for

providing a high-level interface to the underlying behaviors. BSMs are responsible for locomotion

reasoning and decision procedures for choosing, parameterizing, and controlling appropriate reac-

tive behaviors. They may instantiate other BSMs, either running in parallel with them or waiting

for them to exit.

7.6.1 Turning

When an agent walks toward a location to its side or behind it, a turning behavioral state machine

turns it to face the location before attraction-based locomotion begins. Otherwise, the agent would

walk in an arc to get to the goal due to the limited angle through which it can turn during one

step. We do not associate conditions with the turning BSM because, in our implementation, it is

only called as a child process by other state machines and its action is considered to be atomic and

therefore uninterruptable.

78

A turning BSM (Figure 7.24) rotates an object or a human agent. An object, human, or

location to face is passed as a parameter, or the angle through which to rotate, �, is specified. If

unspecified, the BSM calculates the rotation angle. The rotation direction is the lesser of clockwise

or counterclockwise, or may be specified as well.

EXIT

START
Hum

an

Object

Spin
Object

Calculate
θ

Left
Foot

Right
Foot

Left
Foot

Right
Foot

<θ

Left
Foot

Right
Foot

<θ

EXIT
CCW

CW

>=θComplete

>=θ

Inco
mplet

e

>=θ

Complete

>=θ
Incomplete

Figure 7.24: The Turning Behavioral State Machine

The turning BSM simply spins objects about their center of mass (unless a rotation point is

specified) while human agents are made to step. A human agent begins its turn by rotating its first

foot to the right to begin a clockwise rotation, or to the left to begin a counterclockwise rotation.

The leg and body follow, maintaining the agent’s balance.2 The rotation angle for the first foot is

2Research has show that many motor actions, including human turning, are preceded by eye motion or visual
attention. We begin a turn by looking at the object or in the direction we want to face. Turning then occurs top-down
with the lower body, legs, and feet following the eyes and head [16].

79

the minimum of � and �
2 . The agent then follows the first foot with its other foot bringing its feet

together. If � is greater than �
2 , this cycle repeats until the agent has rotated through �. An optional

argument can specify that the agent not follow with the other foot in the final cycle. It looks more

natural when the final cycle is not completed when locomotion is to follow turning.

Figure 7.25: Turning to Face the Goal vs. Not Turning

Figure 7.25 shows the difference between an agent who turns to face the goal before walking

towards it, and an agent who simply starts walking. Turning first is sometimes necessary as when

maneuvering in a restricted area such as a narrow hallway.

7.6.2 Path Following

Activate
Waypoint
Attraction

EXIT

Monitor
Agent’s
Progress

Deactivate
Waypoint
Attraction

Calculate
Path

Path

Exists

No Path Exists

Figure 7.26: The Path-Following Behavioral State Machine

Path-following is useful for realistically guiding an agent to a goal that is not immediately visible.

A path-following BSM (Figure 7.26) generates a segmented path from the agent’s location to a

goal somewhere in the world. Given a set of user-defined constraints, such a path may not exist: in

this case, the machine exits reporting this information. Otherwise, an attraction to the first vertex

80

(intersection of consecutive segments) along the path binds to the agent; the agent begins following

the path.

The path has three important properties: it connects the agent to the goal, it avoids obstacles

by at least the obstacle-clearance value chosen by the user, and it is a path of minimal length given

the first two constraints. As the agent approaches a vertex, the attraction drawing it there unbinds

and an attraction to the next vertex along the path binds to the agent which smoothly transitions

between them. This process repeats until the agent arrives at the goal.

Figure 7.27: The Initial Conditions of the Path-Following Example

Figure 7.27 shows the sample environment we use to demonstrate our path following algorithm.

The agent in the large room at the bottom of the figure, is told to walk to the goal location, marked

with a flag, in the small room at the top of the figure. LCS performs a visibility test initially and

determines that the goal is not visible to the agent, thus path following is required. It selects and

executes a path-following BSM.

Given boundary, resolution, and obstacle clearance values (user-defined or default), the system

casts rays to generate an obstacle map.3 Figure 7.28a shows the results. The boundary is two

meters in the X direction (up-down) and three meters in the Z direction (left-right) beyond the

3To optimize ray casting, we take advantage of the fact that the rays are cast parallel to the Y-axis and the fact that
all objects include axis-aligned bounding boxes. In practice it is fast enough not to be a weak link in the system.

81

environment’s farthest extents, making the size of the path-generation region 12 meters (X) by 11

meters (Z). The resolution is 122 in the X direction and 112 in the Z direction - just enough to

ensure that walls (which are 10 centimeters thick) are not missed due to floating-point error. The

obstacle-clearance value is 30 centimeters, i.e., the path should avoid obstacles by this distance.

We satisfy this constraint by expanding obstacles by the obstacle-clearance value in each direction

(Figure 7.28b), thus reducing the path-generation problem to the simpler problem of trying to find a

minimal-length path connecting the agent to the goal that avoids obstacles. Avoiding the expanded

obstacles is equivalent to avoiding the obstacles by the expanded amount [92]. It is interesting to

note that the agent’s path will take it through the lower doorway since the upper doorway is only

60 centimeters wide and thus not wide enough to walk through given the 30 centimeter clearance

constraint.

(a) (b)

Figure 7.28: The environment obstacle map before (a) and after (b) expansion

Path Generation is accomplished through the use of a wave-propagation algorithm [90] that

takes as input the expanded-obstacle map of Figure 7.28b and the agent and goal locations (Fig-

ure 7.29). The algorithm can be understood most easily through analogy. Imagine that the goal

82

location is the source of a viscous fluid expanding uniformly and filling the obstacle map. The

fluid cannot penetrate obstacles or the outer boundary. When the fluid contacts the agent it stops

flowing. The actual implementation begins by discretizing space as indicated by the figures and

marking the goal as being “explored” with an associated weight (the shortest distance to the goal)

of zero. Then the outer boundary of the explored region is repeatedly expanded into neighboring

rectangular grid points, except when those grid points are marked as containing obstacles or are

out of bounds.4

Figure 7.29: The expanded-obstacle map after wave-propagation

The associated weight of any new grid point is the minimum of the weights of its neighbors

plus 1 if the neighbor is horizontally or vertically adjacent, or plus
p

2 if the neighbor is diagonally

adjacent. Figure 7.30 is an example of a small weight map. The goal is at the center, the agent is

in the upper-right corner, and the dark, Xed grid points represent obstacles.

A minimal-length path from the agent to the goal can now be found by starting from the agent

4We found it necessary to maintain a sorted list of boundary grid points, always choosing the grid point of minimal
weight for exploration. A heap data structure for storage proved efficient given its O�log n� time complexity for both
insertion and deletion.

83

0

1

1

11.4

1.4

1.4

2

2

2

2.4

2.4 2.4

2.4

2.42.4

2.4

2.8

2.8

2.8

2.8

3.4

3.8

Figure 7.30: The Weight Map

grid point and repeatedly moving in the direction of the neighbor of minimal weight (Figure 7.31).

In the case of a tie the previous direction is given preference, producing long, linear runs of grid

points. We choose the waypoints to be the ends of each of these runs. Figure 7.32 shows the

waypoints in our original example, both on the current map and on the original obstacle map, for

clarity.

0

1

1

11.4

1.4

1.4

2

2

2

2.4

2.4 2.4

2.4

2.42.4

2.4

2.8

2.8

2.8

2.8

3.4

3.8

Figure 7.31: The Path to the Goal

Note that this method produces extraneous waypoints due to the limited choice of direction,

discretized at 45o intervals. We remove these unnecessary waypoints by doing visibility tests in

map-space using Bresenham’s incremental line scan-conversion algorithm [55] for efficiency. For

any three consecutive waypoints, if the first and third can be connected by a line that does not

intersect an obstacle, then the second is removed. The resulting set of waypoints forms a path that

takes the agent to the goal efficiently (Figure 7.33).

84

(a) (b)

Figure 7.32: The waypoints (a) - The waypoints drawn on the original obstacle map for clarity (b)

85

(a) (b)

Figure 7.33: The necessary waypoints (a) - The necessary waypoints drawn on the original obstacle
map for clarity (b)

86

Figure 7.34a shows the agent’s path as calculated by the path-following BSM. Figures 7.34b

and 7.34c show the agent following the path, and Figure 7.34d shows the agent successfully

arriving at the goal.

Although the system will accept a user-defined path as an optional parameter, in general it is

responsible for path generation. In this way it differs from other systems such as Miller’s Rocky

III which must be given an operator-designated set of intermediate way-points [110].

Path following poses two questions: is it reasonable for the agent to behave in this way, and is

this not simply path planning? We argue that it is reasonable to generate a path from one point to

another provided that the agent “knows” the area. We use this BSM to take the agent to a place

where it has already been, through an area it has already explored.

Path following conforms to Agre and Chapman’s Plans-as-Advice paradigm [4]. It differs

from path planning because the agent is not constrained to the path. Instead, an attraction to the

path binds to the agent. This behavior competes with any other bound behavior for control of the

agent; if a black cat crossed its path, a superstitious path-following agent would stray from the

path to avoid the cat.

7.6.3 Chasing

An agent-following or chasing behavior alternates between object attraction and location attraction

behaviors. While the target (the agent being chased) is visible, an attraction to it binds to the chasing

agent. While the target is occluded, an attraction to the target’s last known location is bound instead.

If the target is not immediately visible, the chasing BSM exits unsuccessfully. Otherwise, the

agent turns to face the target and an attraction to the target binds to the agent. The agent walks

toward the target until either the agent arrives at the target and the machine exits successfully,

or the target becomes occluded (the target may have walked around the corner of a building, for

example). In the latter case the existing target attraction unbinds and an attraction to the target’s

last known location binds to the agent. The agent walks toward this location until either it arrives

or the target becomes visible again. In the latter case the agent again turns toward the target and

chases it. In the former case the machine transitions to the extrapolation state.

When the agent arrives at the last known location of the target without seeing the target,

instead of exiting unsuccessfully, the agent is guided in the direction the target was walking before

87

(a) (b)

(c) (d)

Figure 7.34: The Agent Following the Path

88

Object
Attraction

Monitor
Object

Attraction

Monitor
Location

Attraction

Location
Attraction

Extrapolate

EXIT

1

2 3

54
Arrived

Lost Target

Figure 7.35: The Chasing Behavioral State Machine

disappearing. This requires maintaining two pieces of information, the target’s last known location

and its vector velocity. Extrapolation is optional and may be turned off to allow for a more effective

higher-level implementation.

To illustrate, we give an example where Tom is chasing Jerry. The chasing BSM shown in

Figure 7.35 begins in state 1. An attraction to Jerry binds to Tom. As Tom begins to run toward

Jerry the BSM passes to state 2, a monitoring state. When Jerry is no longer visible to Tom (Jerry

may have run around a corner or behind an object), the BSM enters state 3. An attraction to the

location where Jerry is most likely to be found, Jerry’s last known location, binds to Tom. Tom

begins to run toward this location as the BSM transitions to state 4. If Tom arrives at this location

and does not see Jerry, the BSM transitions to state 5 and Tom searches in the direction Jerry was

last known to be heading. Eventually either Tom will see Jerry again and continue chasing him, or

Tom will give up at which point the chasing BSM exits. Section 9.3 contains a detailed example

of chasing.

7.6.4 Combining the State Machines

Given the BSMs and preconditions for simple path-following, turning, attraction, and chasing, we

combine them into a single state machine (the locomotion control machine, LCM) as described in

89

Section 6.5. First we examine the preconditions to determine the conditions necessary to implement

LCM (Figure 7.36).

Y

N

Y

Y
N

N

N
N Y

Y YN Y

YN Y N

EXIT

Path Following

Turning

Attraction

Chasing

Figure 7.36: The BSM Preconditions

The symbols in the figure, from left to right, indicate whether or not the agent, Jack, is at the

goal, if he is properly oriented, if he can see the goal, and whether or not the goal is stationary

(i.e., unmovable for the duration of the currently requested locomotion). If Jack is at the goal and

properly oriented, LCM exits. If he is not at the goal and cannot see it, path-following is required.

If he is improperly oriented and either at the goal or the goal is visible, then turning is required. If

Jack is not at the goal, properly oriented, and able to see the goal then either attraction or chasing

is required depending on whether or not the goal is stationary. The flow diagram in figure 7.37

clarifies this decision-making process. LCM and the encompassing LCS are described in more

detail in Section 9.1.

7.7 Agent Model

LCS includes an agent model as outlined in Section 6.4. It includes personality traits such as

curiosity and caution, and state information such as the agent’s energy level and alertness. The

personality traits and state information affect system parameters throughout the architecture. For

example, fatigue affects the agent’s speed in the locomotion engine layer, anticipation affects

attraction and avoidance in the behavior layer, and curiosity affects condition evaluation in the

state machine layer. The user sets high-level locomotion goals for the agent, from which the system

90

START EXIT

Attraction

Path
Following

Chasing

Turning

Turning

Y Y

Y

Y

Y

N N
N

N

N

EXIT

Figure 7.37: The Locomotion Control Machine Flow Diagram

generates locomotion automatically, shaping the locomotion to reflect and convey to an observer

the chosen agent state and personality.

As an example, consider an animator who is given the task of modeling two agents: Homer

and Marge. In the scene to be animated, Homer has just left the local bar and is on his way home.

He is moderately drunk, minimally aware of his surroundings, and generally flirtatious. Marge,

Homer’s girlfriend, having just received a call from the bartender, is on her way to intercept Homer.

She is in a hurry, knowing Homer’s propensity to get himself into trouble in this state.

The animator opens the agent model interface window and configures the agents beginning with

Homer. He clicks on the “Inebriated” button with the mouse and a slider-bar entitled “Intoxication-

Level” appears. He chooses a setting of 60 (out of 100). Then he sets Homer’s “Awareness” of his

surroundings to 15. Finally, the animator wants to model Homer’s flirtatiousness, but finds that

no such trait exists in the system. He clicks on “Add New Attribute” and answers the questions

as they appear. He defines a LISP condition which is achieved when Homer can see a woman to

whom he is attracted. The probability of reacting to this condition when it is achieved he relates

to Homer’s awareness level.

The animator configures Marge in a similar way setting her “Rushed” value to 90. He chooses

locomotion goals instructing Homer to go home and Marge to go to the bar. In addition, he adds an

interruption condition to Marge’s high-level behavioral schema causing termination when Homer

becomes visible. If this happens, a new schema is adopted with the goal “go to Homer” followed

by schemata that take Homer and Marge home. The animator tests the configurations by starting

91

the locomotion control systems and this is what he sees:

Homer begins walking home. He is walking relatively slowly, though his speed varies, and he

is staggering. Marge is on her way to the bar. Her walking rate is faster and much more stable.

Homer passes a woman sitting on a bench who might distract him under normal circumstances.

He walks by the bench without noticing her which is fortunate for him because at that moment

Marge comes around the corner into view. She turns towards Homer, they meet, and they walk

home together.

The animator shows the animation to a colleague. After a few minutes of discussion and a

small amount of parameter adjustment, he is satisfied that the agents appear to have the desired

personalities.

Locomotion System Parameters Affected
Attribute Speed Inertia Anticipation Condition Probability

Fatigued X
Laden X
Rushed X X
Inebriated X X X X
Aware X X
Alert to Danger X
Curious X X
Distracted X

Figure 7.38: How the Agent Model Affects the Agent

Figure 7.38 shows a subset of the attributes that make up the agent model and some of the

ways each one affects the agent’s behavior. Speed, or walking rate, is one of the factors regulated

by the “rushed” and “fatigued” attributes. A fatigued or laden agent walks slowly while an agent

who is in a rush walks quickly or runs. An inebriated agent walks slowly and at an inconsistent

rate, varying his velocity an amount proportional to the level of intoxication. Figure 7.39 shows

the effects of our model of intoxication on an agent. The two simulations are identical except that

the agent on the left is sober and the agent on the right is drunk.5

Figure 7.40 shows the inertia behavior function for a drunk agent. This function encourages

5When we discuss agent states or attributes such as intoxication, or drunkenness, we do not claim to have fully
modeled the state or attribute in question. Instead, we have approximated its effects on the agent’s locomotion. Our
drunken agent may be thought of as exhibiting “drunk-like” behavior.

92

Figure 7.39: An agent exhibiting “drunk-like” behavior through the use of the agent model

the agent to step to the side rather than straight towards the goal, effectively causing the agent to

stagger.

090 Left 90 Right
Angle in Degrees

Stress

0

Max

Figure 7.40: The Inertia Behavior Function: An Intoxicated Agent

The combination of several behaviors, as is necessary with behavioral control, typically yields

excessively wandering paths. In an attempt to straighten locomotion paths and also to realistically

model the effects of inertia, we add an “inertia” behavior to an agent’s behavior set which attracts

the agent to the forward direction. An inebriated agent is given a low Inertia value and tends to

meander as a result.

When we walk around in the presence of other people we attempt to react to them based not

only on their current location, but also on a guess of where they will be one or more steps in the

future. Consciously or unconsciously, we anticipate their potential locations in the near future and

base our locomotion reasoning on this prediction. An inebriated agent has a lower Anticipation

93

value than normal, while an agent who is particularly aware of its surroundings will anticipate

more.

Condition is a special system feature implemented at the state-machine level. It is a hook,

effectively an interruption, which allows the user to implement behaviors, particularly those

involving sub-goals, and make decisions that would otherwise be unsupported by the architecture.

In this way it differs from the weighted summation implementation of the other parameters.

When an arbitrary condition is achieved, the state-machine takes an appropriate action, possibly

stopping the agent and exiting. This allows a higher-level system to replan, taking advantage of

the opportunity. A condition, for example, might be achieved when an enemy is in the agent’s

field-of-view as in this scenario. We see a burglar walk past a police officer. The burglar notices

the officer and starts running (his sense of urgency increases). He tries to find a good hiding place

while the officer pursues him. Our system is capable of simulating this scenario.

Although the burglar passes the officer, in real life, there is no guarantee that they would

notice each other. The Probability parameter reflects the probability that an agent will react to the

condition being achieved, i.e., that the burglar notices the officer or vice versa. The probability

is high when the agent is aware of its surroundings or curious, but low when he is distracted,

inebriated, or rushed, for example.

An advantage of this agent model implementation is its modularity. To add a new attribute,

all that must be done is to establish the correspondence between the attribute and the system

parameters as described in Section 6.4. The system adapts automatically, taking the new attribute

into account when calculating parameter values.

94

Chapter 8

Issues

In this chapter we discuss the issues of limited perception and anticipation, both of which are

required for simulation realism.

8.1 Limited Perception

Since realism is one of the goals of this work, the concept of limited perception is an important

concern [112, 113]. Behaviors have access to the entire environmental database. A behavior’s

designer filters this information in such a way that an agent’s behavior depends only on reasonable

information. Reasonable information is that which a real agent in an equivalent situation would be

able to perceive, usually visually. For example, in Tu and Terzopoulos’ fish controller, an object

is only considered to be “seen” if any part of it enters the fish’s view volume and if it is not fully

occluded by another object [150].

Filtering can be performed at either the behavior level or the higher state-machine level. At the

behavior level, avoidance combined with a proximity sensor approximates the effects of limited

perception. An agent only avoids nearby objects, those of which the agent is aware. Attraction

combined with an object sensor produces a behavior that attracts an agent to an object regardless of

distance or visibility. The state machine level repairs this behavior by activating and deactivating

the attraction to simulate realistic path-following or chasing behaviors as described in sections 7.6.2

and 7.6.3.

We give an example (Figure 8.1) of how enforcing the limited perception policy affected

95

(a) (b)

(c) (d)

(e) (f)

Figure 8.1: Enforcing the Limited Perception Policy: (a) The environment (b) The agent’s view
(c) Attraction only (d) Attraction and wall avoidance (e) The path (f) The agent arriving at the goal

96

system design. In the environment shown in Figures 8.1a and 8.1b, we wanted the agent to walk

to the goal (the flag). Our first thought was to use an object sensor to attract the agent to the

goal. Figure 8.1c shows the results of the first test. Figure 8.1d shows the results after adding

avoidances. The agent was “dragged” along the wall until the way to the goal was clear.

Analysis of our results revealed that the unrealistic agent dragging was due to an attraction to

a non-local, obscured object. While it was reasonable for the agent to be aware of an object it

could not see, it was unreasonable for the agent to walk directly towards that object, relying on

avoidances to push it away from the intervening walls.

Two alternatives to this approach presented themselves, both of which adhere to the limited

perception policy. One possibility was to simply disallow this behavior, requiring the user or

planner level to break this navigation down into shorter, local “sub-navigations.” The second

possibility was to consider what we would do in a similar situation and add that behavior to the

system’s repertoire.

Our solution was to develop the path-following behavior previously described in Section 7.6.2.

Figure 8.1e shows the results of the path-generation algorithm and Figure 8.1f shows the agent

arriving at the goal after following the path. The agent’s starting point and path are also shown.

This solution has the advantages of increasing the system’s overall realism, flexibility, and ease of

use.

8.2 Anticipation

LCS employs anticipation at every level and supports planner-based anticipation through condition

evaluation and system interruption; the locomotion engine bases its calculations not on the agent’s

current location, but on where the agent will be one step in the future. At the behavioral level the

agent anticipates the world through sensor-shape adjustments, through lookahead exhibited by the

terrain awareness behavior, and through explicit anticipating versions of attraction and avoidance

behaviors. The state machine level includes anticipation in the chasing behavior’s extrapolation

state.

97

8.2.1 Locomotion Engine

A velocity vector resulting from the blended output of all active behaviors could be used to deter-

mine the next footstep; however, as Becket observes [20], this would result in severe instability

around threshold boundaries. This occurs because thresholds in sensors and control behaviors cre-

ate a discontinuous potential field space. Taking a discrete step based on instantaneous information

may cross a discontinuity in field space.

For example, consider the situation in Figure 8.2a where a goal attracts the agent, who avoids

the hot radiator up to some threshold distance. If the agent is initially located at position p1, it will

choose to step directly toward the goal and will end up at p2. Now within the threshold distance

for the radiator, the agent will step away from the wall and end up at p3, outside the threshold. This

process repeats until the agent clears the radiator, producing an extremely unrealistic sawtooth path

about the true gradient in the potential field.

In calculating the stress values of all possible next agent-states instead of relying on instanta-

neous information, the system looks one step into the future.1 This anticipation results in more

realistic locomotion as shown in Figure 8.2b, particularly when the local environment is static.

When the local environment is dynamic, it is also necessary to predict as many changes in the

environment (next world-states) as possible to maintain reasonable realism (Section 8.2.3).

8.2.2 Terrain Awareness

A terrain awareness behavior evaluates an agent’s position and orientation in the environment

based on the local terrain. A weight proportional to the stress of walking through terrain of a

particular type is associated with that terrain type; easily navigable terrain such as grass receives

a low weight, and difficult terrain such as mud receives a high weight. This is easily extended

to terrain with changing elevation by factoring in to the stress calculations the agent’s metabolic

energy expenditure in taking a step.

A terrain awareness behavior does more than simply return a stress proportional to the weight

of the terrain where the agent is stepping. It predicts the agent’s next N steps (assuming the agent

1Theoretically, the system would benefit from a lookahead of more than one step. However, we limit it to one because
of the O�xn� time complexity of lookahead, where x is the number of potential new states being examined and n is the
number of steps of lookahead. Consider, for example, a system where 50 possible next footsteps are examined. Looking
one step into the future requires 50 sets of calculations while looking two steps into the future requires 2500. Due to the
time required for each set of calculations, it is not feasible to look more than one step into the future.

98

H
ot

 R
ad

ia
to

r

Goal

Avoid Field
p1

p2

p3 H
ot

 R
ad

ia
to

r

Goal

Avoid Field
p1

p2

p3

(a) (b)

Figure 8.2: (a) A sawtooth path due to potential field discontinuities, and (b) Better results through
anticipating the state of the world after the agent has taken the step

continues to walk in a straight line) where N is a parameter. The terrain is sampled at each of these

steps and the associated weights are multiplied by a function that decreases with each step. Stress

is proportional to the sum of these values. This method’s advantage is that the agent will step into

a region of difficult terrain if the region beyond is easily navigable.

Figure 8.3 is an example of real-time terrain traversal by three simulated agents. The figure

shows the agents’ starting positions at the bottom of the image and their paths through the terrain.

Attraction guides the agents toward the goal in the upper left corner, avoidance prevents the agents

from colliding with obstacles and each other, and terrain-awareness causes the agents to avoid

water (the dark patches) whenever possible. The effect of the terrain awareness behavior can be

seen most clearly where the rightmost agent chooses to turn slightly to cross the stream instead of

walking straight toward the goal. Figure 8.4 shows the effects of the terrain-awareness behavior

in more detail.

The winding exhibited by the center agent resulted from trying to avoid the leftmost agent who

was slightly ahead of it. This observed behavior can be eliminated by replacing avoidance with

99

Figure 8.3: Attraction, avoidance, and terrain awareness behaviors combine to draw the three
agents to the goal in the upper left corner

Figure 8.4: A close-up view of an attract behavior combining with a terrain awareness behavior to
guide the agent to the goal

100

predictive avoidance. Toward the end of the simulation the leftmost agent was standing between a

tree and a puddle (upper left). The combination of obstacle and agent avoidance and terrain-sensor

output resulted in the central agent walking around the tree.

8.2.3 Attraction

Figure 8.5: The lower agent is attracted to the upper agent using a traditional attraction behavior

Our desire for an accurate predictive attraction behavior came from a dissatisfaction with traditional

techniques where an agent is attracted to a target’s current location. Figure 8.5 shows what happens

when a traditional attraction behavior is bound to the chasing agent coming from the bottom of

the figure. The chasing agent’s path is curved to such a degree that it eventually falls behind the

target agent. This example motivated us to replace the naı̈ve object attraction behavior whenever

the target is moving.

First Implementation

Predictive attraction evolved from traditional attraction in two stages. First we experimented with

an attraction to the location in which the target is predicted to be one step in the future. An object

sensor and an attract control behavior compose an object attraction behavior, so stress is reduced

when the agent to which it binds turns toward and approaches the object. Predictive attraction

replaces the object sensor with a predictive object sensor that differs by reporting the location

where the object is expected to be one step in the future.

101

V

Previous

Current

Predicted

Location

Location

Location

V

Figure 8.6: The Mathematics of the Predictive Attraction Behavior

Figure 8.6 illustrates the implementation. The predicted location is calculated as:

�LPred � 2�LCurr � �LPrev (8.1)

where �LPrev , �LCurr, and �LPred are the target’s previous, current, and predicted locations respec-

tively. The model assumes that the agent will maintain its current velocity, �V .

Figure 8.7: The First Attempt at Predictive Attraction

Figure 8.7 shows that, although the anticipating agent’s path is better (the agent on the left,

approaching from the bottom), the agent is not anticipating the target appropriately. Let N be

the number of steps in the future for which we are predicting the agent’s location. Until now we

only considered the case where N � 1. Experiments with N � 2 were no more encouraging than

for N � 1. The problem is that anytime the anticipating agent is drawn to a point that is fixed

relative to the position of the target (regardless of the distance of the fixed point to the target), the

anticipating agent’s trajectory will be curved. An optimum solution is one in which the anticipating

agent walks in a straight line.

102

Best Implementation

We obtained the best results by choosing the direction for the agent that brought it within a

threshhold distance of the target as quickly as possible (again assuming constant velocities).

Effectively, the agent followed an intercept course.

The stress of a potential footstep is calculated as follows. Both the agent and the target

(Agent�) have an initial position and velocity. From this, and assuming both agents will maintain

their velocities, the goal is to determine how long it will take them to be within a threshold distance

of each other. This step’s stress value is proportional to the calculated time, measured in seconds.

We will also consider the cases where the agents will not come within the threshold distance of

each other and where they are diverging.

Agent

Threshold

(x ,y)

(x ,y)

Agent

(x ,y)

(x ,y)

Distance

0 0

0 0

t t

t t

Figure 8.8: Initial Conditions for Predicting an Intersection

Figure 8.8 shows the initial conditions. We want to solve for �x� y� and �x�� y��, which are

functions of time, t.

x � x0 � �Vxt (8.2)

y � y0 � �Vyt (8.3)

x� � x�
0 � �V �

xt (8.4)

y� � y�
0 �

�V �
yt (8.5)

103

Using the distance formula:

q
∆x2 � ∆y2 � Distance

We want to solve for the time when the agent and the target come within the threshold distance,

T , of each other:

q
(x� � x)2 � (y� � y)2 � T (8.6)
�
x� � x

�2
�
�
y� � y

�2
� T 2 (8.7)

Substituting from Equations 8.2 through 8.5 we get:

��
x�

0 �
�V �
xt
	
�
�
x0 � �Vxt

		2
�
��
y�

0 �
�V �
yt
	
�
�
y0 � �Vyt

		2
� T 2 (8.8)

Substituting again using the following:

� � x�
0 � x0 (8.9)

� � y�
0 � y0 (8.10)

� � �V �
x � �Vx (8.11)

	 � �V �
y � �Vy (8.12)

We get:

(� � �t)2 � (� � 	t)2 � T 2 (8.13)

Finally, if we substitute:

a � �2 � 	2 (8.14)

b � 2 (�� � �) (8.15)

c � �2 � �2 � T 2 (8.16)

104

We get a quadratic equation:

at2 � bt� c � 0

With solutions:

t �
�b� pb2 � 4ac

2a
(8.17)

If the discriminant (b2� 4ac) is negative then there is no solution. The agents will never come

within the threshhold distance of each other. In this case we calculate the minimum distance they

will achieve and use this value as the threshhold distance as we solve the problem again. Thus we

calculate the time it will take the agents to achieve their minimum distance from each other. If

the discriminant is positive (or zero) then we solve for the two values of t. When both values are

negative, the agents are diverging, so we revert to traditional attraction, reporting a stress value

based on distance. When one value is negative and the other is positive (or when both are zero)

the agent has achieved the goal; the agents are within the threshold distance of each other and the

stress is zero. When both values are positive, stress is proportional to the minimum of the two

values.

Figure 8.9: The Second Attempt at Predictive Attraction

Figure 8.9 shows that the final implementation yields a realistic predictive attraction behavior.

Figure 8.10 compares all three approaches with the final implementation on the left and the

traditional approach on the right. Note that if the agent being chased were to turn, speed up, slow

105

Figure 8.10: A Visual Comparison of All Three Attraction Behaviors

down, or attempt to evade it, the chasing agent would successfully adapt and adjust its pursuit

because of the recalculation that leads to each footstep (a side-effect of the sense-control-act loop

architecture).

8.2.4 Avoidance

We introduced anticipation to avoidance behaviors in two ways. First we did so by making

adjustments to the shape of the proximity sensor’s region of sensitivity. Then, driven by the need

for more realistic predictive avoidance, we took an approach similar to that of predictive attraction

where the agent reacts to objects’ expected locations one or more steps in the future.

Proximity Sensor Adjustments

An object avoidance behavior typically combines a proximity sensor and an avoid control behavior.

Determining the radius (R) and field-of-view (FOV) parameters when using proximity sensors is

difficult. Slight variations of these parameters often have dramatic effects.

Figure 8.11 shows the path of an agent using a proximity sensor of the shape shown combined

with an avoidance control behavior. Although the agent successfully arrives at the goal and avoids

the obstacles, the path was inefficient and unrealistic. Figure 8.12 shows the path of the same

agent using a proximity sensor with a longer, narrower region of sensitivity. This path is better;

the agent meandered less.

Increasing R increases the amount of time the agent has to react to an obstacle. When R is

106

Figure 8.11: The Results of a Short, Wide Avoidance Sensor

Figure 8.12: The Results of a Long, Narrow Avoidance Sensor

107

small, an agent will walk up to an obstacle, turning to avoid it only when very near. This behavior

is realistic only when the agent’s perception is limited by atmospheric conditions such as fog or

smoke, or due to insufficient lighting. Increasing R to compensate often causes other problems: if

a moving obstacle crosses the agent’s path, far enough ahead of the agent so that there is no danger

of collision, the agent should not turn to avoid the obstacle. While this approach of using long,

narrow regions of sensitivity in proximity sensors is an improvement over basic object avoidance

and exhibits features suggested by Reynolds [130], it still results in unrealistic behavior at times

motivating the development of predictive, anticipating avoidance.

Predictive

V
V

Previous

Current

Location

Location

Predicted
Location

Figure 8.13: The Mathematics of a Predictive Avoidance Behavior

Predictive avoidance outputs a stress value proportional to the probability that the agent will collide

with an object during the current step. First, the probability distribution is calculated. Figure 8.13

shows the probable location of a moving object (or agent). The darkest regions are regions of

highest probability. The probability distribution is determined using bias values to approximate

the likelihood of the object accelerating, decelerating, turning left, or turning right. Bias values

can be approximated through observation or experience or acquired through learning algorithms.

The stress value is proportional to the agent’s point of intersection of highest probability.

Further refinement of the predictive avoidance behavior involves lookahead where the stresses

associated with two or more predicted steps are summed (with decreasing weights) similar to

the lookahead exhibited by terrain awareness. The behavior’s output is the weighted sum of the

stresses.

108

Figure 8.14: A Comparison of Traditional and Predictive Avoidance Behaviors: The Start of the
Simulation

We give an example in which three agents must cross to the opposite flags. The agent on the

right walks straight across through the use of an attraction behavior. The two agents starting on the

bottom, in the same location, are attracted to the goal on the top, but also avoid the agent moving

left, one using traditional proximity-sensor-based avoidance, the other using predictive avoidance.

The shape of the proximity sensor’s region of sensitivity is illustrated. Figure 8.14 shows the

avoiding agents beginning to diverge. The traditional agent must swerve left to keep the avoidance

target out of the proximity sensor’s region of sensitivity while the anticipating agent, predicting

that no collision will occur, continues in a straight line.

Figure 8.15 shows the traditional agent finally able to cut behind the avoidance target after

being “pushed” significantly out of its way. Figure 8.16 confirms that anticipation results in a

shorter, more realistic path.

A target’s predicted behavior may not occur; it may stop moving suddenly and the agent may

run into it. To prevent this from happening, in addition to the predictive avoidance behavior we

use a passive avoidance behavior to halt forward motion if an object is immediately in front of the

agent. According to Anderson and Donath [7] this is equivalent to the freeze or startle behavior

observed in animals. Although attempts at preventing collisions may fail, Wilhelms and Skinner

point out that “Collision avoidance in real life is quite flawed; one need only consider highway

traffic and people in a crowded hallway. It is desirable, however, that objects do not unrealistically

109

Figure 8.15: The Middle of the Simulation

Figure 8.16: The End of the Simulation

110

interpenetrate when collision avoidance strategies fail.” We added collision prevention to the

locomotion engine for this reason.

Chasing

Anticipation at the state machine level can be seen in our implementation of the chasing behavior.

When an agent arrives at the target’s last known location to find that it is not visible, instead of

exiting unsuccessfully, the agent predicts where the target may have gone based on its last known

velocity. It extrapolates the target’s path and explores in that direction.

8.2.5 Planner-Based

Although a planner is not a standard part of the locomotion control system, one can be “plugged

in” just as easily as a user can configure the system. The Hide and Seek project [149] exemplified

this capability by combining a planner with LCS to simulate games of hide and seek. The planner

exhibited anticipation when controlling the seeker in trying to determine what the hiders would do

next. In doing so it was able to make more reasonable decisions for the seeker. While anticipation

at the state-machine level is generally constrained to state-based reasoning, anticipation at the

planner level can make more complex inferences and can more accurately reflect complexities and

subtleties of animal intelligence.

111

112

Chapter 9

Results

In this chapter we describe the human locomotion control system. We discuss its adherence to the

system requirements previously laid out, demonstrate the system through a fully worked example,

and analyze its performance.

9.1 Description

The locomotion control machine (LCM), diagrammed in Figures 9.1 and 9.2, embodies the loco-

motion control system. Given an agent and a goal, LCM combines avoidance, ducking, inertia,

attraction, turning, path following, and chasing to guide the agent to the goal.

Figure 9.1 is an abstract state diagram of the entire system’s functionality. Path following is

only used when the goal is not immediately visible, and then only until the goal becomes visible

(or until the agent arrives). Otherwise, the agent chases the goal, exiting when it either arrives at or

loses the goal. The system also includes an agent model for parameter adjustment and a monitor

for condition evaluation.

Figure 9.2 is a more detailed flow chart of the locomotion control machine. The machine

exits immediately if the agent is at the goal. Otherwise, level 0 behaviors bind to the agent and

LCM performs a visibility test to determine whether the agent can see the goal. If not, LCM

instantiates a path-following machine to calculate and guide the agent along a path to the goal. If

the path-following machine reports that either no such path exists, or that the agent arrived at the

goal, level 0 behaviors unbind and LCM exits.

113

Attraction

Attraction

Object

Location

ExitStart

Following
Path

Agent
Model

Monitor
Exit When

Condition is TRUE
LocoNet

Figure 9.1: The Locomotion Control System

EXIT
YES

There?
NO

NO
Visible?

YES

Level 0
Bind

Turning
Machine

Path−Following
Machine

NO YES

Level 0
UnbindArrived?

START

to Location
Attraction NO

NO

to Target
Attraction

YES

NO

Arrived?

Visible?

YES

NO

Visible?

Arrived? YES

YES

Extrapolate

YES
Success?

NO

Figure 9.2: The Locomotion Control Machine

114

Instantiation of a turning machine begins LCM’s “chasing” phase and is entered if the goal is

immediately visible, or if the agent, nearing the end of a path, finds the goal has moved (but is

visible). The agent turns to face the goal, and an attraction to the goal binds to the agent. As long

as the goal is visible the agent will walk toward the goal. Upon arrival, level 0 behaviors unbind

and LCM exits.

If the goal becomes occluded, the object attraction unbinds and an attraction to the goal’s

last known location binds in its place. The agent walks toward this location until either the goal

becomes visible again or it arrives at the location. In the former case the location attraction unbinds

and LCM transitions back to the turning machine state where the chase continues. In the latter

case the location attraction unbinds and the agent walks in the direction the goal was last known to

be heading. If the goal becomes visible the chase continues. If not, level 0 behaviors unbind and

LCM exits.

9.2 Adherence to System Requirements

The locomotion control system adheres to the system requirements laid out in Chapter 5.

Aware: The agent is made aware of its environment through the use of a network of simulated

sensors. LCS’s S-C-A loop includes relatively little computation and is therefore fast, so the

agent remains aware of its environment throughout the simulation.

Dynamic: A major advantage of behavioral S-C-A-based architectures over planner-based ar-

chitectures is that they are able to cope with a dynamic environment in a timely fashion.

Because the environment is resampled each time through the loop, the agent is made aware

of, and can react to, changes in the world.

Easy to Use: Figure 9.3 illustrates the system architecture with the addition of a high-level user

interface (Figure 9.4). Through a combination of input boxes, sliders, buttons, and menu

items, the user configures the simulation, often in a matter of minutes. Knowledge of the

underlying architecture or implementation is unnecessary. Most simulations only utilize

a small fraction of the system’s capabilities, so reasonable defaults help to speed up the

process. Also, the system includes a “verbose” mode where detailed debugging information

115

Behaviors

Locomotion Engine

Agent Model

State Machine

User Interface

Figure 9.3: The Architecture and the Interface

is displayed to aid the user in reconfiguring the simulation if something goes wrong or if he

or she is unhappy with the resulting animation.

Efficient: We satisfied the efficiency requirement by choosing a behavioral control strategy, by

keeping the behaviors simple with minimal computation, and by exploiting efficiencies

whenever possible. For example, the interface provides a “stationary” checkbox which,

when checked, allows the system to take advantage of the fact that the goal, albeit a

moveable object, will be stationary for the duration of the simulation. When it is known that

the goal is stationary, in general, less computation is required to guide the agent to that goal.

What we refer to as stationary objects conform to Sloman’s notion of passive objects such

as trees or poles as opposed to active objects such as other agents [140].

Extensible: LCS is extensible at every level. It supports the addition of new sensors and behaviors

of all types as well as new personality attributes and state information. In this way it is useful

both as an animation tool and as a research tool.

Fault Tolerant: Arbitrary condition evaluation and action execution provides the agent with the

ability to anticipate and prepare for contingencies, making the system fault tolerant. The user

may supply any number of condition-action pairs. The conditions are constantly evaluated

116

Figure 9.4: The User Interface

117

in parallel by a monitor process. If one of the conditions is achieved, the simulation is

interrupted, the corresponding action is executed, and then the simulation continues. The

conditions are prioritized, so if more than one is achieved simultaneously, the order in which

the actions are executed is deterministic. Moreover, each condition is rechecked before its

action is executed in case it was obviated by an earlier action.

Flexible: Flexibility is achieved through the combination of a behavioral level with a state machine

level. In this way we support potential-field-based reasoning as well as state-based reasoning.

The combination is powerful enough to simulate a wide range of behaviors. When more

complex reasoning is required, a planner or other higher-level module can perform this

reasoning and interface with the system as required through a LISP interface with all the

power of the interactive user interface.

Modular: LCS was designed to be modular, to support adding, removing, and replacing pieces.

Vision can be seen as an example of this. LCS required simulating vision through ray

casting. Although the existing method of ray casting is sufficient for our simulations, the

vision module can be replaced easily when a different vision simulation method is desired.

The same is true of other parts of the system such as the path-following path-generation

module and the chasing extrapolation algorithm. They too can be replaced in order to

experiment with other cognitive theories.

Opportunistic: Arbitrary condition evaluation provides the agent with the ability to take advan-

tage of opportunities. The approach incorporates cognizant failure in that the user anticipates

things that might go wrong or opportunities that may arise (things that may go right) and

plans for them. This is implemented as a set of condition-action pairs passed as an optional

parameter. A monitor continually evaluates each of these conditions. When one is achieved,

the system executes the associated action. For example, as an agent follows a path that takes

it through a closed door, a condition can be checked that is achieved when the agent gets to

within reaching distance of the door. The action passed with this condition can cause the

agent to reach out and open the door as it passes through the doorway, releasing the door

when it is through. Condition evaluation can also be used to dislodge an agent that is stuck

in a local minimum, a common problem in behavioral control systems.

118

Parameterizable: LCS includes parametric control over the agent’s speed, inertia, and the prob-

ability it will react to an opportunity (effectively its awareness).

Purposeful: Our agents are goal-based, their goals being to locomote to chosen locations, objects,

or human figures. An agent’s purpose is to choose an appropriate path through the environ-

ment and an appropriate locomotion style that properly reflects the attributes specified in the

agent model.

Realistic: Jack’s accurate human models combine with Ko’s locomotion control system [82, 83,

84] to produce extremely realistic looking simulations. Additionally, our strict enforcement

of the limited perception policy and introduction of anticipation throughout the system serve

to enhance this realism.

Robust: Robustness is achieved through generalization. We try to design sensors that detect an

entire class of object rather than just one specific object whenever it is reasonable to do so.

For example, an agent can be told to avoid all humans in the environment. If humans are

added or removed, our agent continues to behave properly, avoiding any that are nearby.

9.3 Examples

We demonstrate the complete system at work with two examples. The first involves six agents

in two groups of three, located at either side of the environment (See the figures on the next two

pages). Each agent’s goal is the flag on the opposite side of the field, requiring only two behaviors

to achieve: basic attraction to the goal, and predictive avoidance of each of the other five agents.

In addition, to avoid symmetry, each agent’s rushed value was adjusted to be a unique multiple of

five in the range [60� 85]. The 10 images show the agents successfully navigating to their goals

without colliding with each other.

The second example of the complete system involves three agents. The agents exhibit attraction,

avoidance, chasing, path-following, and turning behaviors and demonstrate system features such

as limited perception, anticipation, and the use of the agent model. Figures 9.5a through 9.5h are

eight frames from the simulation.

119

120

121

Figure 9.5a: Our simulation environment is made up of two cylindrical obstacles, two cubical

obstacles, a flag, grassy terrain, and three human agents. From left to right, we refer to

the agents as one, two, and three. All three agents are configured to avoid the cylinders

and boxes using standard avoidance techniques and to avoid each other using predictive

avoidance (anticipation). If path-following becomes necessary, all three agents will plan a

path that avoids only the boxes, i.e., the cylinders, humans, flag, and terrain are not to be

considered obstacles for the purposes of path planning. Finally, all three systems are told to

ignore cylinders during visibility tests. The cylinders are treated as simplifications of other

objects through which the agents would be able to see.

Agent one’s goal is agent three. Agent two’s goal is a location to the right of the two boxes.

Upon arrival at the goal, agent two is to turn to face west (left). Agent three’s goal is the

flag which is known to be stationary thus allowing the system to simplify its calculations

and reasoning. Furthermore, agent three’s rushed attribute is set to a relatively high value,

so it will walk more quickly than the other agents.

Figure 9.5b: Agents one and two both begin to walk toward their goals. Agent three plans a path

to the flag and begins to follow it. Note that the path avoids the boxes but not the cylinders,

as expected.

Figure 9.5c: Agent one, having lost visual contact with its goal, is now walking toward agent

three’s last known location. Agents two and three are avoiding a collision with each other

with predictive avoidance. Agent two slows down to let agent three pass by and agent three

swerves slightly to its left in an attempt to avoid the collision.

Figure 9.5d: Agent one can now see its goal again, so it switches from last-known-location

attraction back to object attraction and again heads toward agent three. Agent two continues

toward its goal as does agent three by returning to the path.

Figure 9.5e: Agents one and three approach obstacles and begin to swerve around them. Note

that agent one is still attracted to agent three even though the cylinder obscures agent three

thanks to our initial instructions to the system. Agent two approaches its goal.

Figure 9.5f: Agents one and three circumnavigate the cylinders while agent two arrives at its goal.

122

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 9.5: An Example

123

Figure 9.5g: Agent one continues chasing agent three. Agent two completes its turn and is now

facing left. Agent three arrives at its goal.

Figure 9.5h: All three agents have arrived at their goals. The simulation ends.

Once the environment was built, it took us less than one minute to configure each agent’s

animation using the locomotion control system user interface described in Section 9.2 (Figure 9.4).

The simulation then ran in real time on a Silicon Graphics Reality Engine II with a 250 megahertz

R4400 processor. The total elapsed time for the simulation was 55 seconds. The total elapsed time

from the start of configuration to the end of the simulation, including loading and saving files and

other overhead, was under five minutes. These times are typical for our simulations.

9.4 Performance Analysis

This section contains time complexity analyses of various parts of the system which can be used to

determine the incremental cost of adding agents, obstacles, and behaviors to a simulation. In each

of the following tables, a is the number of agents in a simulation, n is the number of obstacles, f

is the number of potential next footsteps for an agent, b is the number of behaviors bound to an

agent, and s is the number of steps of lookahead used by the predictive avoidance behavior.

Sensor Time Complexity Weak Link

Object O�1�
Line O�1�
Location O�1�
Proximity O�n�

Figure 9.6: Sensor Time Complexity Analysis

Figure 9.6 shows the time complexity analysis of the system’s sensors. Object, line, and

location sensors each probe and perform calculations on only a single part of the environment;

therefore, they operate in constant time. An object sensor, for example, will add the same overhead

to a system with 10 obstacles as it will for one with 10,000. A proximity sensor, however,

performs calculations proportional to the number of objects it currently detects. Note that although

a proximity sensor can theoretically be used to detect every obstacle in the environment, hence

124

the O�n� time complexity, in practice, one is typically used to detect only a small subset of the

obstacles.

Control Behavior Time Complexity Weak Link

Attract O�1�

Avoid O�1�

Figure 9.7: Control Behavior Time Complexity Analysis

Attract and avoid control behaviors are fixed equations based on constants, thus they operate

in constant time (Figure 9.7), so when combining sensors and control behaviors into behaviors,

sensors are the weak link.

Behaviors Time Complexity Weak Link

Object Attraction O�1�
Location Attraction O�1�
Predictive Attraction O�1�
Line Avoidance O�1�
Proximity Avoidance O�n�

Predictive Avoidance O�s�

Inertia O�1�

Figure 9.8: Behavior Time Complexity Analysis

Figure 9.8 shows the results of combining basic sensors with control behaviors and also

analyzes three more complex behaviors. Object attraction, location attraction, and line avoidance

each combine a constant-time sensor with a constant-time control behavior, resulting in a constant-

time behavior. Predictive attraction and inertia operate in constant time as well. Proximity

avoidance combines a linear-time sensor with a constant-time control behavior, and so is linear

time itself. Predictive avoidance, although based on one agent, involves calculations that are

performed once for each of the s steps of lookahead. Its time complexity is therefore O�s�.

We can now analyze the time complexity of the overall simulation in terms of agents, footsteps,

behaviors, obstacles, and lookahead (Figure 9.9). Since each agent has associated with it an instance

of LCS (which includes an instance of the locomotion engine), every phase includes theO�a� term.

The simulation run-time is linear relative to the number of agents.

125

Locomotion Engine Phase Time Complexity Weak Link

Footstep Generation O�af�

Sense O�afb�n� s��

Control O�afb�

Act O�a�

Figure 9.9: Simulation Time Complexity Analysis

Footstep generation is clearly proportional to the number of footsteps. Control requires

computing the sum of all the stresses output by the behaviors. One stress is output by each

behavior, for each possible next footstep of each agent. Once an action has been selected for an

agent, corresponding to the new state of minimal stress, that action can be carried out in constant

time.

Our analysis shows that sensing is the system’s weak link. It is linear in the number of

agents, footsteps, behaviors, and the maximum of the number of obstacles and steps of lookahead.

We observe that simulations can be parallelized, executing one LCS on each processor of a

multiprocessor machine. The effect on simulation time complexity is to reduce all O�a� terms to

O�1�. Given a machine with enough processors, it is actually possible to parallelize any or all of

these calculations, reducing each one to constant time complexity. It should be noted that if this

were the case, data collection among processors would add at leastO�logn� to the time complexity

of each parallelized calculation. We suggest experimenting with parallelization as future research.

126

Part IV

Conclusion

127

Chapter 10

Discussion

The current trend in designing autonomous agents is away from the deliberative thinking paradigm

and toward a more direct coupling of perception to action. Flexibility, distributivity, parallelization,

and dynamic interaction with the environment are emphasized more and more [94]. An approach

that exhibits these features, behavioral control of animation or robot locomotion has become

increasingly popular over the last decade.

Locomotion reasoning through behavioral control has several desirable properties. The iter-

ative approach allows for a dynamically changing environment which includes changing terrain,

obstacle, and goal locations. Since only a few local decisions need to be made for each step, the

technique is fast and often implementable in real-time. Moreover, it is versatile. New types of

behaviors may be designed and easily integrated; additional layers of behavioral control may be

overlaid on the architecture. This, combined with its modularity and extensibility, makes it a useful

cognitive research tool.

Purely reactive systems are limited; realistic tasks require a certain amount of stored informa-

tion. State machines provide an additional layer of control and are a mechanism for introducing

locomotion reasoning and high-level decision-making into an architecture. They expand the

agent’s behavioral vocabulary by allowing for state-based and memory-reliant behaviors. Chasing

illustrates this point, clearly requiring reasoning and decision-making beyond the scope of the

S-C-A loop or pure potential field-based behaviors. Our locomotion control architecture allows

for this reasoning.

We have presented a complete agent architectures and a design methodology based on a

129

theoretical formalism. This allows a researcher not only to understand the system from a theoretical

point of view, but also to build the system with relative ease. We have addressed many of the

concerns that are unique to human locomotion, though we have done so without loss of generality.

Though only demonstrated for walking, our locomotion control system is designed to support the

wide variety of locomotion styles exhibited by different types of animals or robots.

We have made the agent’s locomotion variable and more interesting by basing it on an agent

model. The agent model maps agent state and personality attributes to system parameters. Different

attribute settings result in different locomotion styles. Two agents with the same goals might

achieve their goals differently depending on their agent models.

Finally, we have enforced a limited perception policy and introduced anticipation to enhance

the system’s overall realism. The agent’s access to the environmental database is filtered to prevent

it from acquiring information it is not able to “perceive” visually. Furthermore the agent bases its

actions not only on the current state of the world, but also on the predicted state of the world one

or more steps into the future.

130

Chapter 11

Research Summary

The most merciful thing in the world, I think, is the inability of the human mind to

correlate all its contents.

– H. P. Lovecraft, The Call of Cthulu –

This chapter summarizes the research we have completed and discusses its contributions

to science and the field of behavioral control. We provide a complete, structured architecture

for behavioral control of locomotion and the design methodology required to build behavioral

locomotion systems. We explain the system requirements to which the architecture adheres, give

a formal description of the locomotion engine, supply behavior selection and placement criteria,

provide agent model design and integration specifications, and finally show how to put everything

together in a state-based framework.

We validate the architecture by implementing a human locomotion control system giving

detailed descriptions of our results. Simulations of fully-articulated walking human models in a

three-dimensional environment serve as the testbed, rather than abstract objects, robots, or creatures

that fly using jet propulsion. As a result, we address additional complexities specific to human

locomotion.

Our research includes a variety of implementations of the following behaviors implemented

either through the locomotion engine or the state-machine layer:

131

Various Basic Avoidances Turning Predictive Avoidance
Ducking Path Following Attraction to Deep Spaces
Inertia Chasing Field-of-View Avoidance
Various Basic Attractions Predictive Attraction Terrain Awareness

We discuss and enforce limited perception as a policy and we introduce the notion of anticipation

or predictive sensing where a probabilistic model of future states of the environment influences

locomotion decisions. Limited perception and anticipation combine to make simulations based on

animal behavior models more realistic. The simulated agents only acquire and react to information

that a real agent in an equivalent situation would be able to acquire. Furthermore, the simulated

agents anticipate changes in the world such as the movement of other agents, making decisions

based on this prediction rather than on the current state of the world alone. In this way, the

simulated agents can more closely approximate behaviors observed in real animals.

We achieve the system requirements of Chapter 5, most notably the following. The architecture

allows for arbitrary condition-based interruption making it opportunistic. We minimize the set of

active behaviors to solve the behavior weighting problem, easing the burden on the system designer,

and making the system easier to use. The design methodology provides for extending the behavioral

set, the state machine, and the agent model. The agent model allows the user to modify agent state

and personality attributes reflected in its observed behavior.

The system’s extensible and modular design make it a useful cognitive research tool. Modules

can be swapped in and out and the system can be extended easily allowing for testing of cognitive

theories. As an example, an independent user modified her system to include a model of visual

attention. Before beginning to locomote, her agent turned its head and focused its gaze in the

direction of the goal. Then, during locomotion, its gaze wandered based on attractions and

avoidance, among other factors.

The system employs a layered approach making it versatile. It allows for both behavioral and

state-based reasoning, and even supports higher-level “plug-ins” such as a planner. In the Hide and

Seek project, the system was controlled by a planner exclusively. There was no user interaction

whatsoever. In addition, each of these types of behaviors are parameterizable and are affected by

the agent model. The system parameters we use most often are: the agent’s speed, the agent’s

inertia, the amount of anticipation, the condition being evaluated, and the probability the agent

will notice and react to a certain condition being achieved. The attributes we use most often are:

132

fatigue, intoxication level, and awareness.

While other researchers have designed complete architectures, though with different features,

they tend to gloss over or completely ignore the implementation details and issues required to make

use of their architectures. Our biggest contribution to the field of behavioral control is the detailed

design methodology we present. This thesis contains theoretical background information, a full

architectural description, and a complete recipe for building a locomotion control system capable

of the reasoning and decision-making necessary to realistically locomote a real or a simulated

agent to an arbitrary goal.

133

134

Chapter 12

Future

Do you hear the people sing,

Say, do you hear the distant drums?

It is the future that they bring

When tomorrow comes.

– Les Misérables, Do You Hear the People Sing? –

Our research has motivated many possible avenues of future research. We list the more

interesting possibilities here.

Audio cues: Sound might contribute to locomotion decisions. Although not visible, an agent

might avoid another agent at a blind intersection based on the sound of the other agent

approaching. This behavior has been observed in humans, particularly at blind intersections

such as those found in buildings.

Behavioral Modifications: Sometimes a path which intersects obstacles is chosen for the agent.

When this is the case the agent is forced to make behavioral changes to successfully navigate

through the region. These modifications would be level 0 reflexive behaviors implemented

as state machines running in parallel with the locomotion control system, similar to ducking.

When one of these situations occurs, the corresponding state machine makes the appropriate

change to the agent’s posture or locomotion.

135

� Low Obstacles: When the agent encounters a low obstacle such as a boulder or a

fallen tree, one of three things happens: the agent climbs over, jumps over, or steps

on the obstacle depending on the size of the obstacle and the agent’s current behavior.

The agent only jumps if its current velocity is above a predefined threshold.

� Narrow Widths: When the agent encounters a narrow width it will squeeze through

it. This may require turning sideways and side-stepping.

Better Sensors: The line sensor described in Section 7.3.3 would not be required and the object

sensor described in Section 7.3.1 would be improved if a new sensor were implemented to

return the distance between figure geometries rather than bounding volumes. If properly

implemented, this new sensor might replace location and proximity sensors as well. In

designing it, the greatest difficulty would be the increase in computational complexity, but

a machine of sufficient speed or an algorithm of sufficient efficiency might overcome this

difficulty.

Gait Variability: Although we do not address the issue of variable gait, our system provides the

necessary flexibility to parameterize and control an agent’s gait. The system state machine

can be used to vary the parameters based on the agent’s changing state or motivation. The

agent model can be used to set the parameters based on the agent’s personality in a manner

consistent with Bruderlin and Calvert’s model [35].

Group Locomotion Control System: With a few modifications the locomotion control system

can be made to simulate group behavior. Whether a single LCS instance is to control a single

agent or all the agents in the group, the implementation requires the addition of grouping

behaviors. Compiling the results of the observations made by Hodgins and Brogan [73],

Kube and Zhang [86], Reynolds [130], Shaw [136], and others, we suggest the following

group behavior set: collision avoidance, group attraction, and velocity matching.

Collision Avoidance: Simply a non-interference behavior, collision avoidance prevents

collisions between members of the group. This is best implemented as a level 0

instinctive behavior and should be combined with standard obstacle avoidance.

136

Group Attraction: The group members are attracted to the center of the flock, or they

attempt to stay close to their nearby neighbors.

Velocity Matching: Each member of the group attempts to match the velocity of its

neighbors. Hodgins and Brogan use an algorithm that computes a desired velocity for

an individual based on the location and velocity of its visible neighbors.

When managing a group, the system has two additional responsibilities. It requires a

mechanism for determining whether or not an agent is in the group, switching back and forth

between an “in the group” and a “not in the group” state as appropriate. Group behaviors

are only applied when an agent is in the “in the group” state. Additionally, some groups

have leaders and followers. In such a group, the system only applies group behaviors to the

followers. The leader or leaders are controlled by a standard locomotion control system; the

rest of the group naturally follows.

Optical Flow Sensor: An optical flow sensor might be designed, combined with an avoid control

behavior, and attached to a fast moving agent such as a bird. This optical flow behavior

would prevent the agent from colliding with anything in its field-of-view by considering

optical flow vectors.

Path Replanning: In the existing system, a path is generated for the agent which follows the

path until either it reaches the end, or it is interrupted. The path is static; once generated it

does not change. It may be more realistic to replan the path at times, but at which times?

Experiments will indicate at which times it is appropriate to replan the path, e.g., constantly,

periodically, when the agent’s deviation from the path exceeds a threshold value, or when a

particular condition is achieved. To be consistent with the limited perception policy, it may

be necessary to assume the goal is in the same place unless the agent is made aware of a

change.

Simulated Vision: The agent’s actual vision process can be simulated through the use of the

z-buffering hardware. An approach similar to that of Boulic, Noser, and Thalmann’s [25],

or Renault, Thalmann, and Thalmann’s [129] might prove successful where vision is the

only channel of information between the agent and its environment. All sensors would be

rewritten to use simulated vision only.

137

� Infrared Sensor: If simulated vision is used then night-vision could be simulated

simply by replacing the visible light values with infrared radiation values.

Temporal Constraints: Parameters could vary with simulation time rather than remain constant.

The desire to achieve a goal may eventually override other desires, or an agent may suffer

from increasing fatigue, for example. When the simulation is turned on, a floating point time

value is passed. The default is zero. After each step a fixed number of seconds are added to

the simulation time. Parameters may be constant or functions of a time variable.

Uncertainty in Object Sensing: Currently, an object sensor provides the exact location of the

object it is sensing whether or not that object is actually visible to the agent. The following

approach might be used to introduce uncertainty into the simulation and might be used by

robotics researchers who simulate their robots before building them: When the simulation

begins, a random point is chosen in the circle centered at the object, with radius equal to the

uncertainty radius defined by the user. The agent “thinks” the object is at this point. After

each simulation step (after each step taken by the agent) the perceived location of the object

is moved by a random amount less than or equal to a user-defined distance, in a random

direction. This distance might change depending on the number or type of reference points

in the local environment. When wandering through an open field an agent’s perception of

location or relative location will vary, but if the agent thinks the target object is near a tree

visible in the distance, the agent will head straight for that tree. Once the object is visible

to the agent (distance, size, and atmospheric effects should be considered) the perceived

location is set to the exact location. Introducing uncertainty might allow for more realistic

simulations or more realistic simulated robots.

138

Part V

Appendices

139

Appendix A

Additional Behaviors

In this appendix, we present our research on two behaviors that were omitted from our sample

locomotion control system: attraction to deep spaces and field-of-view avoidance. We include

them here because, although we found the existing behavioral set sufficient for our examples, these

two additional behaviors are potentially useful in other domains.

A.1 Attraction to Deep Spaces

Agents running or flying through a crowded area, such as a dense forest, tend to move in the

direction of greatest depth. A depth sensor combined with an attract control behavior simulates

this behavior. A depth sensor detects the direction of greatest (weighted) depth similarly to

Anderson and Donath’s open space attraction behavior [7] except that depth (rather than width) is

the deciding factor.

A depth sensor uses the output of an array of range sensors covering the agents entire field of

view (Figure A.1) to calculate the direction of greatest depth.

A range sensor (Figure A.2) takes the following parameters:

� Minimum Detection Threshold (Dmin)

� Maximum Detection Threshold (Dmax)

� Field-of-View Angle (�)

� Orientation Relative to Agent (�)

141

Agent

3

5

1

2

4 6

7

8

9

Figure A.1: A Depth Sensor

00

01

10

Agent

θ θ

φ

11

Orientation
Agent’s Minimum

Detection
Threshold

Maximum
Detection
Threshold

Figure A.2: A 2-Bit Range Sensor

142

� Resolution in Bits (n)

It detects objects that intersect the fan-shaped region defined by � and the minimum and

maximum detection threshold values. Similar to sonar, a range sensor’s output is the distance to

the nearest part of the nearest detected object.

0.2

0.4

0.6

0.8

1.0

0.0
1 2 3 4 5 6 7 8 9

Sensor

Weight
cos(θ)

0.2

0.4

0.6

0.8

1.0

0.0
1 2 3 4 5 6 7 8 9

Sensor

Weight
cos (θ)2

= With Bias

= Without Bias

Figure A.3: Range Sensor Weighting Functions

If no object is detected then the code 2n � 1 is returned where n is the number of bits of

resolution, the number of bits used in the return value. The return value is inversely proportional

to the stress value of the range sensor. The stresses of all the range sensors are weighted by a

cosine function, either cos (�) or cos2 (�), and then summed, yielding the overall stress value for

the depth sensor. A bias insures that there is a minimum weight given to any sensor. In Figure A.3,

the bias is 0�2.

Figure A.4 shows an agent working its way out of a simple maze. The depth attraction

behavior is the only behavior bound to the agent. Eighteen range sensors, each with a 10-degree

field-of-view (� � 5 deg), compose the depth sensor. The 32-bit range sensors, covering the

agent’s field-of-view as in Figure A.1, detect objects up to 10 meters away from the agent. In this

simulation, the weighting function was cos2 and the bias was 0.

Attraction to deep spaces as a method of obstacle avoidance can be more realistic than

proximity-sensor-based obstacle avoidance, especially when the agent is moving quickly through

a region of densely populated obstacles. For example, an animal running through the woods to

143

Figure A.4: An agent maneuvering through a maze using only a depth sensor for navigation

avoid a predator, or a human running through a crowd might benefit from this behavior.

A.2 Field-of-View Avoidance

Finding covered or concealed locations with respect to a known opponent or enemy locomotion has

applications from military [91] to gaming [113]. In our implementation of this behavior, the agent

attempts to achieve the goal while avoiding the gaze of hostile agents (hostiles). Hostiles’ views

may be obscured by obstacles, structures, or terrain, and attenuated by distance and atmospheric

effects such as smoke or fog.

A field-of-view avoidance behavior uses a sensor to determine whether the agent is visible to

any of a specified set of hostiles. Stress is proportional to the number of hostiles that can see the

agent and inversely proportional to the distances to these agents.

The field-of-view sensor uses a simple vision model. Rays are cast from a point between a

hostile’s eyes toward the agent. If any of these rays hit the agent before intersecting the environment,

the agent is visible to that hostile. Although casting more rays would improve the visibility test’s

accuracy, ray casting is a computationally expensive operation and the system would slow down

significantly as a result. A better vision model might take advantage of z-buffering hardware to

144

simulate and analyze the hostile’s view.

Figure A.5: Attraction, avoidance, and field-of-view avoidance combine to guide the agent to the
goal without it being seen by the hostile agent hiding at the bottom

Figure A.5 shows an agent arriving at the goal, having avoided walls and the field-of-view of

the stationary hostile at the bottom of the image. Although we were able to effectively implement

this behavior, we omit it from our locomotion control system for one important reason. It violates

the principle of limited perception. Even when an agent can guess where a hostile might be located

in the environment, it is unrealistic for the agent to know that it will be visible to that hostile after

taking a particular step. Upon analysis of this behavior we realized that a realistic implementation

would have to involve the user or planner level. As an agent moves through the world it remains

aware of its local environment through vision simulated by ray casting. When the agent “sees” a

hostile, the system terminates the agent’s locomotion and sends a message to the calling system or

user. A decision may then be made at that level as to the agent’s reaction.

145

146

Appendix B

Groups

...and the thousands of fishes moved as a huge beast, piercing the water. They appeared

united, inexorably bound to a common fate. How comes this unity?

– Anonymous, 17th Century –

Generating reasonable agent behavior, whether simulated or real, is a difficult problem in itself.

Generating reasonable group behavior is even more complex. It combines the single agent problem

with the need to form and maintain a coherent group without relying on explicit communication.

The goal of group behavior research is to have agents group, herd, flock, school, etc. without any

form of centralized coordination.

B.1 Why Do Animals Group?

In nature, grouping is advantageous for predators. The group profits from a larger effective search

pattern in the quest for food [135], and is able to hunt larger, more powerful animals than those the

animals could otherwise overpower as individuals [27, 73]. When the prey attempts to evade the

leading animal of the group by swerving when it is close behind, the animals further back are well

placed to catch it [6].

Grouping is also advantageous for prey. It is safer in a group. Predators cannot easily surprise

a large group. One animal detects the predator and alerts the group through its evasive maneuvers.

Grouping benefits the average group member by limiting the average number of encounters with

147

predators [73, 153] statistically improving survival of the (shared) gene pool from attacks from

predators [135]. Predators attack the nearest prey, usually at the edge of the group, so prey with

a hereditary tendency to push to the center of any group will be favored by natural selection. In

addition, there is a small energy savings as a result of slipstreaming or drafting, whether running,

flying, or swimming. This savings may be critical in a race [6].

Being part of a group also improves the chance for social and mating activities [135].

B.2 Group Research

Natural groups consist of agents that exhibit two balanced, opposing behaviors: a desire to stay

close to the group and a desire to avoid collisions within the group [27, 73, 135, 136]. Fish density

in a school has been observed as being roughly uniform as though each fish had a sphere around its

head with which it wished to contact the sphere of another fish [47]. Birds in a flock tend to exhibit

three categories of awareness: themselves, their nearest neighbors, and the rest of the flock [123].

Many researchers have gone beyond the single-agent case in an attempt to model groups of

robots or simulated animals, to swarm intelligence, such as Beni, Wang, and Hackwood [22, 23],

Deneubourg, Theraulax, and Beckers [48], and Matarić [102]. Kube and Zhang use a common goal

and non-interference behavior as a simple form of cooperation [86]. Their non-interference simply

becomes robot-avoidance in their implementation. Steels describes a simulation of simple robots

using the principles of self organization to perform a gathering task [142]. Brooks, et al. report a

set of simulations in a similar domain, with a fully decentralized collection of non-communicating

robots [30]. Arkin describes a schema-based approach to designing simple navigation behaviors

to be extended to multiple physical agents [9]. Matarić cites various researchers who study and

simulate ant colonies,examples of simulations of simple organisms collectively producing complex

behaviors emerging from simple interactions including: Beni and Hackwood [22], Colorni, Dorigo,

and Maniezzo [40], Drogous et al. [50], and Travers [148].

Matarić proposed the following set of basic behaviors as a basis for the set of grouping

behaviors [105]:

� Safe-wandering - Minimizes collisions between agents and environment, keeping the agents

moving while maintaining a minimum distance between them.

148

� Following - Minimizes interference by structuring movement of any two agents, achieving

and maintaining a minimum angle between the position of the leader relative to the follower.

� Aggregation - Gathers the agents, achieving and maintaining a maximum distance between

them.

� Dispersion - Dissipates the agents, achieving and maintaining a minimum distance between

them.

� Homing - Enables the agent to proceed to a particular location, decreasing the distance

between the agent and a goal location called “home.”

Matarić’s investigations into emergent behavior and group dynamics of wheeled vehicles (with

no explicit communication) demonstrate that combinations of such simple behaviors as attraction

and repulsion, in the form of these basic behaviors, can produce complex relationships such as

herding, convoying, foraging, gathering, and flocking [102, 103, 104, 105]. Our architecture is

capable of endowing agents with these basic behaviors, thus it is capable of simulating the groups

that exhibit Matarić’s grouping behaviors.

149

150

Bibliography

[1] M. D. Adams, Huosheng Hu, and P. J. Probert. Towards a real-time architecture for obstacle

avoidance and path planning in mobile robots. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 584–589, 1990.

[2] Philip Agre. The Dynamic Structure of Everyday Life. PhD thesis, MIT Artificial Intelligence

Laboratory, 1988. Technical Report 1085.

[3] Philip Agre and David Chapman. Pengi: An implementation of a theory of activity.

Proceedings of the AAAI-87 Conference, pages 268–272, June 1987.

[4] Philip E. Agre and David Chapman. What are plans for? In Pattie Maes, editor, Designing

Autonomous Agents, pages 17–34. MIT Press, 1990.

[5] Omar Ahmad, James Cremer, Joseph Kearney, Peter Willemsen, and Stuart Hansen. Hi-

erarchical, concurrent state machines for behavior modeling and scenario control. In Pro-

ceedings of 1994 Conference on AI, Simulation, and Planning in High Autonomy Systems,

Gainesville, FL, Dec 1994.

[6] R. McNeill Alexander. Locomotion of Animals. Blackie & Son Limited, 1982.

[7] Tracy L. Anderson and Max Donath. Animal behavior as a paradigm for developing robot

autonomy. In Pattie Maes, editor, Designing Autonomous Agents, pages 145–168. MIT

Press, 1990.

[8] J. R. Andrews. Impedance control as a framework for implementing obstacle avoidance in

a manipulator, 1983. S.M. Thesis, MIT, Department of Mechanical Engineering.

151

[9] R. C. Arkin. Cooperation without communication: Multiagent schema based robot naviga-

tion. Journal of Robotic Systems, 1992.

[10] Ronald C. Arkin. Towards the unification of navigational planning and reactive control. In

AAAI Spring Symposium on Robot Navigation Working Notes, pages 1–5, March 1989.

[11] Ronald C. Arkin. Integrating behavioral, perceptual, and world knowledge in reactive

navigation. In Pattie Maes, editor, Designing Autonomous Agents, pages 105–122. MIT

Press, 1990.

[12] N. Badler, B. Webber, W. Becket, C. Geib, M. Moore, C. Pelachaud, B. Reich, and M. Stone.

Planning and parallel transition networks: Animation’s new frontiers. In S. Y. Shin and T. L.

Kunii, editors, Computer Graphics and Applications: Proc. Pacific Graphics ’95, pages

101–117. World Scientific Publishing, River Edge, NJ, 1995.

[13] N. Badler, B. Webber, W. Becket, C. Geib, M. Moore, C. Pelachaud, B. Reich, and M. Stone.

Planning for animation. In N. Magnenat-Thalmann and D. Thalmann, editors, Interactive

Computer Animation. Prentice-Hall, 1996.

[14] Norman I. Badler, Cary B. Phillips, and Bonnie L. Webber. Simulating Humans: Computer

Graphics Animation and Control, chapter 5, pages 137–150. Oxford University Press, 1993.

[15] Norman I. Badler, Bonnie L. Webber, and Barry D. Reich. Towards personalities for

animated agents with reactive and planning behaviors. In Robert Trappl and Paolo Petta,

editors, Creating Personalities for Synthetic Actors, 1997. Book-chapter, to appear.

[16] D. H. Ballard, M. M. Hayhoe, F. Li, and S. D. Whitehead. Hand-eye coordination during

sequential tasks. In Philosophical Transactions of the Royal Society of London B, London,

March 1992.

[17] J. Bates. The role of emotion in believable agents. Communications of the ACM, 37(7):122–

125, 1994.

[18] Welton Becket and Norman I. Badler. Integrated behavioral agent architecture. In Proceed-

ings of the Third Conference on Computer Generated Forces and Behavior Representation,

pages 57–68, Orlando, Florida, March 1993.

152

[19] Welton M. Becket. The jack Lisp API. Technical Report MS-CIS-94-01, University of

Pennsylvania, Philadelphia, PA, 1994.

[20] Welton M. Becket. Discrete and Continuous Learning for Behavioral Control of Simulated

Autonomous Agents. PhD thesis, University of Pennsylvania, 1997.

[21] Randall D. Beer, Hillel J. Chiel, and Leon S. Sterling. A biological perspective on au-

tonomous agent design. In Pattie Maes, editor, Designing Autonomous Agents, pages

169–186. MIT Press, 1990.

[22] G. Beni and S. Hackwood. The maximum entropy principle and sensing in swarm intelli-

gence. In F. Varela and P. Bourgine, editors, Toward A Practice of Autonomous Systems:

Proceedings of the First European Conference on Artificial Life, pages 153–160. The MIT

Press, 1992.

[23] G. Beni and U. Wang. Swarm intelligence in cellular robotic systems. In NATO Advanced

Workshop on Robots and Biological Systems, Il Ciocco, Tuscany, Italy, 1989.

[24] R. Peter Bonasso, H. James Antonisse, and Marc G. Slack. A reactive robot system for find

and fetch tasks in an outdoor environment. Proceedings of the 8th National Conference on

Artificial Intelligence, pages 801–808, 1992.

[25] R. Boulic, H. Noser, and D. Thalmann. Automatic derivation of curved human walking

trajectories from syntheic vision. In Proceedings of Computer Animation ’94, pages 93–103,

Geneva, Switzerland, May 1994. IEEE Computer Society Press.

[26] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. The MIT Press,

1984.

[27] D. Brogan and J. Hodgins. Group behaviors for systems with significant dynamics. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems,

1995.

[28] Rodney A. Brooks. Achieving artificial intelligence through building robots. A.I. Memo

899, MIT AI Lab, 1986.

153

[29] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, pages 14–23, April 1986.

[30] Rodney A. Brooks. Elephants don’t play chess. In Pattie Maes, editor, Designing Au-

tonomous Agents, pages 3–18. MIT Press, 1990.

[31] Rodney A. Brooks. Intelligence without reason. In IJCAI-91, pages 569–595, August 1991.

[32] Rodney A. Brooks. Intelligence without representation. AI Journal, 47:139–159, 1991.

[33] Rodney A. Brooks. New approaches to robotics. Science, 253:1227–1232, 1991.

[34] Rodney A. Brooks and Jonathan H. Connell. Asynchronous distributed control system for a

mobile robot. In SPIE’s Cambridge Symposium on Optical and Opto-Electronic Engineering

Proceedings, volume 727, pages 77–84, October 1986.

[35] Armin Bruderlin and Tom Calvert. Knowledge-driven, interactive animation of human

running. In Graphics Interface, pages 213–221, May 1996.

[36] David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333–377,

1987.

[37] David Chapman. Penguins can make cake. AI Magazine, 10(4):45–50, Winter 1989.

[38] David Chapman. Vision, Instruction, and Action. The MIT Press, 1991.

[39] R. Chatila and J. Laumond. Position referencing and consistent world modeling for mobile

robots. In Proceedings of the IEEE Conference on Robotics and Automation, pages 138–145,

March 1985.

[40] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. In

F. Varela and P. Bourgine, editors, Toward A Practice of Autonomous Systems: Proceedings

of the First European Conference on Artificial Life, pages 134–142. The MIT Press, 1992.

[41] Jonathan H. Connell. A colony architecture for an artificial creature. Technical report, 1151,

MIT AI Lab, June 1990.

154

[42] Jonathan H. Connell. SSS: A hybrid architecture applied to robot navigation. Technical

report, IBM Research Report, 1991.

[43] Ingemar J. Cox. Blanche: an autonomous robot vehicle for structured environments. IEEE

Journal of Robotics and Automation, pages 978–982, 1988.

[44] Chris Crawford. Evolutionary game design. Morph’s Outpost on the Digital Frontier, pages

27–29, April 1995.

[45] James Cremer, Joseph Kearney, and Yiannis Papelis. HCSM: A framework for behavior and

scenario in virtual environments. ACM Transactions on Modeling and Computer Simulation,

5(3):242–267, July 1995.

[46] James Cremer, Joseph Kearney, and Peter Willemsen. A directable vehicle behavior model

for virtual driving environments. In Proceedings of 1996 Conference on AI, Simulation, and

Planning in High Autonomy Systems, La Jolla, CA, March 1996.

[47] J. M. Cullen, E. Shaw, and H. A. Baldwin. Methods for measuring the three-dimensional

structure of fish schools. Animal Behavior, 13:534–543, 1965.

[48] J. L. Deneubourg, G. Theraulax, and R. Beckers. Swarm-made architectures. In F. Varela

and P. Bourgine, editors, Toward A Practice of Autonomous Systems: Proceedings of the

First European Conference on Artificial Life, pages 123–133. The MIT Press, 1992.

[49] Brett Douville. A theoretical description of PaT-Nets. Technical report, Department of

Computer and Information Science, University of Pennsylvania, 1995.

[50] A. Drogous, J. Ferber, B. Corbara, and D. Fresneau. A behavioral simulation model for the

study of emergent social structures. In F. Varela and P. Bourgine, editors, Toward A Practice

of Autonomous Systems: Proceedings of the First European Conference on Artificial Life,

pages 161–170. The MIT Press, 1992.

[51] Andrew P. Duchon, William H. Warren, and Leslie P. Kaelbling. Ecological robotics:

Controlling behavior with optical flow. In Proceedings of the Seventeenth Annual Conference

of the Cognitive Science Society, 1995.

155

[52] A. Elfes. A sonar-based mapping and navigation system. In Proceedings of the IEEE

International Conference on Robotics and Automation, page 1151, 1986.

[53] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 8:189–208, 1971.

[54] Robert J. Firby. Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Yale Univer-

sity, 1989.

[55] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer

Graphics: Principles and Practice. Addison-Wesley Publishing Co., Reading, MA, 2nd

edition, 1990.

[56] Erann Gat. Alfa: A language for programming reactive robotic control systems. In Proceed-

ings of the IEEE International Conference on Robotics and Automation, pages 1116–1121,

April 1991.

[57] Erann Gat. Robust low-computation sensor-driven control for task directed navigation.

In Proceedings of the IEEE International Conference on Robotics and Automation, pages

2484–2489, April 1991.

[58] Erann Gat. Taking the Second Left: Reliable Goal-Directed Reactive Control for Real-World

Autonomous Robots. PhD thesis, Dept. of Computer Science, VPI, 1991.

[59] Erann Gat. Integrating planning and reacting in a heterogeneous asynchronous architecture

for controlling real-world mobile robots. Proceedings of the 8th National Conference on

Artificial Intelligence, pages 809–815, 1992.

[60] Erann Gat. On the role of stored internal state in the control of autonomous mobile robots.

AI Magazine, pages 64–73, Spring 1993.

[61] Erann Gat, Joe Fearey, and Joe Provenzano. Semi-automated forces for corps battle simula-

tion. In Proceedings of the Third Conference on Computer Generated Forces and Behavior

Representation, pages 69–74, Orlando, Florida, March 1993.

[62] Erann Gat and David P. Miller. Modular, low-computation robot control for object acquisi-

tion and retrieval. JPL Internal Report, 1991.

156

[63] Erann Gat, Marc G. Slack, David P. Miller, and R. James Firby. Path planning and execution

monitoring for a planetary rover. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 20–25, 1990.

[64] Christopher W. Geib. The Intentional Planning System: ItPlanS. PhD thesis, University of

Pennsylvania, 1995.

[65] M. P. Georgeff. Agents and their plans. In Proceedings of the 14th International Joint

Conference on Artificial Intelligence, Montreal, 1995. Invited Lecture.

[66] Michael P. Georgeff and Amy L. Lansky. Reactive reasoning and planning. In James Allen,

James Hendler, and Austin Tate, editors, Readings in Planning, pages 729–734. Morgan

Kaufmann Publishers, Inc., 1990.

[67] Matthew Ginsberg. Universal planning: An (almost) universally bad idea. AI Magazine,

10(4), Winter 1989.

[68] G. Giralt, R. Chatila, and M. Vaisset. An integrated navigation and motion control system

for autonomous multisensory mobile robots. In M. Brady and R. Paul, editors, First

International Symposium on Robotics Research, pages 191–214. MIT Press, Cambridge,

MA, 1984.

[69] R. L. Gould. Making 3-d computer character animation: A great future of unlimited

possibility or just tedious? SIGGRAPH 89 Course Notes: 3D Character Animation by

Computer, 1989. pages 31-60.

[70] John P. Granieri, Welton Becket, Barry D. Reich, Jonathan Crabtree, and Norman I. Badler.

Behavioral control for real-time simulated human agents. In Pat Hanrahan and Jim Winget,

editors, 1995 Symposium on Interactive 3D Graphics, pages 173–180, April 1995.

[71] David R. Haumann and Richard E. Parent. The behavioral testbed: Obtaining complex

behavior from simple rules. The Visual Computer, 4(6), 1988.

[72] B. Hayes-Roth. Agents on stage: Advancing the state of the art of AI. In Proceedings of

the 14th International Joint Conference on Artificial Intelligence, pages 967–971, Montreal,

1995.

157

[73] J. Hodgins and D. Brogan. Robot herds: Group behaviors for systems with significant

dynamics. In Proceedings of Artificial Life IV, pages 319–324, 1994.

[74] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating human athletics.

In Computer Graphics, pages 71–78, August 1995.

[75] Jessica K. Hodgins. Three-dimensional human running. In Proceedings of the IEEE

Conference on Robotics and Automation, 1996.

[76] Klaus Immelmann and Colin Beer. A Dictionary of Ethology. Harvard University Press,

1989.

[77] Verne T. Inman, Henry J. Ralston, and Frank Todd. Human locomotion. In Jessica Rose

and James G. Gamble, editors, Human Walking, pages 1–22. Williams & Wilkins, 1994.

[78] Leslie P. Kaelbling. Rex: A symbolic language for the design and parallel implementation

of embedded systems. In Proceedings of the AIAA Conference on Computers in Aerospace,

1987.

[79] Leslie P. Kaelbling. Goals as parallel program specifications. In Proceedings of the AAAI-88

Conference, 1988.

[80] Leslie P. Kaelbling. An architecture for intelligent reactive systems. In James Allen, James

Hendler, and Austin Tate, editors, Readings in Planning, pages 713–728. Morgan Kaufmann

Publishers, Inc., 1990.

[81] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings

of the IEEE International Conference on Robotics and Automation, 1985.

[82] Hyeongseok Ko. Kinematic and Dynamic Techniques for Analyzing, Predicting, and Ani-

mating Human Locomotion. PhD thesis, University of Pennsylvania, 1994.

[83] Hyeongseok Ko and Norman I. Badler. Animating human locomotion in real-time using

inverse dynamics, balance and comfort control. IEEE Computer Graphics and Applications,

16(2):50–59, March 1996.

158

[84] Hyeongseok Ko and James Cremer. VRLOCO: Real-time human locomotion from positional

input streams. Presence, 5(4):367–380, Fall 1996.

[85] Hyeongseok Ko, Barry D. Reich, Welton Becket, and Norman I. Badler. Terrain navigation

skills and reasoning. In Proceedings of the Fourth Conference on Computer Generated

Forces and Behavioral Representation, pages 219–227, Orlando, Florida, May 4-6 1994.

[86] C. Ronald Kube and Hong Zhang. Collective robotic intelligence. In Proceedings of the

Second International Conference on Simulation of Adaptive Behaviors, pages 460–468,

Honolulu, Hawaii, December 7-12 1992.

[87] Benjamin J. Kuipers and Tod S. Levitt. Navigation and mapping in large-scale space. AI

Magazine, 9(2):25–43, Summer 1988.

[88] C. G. Langton. Artificial Life. Addison-Wesley, 1989.

[89] C. G. Langton. Computation at the edge of chaos: Phase transitions and emergent compu-

tation. Physica, D(42):12–37, 1990.

[90] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[91] Michael J. Longtin. Cover and concealment in ModSAF. In Proceedings of the Fourth

Conference on Computer Generated Forces and Behavioral Representation, pages 239–247,

Orlando, Florida, May 4-6 1994.

[92] Tomás Lozano-Pérez and Michael Wesley. An algorithm for planning collision-free paths

among polyhedral obstacles. Communications of the ACM, 22(10):560–570, October 1979.

[93] Pattie Maes. The dynamics of action selection. In IJCAI-89, pages 991–997, Detroit, MI,

1989.

[94] Pattie Maes. Designing autonomous agents: Theory and practice from biology to engineer-

ing and back. In Pattie Maes, editor, Designing Autonomous Agents, pages 1–2. MIT Press,

1990.

[95] Pattie Maes. Situated agents can have goals. In Pattie Maes, editor, Designing Autonomous

Agents, pages 49–70. MIT Press, 1990.

159

[96] Pattie Maes. Agents that reduce work and information overload. Communications of the

ACM, 37(7), July 1994.

[97] Pattie Maes. Artificial life meets entertainment: Lifelike autonomous agents. Communica-

tions of the ACM, 38(11):108–114, 1995.

[98] Sang Mah, Thomas W. Calvert, and William Havens. A constraint-based reasoning frame-

work for behavioural animation. Computer Graphics Forum, 13(5):315–324, 1994.

[99] D. Marr. Vision. Freeman, San Francisco, 1984.

[100] Maja Matarić. A distributed model for mobile robot environment learning and navigation.

Technical Report AI-TR 1228, MIT AI Lab, 1990.

[101] Maja J. Matarić. Behavior-based control: Main properties and implications. In Proceedings,

IEEE International Conference on Robotics and Automation, Workshop on Architectures

for Intelligent Control Systems, pages 46–54, Nice, France, May 1992.

[102] Maja J. Matarić. Designing emergent behaviors: From local interactions to collective

intelligence. In J-A Meyer, H. Roitblat, and S. Wilson, editors, Proceedings, From Animals

to Animats, Second International Conference on Simulation of Adaptive Behavior (SAB-92),

pages 432–441. MIT Press, 1992.

[103] Maja J. Matarić. Minimizing complexity in controlling a mobile robot population. In

Proceedings of the IEEE International Conference on Robotics and Automation, pages

830–835, 1992.

[104] Maja J. Matarić. Kin recognition, similarity, and group behavior. In Proceedings of the

Fifteenth Annual Cognitive Science Society Conference, pages 705–710, Boulder, Colorado,

June 1993. Lawrence Erlbaum Associates.

[105] Maja J. Matarić. Interaction and Intelligent Behavior. PhD thesis, Massachusetts Institute

of Technology, May 1994.

[106] H. R. Maturana and F. J. Varela. The Tree of Knowledge: The Biological Roots of Human

Understanding. New Science Library, Boston, MA, 1988.

160

[107] Michael Mauldin. Chatterbots, tinymuds, and the turing test: Entering the Loebner prize

competition. In Proceedings of the AAAI 1994 Conference, pages 16–21. MIT Press, 1994.

[108] D. McFarland, editor. The Oxford Companion to Animal Behavior. Oxford University Press,

1987.

[109] D. P. Miller and M. G. Slack. Global symbolic maps from local navigation. In Proceedings

of the Ninth National Conference on Artificial Intelligence, Anaheim, California, July 1991.

AAAI Press.

[110] David P. Miller, Rajiv S. Desai, Erann Gat, Robert Ivlev, and John Loch. Reactive navigation

through rough terrain: Experimental results. Proceedings of the 8th National Conference

on Artificial Intelligence, pages 823–828, 1992.

[111] Michael B. Moore. Search plans. Technical Report MS-CIS-93-56/LINC LAB 250/IRCS-

93-29, Department of Computer and Information Science, University of Pennsylvania,

1993.

[112] Michael B. Moore, Christopher Geib, and Barry D. Reich. Planning and terrain reasoning.

In AAAI Spring Symposium on Integrated Planning Applications, Stanford, CA, 1995. (also

University of Pennsylvania CIS department Technical Report MS-CIS-94-63/LINC LAB

280).

[113] Michael B. Moore, Christopher Geib, and Barry D. Reich. Planning for reactive behaviors

in hide and seek. In Proc. 5th Conference on Computer Generated Forces and Behavioral

Representation, Orlando, FL, May 1995. Institute for Simulation and Training.

[114] H. Moravec. Rover visual obstacle avoidance. In Proceedings of the 7th International Joint

Conference on Artificial Intelligence, pages 785–790, 1981.

[115] H. Moravec and D. Cho. A bayesian method for certainty grids. In AAAI Spring Symposium

on Robot Navigation, pages 57–60, March 1989.

[116] Eadweard Muybridge. Descriptive Zoopraxography: The Science of Animal Locomotion

Made Popular. The Lakeside Press, Chicago, 1893.

161

[117] Eadweard Muybridge. The Human Figure in Motion. Dover Publications, New York, 1955.

[118] Eadweard Muybridge. Animal Locomotion; the Muybridge Work at the University of

Pennsylvania. Arno Press, New York, 1973.

[119] Eadweard Muybridge. Muybridge’s Complete Human and Animal Locomotion. Dover

Publications, New York, 1979.

[120] Eadweard Muybridge. The Male and Female Figure in Motion. Dover Publications, New

York, 1984.

[121] Nils J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, San Mateo,

California, 1980.

[122] Nils J. Nilsson. Shakey the robot. SRI International Technical Note, No. 325, 1984.

[123] B. L. Partridge. The structure and function of fish schools. Scientific American, pages

114–183, June 1982.

[124] David W. Payton. An architecture for reflexive autonomous vehicle control. IEEE Robotics

and Automation Conference, 1986.

[125] David W. Payton. Internalized plans: A representation for action resources. In Pattie Maes,

editor, Designing Autonomous Agents, pages 89–103. MIT Press, 1990.

[126] Ken Perlin. Danse interactif. SIGGRAPH Video Review, 101, 1994.

[127] Ken Perlin. Real time responsive animation with personality. IEEE Transactions on Visu-

alization and Computer Graphics, 1(1):5–15, March 1995.

[128] Barry D. Reich, Hyeongseok Ko, Welton Becket, and Norman I. Badler. Terrain reasoning

for human locomotion. In Proceedings of Computer Animation ’94, pages 76–82, Geneva,

Switzerland, May 1994. IEEE Computer Society Press.

[129] Olivier Renault, Nadia Magnenat Thalmann, and Daniel Thalmann. A vision-based approach

to behavioral animation. The Journal of Visualizationand Computer Animation, 1(1):18–21,

1990.

162

[130] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer

Graphics, 21(4):25–34, 1987.

[131] Craig W. Reynolds. Stanley and Stela in Breaking the Ice. SIGGRAPH Video Review, 36,

1987.

[132] Craig W. Reynolds. Not bumping into things. SIGGRAPH Course 27 notes: Developments

in Physically-Based Modeling, 1988. pages G1-G13.

[133] Gary Ridsdale. Connectionist modelling of skill dynamics. The Journal of Visualization

and Computer Animation, 1(2):66–72, 1990.

[134] Jessica Rose, J. Henry Ralston, and James G. Gamble. Energetics of walking. In Jessica

Rose and James G. Gamble, editors, Human Walking, pages 45–72. Williams & Wilkins,

1994.

[135] E. Shaw. Schooling in fishes: Critique and review. In L. Aronson, E. Tobach, D. Leherman,

and J. Rosenblatt, editors, Development and Evolution of Behavior, pages 452–480, 1970.

[136] E. Shaw. Fish in schools. Natural History, 84(8):40–46, 1975.

[137] Herbert A. Simon. Sciences of the Artificial. MIT Press, Cambridge, Massachusetts, 1969.

[138] Marc G. Slack. Situationally driven local navigation for mobile robots, April 1990. JPL

Publication 90-17, California Institute of Technology Jet Propulsion Laboratory.

[139] Marc G. Slack. Navigation templates: Mediating qualitative guidance and quantitative

control in mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, 23(2):452–

466, March/April 1993.

[140] Aaron Sloman and Riccardo Poli. Sim agent: A toolkit for exploring agent designs. In

M. Wooldridge, J. P. Muller, and M. Tambe, editors, Intelligent Agents II (LNAI 1037),

pages 392–407. Springer-Verlag: Heidelberg, Germany, 1996.

[141] Monnett Hanvey Soldo. Reactive and preplanned control in a mobile robot. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 1128–1132, 1990.

163

[142] Luc Steels. Cooperation between distributed agents through self-organization. In Workshop

on Multi-Agent Cooperation. North Holland, Cambridge, UK, 1989.

[143] Luc Steels. Exploiting analogical representations. In Pattie Maes, editor, Designing Au-

tonomous Agents, pages 71–88. MIT Press, 1990.

[144] Luc Steels. Emergent functionality in robotic agents through on-line evolution. In Rodney A.

Brooks and Pattie Maes, editors, Proceedings of the 4th International Workshop on the

Synthesis and Simulation of Living Systems ArtificialLifeIV , pages 8–16, Cambridge,

MA, July 1994. MIT Press.

[145] Arthur Steindler. Kinesiology of the Human Body Under Normal and Pathological Condi-

tions. Charles C Thomas, Publisher, 1955.

[146] Demetri Terzopoulos, Xiaoyuan Tu, and Radek Grzeszczuk. Artificial fishes with au-

tonomous locomotion, perception, behavior and learning, in a physical world. In Pattie

Maes and Rodney Brooks, editors, Proceedings of Artificial Life IV, Cambridge, MA, 1994.

MIT Press.

[147] Robert B. Tilove. Local obstacle avoidance for mobile robots based on the method of

artificial potentials. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 566–571, 1990.

[148] M. Travers. Animal construction kits. In C. Langton, editor, Artificial Life. Addison-Wesley,

1988.

[149] Thomas S. Trias, Sonu Chopra, Barry D. Reich, Michael B. Moore, Norman I. Badler,

Bonnie L. Webber, and Christopher W. Geib. Decision networks for integrating the behaviors

of virtual agents and avatars. In IEEE VRAIS ’96, 1996.

[150] Xiaoyuan Tu and Demetri Terzopoulos. Artificial Fishes: Physics, Locomotion, Perception,

Behavior. Computer Graphics, 28:43–50, 1994.

[151] Toby Tyrell. Computational Mechanisms for Action Selection. PhD thesis, University of

Edinburgh, 1993.

164

[152] S. Ullmann. Visual routines. Cognition, 18, 1984.

[153] S. Veherencamp. Handbook of Behavioral Neurobiology, Volume 3: Social Behavior and

Communication. Marler, P. and Vandenbergh, J. G. (eds.), 1987.

[154] Bonnie Webber and Norman Badler. Animation through reactions, transition nets and plans.

In Proc. Int’l Workshop on Human Interface Technology, Aizu, Japan, October 1995.

[155] R. Wehner. Matched filters - neural models of the external world. Journal of Computational

Physiology, A(161):511–531, 1982.

[156] Jane Wilhelms. Toward automatic control. IEEE Computer Graphics and Applications,

7(4):11–22, April 1987.

[157] Jane Wilhelms and Robert Skinner. A ‘notion’ for interactive behavioral animation control.

IEEE Computer Graphics and Applications, 10(3):14–22, May 1990.

165

