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Abstract

This paper proposes a method for integrat-
ing cooperative behaviors among distributed au-
tonomous agents based on local communications.
We de�ne agent satisfaction as a signal to handle
action selection and cooperative interaction. The
resolution of spatial problems is handled with an
altruistic behavior de�ned with the vector �eld
model. This solution ensure the spatial coordina-
tion of multiple agents in a dynamic system and
the selection of an altruistic behavior when neces-
sary. After presenting the agent architecture we
describe experimental results. They illustrate the
ability of the model to achieve eÆcient naviga-
tion, adaptive and reactive cooperation in collec-
tive robotics application.

1. Introduction

The reactive approach to autonomous robot design that
has been developed since about �fteen years has its
roots in animals models (see (Arkin, 1995)). Indeed,
insect societies and many animals show great capabil-
ities to perform cooperative tasks, to adapt and survive
in uncertain environments and to have reactive behav-
iors. For instance, Ant colonies are composed of simple
creatures which can perform tasks by swarm intelligence
(Deneubourg et al., 1991) (Drogoul and Ferber, 1992).
Many animats which have been implemented with

reactive behavioral control technique (Arkin, 1995)
have only local interactions with the environment
and the others agents. But they can perform col-
lective tasks as navigation (Arkin, 1989) , foraging
(Drogoul and Ferber, 1992) (Balch and Arkin, 1994)
and distributed problem solving (Steels, 1989)
(Drogoul et al., 1991) (Ferber, 1995b). These reac-
tive architectures are able to provide self-organization,
reactivity and adaptability.
However, the poor level of communication and cogni-

tion of reactive architectures cannot easily handle goal
driven behaviors (Muller, 1996) and not allow explicit
cooperation to perform complex tasks. On the contrary,

deliberative and hybrid architectures use planning and
protocols of communication to perform complex or coop-
erative tasks. But they lose any reactivity and robust-
ness abilities (due to communication failures, time for
planning, imperfect sensors, etc...).
The aim of this work is to provide a robust intentional

cooperation into a reactive architecture without lose its
intrinsic qualities. We do not use learning techniques
but an eÆcient communicating model. This research
is carried out in order to develop small and large scale
swarm robotic systems.

1.1 Signals and Communication

Communication between agents may be explicit
or implicit (also called indirect communication
(Mataric, 1995)).
For instance, implicit communication is used in insect

societies. Insects communicate through the environment
by laying landmarks and pheromones. But this tech-
nique is diÆcult to implement in real robotics and not
allow fast communication.
Explicit communication requires emission of sig-

nals/messages or broadcast of information (also called
direct communication (Mataric, 1995)). But certain
types of cooperative behavior need directed communi-
cation (one-to-one or one-to-many) which are imple-
mented in deliberative/hybrid architectures. However,
these goal communications are costly in time and poorly
robust, because information must be encoded, transmit-
ted, received and coded (Arkin, 1995).
Nevertheless, many animals succeed to doing complex

tasks without using a high level of communication but
just by emitting and reading signals. As it is emphasized
in (McFarland, 1987) signals used by animals are closely
link to their social organization. For example, birds emit
di�erent type of songs to send an alarm signal, a localiza-
tion, a recognition, etc... Animal signal spreading have
interesting characteristics such as spatial limited com-
munication, intensity meaning, redundant information
(robustness) and reactivity.
We investigate this type of communication to improve

reactive architecture in order to handle robust commu-



nication and reactive cooperation.

1.2 Self Interest and Altruism

Animals use communication to inuence the behavior of
members of their species (McFarland, 1987). When an
information is emitted, the sender expects a speci�c re-
action from the receiver. This reaction may be an action
which satisfy a waiting of the sender or just a reaction
without reward for the sender (an altruistic behavior).
For instance, an alarm signal is an altruistic behavior,
whereas a courtship display is made for an expected be-
havior from the receiver. Note that in these two cases,
both of these behaviors are made for self interest and
altruism because they ensure collective survival and as a
consequence the individual survival (McFarland, 1987).

The behavior of a creature is driven by motivations
such as survive, feeding, hunting, reproducing. At any
time, it must choose an appropriate behavior to satisfy
one or many of these needs.

The underlying idea of our architecture is to use the
notion of satisfaction (Ferber, 1995b) to perform action
selection. This satisfaction is de�ned as the combination
of the agent self satisfaction (i.e. its self interest), with a
so-called empathy satisfaction which takes into account
the satisfaction of other agents.

By taking into account the satisfaction of its acquain-
tances, an agent can have an altruistic behavior thus
allowing for intentional cooperation between agents.

This paper introduces an agent architecture which
handles cooperation between agents at the reactive level,
without requiring any deliberative abilities but with
emission of a simple signal.

This model addresses the following abilities:

� autonomous navigation and real-time reaction to spa-
tial conicts,

� selection and combination of several compatible ac-
tions,

� real-time and decentralized cooperation (i.e. spatial
coordination and altruistic behaviors),

� robust and simple architectural design.

The paper is organized as follows: We de�ne in Sec-
tion 2 the concept of agent satisfaction and in Section 3
the altruistic behavior computed into the vector model.
Section 4 describes the reactive satisfaction based ar-
chitecture. We then provide in Section 5 experimental
results and a discussion on the quality of the model. We
close in Section 6 with �nals remarks and some directions
for future work.

2. Agent Satisfaction

2.1 Cooperation and Satisfaction

Cooperation in multi-agent systems can be seen as a sys-
tem in which cooperative methods lead to an increase of
the group performance and thus the probability for an in-
dividual to maximize its self objectives (Ferber, 1995a).
Moreover, as L. Parker emphasizes in (Parker, 1994),
many robotic applications are inherently distributed in
space, time, or functionality, thus requiring a distributed
solution.
From the designer's point of view, the animat behav-

ior must satisfy goal-oriented, conservative and cooper-
ative functions. We abstract the required behavior of a
cooperative robot as follows: the robot must satisfy its
individual goals while minimizing negative interactions
(conicts) and maximizing positive interactions (cooper-
ation) with other agents and the environment.
The principle of our agent model relies on the maxi-

mization of agent satisfactions. At any time, the agent
try to maximize :

� either its self interests : by selecting the optimal task
and by emitting signals to agents which hinder its
work or which can help him.

� or the collective interests : by helping other agents,
i.e. by reading agent signals and then computing
altruistic behaviors.

Asmotions are involved in a majority of situated agent
tasks, we investigate in priority spatial cooperation and
spatial conicts resolution. We de�ne the agent behav-
ior as a combination of selected goals which can either
be individual goals or altruistic responses to requests for
cooperation.

2.2 Sub-satisfactions

In our model, agent satisfaction is composed of three dif-
ferent sub-satisfactions: personal satisfaction, em-

pathy satisfaction and interactive satisfaction .

� the personal satisfaction P measures only the
progress of the agent task (from its sensors).

� the empathy satisfaction E is the average value of
personal satisfaction of its acquaintances, it expresses
the altruism of the agent.

� the interactive satisfaction I results from agent
interactions. An agent computes the interactive sat-
isfaction as a reaction or an intention to other agents.

Note that personal and interactive satisfactions depends
on the progress of agent individual goal (they de�ne the
self satisfaction). For instance, let us consider an agent
which tries to push an object. When the object moves,



Agent A Agent B Situation Type of interaction Altruist behavior of B
1 IA & IB ! A hinders B conict avoid A
2 IA & IB & mutual hindrance conict mutual avoiding
3 IA % IB & incompatible interests conict move towards A
4 IA % IB ! B needs A cooperation move towards A
5 IA % IB % mutual needs cooperation move towards A
6 IA ! IB ! indi�erence neutral continue action

Table 1: Interaction between two agents

its personal satisfaction increases. Its interactive sat-
isfaction increases when it needs help to move the ob-
ject, or decreases if an agent hinders its progression. Its
empathy satisfaction is positive if its acquaintances are
satis�ed too.
Formally, we set the instantaneous satisfaction of an

agent i at time t:

Sati(t) = (1� �):Pi(t) + �:Ei(t) (1)

� is the altruistic factor of the agent (� 2 [0; 1]) and Pi
and Ei are de�ned on the interval [�1; 1].
To handle cooperation, agents compute their interac-

tive satisfaction I . This value is computed as an inten-
tion in order to alter agent interactions. As presented
below, only P and I sub-satisfactions must be computed
in our architecture to handle selection, combination and
cooperation of actions.

3. Modeling agent altruism

Agents broadcast only their interactive satisfaction I be-
cause it expresses an intention or a reaction to other
agents behaviors. This signal is broadcast within a
bounded distance from the agent (�g. 1). The inten-
sity and the variation of the signal de�ne the meaning
of the communication.
We call Ii(t) the level of interactive satisfaction emit-

ted by the agent i at time t. Let �Ii(t)T be the function
of the interactive satisfaction variation:

�Ii(t)T = Ii(t)� Ii(t� T ) (2)

Each agent which receives a signal I can compute this
variation. It represents the satisfaction evolution of an
agent relative to its acquaintance actions between times
t � T and t. The sign of �I gives 3 types of signal
evolution : positive %, negative & or constant !.
Note that these signals are a type of state commu-

nication (robots are able to detect an internal state of
others). It is a more robust means than goal communica-
tion. As in ALLIANCE model (Parker, 1994), we use a
simple form of broadcast communication to allow agents
to inform others of their current activities. But, in our
satisfaction model, we can continually broadcast infor-
mation, without having to encode, transmit and decode
a message.
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Figure 1: broadcasting of agent signals

3.1 Inter-agent altruism

As we emphasize above, agents motions are embedded
in a lot of tasks. In table 1 the di�erent types of spa-
tial interactions between two agents are given for vari-
ous evolution of their respective interactive satisfaction.
The �rst column contains I evolution computed by A
relatively to agent B presence. The symmetrical case (B
reaction to A presence) is given in the second column.
As the satisfaction evolution can take 3 \directions", the
number of possible situations is 9, but to avoid symmet-
rical situations only 6 cases are tabulated.
Each situation is described within the third and the

fourth column. The last column gives the required be-
havior of B in order to increase the satisfaction of A
(or to decrease the dissatisfaction of A). This behavior
clearly depends on the other agent interactive satisfac-
tion variation (�IA).
In the vector model, this cooperative behavior is de-

�ned with the altruism vector
�!
# (t). Formally, the al-

truism vector of an agent (B) relative to another agent

(A)
���!
#B=A(t) is computed as follows:

���!
#B=A(t) = k:S(�IA(t)T ):

j IA(t) j��!AB
2

:
��!
BA (3)

S(x(t)) = Sign(x(t)) if x(t) 6= 0
Sign(x(t� T )) if x(t) = 0

Equation 3 is like a force deriving from a repulsive
�eld. Thus, the reaction becomes higher when the agent
comes close to an obstacle or a goal. Our approach con-
sist to transform the signal of interactive satisfaction
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into a mathematical vector directly added to the agent
motion vector. Because of the reactive communication,
agents move in real time into dynamical vector �elds (see
section 5.3.2).
The interest of this equation 3 lies in the fact that

it can be applied in a variety of situations. The vector
���!
#B=A(t) is obtained when
- just one agent moves (see �gure 2 as an example)
- both agents move
- none of the agents move but they perceive interactive

satisfactions not null.
Because �IA may be null, we have de�ned a sign func-

tion S to avoid a null vector
���!
#B=A(t). This vector must

be computed even when �IA is null to obtain the con-
tinuation of a reaction. If �IA is null (stationary satis-
faction) the equation 3 must be computed with the last
non null sign of �IA. Indeed, the last reaction remains
the most signi�cant of current situation.
To complete the validation of the equation 3 we exam-

ine situations where both agents are mutually inuenced
(see table 1 rows 2, 3 and 5):
row 2 Sign(�IA)=� and Sign(�IB)=�, we obtain

two opposite repulsive vectors. Then agents go away
from each other and so increase their satisfaction level.
row 5 Sign(�IA)=+ and Sign(�IB)=+, we obtain

two convergent attractive vectors. Agents are mutually
attracted and then their satisfaction increases.
row 3 Sign(�IA)=� and Sign(�IB)=+ (or inversely

+/-), we obtain an attractive vector and a repulsive vec-
tor with the same direction ! It is the case of incompat-
ible interests. Then, we can de�ne di�erent solutions as
amplify the attractive vector to avoid a chase behavior.

Propagation from agent to agent

Propagation in repulsion situations : If an agent is im-
mobilized by another, it can emit a dissatisfaction signal
to query a movement of the hindering agent. But, if
this other agent is also immobilized, a chain process of
dissatisfaction emission is performed until an agent may
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Figure 3: Propagation of an attractive signal from an agent

to its neighbors (numbered in emission order)

move. This implicit propagation of dissatisfaction to all
involved agents release the deadlock situation.
We can also use propagation for attractions between

agents: When an agent perceives a signal with a posi-
tive increase, it may decide to follow the call. In this
case, the agent emit an attractive signal in order to call
its own acquaintances. The force of the signal variation
must decline during the propagation in order to limit the
number of attracted agents. But this number does not
depend on the distance between the initial sender and
other agents. It just depends on a trigger threshold (an
intensity of the signal) and inter-agent distances. This
distance must be smaller than the radius of communica-
tion to propagate information from agent to agent. See
�gure 3 for a schematic representation.

3.2 Multi-agent altruism

A situated agent close to others can simultaneously per-
ceive several attractions and repulsions. In order to de-
�ne a new altruism vector we divide the multi-agent
problem in a set of inter-agent problems. A �rst equa-
tion generalizing the equation 3 may be written (altru-
istic reaction of agent B close to N acquaintances called
�):

���!
#B=�(t) =

X
j2�

��!
#B=j (t) (4)

=
X
j2�

k:S(�Ij(t)T ):
jIj(t)j�!BJ
2
:
�!
BJ

However, application of this equation can reach to dif-
ferent quality of results following the way of communi-
cation.
In the presented model, an agent emits just a simple

signal (its value of interactive satisfaction). Thus it can
not share several intentions to reply to several simul-
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taneous inuences. Before studying a better solution,
shortcomings of the actual solution are identi�ed:

- With homogeneous agents: As agents have the same
abilities, any agent can help or hinder another. Then,
a signal reaching multiple agents is not really a prob-
lem. For instance, consider a robot which needs help
from another to perform its task. To be helped it emits
a call signal to its acquaintances (by increasing its inter-
active satisfaction). If several robots are simultaneously
attracted, the �rst arriving will help the calling agent.
Others attracted robots will be free when the signal will
be stopped.

- With heterogeneous agents: An agent can need help
from speci�c acquaintances but not from all. We present
conict situations due to the simple signal method within
di�erent diagrams. Figure 4 case 1 illustrates that a sig-
nal of A (IA %) in order to attract B may attract C too.
In the second case of �g. 4, two opposite inuences on A
give by addition a null variation of IA (which precludes
any reaction of B and C). However, this case can be han-
dled by allowing a priority to the attractive signal (it is
often more important to attract an expected agent than
to push away hindering agents)

These ambiguous situations may occur because com-
munication are performed with a single and simple sig-
nal. However, this method is intentionally used to avoid
fragile and costly solutions (in memory and time). We
present a reactive solution to manage this problem with
limited changes in the previous solution.

3.2.1 The curvature of the satisfaction signal

This solution allows agents to perform a more �ne read-
ing of the satisfaction signal. The way of communication
is always a broadcasted simple wave.

The problem for an agent, while \hearing" the
variation of interactive satisfaction from another is
to identify the intention addressed to it. In fact, an
altruistic agent tries to \understand" what the others
expect from it: go to him or go away ? To improve
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Figure 5: Principle of the architecture

the agent understanding, we compute the sign of I
curvature (i.e. gradient of �I) instead of the sign of
�I . In consequence, agents must perceive two times
the interactive satisfaction to compute the gradient
of �I . When an agent is already subject to several
inuences from other agents, the sign of the curvature
expresses the impact of a new coming agent. Let 
I be
the gradient of the interactive satisfaction variation:


I(t)T = �I(t)T ��I(t� T )T
and if 
I(t)T = 0 then 
I(t)T = �I(t)T

Thus, the general equation is
���!
#B=� =

P
j2�

��!
#B=j

=
P

j2� k:S(
Ij(t)T ):
jIj(t)j�!BJ
2 :

�!
BJ

Generally, several agents do not come synchronously
into the �eld of perception of another agent. Thus, each
agent which computes the curvature of the received sat-
isfaction can easily estimate the impact caused by its
own presence.

4. Principle of the architecture

Our architecture is based on a classical schema-based re-
active control (Balch and Arkin, 1994) using vector com-
bination (Arkin, 1989)(Zeghal, 1998). Actions are se-
lected and computed from proprioceptive information
(energy, conservative functions) and exteroceptive infor-
mation (obstacles, goals), with the addition of a new
vector called altruistic vector. It represents the cooper-
ative part of the agent behavior.

4.1 Task Selection

Each task (primitive behavior) is an action which may be
triggered by an internal or environmental stimulus (like
into (Maes, 1991) (Drogoul and Ferber, 1992) architec-
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tures). The test to release an action is de�ned by a set
of boolean conditions on perceptions, noted Cond(task).
Moreover, each condition induces a measure of intensity
computed from perceptions and called Int(task) (de-
�ned on the interval [0; 1]). For instance, �gure 6 gives
the representation of the move-to-mine primitive.

Some tasks are functions for survival, i.e. they are
useful for robot working. Thus, these tasks have priority
on others (by a subsumption control (Brooks, 1986) ) .

If no survival function is released, the agent must con-
tinue its current task (taskc) or select a new one.

We describe now the computation of the new candi-
date task (called taskn).

First, we select the task which have the maximum per-
ceived intensity among triggered tasks. Formally, this
task, called taskm, must �t

8i 6=m Int(taskm) � Int(taski) andCond(taskm) = true

If taskm has an intensity greater than the current
task performance index (= personal satisfaction P ) it
becomes the new candidate task. Formally,

taskn =

�
taskm if Int(taskm) > P
taskc else

However, this new candidate task may be replaced by
an altruistic behavior. For this purpose, we compute
the intensity F of taskn selection.

F =

�
Int(taskn) if taskn = taskm

P else

4.2 The Altruistic behavior

As agents perceive interactive satisfactions I from oth-
ers, they can reply to those signals by exhibiting an ap-
propriate behavior. Let jImaxj be the absolute value of
the more powerful signal perceived. An altruistic behav-
ior may replace the potential new task if

(1) an altruistic action is already performed

or (2) jImaxj is greater than taskn intensity F .

In the �rst case (1), the agent keeps its current altruis-
tic behavior (ensuring continuity in agent actions). How-
ever, the relative perceived signal must keep the same
sign variation, else the agent compute the second possi-
bility (2).

In the second case, jImaxj is compared with F to
select the new current task taskc :

taskc =

� ���!
#Imax if �: jImaxj � (1� �):F
taskn else

where
���!
#Imax is computed with equation 3 section 3.1.

The comparison is adjusted by using the altruistic factor
�. Then, agents may have di�erent kind of behavior just
according to this factor.

4.3 Vector Combination

Let us consider an agent p which carry out a task involv-
ing motions in the environment. If the agent p perceives
a signal Ik from an agent k, it can compute an altruistic
vector

��!
#p=k . This vector may replace the current task

or may be just added with other compatible drives to
improve the traÆc.

We consider that only goal motion, obstacle slidings
and repulsive signals may be combined. Formally, the
agent's velocity vector

�!
Up is computed as follows :

�!
Up = 1:

���!
Vgoal + 2:

��!
Vobs + 3:

�!
# p=R(I1;I2;::)

where 1, 2 and 3 are scalar weights,
��!
Vobs is the

vector for sliding along static obstacles,
���!
Vgoal is the cur-

rent goal vector, and
�!
# p=R(I1;I2;::) is an altruistic vector

computed from perceived repulsive signals.

The computation to avoid an obstacle is performed
by the 90Æ rotation of the repulsive vector. The sliding
technique is fully presented in (Zeghal, 1998).

As shown above
���!
Vgoal is either an altruistic behavior

���!
#Imax or the vector computed according to taskn goal.

In order to compute
�!
# p let fI1; I2; ::g be the set of

signals perceived by the agent p. Then, let R be the set
of repulsive signals : R =

S
fIi =�Ii < 0g.

For each signal which is repulsive, agent p computes a
sliding altruistic vector in order to improve its acquain-
tances motion. Thus

�!
# p=R(I1;I2;::) is computed like the

multi-agent altruism vector de�ned above in section 3.2
with equation 4:

��!
#p=R =

P
j2R

��!
#B=j .

Note that the process of action selection/combination
is computed by using only the personal satisfaction P ,



Figure 7: (a) robot perceptions (b) and (c) simu. in progress with 100 robots, 5 mines and 18% obstacles

the perceived interactive satisfactions I , the altruism fac-
tor � and internal or environmental stimuli (see �g. 5).

Personal satisfaction P and interactive satisfaction I
are computed from internal and external perceptions. In
the next section, they are expressed in details within a
concrete application.

5. Experimental results

5.1 Foraging and Consuming

As an illustrative example of cooperation and coordi-
nation a collection of robots must accomplish, consider
homogeneous extractor robots. Each robot has to leave
a �xed base and explore a space which is a priory un-
known in order to �nd a mine, extract raw material and
carry this material to the base. Clearly, the problem is
de�ned by

- N agents situated in a 2D limited area, which can
extract material from mines (with a limited rate r),

- Obstacle zones,

- Attractive zones = mines

- A base which emits a particular signal for its local-
ization.

- Each mine has a limited volume of raw material and
a maximal rate of extraction (giving a dynamic problem
of optimal extraction). Moreover, energy available on
board each robot is bounded, and so periodic returns to
the base power supply are necessary.

These terms involve several type of problems: coor-
dination of mobile robots in a constrained environment,
handling robot's energy and optimizing the number of
robots at mines.

5.2 Extractor Robots

Extractor robots are implemented following our archi-
tecture and simple primitive behaviors (tasks). They
use the �rst type of communication presented in section
3. The volume of raw material extrated by a robot is
noted V (with Vmax the volume of the container).

As an example of simple robot task, the primitive
move-to-mine is presented in �g. 6 with its stim-

ulus conditions, its intensity function and its poten-
tial action. Robot's behavior includes other primitives:
leave-the-base, move-to-mine, load-container, carry-the-
material, unload-container, go-to-base, load-energy and
move-randomly.

As presented in the architecture, each motion behav-
ior is combined with obstacle avoidance and altruistic
vectors (section 4.). Robots are able to scan their
environment within a short bounded distance. Obstacle
and agent detections are performed whitin sectors as
shown in �gure 7.(a) .

Computation of personal satisfaction P (t) :

For the go-to-base primitive, the robot compute its
progression : if it cannot move P (t) = �1 else P (t) =

cos(
����!
Vmotion(t);

���!
Vbase(t)). The same technique is used for

the tasks move-to-mine and carry-the-material.

For others tasks involving moves : if the robot can
move P (t) = P (t � T ) + K � (0:5 � P (t � T )) (i.e. P
increases to 0.5) else P decreases to -1 P (t) = P (t�T )�
K � (1 + P (t � T )), with 0 < K < 1 (K = 0:2 for the
simulations).

For extraction of raw material (load-container), P (t)
depends on the real-time rate of extraction (e(t)): P =
e(t)
r .

With other static primitives actions in progress,
P (t) = 1.

Computation of interactive satisfaction I(t) :

When robots are at an exploitable mine, they must
call other agents. Thus, they compute an increase of
interactive satisfaction: I(t) = I(t�T )+K 0 � (1� I(t�
T )).

They compute a decrease of their signal when they are
hindered by others robots, or when a detected mine is
empty or saturated : I(t) = I(t�T )�K 0�(1+I(t�T )).

Otherwise, when a robot performs an altruistic be-
havior upon the request of an increasing signal Ip(t),
it also emits an increase of its interactive satisfaction
I . Formally, if Ip(t) > threshold and �Ip(t) > 0,
I(t) = Ip(t)=2. Thus, this robot may attract its idle
acquaintances.



Figure 8: Snapshot of a simulation (with 100 robots, 5 mines, 18% of obstacles) with its dissatisfaction surface.

Note that while a robot has no interaction with oth-
ers, its interactive satisfaction is not emitted and it tends
towards 0 (neutral value of I). Otherwise, if this normal-
ization was emitted, other robots could understand it as
an intentional signal variation.

5.3 Simulations and Quality of the Model

5.3.1 Simulation Environment

The robots are simulated using the Madkit Platform
(Ferber and Gutknecht, 1998). Each step is one itera-
tion of the program that calculates the robots' next po-
sition. The environment is a rectangular area in which
obstacles are composed of dark rectangles. The base is
a black �lled square and mines are empty squares. Each
Robot is simply de�ned by a pixel (unit) and represented
with its di�erent vectors (motion direction and obstacle
sliding). The line of the motion vector is doubled when
the robot detect/exploit a mine. Robots have a scanning
radius of 10 units, a communication radius of 30 units,
and an altruistic factor � equal to 0.7.

5.3.2 Resolution of the problem

We �rst briey describe results obtained with di�erent
instances of the studied problem. We have run simula-
tions with di�erent con�gurations. The parameters are:
obstacles density (5%, 20% and 40%), number of mines

(2 to 10) and number of robots (10, 50, 100).
In every simulation run, robots eÆciently explore the

environment and slide around obstacles. They frequently
compute an altruistic behavior to avoid mutual hin-
drances, and as a consequence they are always homo-
geneously distributed (as shown in �g. 7.(c) ).
When a robot �nds an exploitable mine, its interactive

satisfaction increases and, as expected, neighbor robots
are attracted, and by propagation they attract remote
robots. If a mine is empty or saturated (because of the
limited rate), the robots close to it emit a decreasing
interactive satisfaction which repel new arriving robots.
Robots explore, extract and carry the raw material un-

til mines are worked out. Moreover, propagation of infor-
mation from agent to agent improves time performance
in comparaison with the same robots without communi-
cation. With the problem con�guration of �gure 8 we
have obtained a gain in time performance of 20%. But,
this gain is sensitive to many environmental parameters:
raw volume, mines rate, number of robots, radius of com-
munication, obstacles, etc...
When robots need energy, the survival function

go-to-base is triggered and they come back to the base.
Finally, robots adapt their behavior to each environment
evolution : moves of robots, working out of mines and
need for energy.

The social behavior of these robots exhibits the prop-
erty of reactive and self-organized systems: distributed



problem solving (eÆcient spatial distribution, adaptative
task allocation), reactivity and robustness.

Cooperation and Altruism

Situations of conict or of cooperation are visualized
as a surface with the X,Y axis reecting the simulated
environment. The Z axis indicates the negative value
of the sum of interactive satisfaction signals emitted by
agents (= surface of dissatisfaction Z(X,Y)).
Peaks of the surface indicate hindrances between

robots or deadlock zones (because of the emission of
negative values) and pits indicate attractive zones (call
signals). Thus, the altruistic vector is computed as if
the robot was a ball rolling on this dynamic surface, i.e.
rolling down from peaks to pits. Furthermore, as robot
locations take a part in surface deformation, their altru-
istic motions tends to atten the surface. Thus, robots
avoid conicting trajectories and move towards attrac-
tive zones (like attractive �elds).
The snapshots presented in �gure 8 illustrates

attractions and repulsions emitted by robots. The
mine numbered 1 at the top right side of the en-
vironment is saturated, then a peak appears in the
dissatisfaction surface. On the other hand, the robot
close to the mine 2 (at the right side of the environ-
ment) emit a call signal which create a pit in the surface.

Fluidity of the traÆc

As one goal of this work is to perform reactive spatial
coordination of mobile robots, the traÆc performance
must be measured. This performance is de�ned as the
average uidity of agents movements at each step of
the simulation. We measure successful motions over the
number of trials:

fl(t) =

P
sucessfulmotions (t)P

trials (t)

The curve y = fl(t) allows us to study the evolution
of the traÆc into simulated systems. So, we can de-
tect deadlocks when they happen. With many robots
(over 20), we have generally observed sharp decrease in
the beginning of simulations (due to hindrances between
them).
Figure 9 presents curves of the uidity computed for

three di�erent type of agent architecture with the prob-
lem con�guration of �g. 8. Simulations have been com-
puted with the same initial state (100 robots) and during
the �rst 100 iterations. The curve noted 1 has been com-
puted with satisfaction-based robots. The second curve
results from robots which use obstacle sliding navigation
but whitout emitting signals. The last curve, noted 3,
results from simple robots using only obstacle repulsion
to navigate (Khatib, 1985).

Figure 9: Curves of uidity for (1) satisfaction-based robots,

(2) sliding robots, (3) repulsive robots (problem conf. �g. 8)

First, it is clear that sliding obstacles (and robots) is
better than use only repulsive vectors into the trajectory
computation (the traÆc uidity decreases under 0.75
when robots not use the sliding technique, see curve
3 �g. 9 ). Secondly, satisfaction-based robots perform
a uid navigation (fl(t) is close to 1, see curve 1). In
other words, altruistic behaviors are easily integrate to
the computation of robot trajectory and they improve
a bit the uidity.

General evaluation

The model is evaluated considering perfor-
mance metrics proposed by Balch and Arkin in
(Balch and Arkin, 1994):

� Cost : The architecture is simple and robust (vector
combination and communication of simple redundant
signals), then not expensive. Moreover, the cooper-
ative and adaptive abilities minimize the number of
robots required to perform robotic applications.

� Time : In (Balch and Arkin, 1994), this metric is
evaluated as the maximum number of robots that
can operate without interference. Our model, which
is cooperative and navigation oriented provides high-
performances for spatial interactions (see uidity fac-
tor results).

� Energy : Implementation of our architecture shows
that the model handles easily the problem of energy
recharge. Moreover, as robots are cooperative and
try to avoid spatial conicts , they avoid wasting en-
ergy situations, i.e. they minimize the amount of
energy used.



� Reliability/Survivability : As the model use a re-
active behavioral control for action selection, each
robots can use its working primitives even if some of
them fail. The emission of simple redundant signals
guarantee a robust communication, and so a good
survavility of robots into hostile environments.

6. Conclusion and perspectives

The model presented in this paper shows the feasibility of
using agents intentions in a reactive architecture to solve
the problem of action selection/combination. We have
seen that reactive cooperation relies on simple signals
and the propagation of satisfactions between agents.
This model remains within the vector �eld approach

and provides for real-time cooperation. Thus, coopera-
tive behavior is not computed at a deliberative level but
within the reactive level. We have shown that we can
combine conservative functions, spatial coordination and
altruistic behavior within the same framework.
Experimental results show that the model is eÆcient

and have adaptive capabilities. Satisfaction based robots
easily adapt to the current actions of other agents and
to a dynamically changing environment. Moreover, the
model ensure a high level of traÆc uidity, propagate
relevant information and may remove a spatial deadlock
in a very short time.
Future works will address the study of parameter vari-

ations e�ect on performances, the introduction of learn-
ing and its application to real mobile robots.
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