
The Simple Science of Flight
From Insects to Jumbo Jets

revised and 
expanded edition 

Henk Tennekes



The Simple Science of Flight





The Simple Science of Flight

From Insects to Jumbo Jets

revised and expanded edition

Henk Tennekes

The MIT Press

Cambridge, Massachusetts

London, England



6 2009 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic

or mechanical means (including photocopying, recording, or information storage and

retrieval) without permission in writing from the publisher.

For information about special quantity discounts, email specialsales@mitpress.mit.edu.

Set in Melior and Helvetica Condensed on 3B2 by Asco Typesetters, Hong Kong. Printed

and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Tennekes, H. (Hendrik)

The simple science of flight : from insects to jumbo jets / Henk Tennekes. — Rev. and

expanded ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-262-51313-5 (pbk. : alk. paper)

1. Aerodynamics. 2. Flight. I. Title.

TL570.T4613 2009

629.132'3—dc22 2009012431

10 9 8 7 6 5 4 3 2 1

mailto:specialsales@mitpress.mit.edu


to my grandchildren, Nick and Emma





Contents

Preface ix

1 Wings According to Size 1

2 A Hard Day’s Flight 35

3 In Wind and Weather 63

4 Flying with Finesse 97

5 Flying Playthings 141

6 The Heritage of the 747 165

Epilogue 187

Appendix: Flight Data for Migrating Birds 191

Bibliography 197

Index 199



White-fronted goose (Anser albifrons): W ¼ 17 N, S ¼ 0.18 m2, b ¼ 1.40 m.



Preface

I wrote a preliminary draft for this book in 1990. Much has hap-

pened since. For one, the book generated a lot of response, both

from professionals in a variety of disciplines and from interested

outsiders. Professional criticism concentrated on my decision not

to delve into the details of aerodynamics. I am a turbulence special-

ist; I could easily fill an entire book with the curious tricks airflows

can play. But that would lead me astray and confuse my readers. In

the first edition I stuck to flight performance; in this revision I main-

tain that choice, except for a novel treatment of the aerodynamics

of induced drag and trailing vortices in chapter 4.

I much enjoyed using parts of my book in college-level courses

for senior citizens. The always lively interaction with my audience

forced me to ponder how I should avoid pitfalls, where I should

explain things in more detail, where I should tighten the argumen-

tation, and what I should leave out. Similar feedback on the lecture

circuit also gave me plenty food for thought. One frequent source

of misunderstanding was my rather casual use of numbers. In this

book I am not interested in great accuracy. I much prefer represen-

tative approximate numbers above three-digit precision. I want my

book to be accessible to a wide audience; the nitpicking typical of

much work in the so-called exact sciences would make it harder to

achieve this objective.

I remember vividly how I was corrected in one of my senior

citizens’ courses. I was talking about bicycle racers and pilots of

human-powered aircraft, and I explained that their hearts grow

bigger from continuous exercise, just like their leg muscles. At one

point, a gentleman in the last row raised his hand and said ‘‘Henk,

it isn’t just heart size that counts; the entire circulatory system is

adjusted to long-distance performance.’’ He turned out to be a



retired professor of cardiology, and he proceeded with a twenty-

minute lecture on hearts, the elasticity of arteries, and what have

you. The class loved it, and so did I. But the incident was also a

reminder that I shouldn’t get stuck in matters outside my field of

competence. The Simple Science of Flight is meant for a general

audience; it is neither a vehicle for scientific debates on animal

physiology nor a manual for airplane design.

Still, I admit I am fascinated by the similarities between nature

and technology. I learn by association, not by dissociation. Swans

and airliners follow the same aerodynamic principles. Biological

evolution and its technological counterpart differ in many ways,

but I find the parallels between them far more exciting. Just what

is it that makes some airplanes successful, but others misfits? And

can such matters be explained without sophisticated advanced

mathematics? Would high school algebra suffice?

Many popular science books make quite a fuss of the marvelous

progress of science and engineering. All too often the hidden mes-

sage is ‘‘Dear reader, you are but a layperson. You should have

deep respect for the sophistication revealed to you by specialists,

who are the ones who really understand the secrets of the universe,

the building blocks of life, the fantastic blessings of computer tech-

nology, or the great achievements of aerospace engineering.’’ I

have never been a fan of such grandiose perspectives. They tend

to elevate science to a level where ordinary people have no choice

but to kneel. I prefer to make science accessible, and I don’t mind

that it takes a lot of effort to struggle with the arcane texts pre-

sented in scientific journals. Also, I do not agree that one’s respect

for miracles is lessened by an attempt to understand them. On the

contrary, one’s sense of wonder can only grow as one’s insight

increases. After one has computed how large a swallow’s wings

should be, one’s respect for the magnitude of the mystery that

keeps the bird in the air can only be greater. The intimate knowl-

edge of meteorology that migrating monarch butterflies apparently

possess helps me to keep my feet on the ground.

There is a lot of news from the research front. Systematic obser-

vation by several groups of ornithologists during the last twenty
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years has made it clear that the migration speeds of many birds are

substantially higher than the speed calculated from the simple

algorithms I had condensed from the professional literature. I used

to think that only homing pigeons fly at top speed regardless of the

consequences. (They race at more than 40 miles per hour, though

taking it easy at 25 mph would minimize their fuel consumption.)

Now it appears that all migratory birds fly as fast as their muscles

allow when they are in a hurry. Not all species are in a hurry,

though; the migratory habits of gulls and terns, for example, seem

rather relaxed.

The study of bird migration has made giant strides since 1990,

thanks primarily to the continuing accumulation of radar data but

also thanks to the use of lightweight transmitters and fieldwork on

the Arctic tundra. The current migration champion is the bar-tailed

godwit (Limosa lapponica), a fairly large wading bird that weighs

500 grams at takeoff. It has been confirmed by several parties that

the godwit flies nonstop across the Pacific Ocean, from Alaska to

New Zealand—a distance of 11,000 kilometers (7,000 miles). That

feat, comparable to the performance of a long-distance airliner,

proves that the godwit has much better aerodynamics and much

better muscle efficiency than was previously thought, and that it

undergoes rather severe physiological adaptations before and dur-

ing its seven-day flight. New evidence on the migration of other

wader species points in the same direction. Professionals have se-

verely underestimated birds’ flight performance. Impressed by the

new evidence, I had to make many changes throughout the book.

New wind-tunnel studies also have generated excitement. The

champion of those studies is a young female jackdaw (Corvus mon-

edula) that apparently was quite at ease in the wind tunnel of the

Flyttnings Ekologi (Flight Ecology) department of the Ekologiska

Institutionen at Lund University in Sweden. It exhibited superb

gliding performance notwithstanding its rather ordinary wings. It

would glide more than 12 feet forward for each foot of height loss,

twice as far as most researchers had thought. In retrospect, many of

the early wind-tunnel experiments with birds and even some re-

cent ones failed to produce reliable results.
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In the first edition I dealt with flapping flight in a rather offhand

way, partly because there were very few wind-tunnel data avail-

able. This time I can be a lot more specific. The Swedish jackdaw

receives considerable attention, because its best gliding speed is

much lower than its reported migration speed.

I was a fan of the Boeing 747 when I conceived the first edition

of this book, and I remain a dedicated fan of the Big Bird that, in

the 1969 phrasing of Newsweek, introduced A New Air Age. But

much has happened since. Airbus, the European conglomerate,

now markets the A380, which is meant to drive the 747 into obliv-

ion. And Boeing has responded. Its 777 offers transportation capac-

ity equivalent to that of the 747, but with improved aerodynamics

and superior engine efficiency. In the first edition, I wrote that the

Boeing 747 had been the dominant mode of intercontinental trans-

portation for 25 years, and that it would remain in service for at

least another 25. Yes, it will. However, like an old warrior, it will

fade away 30 years from now. Other airplanes, such as the Boeing

777 and 787 and the Airbus A350, will promote the idea that we

don’t have to change planes as we fly from Hamburg to Pittsburgh.

The hub-and-spoke system of airports will no longer dominate in-

tercontinental traffic.

The Concorde went out with a bang. A fiery crash near Paris on

July 25, 2000, signaled the end of its career. It didn’t quite make

the centennial of the Wright brothers’ first powered flight. In chap-

ter 6, I reflect on the fate of supersonic transportation. In retro-

spect, the Concorde was a fluke, more so than anyone could have

anticipated. From an evolutionary perspective it was a mutant. It

was a very elegant mutant, but it was only marginally functional.

The fate of the Concorde inspired me to draw parallels between

biological evolution and its technological counterpart wherever

appropriate.

The Simple Science of Flight has been my sweetheart ever since

I started dreaming of it, back in 1978. It has become a favorite of

many readers all over the world. Its revitalization and rejuvenation

will surely endear it to the next generation of people who are, like

me, enthralled by everything that flies.
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Laughing gull (Larus atricilla): W ¼ 3.3 N, S ¼ 0.11 m2, b ¼ 1.03 m.



1 Wings According to Size

Imagine that you are sitting in a jumbo jet, en route to some exotic

destination. Half dozing, you happen to glance at the great wings

that are carrying you through the stratosphere at a speed close to

that of sound. The sight leads your mind to take wing, and you

start sorting through the many forms of flight you have encoun-

tered: coots and swans on their long takeoff runs, seagulls floating

alongside a ferry, kestrels hovering along a highway, gnats dancing

in a forest at sunset. You find yourself wondering how much power

a mallard needs for vertical takeoff, and how much fuel a hum-

mingbird consumes. You remember the kites of your youth, and

the paper airplane someone fashioned to disrupt a boring class.

You recall seeing hang gliders and parawings over bare ski slopes,

and ultralights on rural airstrips.

What about the wings on a Boeing 747? They have a surface area

of 5,500 square feet, and they can lift 800,000 pounds into the air—

a ‘‘carrying capacity’’ of 145 pounds per square foot. Is that a lot? A

5 � 7-foot waterbed weighs 2,000 pounds, and the 35 square feet of

floor below it must carry 57 pounds per square foot—almost half

the loading on the jet’s wings. When you stand waiting for a bus,

your 150 pounds are supported by shoes that press about 30 square

inches (0.2 square foot) against the sidewalk. That amounts to 750

pounds per square foot—5 times the loading on the jet’s wings. A

woman in high heels achieves 140 pounds per square inch, which

is 20,000 pounds per square foot.

From a magazine article you read on a past flight, you recall that

a Boeing 747 burns 12,000 liters of kerosene per hour. A humming-

bird consumes roughly its own weight in honey each day—about 4

percent of its body weight per hour. How does that compare to the



747? Midway on a long intercontinental flight, the 747 weighs ap-

proximately 300 tons (300,000 kilograms, 660,000 pounds). The

12,000 liters of kerosene it burns each hour weigh about 10,000

kilograms (22,000 pounds), because the specific gravity of kerosene

is about 0.8 kilogram per liter. This means that a 747 consumes

roughly 3 percent of its weight each hour.

A hummingbird, however, is not designed to transport people.

Perhaps a better comparison, then, is between the 747 and an auto-

mobile. At a speed of 560 miles per hour, the 747 uses 12,000 liters

(3,200 U.S. gallons) of fuel per hour—5.7 gallons per mile, or 0.18

mile per gallon. Your car may seem to do a lot better (perhaps 30

miles per gallon, or 0.033 gallon per mile), but the comparison is

not fair. The 747 can seat up to 400 people, whereas your car has

room for only four. What you should be comparing is fuel con-

sumption per passenger-mile. A 747 with 350 people on board

consumes 0.016 gallon per passenger-mile, no more than a car

with two people in it. With all 400 seats occupied, a 747 consumes

0.014 gallon per passenger-mile. A fully loaded subcompact car

consuming 0.025 gallon per mile (40 miles per gallon) manages

0.006 gallon per passenger-mile.

Nine times as fast as an automobile, at comparable fuel costs: no

other vehicle can top that kind of performance. But birds perform

comparable feats. The British house martin migrates to South Af-

rica each autumn, the American chimney swift winters in Peru,

and the Arctic tern flies from pole to pole twice a year. Birds can

afford to cover these enormous distances because flying is a rela-

tively economical way to travel far.

Lift, Weight, and Speed

A good way to start when attempting to understand the basics of

flight performance is to think of the weight a pair of wings can sup-

port. This ‘‘carrying capacity’’ depends on wing size, airspeed, air

density, and the angle of the wings with respect to the direction of

flight.
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Unfortunately, most of us learned in high school that one needs

the Bernoulli principle to explain the generation of lift. Your

science teacher told you that the upper face of a wing has to have

a convex curvature, so that the air over the top has to make a lon-

ger journey than that along the bottom of the wing. The airspeed

over the top of the wing has to be faster than that below, because

the air over the top ‘‘has to rejoin’’ the air along the bottom. An ap-

peal to Bernoulli then ‘‘proves’’ that the air pressure on top is low-

er than that below. The biologist Steven Vogel, who has written

several delightful books on biomechanics, says: ‘‘A century after

we figured out how wings work, these polite fictions and misappre-

hensions still persist.’’ Polite fiction, indeed. It does not explain

how stunt planes can fly upside down, it does not explain how the

sheet-metal blades of a home ventilator or an agricultural windmill

work, it does not explain the lift on the fabric wings of the Wright

Flyer, it fails to explain the aerodynamics of paper airplanes and

butterfly wings, and so on. If your high school teacher had taken

the trouble to do the math, he would have found that the mistaken

appeal to Bernoulli does not produce nearly enough lift to keep a

bird or an airplane aloft. The principal misapprehension in the

conventional explanation is that the air flowing over the top of a

wing has to rejoin the air flowing along the bottom when it reaches

the trailing edge. In fact, all along the wing the airspeed over the

top is higher than that over the bottom. Rejoining is not necessary

and does not occur.

We will have to do better. I will use a version of Newton’s Sec-

ond Law of Motion, not familiar to most high school physics teach-

ers, that is a cornerstone of aerodynamics and hydrodynamics. I

also will appeal to Newton’s Third Law, which says that action

and reaction are equal and opposite. Applied to wings, these two

laws imply that a wing produces an amount of lift that is equal to

the downward impulse given to the surrounding air. According to

the version of the Second Law that I will use, force equals rate of

change of momentum and can be computed as mass flow times

speed change.
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How much air flows around a wing? The mass flow is propor-

tional to the air density r, the wing area S, and the airspeed V.

Let’s check the dimensions of the product of the three factors r, V,

and S. The density r is measured in kilograms per cubic meter, the

wing area S (taken as the planform surface seen from above) in

square meters, and the speed V in meters per second. This means

that the units for rVS are kilograms per second, which indeed is a

mass flow. For a Boeing 747-400 cruising at 39,000 feet, the mass

flow around the wings computes as 42 tons of air per second, or

2,500 tons per minute. By the way, the mass flow into each of a

747-400’s jet engines is about 500 pounds per second.

How much downward motion is imparted to the air flowing

around a wing? The downward component of the airspeed leaving

the wing is proportional to the flight speed (V ) and the angle of

attack of the wing (a). It is easy to get a feeling for the effect of

the angle of attack: just stick your hand out of the window of a car

moving at speed. When you keep your hand level you feel only air

resistance, but when you turn your wrist your hand wants to move

up or down. You are now generating aerodynamic lift. Note also

that you start generating more resistance while losing much of the

lift when you increase the angle of your hand in the airstream. Air-

planes and birds have similar problems: when the angle of attack

of their wings reaches about 15�, the air flow over the top surface

is disrupted. Pilots call this ‘‘stall.’’ When the airflow is stalled,

the lift decreases; it is no longer proportional to the angle of attack.

On top of that, the drag increases a lot, causing a plane to drop like

a brick.

With the mass flow pinned down as rVS and with the deflection

speed proportional to the product of a and V, the lift on a wing is

proportional to arV 2S. Note that the square of the airspeed V is

involved. When you fly twice as fast with the same wings at the

same angle in the air flow, you obtain 4 times as much lift. You’ll

have to reduce the angle of attack if you merely need to support

your weight, or you may decide to make a tight turn. At an altitude

of 12 kilometers, where the air density is only one-fourth its sea-

Chapter 1 4



level value, you will have to fly twice as fast to sustain your

weight.

What about Bernoulli? The conventional explanation is that the

air over the top surface has to flow faster than the air below, so

that the pressure on the top surface will be lower than that along

the bottom surface. That ‘‘logic’’ is inverted. A wing gives the sur-

rounding air a downward deflection. It does so by creating a region

of reduced pressure on the top surface (a kind of ‘‘suction’’), which

pulls the passing air downward. The partial vacuum over the top

surface manifests itself as lift. Yes, the suction over the top acceler-

ates the local airflow, and yes, the pressure difference can be

computed with the Bernoulli formula, but the ‘‘polite fictions’’

involved in what you learned in high school lead you astray.

Birds and airplanes can change the angle of attack of their wings

to fit the circumstances. They fly nose up, with a high angle of at-

tack, when they have to fly slowly or have to make a sharp turn;

they fly nose down when speeding or diving. But everything that

flies uses about the same angle of attack in long-distance cruising;

6� is a reasonable average. At higher angles of attack the aero-

dynamic drag on wings increases rapidly; at smaller angles wings

are underutilized.

Since wings have to support the weight of an airplane or a bird

against the force of gravity, the lift L must equal the weight W. The

lift is proportional to the wing area S and to rV 2, and so is the

weight:

W ¼ 0.3rV 2S. (1)

(The 0.3 is related to the angle of attack in long-distance flight, for

which the average value of 6� has been adopted.)

We must make sure we aren’t violating the rules of physics when

we use equation 1. We must give clear and mutually consistent

definitions for the units in which r, V, and S are expressed.

(Clearly the numbers would look different if velocities were given

in miles rather than in millimeters per minute.) The best way to en-

sure consistency is to use the metric system, expressing S in square

Wings According to Size 5



meters, V in meters per second, and r in kilograms per cubic me-

ter. The rules of physics then require that the weight W in equation

1 be given in kilogram-meters per second squared. This frequently

used unit is known as the newton, after Sir Isaac Newton (1642–

1727), the founder of classical mechanics. A newton is slightly

more than 100 grams (3.6 ounces). A North American robin weighs

about 1 newton, a common tern a little bit more, a starling a little

bit less. Since there are roughly 10 newtons to a kilogram, a 70-

kilogram (154-pound) person weighs about 700 newtons.

The distinction between mass and weight still causes confusion

in the public mind. Mass is the amount of matter; weight is the

downward force that all matter experiences in Earth’s gravity field.

One reason for the confusion is that the force of gravity is propor-

tional to the mass of an object and is independent of everything

else. None of the other forces in nature have this outrageously sim-

ple property. I have chosen to work with the weight of flying

objects, not their mass, because all flying has to be done on Earth

and is therefore subject to terrestrial gravity. If gravity were absent,

wings would not be needed. Classical Italian painters understood

this well: their Cupids, being little angels, feature miniature wings,

mere adornments. Angels need not worry about gravity.

Great tit (Parus major ): W ¼ 0.2 N, S ¼ 0.01 m2, b ¼ 0.23 m.
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If we respect the rules, we can play with equation 1 in whatever

way we want. For example, a Boeing 747-200 has a wing area of

5,500 square feet (511 square meters) and flies at a speed of 560

miles per hour (900 kilometers per hour; 250 meters per second) at

an altitude of 12 kilometers (40,000 feet), where the air density is

only one-fourth its sea-level value of 1.25 kilogram per cubic me-

ter. Using r ¼ 0.3125 kilogram per cubic meter, V ¼ 250 meters

per second, and S ¼ 511 square meters, we calculate from equation

1 that W must equal 2,990,000 newtons. Because a newton is about

100 grams, this corresponds to approximately 300,000 kilograms,

or 300 tons. That is indeed the weight of a 747 at the midpoint of

an intercontinental flight. At takeoff it is considerably heavier (the

maximum takeoff weight of a 747-200 is 352 tons), but it burns 10

tons of kerosene per hour.

Equation 1 can be used in several ways. Consider a house spar-

row. It weighs about an ounce (0.3 newton), flies close to the

ground (so that we can use the sea-level value of r, 1.25 kilogram

per cubic meter), and has a cruising speed of 10 meters per second

(22 miles per hour). We can use equation 1 to find that the sparrow

needs a wing area of 0.01 square meter, or 100 square centimeters.

That’s 20 centimeters from wingtip to wingtip, with an average

Sparrow hawk (Accipiter nisus): W ¼ 2.5 N, S ¼ 0.08 m2, b ¼ 0.75 m.
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width of 5 centimeters. Or we can use the same equation in design-

ing a hang glider. Taken together, the pilot and the wing weigh

about 1,000 newtons (100 kilograms, 220 pounds). So if you want

to fly as fast as a sparrow (20 miles per hour), you need wings

with a surface area of 33 square meters. On the other hand, if you

want to fly at half the speed of a sparrow, your wing area must be

more than 100 square meters (more than 1,000 square feet).

Wing Loading

To make equation 1 easier to work with, let us replace the variable

r (air density) with its sea-level value: 1.25 kilogram per cubic me-

ter. This should not make any difference to most birds, which fly

fairly close to the ground. For airplanes and birds flying at higher

altitudes, we will have to correct for the density difference or re-

turn to equation 1; we can worry about that detail when it becomes

necessary. Another improvement in equation 1 is to divide both

sides by the wing area S. The net result of these two changes is

Little gull (Larus minutus).
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W/S ¼ 0.38V 2. (2)

This formula tells us that the greater a bird’s ‘‘wing loading’’ W/S,

the faster the bird must fly. Within the approximations we are us-

ing here, sea-level cruising speed depends on wing loading only.

No other quantity is involved. This is the principal advantage of

equation 2. But it is a simplification.

The predecessor of the Fokker 50 was the Fokker Friendship,

with a weight of 19 tons (190,000 newtons) and a wing area of 70

square meters. Its wing loading was 2,700 newtons per square me-

ter, good for a sea-level cruising speed of 85 meters per second

(190 miles per hour). The wing loading of a Boeing 747 is about

7,000 newtons per square meter, and it must fly a lot faster to re-

main airborne. The wing loading of a sparrow is only 38 newtons

Razorbill (Alca torda): W ¼ 8 N, S ¼ 0.038 m2, b ¼ 0.68 m.
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per square meter, corresponding to a cruising speed of 10 meters

per second (22 miles per hour). From these numbers one gets the

impression that wing loading might be related to size. If larger

birds have higher wing loadings, it is no coincidence that a Boeing

747 flies much faster than a sparrow.

Our understanding of the laws of nature is due in part to people

who have been driven by the urge to investigate such questions.

One person in particular deserves to be mentioned: Crawford H.

Greenewalt, a chemical engineer who was chairman of the board

of DuPont and a longtime associate of the Smithsonian Institution.

For many years Greenewalt’s chief hobby was collecting data on

the weights and wing areas of birds and flying insects. Humming-

birds were his favorites, and he carried out many strobe-light

experiments to measure their wing-beat frequencies.

Some of the data collected by Greenewalt and later investigators

are listed in table 1. For the sake of clarity, the selection is

restricted to seabirds: terns, gulls, skuas, and albatrosses. Looking

at table 1, we find that wing loading and cruising speed generally

increase as birds become heavier. But the rate at which this hap-

pens is not spectacular. A wandering albatross is 74 times as heavy

as a common tern, but its wing loading is only 6 times that of its

small cousin, and it flies only 2.5 times as fast (equation 2). In

terms of weight, the wing loading isn’t terribly progressive.

To improve our perception of what is happening, let us plot the

weights and wing loadings of table 1 in a proportional or ‘‘double-

logarithmic’’ diagram, which preserves the relative proportions be-

tween numbers. In a proportional diagram a particular ratio (a two-

fold increase, say) is always represented as the same distance, no

matter where the data points are located. Four is 2 � 2, and 100 is

2 � 50; in a proportional diagram the distance between 2 and 4 is

equal to the distance between 50 and 100. (See figure 1.)

The steeply ascending line in figure 1 suggests that there must be

a simple relation between size and wing loading. There are devia-

tions from this line, of course; for example, the fulmar has a rather

high wing loading for its weight. But before you look at the excep-

tions, let me explain the rule.
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All gulls and their relatives look more or less alike, with long,

slender wings, pointed wingtips, and a beautifully streamlined

body with a short neck and tail; however, they vary considerably

in size. Now compare two types of gull, one having twice the wing-

span of the other. If the larger of the two is a scaled-up version of

its smaller cousin, its wings are not only twice as long but also

twice as wide, making its wing area 4 times as large. The same

holds for weight. Because weight goes as length times width times

Table 1 Weight, wing area, wing loading, and airspeeds for various seabirds, with W given
in newtons (10 newtons ¼ 1 kilogram, roughly), S in square meters, and V in
meters per second and miles per hour. The values of W and S are based on mea-
surements; those for V were calculated from equation 2. In general, larger birds
have to fly faster.

V

W S W /S m/sec mph

Common tern 1.15 0.050 23 7.8 18

Dove prion 1.70 0.046 37 9.9 22

Black-headed gull 2.30 0.075 31 9.0 20

Black skimmer 3.00 0.089 34 9.4 21

Common gull 3.67 0.115 32 9.2 21

Kittiwake 3.90 0.101 39 10.1 23

Royal tern 4.70 0.108 44 10.7 24

Fulmar 8.20 0.124 66 13.2 30

Herring gull 9.40 0.181 52 11.7 26

Great skua 13.5 0.214 63 12.9 29

Great black-billed gull 19.2 0.272 71 13.6 31

Sooty albatross 28.0 0.340 82 14.7 33

Black-browed albatross 38.0 0.360 106 16.7 38

Wandering albatross 87.0 0.620 140 19.2 43
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Figure 1 The relation between weight and wing loading represented in a proportional dia-
gram. When the weight increases by a factor of 100, the value of W /S increases by
a factor of 5 and the airspeed by a factor of more than 2.
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height, the weight of the larger gull is 8 times that of its smaller

cousin. Eight times as heavy, with a wing area 4 times as large, a

bird with a wingspan twice that of its smaller cousin has twice the

wing loading. And according to equation 2 it has to fly 40 percent

faster (the square root of 2 is about 1.4). It is useful to write this

down in an equation. If the wingspan (the distance from wingtip

to wingtip with wings fully outstretched) is called b, the wing area

is proportional to b2 and the weight is proportional to b3. The wing

loading, W/S, then is proportional to b. But b itself is proportional

to the cube root of W. In this way we obtain the scale relationship

W/S ¼ c�W 1=3. (3)

Strictly speaking, this formula holds only for birds that are ‘‘scale

models’’ of one another. The steeply ascending line in figure 1 cor-

responds to equation 3, the coefficient having been determined

Herring gull (Larus argentatus): W ¼ 11.4 N, S ¼ 0.2 m2, b ¼ 1.34 m.
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empirically. For the seabirds in figure 1, c ¼ 25: at a weight of 1

newton, the wing loading is 25 newtons per square meter.

The scale relation (equation 3) is universally applicable when-

ever weights and supporting surfaces or cross-sectional areas are

involved. Galileo Galilei (1564–1642) wrote the first scientific trea-

tise on this subject, asking himself why elephants have such thick

legs and similar questions. The answer is that the larger an animal

gets, the more crucial the strength of the legs becomes. The stress

on leg bones increases as the cube root of weight; for this reason, a

land animal much larger than an elephant is not a feasible proposi-

tion. This is the same problem that engineers face when they de-

sign bridges, skyscrapers, or even stage curtains, which would

give way under their own weight were they not reinforced by steel

cables. Another good example is that of walking barefoot on a

stony beach. Walking on gravel is an uncomfortable experience for

adults, but not for little children. A father who is twice as tall and 8

times as heavy as his 8-year-old daughter must support himself on

feet whose surface area is only 4 times that of her feet. Thus, his

‘‘foot loading’’ is twice hers. No wonder he seems to be walking

on hot coals.

The scale relation given in equation 3 is not a hard-and-fast rule.

Most birds are not exact ‘‘scale models’’ of others, and we must

also allow some latitude for deviations to fit designers’ visions and

nature’s idiosyncrasies. On the other hand, designers are con-

fronted by tough technical problems whenever they deviate too

far. The margins permitted by the laws of scaling are finite.

The Great Flight Diagram

Thanks to the dedicated work of Crawford Greenewalt and other

enthusiasts, and assisted by the airplane encyclopedia Jane’s All

the World’s Aircraft, we can now collect everything that flies in a

single proportional diagram: figure 2. The results are impressive:

12 times a tenfold increase in weight, 4 times a tenfold increase in

wing loading, and 2 times a tenfold increase in cruising speed!
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Figure 2 The Great Flight Diagram. The scale for cruising speed (horizontal axis) is based on
equation 2. The vertical line represents 10 meters per second (22 miles per hour).



Very few phenomena in nature cover so wide a range; the Hertz-

sprung-Russell diagram in astronomy is the only other one I am

aware of. At the very bottom of the graph we find the common fruit

fly, Drosophila melanogaster, weighing no more than 7 � 10�6

newton (less than a grain of sugar) and having a wing area of just

over 2 square millimeters. At the top is the Boeing 747, weighing

3.5 � 106 newtons, 500 billion times as much as a fruit fly. The

747’s wings, with an area of 511 square meters, are 250 million

times as large. Despite these enormous differences, a 747 flies only

200 times as fast as a fruit fly.

Allow yourself time to study figure 2 carefully. It is loaded with

information. The ascending diagonal running from bottom left to

top right is the scale relation of equation 3. The constant c has

been set equal to 47, almost twice as large as the value in figure 1.

The vertical line marks a cruising speed of 10 meters per second,

corresponding to 22 miles per hour and to force 5 on the Beaufort

scale used by sailors and marine meteorologists. Birds that fly

slower than this (those to the left of the vertical line) may not be

able to return to their nest in a strong wind. (To return home in a

headwind, a bird must be able to fly faster than the rate at which

the wind sets it back.)

Deviations from the rule can be seen both to the left and to the

right of the diagonal representing the scale relation of equation 3.

The diagonal acts as a reference, a ‘‘trend line,’’ a standard against

which individual designs can be evaluated. Let’s start with the

birds and airplanes that follow the trend—the commonplace types

found on or near the diagonal. The starling is a good example. A

thrush-size European blackbird, 100 of which were released in

1890 in New York’s Central Park, it has become a most successful

immigrant (and somewhat of a nuisance, too). With a weight of 0.8

newton (80 grams, a little over 3 ounces) and a wing loading of 40

newtons per square meter, the starling is clearly an ordinary bird

and does not have to meet any special performance criteria. But

the Boeing 747 also follows the trend. In its weight class the 747 is

a perfectly ordinary ‘‘bird,’’ with ordinary wings and a middle-of-
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the-road wing loading. The weight of the 747 is no longer very spe-

cial, either: today several other planes of similar weight are in

service.

Deviations from the trend line may be necessary when special

requirements are included in the design specifications. The 747’s

little brother, the 737, weighs only 50 tons (5� 105 newtons), one-

eight the weight of a 747-400. If the 737 had been designed as a

scale model of the 747, its wing loading would have been half that

of the larger plane (the cube root of 8 is 2). And according to equa-

tion 2 its cruising speed would have been only 71 percent of its big

brother’s: not 560 miles per hour but only 400. This would have

been a real problem in the dense air traffic above Europe and North

America, where backups are much easier to avoid if all planes fly

at approximately the same speed. To make it almost as fast as the

747, the 737 was given undersize wings. Its wing loading is higher

than those of ordinary planes of the same weight class, and it is

therefore located to the right of the trend line in figure 2. (With a

cruising speed 60 miles per hour less than that of the 747, the 737

would still be a bit of a nuisance in dense traffic were it not con-

signed to lower flight levels.)

Far left of the diagonal, in the center of figure 2, is Pteranodon,

the largest of the flying reptiles that lived in the Cretaceous era.

Weighing 170 newtons (37 pounds), it was almost twice as heavy

as a mute swan or a California condor. It had a wingspan of 23 feet

(7 meters) and a wing area of 108 square feet (10 square meters)—

comparable to a sailplane. Its wing loading was 17 newtons per

square meter, about one-tenth that of a swan but comparable to

that of a swallow. Pteranodon spent its life soaring above the cliffs

along the shoreline, since its flight muscles were not nearly strong

enough for continuous flapping flight. Its airspeed was about 7

meters per second (16 miles per hour)—not fast for an airborne an-

imal that must return to its roost in a maritime climate. However,

there were no polar ice caps during the Cretaceous era, and there

was less of a temperature difference between the equator and the

poles than there is today; as a result there was much less wind.
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The largest flying animal that ever lived, however, was not a rep-

tile, but a giant bird that roamed the windy slopes of the Andes

and the pampas of Argentina 6 million years ago. Looking much

like an oversized California condor, Argentavis magnificens

weighed 700 newtons (150 pounds). With a wing area of 8 square

meters and a wingspan of 7 meters, its speed in soaring flight was

about 15 meters per second, much the same as that of a golden

eagle. It defies the conventional wisdom that birds much heavier

than 25 pounds cannot fly. Exceptions to the rule add spice to the

work of a scientist.

After centuries of experimentation, humans finally managed to

fly under their own power. That required feather-light machines

with extremely large wings. The only way to reduce the power re-

quirement to a level that humans could attain was to reduce the

airspeed to an absolute minimum. Humans pedaling through the

air on gossamer wings are the real mavericks in the Great Flight Di-

agram (figure 2). They are represented there by Paul McCready’s

Gossamer Condor, the first successful example of the breed. Also

shown are a number of solar-powered planes. A severe lack of en-

gine power forces them also to the far left of the trend line. As a

mode of transportation they are just as fragile as human-powered

planes or extinct flying reptiles. We’ll have to wait for much more

efficient solar cells before solar-powered flight will succeed in the

struggle for survival in this technological niche.

What about the Concorde? Wasn’t it supposed to fly at about

1,300 miles per hour? How come it didn’t have higher wing load-

ing and therefore smaller wings? The answer is that the Concorde

suffered from conflicting design specifications. Small wings suffice

at high speeds, but large wings are needed for taking off and land-

ing at speeds comparable to those of other airliners. If it could not

match the landing speed of other airliners, the Concorde would

have needed special, longer runways. The plane’s predicament

was that it has to drag oversize wings along when cruising in the

stratosphere at twice the speed of sound. It could compensate

somewhat for that handicap by flying extremely high, at 58,000

feet. Still, its fuel consumption was outrageous.
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Convergence and Divergence

The Great Flight diagram (figure 2) exhibits many curious features.

Let me name a few. Sports planes tend to be underpowered, but

crawl toward the trend line as the engine power increases. Small

birds fly much faster than computed when they are migrating.

Insects are either too fast for their size or too slow. Large soaring

birds deviate more from the trend line than their smaller cousins.

Large airliners tend to have the same wing loading, irrespective of

size. Biologists believe that creatures that exhibit better all-around

performance have a better chance to survive. They tend to evolve

in similar ways, much as insects, birds, and airplanes cluster

around the trend line in figure 2. The label given to this idea is

convergence. In short, evolutionary success is determined by func-

tional superiority. Good designs perform better than alternative

ones, so alternative solutions are weeded out. Creatures that ven-

ture far from the trend line, human-powered airplanes for example,

have little chance of survival in the long run. In fact, human-pow-

ered airplanes have become extinct.

In the very beginning of powered flight, airplanes tended to be

underpowered. Early aircraft engines weighed many pounds per

horsepower. In order to keep the total weight within limits, rela-

tively small engines had to be used. One hundred years ago, the

cruising speed of most airplanes was 40 miles per hour at best.

The advantage is obvious: those early planes could take off and

land on grass strips. Also, crashes were relatively easy to repair.

The major disadvantage was that these planes had to be kept on

the ground in high winds. The best fighters in World War I were a

lot faster: with engines delivering up to 200 horsepower, speeds of

100 miles per hour or more could be obtained. In World War II,

Mustangs and Spitfires reached speeds up to 450 miles per hour.

When you decide to install a more powerful engine in your next

plane, the total weight will increase because the engine is heavier

and the fuel tank bigger. This requires a larger wing. But a larger

engine allows you to fly faster, and that permits you to choose a

smaller wing. The net result is that the wing area stays about the

same as engine power increases. Typical private planes have a
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wing area of about 20 square meters. When S is fixed, the wing

loading W/S does not increase as the third root of W; it increases

in linear proportion to W itself. This is exactly what happens as

you move from the Wright Flyer or the Skysurfer to the Beechcraft

Baron and the Beechcraft Bonanza in figure 2. A clear case of evo-

lutionary convergence: as aircraft engines improve in terms of

horsepower per pound of engine weight, it pays to install a larger

engine, which allows a higher cruising speed. The trend line is

rejoined at speeds around 60 meters per second (130 miles per

hour), a typical plane then weighing about 4,000 pounds. This is

just one example of the rapid pace of convergence in technological

evolution.

Curiously, the Supermarine Spitfire, the famous British World

War II fighter, is right on the trend line in figure 2. Thus, you might

think it is rather ordinary. But sometimes appearances are deceiv-

ing. With a wing area of 22.5 square meters and a takeoff weight of

40 kilonewtons, a Spitfire’s cruising speed computes as 69 meters

per second (250 kilometers per hour, 155 miles per hour). What

about the reported top speed of 700 kilometers per hour, then?

And why was a 1,600-horsepower Rolls-Royce Merlin engine in-

stalled? Spitfires were interceptors: they had to climb to 25,000

feet just in time to attack approaching German bombers. That is

what the famous 48-valve Merlin engine was for. You can’t fly fast

and climb fast at the same time. It pays to have a rather low cruis-

ing speed, because most of the power then can be used to climb

fast. If you plan on modifying a Spitfire for racing, you should give

it much smaller wings and forget about a high rate of climb. Taking

off from grass strips then also is out of the question.

Why doesn’t the Great Flight Diagram (figure 2) include any

bats? The diagram is terribly crowded as is. Also, no new informa-

tion would have been presented. Bats’ wing loading is similar

to that of birds of the same size. By omission, the case for con-

vergence is made stronger yet: having to live in the same en-

vironments, birds and bats have evolved toward comparable

aerodynamic design parameters. There are subtle differences,
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though. The largest swan weighs about 25 pounds, but the largest

bat only 5 pounds. This is probably not a matter of muscle power

but a consequence of lung design. The lungs of birds have air sacs

behind them, so they are ventilated twice during each respiration

cycle and can pick up much more oxygen than the lungs of mam-

mals, which don’t have those lung extensions. I wonder why evo-

lution hasn’t solved this discrepancy. Is the cause of the handicap

that mammals appeared on the scene so much later than birds?

Sometimes a limited amount of divergence from the trend line is

unavoidable. Vultures and eagles prefer to soar in ‘‘thermals’’

(ascending pockets of hot air) and need a rate of descent less than

1 meter per second in still air. Since these large birds can glide 15

meters for every meter of altitude lost, they should not fly faster

than 15 meters per second (33 miles per hour). The wing loading

of large soaring birds therefore is fixed at about 80 newtons per

square meter. The extinct giant Andes condor Argentavis magnifi-

cens is no exception. As they grow bigger, the large soaring birds

diverge further from the trend line in figure 2. Their lifestyle

requires much less muscle power than those of geese and swans,

so their flight muscles are relatively small. Continuous flapping is

out of the question; they have wait until sufficiently strong ther-

mals develop in the course of the day. It shouldn’t surprise you

that smaller species start their soaring days earlier than larger

ones. Neither should it surprise you that a flock of soaring birds

sends scouts aloft in the morning in order to find out whether the

updrafts have become strong enough.

Large birds that cannot soar but have to flap their wings have

problems of their own. As far as wing loading and flight speed are

concerned, swans, geese, and ducks follow the trend line faith-

fully. But they don’t grow much heavier than about 25 pounds. So

where’s the rub? The muscle power available to flapping birds is

about 20 watts per kilogram of body weight. Muscle power is pro-

portional to weight, but the power required to maintain horizontal

flight is proportional to the product of weight and flight speed. Big-

ger birds have to fly faster, so their power reserve decreases as their
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weight grows larger. The largest species of swans have very little

power to spare. According to Swedish researchers, they can gain

altitude no faster than 50 feet per minute. I can confirm this num-

ber from personal experience. One autumn many years ago, a flock

of mute swans landed in a meadow behind my house. After resting

for a day and filling their stomachs, they took off. The meadow,

however, was surrounded by brushwood and trees on all sides.

The leader of the flock realized that he couldn’t clear those

obstacles head-on and decided instead to fly a large circle, exploit-

ing the width of the meadow. Slowly the flock gained height. After

a circle and a half, they cleared the brush on the southwest corner

of the field.

From swans and eagles to insects: a large step down in weight,

but similar characteristics of convergence and divergence. Big

birds either soar slowly with oversized wings or follow the trend

line by working hard and flying fast. Among insects, the slow

ones, butterflies and the like, follow the trend line rather faithfully,

but shifted a bit to the left. Many butterflies are capable of gliding

and soaring, and use these styles of flight to conserve energy. If

they can take advantage of strong tailwinds, migrating monarch

butterflies cross the Gulf of Mexico directly, instead of following

the coast. They have been observed by radar to flock in the

updrafts between the ‘‘roll vortices’’ in the lower atmosphere that

stretch at a slight angle to the wind direction. They float without

flapping—a perfect way to cross 500 miles of open sea. I don’t

know how they find out where the updrafts are, but I do know

how human observers do : under appropriate circumstances,

‘‘cloud streets’’ form in the air between each pair of roll vortices.

Mosquitoes, bees, and flies fly in an entirely different way. Their

buzzing wings act like the rotor blades of helicopters. Their wing

size is not determined by their flight speeds but by their flapping

frequency. The speeds suggested in figure 2 are therefore not reli-

able. Bees can go faster when they have to; 10 meters per second

is not uncommon. Some biologists argue that bees diverge farther

from the trend line the smaller they become. On the other hand,
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the very smallest flies, such as Drosophila melanogaster, go only 1

meter per second, one-third as fast as figure 2 suggests. Going into

the details of the performance of buzzing insects would lead me

astray. For very small creatures, air does not obey the aerodynamic

principles that are valid for birds and planes. To a fruit fly, for ex-

ample, flying must feel very much like swimming in syrup. (For

those who want to know more, I recommend reading one of the

books on insect flight listed in the bibliography. For most readers,

David Alexander’s Nature’s Flyers, though not limited to insects,

is by far the best source. And those who insist learning about all

the intricate details will have to study Robert Dudley’s book

Biomechanics of Insect Flight.)

In the top right corner of figure 2, another constraint occurs. It is

the speed of sound. For good reasons, explained in chapter 6, air-

liners travel above 30,000 feet, where the speed of sound is 295

meters per second (1,062 kilometers per hour, 664 miles per hour).

They have to fly somewhat slower than that, typically 560 miles

per hour, in order to avoid making little shock waves that increase

airframe drag rapidly as the speed of sound is approached. Curi-

Storm petrel (Hydrobates pelagicus): W ¼ 0.17 N, S ¼ 0.01 m2, b ¼ 0.33 m.
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ously, all modern long-distance planes cluster around the original

design parameters of the Boeing 747. Convergence in this case is

not just toward the trend line but to a quite specific weight class: a

small cloud of data points in the top right corner of figure 2. The

Airbus A380 is no exception. (Chapter 6 deals with the engineering

logic that has led to this curious development. I did explain the

logic in the first edition, but I did not see the consequences for the

size of future airliners at the time.)

Incidentally, the Boeing 747 is represented in figure 2 as having

a wing loading of 7,000 newtons per square meter and a cruising

speed of 136 meters per second. But 136 meters per second is 300

miles per hour, roughly half the 747’s actual cruising speed. What

has gone wrong here? In figure 2 the lower air density at cruising

altitudes has been ignored. Since the air density at 39,000 feet is

only one-fourth the density at sea level, the high-altitude cruising

speed is twice the cruising speed near Earth’s surface. Figure 2

Barn swallow (Hirunda rustica): W ¼ 0.2 N, S ¼ 0.013 m2, b ¼ 0.33 m.
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gives the speed at sea level; table 6 (in chapter 6) gives the neces-

sary conversion factors.

Traveling Birds

Several groups of ornithologists have been making radar measure-

ments of actual flight speeds of migrating birds. The Schweizeri-

sche Vogelwarte (Swiss Ornithological Institute) published a

massive list of radar speed data in 2002, and biologists at the Flight

Ecology Department of the University of Lund in Sweden added

their own list in 2007. (A selection of these data is presented in

the appendix.) Theoreticians have begun to dissect the assump-

tions underlying the ‘‘aerodynamic theory of bird flight,’’ the

theory from which I distilled my way of handling the matter.

Since 1970 or thereabouts, everyone involved with bird flight

assumed that the speed at which birds glide best is not too differ-

ent from the most economical speed in flapping flight. We now

know this was an unwarranted simplification. If flapping birds

want to conserve energy, they have to fly much faster than when

gliding. When birds are in no hurry, like a circling flock of homing

pigeons or a great dancing swarm of starlings at sunset, they fly at a

speed that requires the least muscle exertion. It turns out that this

Bee hummingbird (Mellisuga helenae): W ¼ 0.02 N, S ¼ 0.0007 m2, b ¼ 0.07 m.
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speed is not too different from the optimum gliding speed. But bird

migration is another business altogether. Birds on migration often

are in a hurry. Most of them fly faster than the speed that mini-

mizes their ‘‘fuel consumption’’ per hour, near the top speed their

muscles allow. The migration speed of small birds may be as much

as twice the speed that requires least muscle power. In fact, I have

found no numbers below 10 meters per second (22 miles per hour)

for any songbird on migration. If you want to amend figure 2, here

is your chance. All the data you need are given in the appendix. A

typical 10-gram songbird migrates at 10 meters per second, 80-

gram starlings and half-pound jackdaws manage 14 meters per sec-

ond (30 miles per hour), and many wading birds fly 20 meters per

second (45 miles per hour) when they are making their seasonal

long-distance journeys. If you want to make a sophisticated correc-

tion to figure 2, you should choose a curve that makes the flight

speed much less dependent on weight instead of the trend sug-

gested in figure 2. That would account for the fact that small birds

have lots of power to spare for speeding, while large birds are

straining themselves even when flying most economically.

Flapping, Gliding, Soaring, and Landing

What about the various swifts, swallows, and martins in figure 2?

They are all found on the left of the trend line. For their weight,

they all have rather large wings and fly relatively slowly. There

must be something wrong here. Swifts did not get their name for

nothing.

In fact, swifts and swallows are fast only when gliding, diving, or

fooling around. In level flapping flight, they are not fast at all. Ra-

dar data on migrating swifts give speeds around 10 meters per sec-

ond (22 miles per hour). In wind tunnels, swallows fly no faster

than 12 meters per second (27 miles per hour). Their comfortable

cruising speeds are lower yet, consistent with the data in figure 2.

Swifts and their relatives can fly very slowly, when they have to,

by spreading their wings wide. When they want to fly faster, they
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can fold their wings. The elegance of their streamlining does not

suffer when they reduce their wing area, but the wing loading

increases, and with it the cruising speed. Are they poking fun at

the laws of nature? According to equation 2, a bird cannot alter its

speed at will if it wants to fly economically, once blessed with a

particular set of wings. The cruising speed is controlled by the

wing loading: W/S ¼ 0.38V 2. But if S can be changed to fit the

circumstances, this problem vanishes: the cruising speed then

changes too. All birds do this to some extent, though not always

with the grace and sophistication of swifts and swallows. But glid-

ing, soaring, and maneuvering are altogether different from flap-

ping. In the downstroke of flapping flight, all birds spread their

wings fully; however, when gliding, birds can fold their wings at

will. Figure 3 shows how gliding falcons and pigeons progressively

fold their wings as their speed increases.

When low speeds are needed, all birds make their wing area as

large as is possible. The sparrow hawk on final approach (figure 4)

Figure 3 Birds progressively fold their wings as their speed increases. On the left is a pigeon,
on the right a falcon. At high speeds, fully spread wings generate unnecessary drag.
This can be avoided by reducing the wing area.
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is a good example. Since it wants to fly slowly, it spreads its pri-

mary quills and tail feathers wide. In fact, many birds deliberately

stall their fully stretched wings on final approach, maximizing drag

to obtain quick deceleration and not caring about lift during the

last seconds of flight. Just for fun, watch pigeons landing on a tree

branch or a rooftop, and see how they do it. Airplanes fully extend

various slats and flaps in preparation for landing. Airplanes and

birds alike minimize their landing speed to reduce the length of

runway required or the risk of stumbling.

Swifts’ amazing aerial maneuvers are made possible by the su-

perb aerodynamic performance of their sweptback wings. I have

seen them dallying in the updrafts in front of the cliffs in southern

Portugal, first diving toward the shore and then suddenly shooting

Figure 4 Sparrow hawk (Accipiter nisus): W ¼ 2.5 N, S ¼ 0.08 m2, b ¼ 0.75 m.
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up like rockets and disappearing out of sight. In these stunts, flap-

ping would be of no use. With their wings folded far back, swifts

have another surprise in store. If they have to make a quick maneu-

ver, they can generate a ‘‘leading-edge vortex’’ over their swept-

back wings by suddenly increasing their angle of attack. Almost

but not quite stalling their wings, they achieve a large momentary

increase in lift that way, which allows for very sharp turns. This is

how they catch insects in their flight path, and this is how they

show off during the sophisticated aerobatics of courtship.

Continuous flapping flight does not support such extreme behav-

ior. Level flapping flight is boxed in by a large number of con-

straints—kinematic, dynamic, energetic, physiological, and so on.

When flapping, wings have to act not only as lift-generating surfa-

ces but also as propellers, a combination never successfully imi-

tated by human technology. Wings act as propellers only in the

downstroke. The upstroke is of little use. Many birds fold their

wings before they start the upstroke; others drastically reduce the

angle of attack before their wings move upward. To keep things

simple, I will assume that only the downstroke counts. This means

that flapping wings are useless during one half of each wingbeat

cycle, and have to produce twice the lift during half the time in or-

der to make sure a bird stays airborne. The immediate consequence

is that birds have to endure a roller-coaster ride when flapping at

speed. This is obvious when you watch traveling geese fly by over-

head. Their heads are kept steady, presumably to make sure that

their delicate navigation equipment is not affected, but their bodies

are shaking up and down with each wingbeat. Another conse-

quence of the two-stroke cycle of flapping wings is that the angle

of attack during the downstroke has to be much larger than when

gliding at the same speed. This is fine as far as the flight muscles

are concerned, because the airspeed for most economical gliding

does not differ much from the speed that requires the least muscle

effort when flapping. (Just watch any bird switching from gliding to

flapping or vice versa, without change in speed.) But it does pay to

choose a higher airspeed in flapping flight, because a bird can also
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get twice the lift by flying 40 percent faster (the lift goes as the

square of the speed, and the square root of 2 is about 1.4). This op-

tion keeps the angle of attack at a value that doesn’t compromise

the aerodynamic performance of the wings. I know I am not doing

justice to the great variety of flapping styles that birds employ, but

a useful rule of thumb is that the most economical speed for flap-

ping is 40 percent higher than that for gliding, provided a bird has

no shortage of muscle power. Swans and other big birds do not

have that option; their speed is limited by their muscle power.

This implies that their wings are working at a high angle of attack

during the downstroke, an angle that compromises flight efficiency

somewhat. The whistling noise made by the flight feathers of mute

swans proves that in the downstroke their wings are almost

stalling.

Birds and Insects

A curious feature of figure 2 is the continuity between the largest

insects and the smallest birds. The largest of the European beetles,

the stag beetle Lucanus cervullus, weighs 3 grams, about the same

as a sugar cube or a fat hazelnut. The smallest bird on Earth, the

Cuban bee hummingbird Mellisuga helenae, weighs 2 grams. The

smallest European bird, the goldcrest, weighs 4 grams. Small bats

also weigh about 5 grams, notwithstanding their different flight ap-

paratus. The wing loadings of large insects do not differ much from

Cockchafer (Melolontha vulgaris): W ¼ 0.01 N, S ¼ 0.0004 m2, b ¼ 0.06 m.
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those of small birds, either. This is no minor observation. In

theory, conditions may be imagined in which the largest beetle

exceeds the smallest bird in size, or a wide gap exists between the

largest flying insects and the smallest birds. Such a gap does exist

between the largest birds and the smallest airplanes, after all. And

there are substantial construction differences, too. The exoskele-

tons of insects are made up of load-bearing skin panels, while birds

(like humans) have endoskeletons, with the load-bearing bones in-

side the body. Notwithstanding the different construction techni-

ques, the transition from insects to birds is barely perceptible.

Apparently, the choice between an exoskeleton and an endoskele-

ton is a tossup for weights around 3 grams. Just a little heavier and

the exoskeleton loses out to the little birds; just a little lighter and

the endoskeleton has to make way for the big beetles. What factor

determines this switchover? Is it the wing structure, the weight of

the skeleton, the geometry of the muscle attachment points, the

respiration constraints, or the blood circulation? This would be a

wonderful research project for a young aeronautical engineer.

Some experience with aircraft construction would give the engi-

neer a head start. Like insects, most airplanes have exoskeletons:

Stag beetle (Lucanus cervus).
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their skins carry most of the structural load. For very small or very

large flying objects, an endoskeleton is apparently not a wise

choice.

The time has come to look deeper into the energy required for

powered flight. Hummingbirds and jetliners consume a few per-

cent of their body weight in fuel per hour. That is a sure sign that

energy consumption is a major consideration in flight performance.

Most of the time, flying is hard work. When you hear a wren sing

its staccato ‘‘tea-kettle, tea-kettle, tea’’ in your backyard, it is not

enjoying an idle moment; it is trying to keep competitors off its ter-

ritory without having to patrol the perimeter. Flying back and forth

would use up too much energy. Birds that have to spend much of

the day looking for food find it easier to whistle a tune than to

chase intruders. Similarly, birds feeding their nestlings must select

their food carefully, choosing between the fattened caterpillars in

the woods a quarter-mile away and the starving maggots in the

meadow below. If a bird doesn’t take care, it will spend more en-

ergy on getting food than it and its young get out of it.
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Sparrow hawk (Accipiter nisus): W ¼ 2.5 N, S ¼ 0.08 m2, b ¼ 0.75 m.



2 A Hard Day’s Flight

An insurance company physician may put you on a fancy exercise

machine, turn up the dial to 150 watts, and wait impassively for

you to lose your breath. Having achieved that, the physician may

turn the dial back a little to determine the load at which your heart

stabilizes at 120 beats a minute. The Consumers Union does much

the same with cars, driving them hard on a test bench to measure

engine power, fuel consumption, and emissions. Aeronautical

engineers do their testing in wind tunnels, where powerful fans

simulate the high speeds needed to put scale-model airplanes

through their paces. Aircraft companies need to know the flying

properties of their new planes in great detail before they send

someone off on a test flight.

Wind tunnels come in many shapes and sizes. The simplest is a

straight pipe with an adjustable ventilator at one end, but most are

much more elaborate. The supersonic wind tunnels used to test

models of jet fighters and of the Space Shuttle require enormous

amounts of power. The very largest have working cross-sections

several meters wide and several meters high. Wind tunnels are

used not only to test airplanes but also to investigate how air flows

around full-scale cars and even to perform environmental impact

studies of industrial installations.

My favorite example of wind-tunnel work dates from 1968.

Vance Tucker, a zoologist at Duke University, trained a budgerigar

(grass parakeet, Melopsittacus undulatus) to perform flapping

flight in a specially built wind tunnel. In order to measure its oxy-

gen consumption, he fitted the little bird with an oxygen mask.

That way he could get the data he needed to calculate how much

energy the bird used at various airspeeds (ranging from 10 to 30



miles per hour) under various conditions, in horizontal flight and

during 5� ascents and descents (figure 5).

To convert his oxygen-consumption data into useful form, Tuck-

er first had to calculate the energy consumed during each flight.

Next he had to subtract the energy spent maintaining the bird’s me-

tabolism (which would not be available for flight propulsion). The

basal metabolic rate of small birds is roughly 20 watts per kilogram

of body weight, 10 times the rate in humans. Tucker’s parakeet

weighed 35 grams, so its body used 0.7 watt to sustain itself. Fi-

nally, since the efficiency of the conversion from metabolic to me-

chanical energy is only about 25 percent, the net propulsive power

is one-fourth the metabolic cost of flying. The net mechanical

power of the flight muscles is plotted in figure 6.

The most striking feature of figure 6 is that slow flight is uneco-

nomical. It is easy enough to understand that the faster you travel

the more power you need; riding a bicycle or driving a car will

have taught you that. But birds also need a lot of power to fly

slowly. For this reason, the power required for flapping flight has

a minimum in the middle of the speed range. (See figure 6.) In hor-

Figure 5 Vance Tucker’s parakeet in the wind tunnel.
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izontal flight, the most economical speed for Tucker’s parakeet was

slightly more than 8 meters per second (18 miles per hour). At that

speed it required 0.75 watt, equivalent to 0.001 horsepower, to re-

main airborne. At lower and higher speeds, more power was

needed.

Low-speed flight is uneconomical because birds and airplanes

have to push the air surrounding them downward in order to stay

airborne. Relatively little air flows around the wings when the

Figure 6 The flight performance of Vance Tucker’s parakeet. In horizontal flight the most
economical conditions were obtained at about 8 meters per second, with the bird
supplying 0.75 watt of mechanical power. In climbing flight more power is needed,
in descending flight less.
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airspeed is low. To sustain its own weight, a bird or an airplane

must give that small quantity of air a powerful impulse. That

requires a lot of energy. When a bird is flying fast, though, a lot of

air crosses its wings; only a little push is needed to remain air-

borne then, and that requires much less energy. (This will be taken

up again in chapter 4.)

Tucker’s parakeet apparently could not fly slower than 5 meters

per second (11 miles per hour). At that speed, flapping its wings at

full power, its flight muscles generated about 1.3 watt, evidently its

maximum continuous power output. Let’s do a few calculations to

see if these numbers make sense. The pectoral muscles of a bird ac-

count for about 20 percent of its body weight; in continuous flap-

ping flight, a bird can generate about 100 watts of mechanical

power per kilogram of muscle mass. A human can manage only

about 20 watts per kilogram of muscle mass.

Since the pectoral muscles of a 35-gram parakeet weigh about 7

grams, the corresponding continuous power output should be

about 0.7 watt, corresponding nicely to the minimum in figure 6.

The maximum continuous power of flight muscles is roughly twice

the normal rate, or 200 watts per kilogram of muscle mass. For the

parakeet this works out to 1.4 watt, pretty close to the experimental

data in figure 6. When the rules of thumb you are using agree with

the results of measurements, you know are on the right track.

Energy, Force, and Power

We have made a terrible mess of simple physical concepts in ordi-

nary life. We treat force, power, and energy as if they were inter-

changeable. Straightforward, unequivocal definitions of these

quantities have been around for 200 years, and yet we continue to

be confused. The scientific definition of the word ‘power’ is ‘‘rate

of doing work,’’ nothing more and nothing less. In everyday lan-

guage, of course, ‘power’ has many other connotations. My Ran-

dom House Dictionary refers to capabilities and capacities, to

political strength (incidentally, wouldn’t ‘‘strength’’ be a force?), to
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control and command, and so forth. Half a column goes by before

the dictionary gets around to ‘‘in physics, the time rate of doing

work.’’ Indeed, the majority of concepts associated with the word

‘power’ tend to confuse rather than enlighten. The same holds for

‘force’ and ‘energy’. The Danes speak of nuclear ‘‘force’’ when

they mean nuclear energy. (Some Danish bumper stickers used to

proclaim ‘‘Atomkraft—nej tak,’’ meaning ‘‘Atomic energy—no,

thanks.’’) The Dutch and the Germans use the equivalent of ‘horse-

force’ instead of ‘horsepower’. Psychologists, whatever their native

tongue, refer to mental energy as though it satisfied some mecha-

nistic conservation law.

When we are trying to describe nature, we need clear and unam-

biguous definitions. Let us agree, then, that a force is the intensity

with which I push or pull at an object, whether it starts to move or

not. Exerting as much force as I please, I perform no work unless

the object is displaced in the same direction. Sideways displace-

ments do not count. Work is performed in proportion to the dis-

tance the object is displaced. Work is a form of energy, and the

time rate at which it is consumed or supplied is called power.

When calculating the amount of work performed, we must con-

sider both the force applied and the distance the object has moved.

What is more straightforward than that work equals force times

distance? That indeed is the accepted definition. The correspond-

ing definition of ‘power’ is equally straightforward: power is a rate

of doing work, or a certain amount of energy expended per second.

Since work equals force times distance, power must be force times

distance per second. But distance traveled per second is what we

call speed. Therefore, power equals force times speed.

Before continuing with the flight performance of birds, we must

define the proper units for work and power. In chapter 1 we settled

on the newton (102 grams) as our force unit. Defining the units for

work and power is simple. Work equals force times distance, so in

the metric system it must be calculated in newton-meters. This is

a unit in itself, called the joule after the British physicist James

Joule (1818–1889), who performed a brilliant energy-conversion
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experiment in 1845. Power equals energy per second and so must

be computed in joules per second. But because a joule equals a

newton-meter, power may also be calculated in newton-meters per

second; that comes to the same thing. The unit for power also has a

name of its own: the watt, after James Watt (1736–1819), the Scot-

tish inventor of the steam engine. We already used watts when dis-

cussing the power requirements of Tucker’s parakeet. (James Watt

used another power unit, for which he coined the word ‘horse-

power’. He needed a word that would kindle the imagination of

coal mine directors who were in the market for replacing their pit

ponies with one of his steam engines. One horsepower is equiva-

lent to about 750 watts. Because there are 1,000 watts in a kilowatt,

a horsepower equals 0.75 kilowatt.)

The quickest way to get used to a new set of concepts is to play

with them. You know from experience that it takes energy to walk

uphill, because you have to lift your own weight against the pull of

Sanderling (Calidris alba).
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gravity. How much energy does it take to climb one flight of stairs?

Let’s assume that you weigh 70 kilograms (about 154 pounds, or

700 newtons) and that the vertical distance between floors is 3

meters (about 10 feet). Since energy equals force times distance, it

takes 2,100 joules to climb from floor to floor. Is that a lot? Not at

all. A gram of peanut butter contains 27 kilojoules (27,000 joules)

of nutritional energy. If your body converts 20 percent of that to

useful work, it will have 5,400 joules to expend. This means that

you can climb more than two flights of stairs on a single gram of

peanut butter. Walking up and down flights of stairs at the office is

healthy exercise, but not an efficient way to lose weight.

The power you need to walk up a flight of stairs (that is, the rate

at which energy has to be supplied) is not negligible, however. If

your vertical speed on the stairs is 0.5 meter per second, only half

the speed typical of a leisurely hiking trip, the climbing power you

need (force times speed) is 700 newtons � 0.5 meter per second,

which equals 350 watts. Only a professional athlete can maintain

such a rate for more than a minute or so. A healthy amateur can

maintain a power output of 200 watts for less than an hour; a pro-

fessional athlete can maintain that rate for several hours.

Lance Armstrong and Other Athletes

Running up a flight of stairs is hard work, but so is bicycle racing,

and so is flying. In one-hour runs, Lance Armstrong managed to de-

liver 500 watts of mechanical power to the crankshaft of his bike.

At a muscle efficiency of 25 percent, this amounts to about 2,000

watts of metabolic power, or 20 times Armstrong’s metabolic rate

at rest. His speed over the one-hour run was 14 meters per second

(32 miles per hour), and his heart beat about 190 times per minute,

a little over 3 beats per second. Armstrong carefully synchronized

his heart and his legs: he cranked 95 rpm, exactly half his heart

rate. Very few people can maintain such rates for any length of

time. Assuming that Armstrong’s heart rate at rest is about 40 beats

per minute (the big heart of a professional athlete beats slower than
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the hearts of ordinary people), he could apparently maintain a fre-

quency almost 5 times higher than at rest.

How do Armstrong’s numbers compare with those of avian ath-

letes? Barnacle geese (Branta leucopsis) equipped with miniatur-

ized instruments were extensively tested in flights behind a

speeding truck on an abandoned runway. These are big birds, with

a weight of 16 newtons (more than 3 pounds), a wingspan of 1.35

meter, and a wing area of 0.17 square meter (almost 2 square feet).

Their heart rate at rest was 72 beats per minute, not much higher

than that of 140-pound humans. When these geese were shuffling

around in anticipation of a flying session, their heartbeat frequency

doubled to 150 beats per minute. And when they were gliding at a

speed of 14 meters per second (as fast as Armstrong) it went up to

260 beats per minute. But flapping their wings and speeding be-

hind the truck at an amazing 19 meters per second (43 miles per

hour, much faster than Armstrong could maintain for any length

of time on level terrain), these geese had a heartbeat frequency of

510 times per minute, fully seven times the rate at rest. At that

speed they produced an estimated 25 watts of mechanical power.

At a muscle efficiency of 25 percent, this corresponds to 100 watts

of metabolic power, only 14 times their metabolic rate at rest.

Clearly, Lance Armstrong outperformed the geese on this score.

The ‘‘metabolic scope’’ of humans, dogs, and horses is larger than

that of birds. Even though Armstrong produced just 7 watts per ki-

logram, he is the real star athlete here. He can’t help it that

humans, being mammals, have lungs that are poorly ventilated rel-

ative to those of birds. Bar-tailed godwits make week-long nonstop

flights at 9 times their basal metabolic rate.

While we are at it, let’s have a look at the impression of speed

that flying birds generate. When I stroll around a shopping mall, I

walk about half a meter per heartbeat. A little sparrow flying from

rooftop to rooftop goes about as slow: with a speed of 7 meters per

second and its heart beating 16 times per second, it covers less

than half a meter per heartbeat. At the other extreme, when Lance

Armstrong races at top speed he proceeds more than 4 meters per
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heartbeat. A barnacle goose flies only 2 meters per heartbeat,

which isn’t much when one considers the high speed.

Back to Tucker’s Parakeet

The performance of Tucker’s parakeet was measured both in hori-

zontal flight and in ascents of 5� (which corresponds to a slope of

8.7 percent). Flying at the minimum-power speed of 8 meters per

second, the parakeet achieved a rate of ascent of 0.7 meter per sec-

ond. Now let us repeat the calculation we did a minute ago. Power

equals force times speed. The force we are talking about here is the

force needed to lift the bird’s weight upward. The parakeet

weighed 0.35 newton (35 grams, a little more than an ounce), and

the climbing power required was 0.35 newton � 0.7 meter per sec-

ond, which is about 0.25 watt. The power needed to sustain hori-

zontal flight at a speed of 8 meters per second was 0.75 watt. In

climbing flight, an additional 0.25 watt was needed, for a total of 1

watt. Figure 6 confirms this calculation.

One-fourth of a watt is not even enough to light a single bulb on

a Christmas tree. A 350-ton Boeing 747’s rate of climb immediately

Ruby-throated hummingbird (Archilochus colubris): W ¼ 0.03 N, S ¼ 0.0012 m2,
b ¼ 0.09 m.
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after takeoff is about 15 meters per second, or 3,000 feet per minute

in aviation parlance. Quite apart from the power needed to remain

airborne, the four jet engines of a 747 then must supply 50 million

watts. That’s equivalent to 17 top-of-the-line diesel locomotives

producing 3,000 kilowatts (4,000 horsepower) each.

When a bird climbs it must exert itself to overcome the force of

gravity, but when it descends gravity does some of the work. To

descend at a glide slope of 5� at 8 meters per second, Tucker’s par-

akeet needed only 0.5 watt of power: 0.75 watt to remain airborne,

minus the 0.25 watt supplied courtesy of gravity. Taking this a bit

further, we can easily work out the glide angle at which the little

Herring gulls (Larus argentatus): W ¼ 11.4 N, S ¼ 0.2 m2, b ¼ 1.34 m.
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bird no longer needs to flap its wings: about 15�, corresponding to

a glide slope of about 26 percent. Thus, for every meter of altitude

it loses, the parakeet travels about 4 meters forward. A wandering

albatross reaches 25 meters of forward travel for every meter of al-

titude lost, a gliding swift more than 10, an eagle 15.

Starling and Spitfire

Let’s take a closer look at a starling. Its weight is 80 grams, so its

flight muscles weigh no more than 20 grams. At full continuous

power, the muscles produce 20 grams times 100 watts per kilogram

(that is, 2 watts). How much power is needed? At a speed of 10

meters per second, I estimate that the aerodynamic drag is 1
7 of the

bird’s weight, or 0.114 newton. Multiplying this by 10 meters per

second, I find the power requirement to be 1.14 watt. Obviously,

there is muscle power to spare at this speed, for example to gain al-

titude. With 0.86 watt remaining, a 0.8-newton bird can maintain a

climb rate of a little more than 1 meter per second for some time—

and much more if it is in a hurry. Roughly half of the power avail-

able is used for cruising, while the other half is on standby for

climbing and maneuvering. A similar rule of thumb is valid for

general-purpose sports planes. (I would not have dared to do these

sums 15 years ago, because the sparse data on bird performance

available then would have forced me to make a much higher esti-

mate of the aerodynamic drag.)

Migration is a different matter altogether. If a migrating starling

flies at a speed of 14 meters per second, as radar data indicate, its

drag has increased to 0.133 newton (16 of its weight). Multiplying

this number by the flight speed of 14 meters per second, I obtain

1.86 watt, only a little less than my estimate for the power avail-

able. No nitpicking is called for; these calculations are rough esti-

mates, though I based them on wind-tunnel experiments with

starlings in Flagstaff, Arizona. Some migrating birds fly with their

throttle wide open, as it were. Small birds can fly substantially

faster than the cruising speed suggested by figure 2.
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We can do similar sums for the Supermarine Spitfire, the famous

British fighter of World War II. The Spitfire Mark IX of 1944 had a

Rolls-Royce Merlin 66 engine with an output of 1,700 horsepower,

a loaded weight of 4,300 kilograms, a wingspan of 11.2 meters, and

a wing area of 22.5 square meters. According to equation 2 in chap-

ter 1, a plane with W ¼ 43,000 newtons and S ¼ 22.5 m2 has an

estimated cruising speed of 71 meters per second (255 kilometers

per hour, or 160 miles per hour). In the thinner air at 25,000 feet,

the cruising speed increases to 105 meters per second (236 miles

per hour), well short of the Spitfire’s reported top speed of 408

miles per hour.

How much power does a Spitfire need to cruise economically at

25,000 feet? A good guess for the drag at that speed is 10 percent of

the weight—that is, 4,300 newtons (just short of 1,000 pounds).

Drag times cruising speed gives cruising power; which computes

as 4.3 � 105 ¼ 450 kilowatts, or 600 horsepower. So what was the

real use of the big 1,700-horsepower engine? The Spitfire was

designed to climb to 20,000 feet within 6 minutes! Its initial rate

of climb had to be 20 meters per second, which requires

20 � 43 ¼ 860 kilowatts. That amounts to 1,150 horsepower, just

for the climbing! Once up high, the spare power was used for dog-

fights or high-speed chases. At 400 miles per hour, the drag has

increased to about one-sixth of the weight; that requires the entire

1,700 horsepower available.

High Speed, Low Drag

Power equals force times speed. The power required in horizontal

flight must be equal to some unknown force times the forward

speed. But what is this force? It is the propulsive force, or thrust,

T. To fly at a constant speed, a bird or a plane must develop just

enough thrust to overcome aerodynamic drag D. (See chapter 4.)

Since the two forces must be equal at constant speed, I’ll talk only

about the drag from now on. Drag times speed equals the power

required, P, so drag equals power divided by speed. In mathemati-
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cal symbols, these two concepts can be written as follows:

P ¼ DV, (4)

D ¼ P/V. (5)

It is quite simple to convert figure 6 into a graph depicting drag

versus speed. For every point on the power curve for horizontal

flight, we can determine P along the ordinate and V along the ab-

scissa. Using equation 5, we can then compute the value of D at each

speed. The curve obtained in this way is shown in figure 7, which

demonstrates even more clearly than figure 6 that low-speed flight

is extremely uneconomical. The minimum drag of a parakeet is

Figure 7 Aerodynamic drag, D, and ratio between drag and weight, D /W, for Tucker’s para-
keet. The minimum value of the drag is 0.078 newton (nearly 8 grams), and the
lowest value of D /W is 0.22, both at a speed of nearly 11 meters per second
(25 miles per hour). The speed at which the drag is smallest is higher than the
speed at which the power has a minimum.
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0.078 newton (almost 8 grams) at a speed of 11 meters per second

(25 miles per hour), substantially above the speed at which the

propulsive power reaches its lowest value. How does this happen?

Power is the product of drag and speed (equation 4). Flying slowly

is economical only if the drag doesn’t increase too quickly when the

speed comes down. The minimum power level obtains at a speed

that compromises between a low value of D and a low value of V.

We must now decide whether figure 6 or figure 7 should deter-

mine our thinking about the energy consumption of birds and air-

planes. In chapter 1 it was casually announced that an optimum

cruising speed exists and that all calculations would be based on

that optimum. Now comes this question: Should we use the lowest

value of P, or the lowest value of D? The answer depends on what

we wish to achieve. If we want to achieve the longest flight dura-

tion (as would be the case when an airplane is locked in a holding

pattern while waiting for a landing slot), we must minimize energy

consumption per unit time. Because power is energy per second,

we can remain airborne longest at the lowest value of P. When

time is the decisive factor, figure 6 is appropriate.

If P is the energy required per second, how much energy is con-

sumed per meter? This is, of course, the quantity we want to mini-

mize in order to maximize the distance we travel. The cruising

speed we are looking for is the speed at which the energy con-

sumed per meter of travel is as low as it can be. Table 2 is helpful

here: energy equals force times distance, so force equals energy per

unit distance. Forces can be measured in newtons, but joules per

meter are just as good. In our case this means that the aerodynamic

drag D is identical to the energy consumption per meter traveled.

Flying at a speed that minimizes D, we have automatically mini-

mized the energy consumed per unit distance. The cruising speed

is the speed at which the smallest value of D is obtained. When

distance is the decisive factor, figure 7 is appropriate.

Where does this lead us? The lowest energy consumption per

unit distance is achieved at a relatively high speed. Birds and

planes must fly fast to be economical. Imagine that cars were
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required to travel faster than 70 miles per hour to keep pollution

and fuel consumption within limits, or that truckers were fined for

going slower than 55! For that matter, just compare Tucker’s para-

keet to any land animal of comparable size. The cruising speed of

the little bird was 25 miles per hour—well beyond the reach of

mice, chipmunks, and squirrels. A rabbit can run for its life if it

has to, and can reach speeds close to that of a parakeet for a few

tenths of a second, but you can’t call that long-distance cruising.

Birds and planes are different: they travel best at speed.

Table 2 Various units for energy, power, force, and speed.

Energy

1 joule ¼ 1 newton-meter ¼ 1 watt-second

1 kilowatt-hour ¼ 3,600,000 joules ¼ 3.6 megajoules

1 calorie ¼ 4.186 joule (1 joule ¼ 0.239 calories)

1 kilocalorie ¼ 4.186 kilojoules (used in nutrition)

1 megajoule ¼ 0.278 kilowatt-hour ¼ 239 kilocalories

1 British thermal unit (Btu) ¼ 1,055 joules

Power

1 watt ¼ 1 joule per second ¼ 1 newton-meter per second

1 horsepower ¼ 746 watts

Force

1 newton ¼ 1 joule per meter

1 kilogram (force) ¼ 9.81 newton

1 pound ¼ 0.454 kilogram (weight) ¼ 4.45 newtons

1 ounce ¼ 28.4 grams (weight) ¼ 0.278 newton

Speed

1 meter per second ¼ 3.6 kilometers per hour

1 meter per second ¼ 197 feet per minute

1 mile per hour ¼ 0.44 meter per second

1 knot ¼ 1 sea mile per hour ¼ 0.506 meter per second
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Precisely because airplanes and birds are so different on this

score, it is worth the trouble to find out how figures 6 and 7 would

look if they were used to plot the performance of cars rather than

birds. The equivalent of figure 6 is straightforward: you can find

the necessary data neatly tabulated in any automotive yearbook.

You know from experience that you pay dearly to drive faster than

your neighbor. A tiny Fiat Panda, with a 20-kilowatt engine, has a

top speed of 75 miles per hour, but if you want to drive 100 miles

per hour you need at least 50 kilowatts. A speed of 200 miles per

hour requires 300 kilowatts. A Porsche 959, with a 331-kilowatt

engine, has top speed of 197 miles per hour. A Porsche 911 Turbo,

with a 221-kilowatt engine, has a top speed of 160 miles per hour.

The rate at which the power required increases with increasing

speed is illustrated best by another proportional diagram: figure 8.

The engine power turns out to be proportional to the third power

of the speed. Thus, if you want to drive twice as fast, your engine

Herring gull (Larus argentatus): W ¼ 9.4 N, S ¼ 0.18 m2, b ¼ 1.4 m.
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Figure 8 Engine power plotted against maximum speed for four makes of automobiles. The
diagonal is steep because power increases as the third power of speed. To go twice
as fast requires an eightfold increase in engine power.



has to be 8 times as powerful. A Porsche or a Ferrari can go 3 times

as fast as a Fiat Panda, but its engine is 27 times as powerful. If you

are determined to travel at high speed, you should take up flying.

A sports plane with a large Porsche engine can easily reach 250

miles per hour.

Since the power P is equal to the drag D times the speed V, the

data in figure 8 can be used to make a graph of the relation between

D and V for cars, equivalent to figure 7. But we can do better. It is

obvious that large birds and large vehicles consume more food or

fuel than small ones. If you want to compare the energy needs of

different modes of transportation, you must account for differences

in size. A trucker would advise you to compute fuel consumption

not per mile but per ton-mile. Drag is not the most relevant mea-

sure for the specific cost of locomotion; a better measure is the

drag per unit weight, D/W. This is the quantity we shall focus on,

bearing in mind that the payload of a vehicle is often only a frac-

tion of its gross weight.

The quantity D/W registers energy consumption per meter trav-

eled for each newton of gross weight. In thinking about the perfor-

mance characteristics of different modes of transportation, this

quantity is so important that it has a separate name: E, the specific

energy consumption. In engineering notation,

E ¼ D/W ¼ P/WV. (6)

The quantity E is ‘‘non-dimensional’’: if you stay with the metric

system and measure both D and W in newtons, E is a pure number,

which remains unchanged when you switch to a different set of

units. Please note that P must be measured in watts and V in

meters per second; otherwise one becomes hopelessly tangled in

conversion factors.

Since the performance of Tucker’s parakeet was always mea-

sured at the same weight (35 grams, or 0.35 newton), figure 7 re-

mains unchanged if we convert the graph from D to E. The only

change is the scale on the vertical axis. The scale for D is given on

the left side of figure 7; that for E is given on the right. The best
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value for E that Tucker’s parakeet could attain was 0.22, at a speed

of almost 11 meters per second.

Cars can be dealt with in the same way. Consulting the automo-

tive yearbook once more, and adding 200 kilograms to the empty

weight for the driver, one passenger, fuel, and luggage, we can eas-

ily convert the data in figure 8 into data for E. The results are pre-

sented in figure 9, along with the corresponding numbers for

passenger trains (commuter trains, the Amtrak Metroliner, and

Figure 9 Specific energy consumption, E (¼ P /WV ), plotted against speed.
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France’s TGV. Various birds and Boeings are not forgotten, either.

Note that the drag of cars increases as the square of their speed.

Most aerodynamic forces do; recall that the lift is also proportional

to the square of the speed.

There is plenty of information in figure 9. For one thing, trains

would appear to be far more economical than cars. However,

when we account for the difference between useful load and gross

weight, the economy of trains is not so clear-cut. A two-coach com-

muter train weighs 100 tons and seats roughly 100 passengers. At

70 kilograms a head, the people in a fully occupied train weigh

about 7 tons—only about 7 percent of the gross weight. A Chevro-

let with an empty weight of 2,000 pounds can carry four people,

for a useful load of 600 pounds. This makes the payload equal to

23 percent of the gross weight (600/(600 þ 2,000) ¼ 0.23)—3 times

the value for a train. At 75 miles per hour, a car’s specific energy

consumption, E, is about 0.08, and a train’s is 0.011. Giving the

train a markup for its excessive empty weight, we find that the cor-

rected value of E is about 0.033, roughly half that of a car. These

values reflect relative energy consumption per passenger-mile.

Here are two easy numbers to remember: a train needs 1.6 mega-

joules per passenger mile (1 megajoule per passenger-kilometer),

and a car needs twice that. But remember also that in terms of effi-

ciency there is no difference between a fully loaded automobile

and a half-empty train! Because the difference between cars and

trains is not at all as significant as is often stated, the Netherlands

State Railways—before privatization—used to sell discounted taxi-

cab tickets to passengers. On the last leg of a train trip, a Dutch cit-

izen could get a $5 ride in a brand-new Mercedes. A marriage

between commuter trains and taxis sounds crazy but makes perfect

sense. Sorry, but privatization is not necessarily always conducive

to progress.

Songbirds can be found in the top left corner of figure 9, which

shows that they are rather uneconomical, though not as bad as

helicopters. Swans achieve a far better value of E, namely 0.09,

which relative to cars is really quite good. Albatrosses and sail-
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planes are much more economical. Lance Armstrong ranks very

well, too. (Ordinary bicyclists achieve E ¼ 0.01, but at much lower

speeds.) The most striking feature of figure 9 is that airliners do so

well, though their speed is much higher than that of the fastest cars

and trains. The Boeing 747 achieves E ¼ 0.06 at 560 miles per hour.

Its successor, the 777, does better yet: E ¼ 0.05. (The elderly Boeing

B-52 bomber, with its long wings, also achieves E ¼ 0.05.) Airliners

can retract their wheels once they are airborne; that option is not

available to cars. Even with the most advanced streamlining, cars

have awful aerodynamic properties, caused by the turbulence

around the wheels and in the wheel wells. High-speed trains have

the same drawback. Early airplanes could not retract their wheels,

either. A Piper J3 Cub manages E ¼ 0.1 at best, not nearly as effi-

cient as a Boeing 777. Need I explain why all birds retract their

legs after takeoff? Or why gulls use their webbed feet as air brakes?

A straight line drawn from songbirds to modern jetliners in fig-

ure 9 intersects the curve for cars in the vicinity of 200 kilometers

per hour. Below that speed wheels perform better than wings, but

at higher speeds wings have the advantage. Flying is the preferred

mode of transportation when high speeds are desired. Most

vehicles need additional power to achieve higher speeds, but a

well-designed airplane can fly fast without using more fuel. This

is why airships did not and will not survive evolutionary stresses.

Their specific energy consumption is comparable to that of jet-

liners, but they fly less than 100 miles per hour. They produce

only a fraction of the seat miles that airliners are capable of; there-

fore, their capital expenses per passenger mile are far too high. The

Hindenburg disaster of 1937 ended an era; all later attempts were

doomed to fail. A few years ago, the hangar for the giant German

Cargo Lifter was converted to a tropical amusement park.

Nutrition and Combustion

So far we have not bothered to make a systematic distinction be-

tween fuel consumption and energy consumption, but now the
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time has come. Different foodstuffs and fuels supply different quan-

tities of energy per kilogram consumed. There are also variations

in the efficiencies of different energy-conversion processes. For ex-

ample, a steam locomotive has an efficiency of only 5 percent,

which means that of every 20 joules of energy available in anthra-

cite or fuel oil only one joule is delivered as useful work to the

driving wheels; the rest goes up in steam and smoke. The energy-

conversion efficiency of human and animal metabolism is typically

about 25 percent during strenuous work. A gasoline engine

achieves a conversion efficiency of 25 percent at average speeds;

nevertheless, three out of four joules of combustion heat are ex-

pelled by the radiator and the exhaust pipe, and only one out

of four is available for propulsion. At 30 percent efficiency, die-

sel engines are a bit more economical. Today’s best gas-fired

electricity-generating plants manage 50 percent, much better than

the 35 percent of 20 years ago. They achieve this by using the hot

exhaust gases of the gas turbine to heat the boilers of steam tur-

bines down the line. Modern high-bypass-ratio fanjet engines, such

as those for the Boeing 777, achieve 50 percent too.

Consider an electricity-generating plant that uses natural gas

with a combustion value of 36 megajoules per cubic meter. For

such a big customer, the purchase price of natural gas is about $10

per 1,000 cubic feet, or 36 cents per cubic meter. This works out at

about 1 cent per megajoule. Because half of the energy is wasted

through the chimney or the cooling towers, the selling price of en-

ergy must be at least 2 cents per megajoule just to recover the pur-

chase price of the gas. The user’s monthly bill, however, is

calculated in kilowatt-hours. A kilowatt-hour equals 3.6 mega-

joules; thus, in order for the utility company to break even,

the selling price of electricity has to be more than 7 cents per

kilowatt-hour. (Power companies calculate their off-peak rates

along these lines. If investment costs can be recovered during peak

periods, they are content if only fuel costs are covered at night.)

A megajoule is 0.28 kilowatt-hour. Reheating some leftover lasa-

gna in a 700-watt microwave oven for 5 minutes uses about 0.2
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megajoule of energy, at a cost of about 2 cents at the off-peak rate.

The manual labor of cleaning up one’s back yard requires about

half a megajoule of nutrient energy every hour if one isn’t working

too strenuously—500,000 joules per 3,600 seconds, the equivalent

of 140 watts. If you want to find out how many peanut butter sand-

wiches you will have to eat after an afternoon’s work in your back-

yard, multiply those 500 kilojoules by the number of hours you

have worked, then do the sums given below.

The nutritional value of peanut butter is stated on the label of the

jar. Peanut butter is good for 180 ‘‘calories’’ per ounce. (These are

actually kilocalories, so we’re really talking about 180,000 calories

per ounce.) With 4.2 joules per calorie and 28.4 grams per ounce,

this works out to 2,700 kilojoules per 100 grams, or 27 megajoules

per kilogram. Thus, a megajoule of peanut butter weighs about 37

grams, enough for three solid sandwiches. The price of this mega-

joule is approximately 20 cents, substantially more than the price

of a megajoule of electricity. Electric trains use 1.6 megajoules per

passenger-mile. (Just for fun, you can work out how much it would

cost to run the train on peanut butter.)

Snow goose (Anser caerulescens).
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A carton of milk carries nutritional information, too. Milk sup-

plies 600 kilocalories per quart (280 kilojoules of energy per 100

grams, or 10 megajoules per U.S. gallon). If milk costs $4 a gallon,

a megajoule will set you back 40 cents. When you find out that the

price of natural gas is about 2 cents per megajoule, you might al-

most be tempted to drink liquefied methane instead of milk. Steak

is an outrage from this perspective. Its nutritional value is 4 mega-

joules per kilogram, roughly 2 megajoules per pound. At a price of

$16 a pound for prime beef, that’s about $8 per megajoule. Even

the cheaper cuts of beef, at $6 a pound, cost as much as $3 per

megajoule. Table 3 presents the nutritional values of several com-

Table 3 The heat of combustion or metabolic equivalent for various foodstuffs and fuels. The
prices are based on a ‘‘snapshot’’ in 2008; large changes in fuel prices may occur
over the years.

Megajoules/

kilogram

Dollars/

kilogram

Dollars/

megajoule Comments

Prime beef 4.0 32 8

Beef 4.0 12 3

Whole milk 2.8 1.20 0.43 600 cal/quart

Honey 14 4.70 0.33

Sugar 15 1.30 0.09 100 cal/ounce

Cheese 15 10 0.67

Bacon 29 10 0.34

Corn flakes 15 7 0.47 100 cal/ounce

Peanut butter 27 7 0.26 180 cal/ounce

Butter 32 8 0.25

Vegetable oil 36 3.5 0.10 240 cal/ounce

Kerosene 42 1.20 0.03 0.82 kg/liter

Diesel oil 42 1.00 0.024 0.85 kg/liter

Gasoline 42 0.90 0.021 0.75 kg/liter

Natural gas 45 0.80 0.018 0.8 kg/m3
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mon digestibles and the heats of combustion of several fuels. In

dollars per megajoule, natural gas and gasoline stand out as the

best buys. At 65 cents per liter ($2.50 per gallon), gasoline in the

United States costs about 2 cents per megajoule. (In Europe, gaso-

line costs about $6 per gallon, two-thirds of which goes to taxes.)

Among digestibles, vegetable oil is cheapest by far. Salad oil is

barely digestible; consumed in quantity it results in a bad heart-

burn. Peanut butter, though, is an excellent alternative for those

who insist on getting a megajoule for their buck.

How to Lose Weight Quickly

How much food do birds need when they migrate south in the au-

tumn? A mute swan, the largest of the European swans, cruises at

about 20 meters per second (45 miles per hour). It weighs 10 kilo-

grams (22 pounds), 2 kilograms of which constitute its flight

muscles. In cruising flight, the power output of these flight muscles

is about 100 watts per kilogram. During long-distance travel, there-

fore, the flight muscles of a swan supply approximately 200 watts

of mechanical power. Because the conversion efficiency of nutrient

energy is only about 25 percent, the swan needs 800 watts, or 800

joules of nutrient energy per second, during its flight. At a speed of

20 meters per second, this corresponds to an energy consumption

of 40 joules per meter, or 64 kilojoules per mile. This energy is

supplied by the spare fat on the bird’s chest.

During a long flight, the pectoral muscles of birds metabolize fats

directly. Human muscles, in contrast, burn sugars. In the human

body, the liver must convert fats into sugars before the stored en-

ergy is of any use to the muscles. At the high metabolic rates typi-

cal of birds (remember, flying is plain hard work in most cases) this

is not an attractive option. On top of that, the nutritional value of

fat is twice that of sugar (table 3). Thus, it is much better to carry

fat for fuel rather than sugar.

As always, there are exceptions. Hummingbirds run on honey

and sugar water, and some marathon runners switch from sugar

metabolism to fat metabolism in the course of a race (a process
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that causes painful physiological changes). Most insects run on

sugars, and so do chickens, partridges, and pheasants (which are

not capable of long-distance flight). Migrating butterflies, however,

store fat in their abdomens. The nutritional value of bird fat is

about 38 megajoules per gram. Since a flying bird not only con-

sumes fat, but also loses water and some body tissue, I prefer to

use a somewhat lower number: 32 joules per gram. Since a swan

requires 40 joules per meter, or 64 kilojoules per mile, it consumes

1.2 gram of fat per kilometer (2 grams per mile). After 12 hours of

cruising at 45 miles per hour, the swan has traveled 540 miles and

White pelican (Pelecanus erythrorhynchos): W ¼ 60 N, S ¼ 1 m2, b ¼ 2.80 m.
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has lost more than a kilogram of body weight (1,080 grams, not

counting the energy needed for its other body functions). Obvi-

ously a light snack will not fill its stomach at the end of such a

working day. The same is true for homing pigeons at the end of a

long-distance race: they are not only dead-tired, but famished as

well. From this perspective, the importance of bird sanctuaries is

easy to understand: migrating birds must eat voraciously before

continuing their journey.
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3 In Wind and Weather

The KLM flight that leaves London-Heathrow for Amsterdam at 6

p.m. each day is an airborne commuter train. The Boeing 737 is

filled with regular customers: business people returning home

from a day’s work, familiar voices chattering to pass the time and

teasing the long-suffering flight attendants. Many years ago, as I

was dozing in my seat after a tedious meeting at the European Cen-

ter for Medium-Range Weather Forecasts, the captain’s voice on

the public address system woke me up: ‘‘Ladies and gentlemen,

this is the captain speaking. As you know, this trip usually takes

about 45 minutes, but today is different. We have a 145-knot tail-

wind, which corresponds to 170 miles per hour. I have never be-

fore encountered such fierce winds. To compensate a little for the

turbulence on this trip, we will arrive in Amsterdam 10 minutes

early.’’ (A knot is a nautical mile per hour, and a nautical mile

equals 1.15 statute mile.) The 737 rode the center of the westerly

jet stream, and the pilot played it to full advantage. The airspeed

was 500 miles per hour, but because of the tailwind the ground-

speed was 670 miles per hour—faster than the speed of sound.

When flying, you must always take the wind into account. You

can’t afford to be casual about it. Obviously it is convenient and

economical when a tailwind helps you along, but you should be

on guard when coping with headwinds. They set you back, and

that cuts into your range. During World War II, American B-29

bombers on their way to Japan from Saipan and Tinian (islands

just north of Guam) sometimes had to return prematurely because

the headwinds they encountered were stronger than had been

forecast. (There is a story of one bomber squadron actually flying

backward on a particularly breezy day: fully opened throttles and



200-plus miles per hour were not sufficient to make headway

against the storm.) Having consumed more than half the fuel in

their tanks, they had no choice but to return. To lighten their

planes and thus reduce fuel consumption, the crews dumped their

bombs in the ocean. Once they had turned around, the headwinds

became tailwinds, and so they got home in a hurry.

Wind influences airlines’ timetables, too. The flight from Amster-

dam to San Francisco takes about an hour longer than the return

trip. Flying at 30,000 feet and up, jetliners encounter stiff westerly

winds most of the time. Those mid-latitude winds are caused by

the interaction of Earth’s rotation and the temperature contrast be-

tween the equator and the poles. At cruising altitude, the average

wind speed is about 30 miles per hour. Hence, during the 10-hour

journey between Amsterdam and Los Angeles you lose 300 miles.

Since long-distance jetliners travel about 550 miles per hour, this

adds a little more than 30 minutes to the flight. Flying in the other

direction, the wind works to your advantage. This explains the

one-hour difference in the timetable.

The cooperation between meteorology and aviation benefits both

parties. Airliners participate in the observation and measurement

White stork (Ciconia alba): W ¼ 34 N, S ¼ 0.5 m2, b ¼ 2 m.

Chapter 3 64



programs of worldwide meteorology, and the weather computers

predict where the winds will be strongest. Every day, the most eco-

nomical routes across the oceans are selected in the international

conference calls of air traffic controllers. Westbound traffic often

makes appreciable detours to avoid the strongest of the forecast

headwinds. If the turbulence is not too severe, eastbound traffic is

directed into the heart of the westerly jet stream. These adjust-

ments reduce both travel time and fuel consumption. In the

crowded skies above Europe and the United States, however, air-

line traffic is so congested that everyone must stick to the

appointed airways. Only coast-to-coast nonstop flights are assigned

the routes with the best winds.

The slower you fly, the more the wind will affect you. The large

propeller-driven airliners of the 1950s, the Douglas DC-7 and the

Lockheed Constellation, cruised at about 300 miles per hour and

had to stop for fuel at Gander, Newfoundland, if they ran into un-

expected headwinds over the Atlantic. Today, with cruising speeds

twice as high, stopping at Gander is a thing of the past.

What is true for airplanes is also true for birds. Because birds are

much smaller than planes, they fly more slowly, and this makes

them vulnerable to adverse weather. The average wind speed on

Earth is between 5 and 10 meters per second (between 11 and 22

miles per hour). If they want to return home as a storm approaches,

birds must be able to fly about 10 meters per second, and their

Swallowtail (Papilio machaon): W ¼ 0.006 N, S ¼ 0.003 m2, b ¼ 0.08 m.
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wing loading must range between 10 and 100 newtons per square

meter. (See figure 2.) Most birds weigh between 10 grams and 10

kilograms, which puts their wing loading in the desired range. The

vertical line in the center of figure 2 was drawn for a good reason:

birds that fly faster have some speed to spare when the wind

increases; the rest must watch out.

Still, one can easily imagine circumstances in which the wind

blows so hard that all birds must seek shelter. This happens sooner

for small birds than for large ones. (See table 4.) Storm petrels were

so named because they are the first ocean birds to seek refuge

ashore as a storm moves in. Their arrival above land is an early

warning signal. Small birds have low wing loadings and hence

low airspeeds. As a consequence, they must seek shelter sooner

than their larger relatives. The smallest birds, including goldcrests

Table 4 The Beaufort scale. The cruising speeds of various insects, birds, and airplanes are
given for comparison.

Beaufort no. Airspeed Windspeed (m/s) Cruising speed of

1 Light air 0.5–1 Butterflies, damselflies

2 Light breeze 2–3 Gnats, flies, dragonflies

3 Gentle breeze 4–5 Human-powered airplanes

4 Moderate breeze 6–8 Bees, wasps, beetles

5 Fresh breeze 9–11 Sparrows, starlings, swallows

6 Strong breeze 11–13 Crows, gulls, falcons

7 Near gale 14–17 Plovers, knots, godwits

8 Gale 18–21 Swans, ducks, geese

9 Strong gale 21–2 Sailplanes

10 Storm 25–28 Home-built aircraft

11 Violent storm 29–32 Diving hawks

12 Hurricane > 32 Diving falcons
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and kinglets, cannot survive the open plains or the ocean shores.

Their habitat is the forest, where trees and shrubs protect them

from high winds.

Insects are so small that their lives are dominated by the wind,

and the very smallest must wait for the wind to die down at sunset

before taking to the air. Gnats start their dance in your back yard

early in the evening, else they would be carried off by gusts. The

insects in figure 2 can be divided into two categories: those with

high and those with low wing loadings. Beetles, flies, bees, and

wasps belong to the first category, butterflies and dragonflies to the

second. Honeybees can return to their hive after harvesting nectar

and pollen in a faraway rapeseed or alfalfa field. Butterflies, how-

ever, must accept that they may be blown away by the wind, and

dragonflies cannot venture far from their hideaways in windy

weather. But accidents do happen occasionally. When blown off

their track by an easterly storm, grasshoppers from the Sahara

Griffon vulture (Gyps fulvus): W ¼ 70 N, S ¼ 1 m2, b ¼ 2.60 m.
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sometimes turn up in England. More often they drown in the At-

lantic Ocean, exhausted.

The difference between a maritime climate and a continental one

is considerable. Ocean birds live in a windy environment, which

explains why most of them are fairly large. Large birds have higher

wing loadings and airspeeds than small ones, and this is a major

advantage at sea. Because ocean birds must cover great distances,

it is essential that their energy consumption per mile be low. Their

long, slender wings achieve just this. The narrow wings of seagulls,

terns, and albatrosses are quite different from the broad wings of

vultures, condors, and eagles. Those large birds of prey do not

travel long distances; they soar in circles, taking advantage of the

ascending motion in thermals. In thermal soaring the energy con-

sumption per unit distance does not matter. The wings of soaring

birds of prey minimize the energy consumption per unit time (that

is, the rate at which energy must be extracted from the air). This

goal is achieved by flying slowly; hence the low wing loadings.

The enormous wings of the golden eagle make perfect sense.

The Art of Soaring

Flying is an arduous way of life. This is why several species of

birds have discovered how to stay airborne without flapping their

wings. The trick is to find upward air movements of sufficient

strength. Under normal circumstances a bird glides down when it

doesn’t flap its wings; then, as it loses altitude, gravity supplies

the energy needed to maintain airspeed. But when the rate at

which updrafts lift a bird is equal to its rate of descent, the bird

can stay up indefinitely. And if the upward air motion is stronger

than the bird’s sinking speed, it can gain altitude if it wishes. Stay-

ing aloft without having to work for it is the art of soaring.

There are several ways to soar. One is practiced by herring gulls

as they follow a ferry or a cruise ship. They fly on the windward

side of the ship, where the wind escapes upward as it strikes the

superstructure. The gulls need only adjust their wing area. When
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the wind increases, they fold their wings a little. If they lose too

much altitude, they spread their wings again. If they start going

too fast, they simply extend their feet a bit more, and that slows

them down. Webbed feet are perfect air brakes. (Every glider pilot

knows how important it is to increase drag briefly when flying too

fast or too high.) The flight of seagulls alongside a ferry is called

‘‘slope soaring.’’ It can also be practiced along chains of dunes and

mountain ridges. But there must be sufficient wind, because the

upward velocity along the slope is proportional to the wind speed.

Furthermore, the wind should blow across the ridge or it will not

be diverted upward (figure 10).

In favorable circumstances, gulls and terns can soar back and

forth for very long periods without ever flapping their wings. They

are getting a free ride, and what a ride it is! Kestrels and harriers

(sparrow hawks and marsh hawks to some) do the same inland,

along the slopes of hills and levees. Hang gliders and sailplanes

also take advantage of slope winds. Since hang gliders have a sink-

ing speed of more than 2 meters per second, they need a stiff

breeze before they can venture flying along the shore.

Slope soaring is perfect for covering large distances. Glider pilots

achieve their distance records on days when high winds are blow-

ing across long mountain ridges. The narrow northeast-southwest

folds of the Appalachian Mountains stretch from Elmira, New

York, to Chattanooga, Tennessee. When a storm hits that 600-mile

stretch, stirring up blustery northwesterly winds behind its cold

Figure 10 Slope soaring alongside a ferry and along a dune ridge.
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front, complete with deep-blue skies and towering cumulus

clouds, glider pilots in Elmira (‘‘soaring capital of the world’’) are

eager to get airborne.

The second method of soaring capitalizes on thermals. This is

not without its drawbacks. For one thing, thermals do not occur ev-

erywhere, and you are not going to get anywhere unless you can

first find a thermal in which you can gain altitude. You do that by

circling in the hot, rising column of air. Once you have climbed the

thermal for a while, you can start your journey by gliding in the

general direction of your destination, hoping to find the next ther-

mal before losing too much altitude. The flight toward your goal

will be punctuated by such episodes in the winding staircases of

rising air. This kind of soaring is possible only during the day, be-

cause thermal motion occurs only after the sun has begun to heat

Earth’s surface. You can observe this by watching buzzards

(buteos, to some) and other soaring birds of prey. As the morning

progresses, these birds test the strength of the convection currents.

They take wing, searching for ascending air. If they fail to maintain

altitude, they return to their tree or rock ledge and wait for the sur-

face to warm up a bit more. The flight muscles of soaring birds of

prey cannot sustain flapping flight for more than a few minutes.

As hot air rises, it cools—about 1� Celsius per 100 meters. At a

certain altitude, the water vapor in the ascending air begins to con-

dense; the cumulus clouds created that way are a sure sign of up-

ward motion. For this reason, glider pilots join the gulls and

hawks that are circling below these clouds when they want to gain

altitude. The rates of descent of soaring birds and gliders are com-

parable (around 1 meter per second), but the airspeeds of birds are

lower. Birds can keep up with their fiberglass companions only by

flying in tighter circles. If a bird and a glider pilot both are in a

playful mood, or have a researcher’s attitude (which amounts to

the same thing), they may start flying competitively to see who

dares to turn the tighter circles, who can fly slower without losing

control or stalling (literally dropping out of the race in that case),

who has the smarter tactics for discerning the next thermal and
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reaching it with minimum altitude loss, and so on. Buzzards ap-

pear to take these games very seriously. So do scientists: the soar-

ing habits of griffon vultures in Central Africa were investigated

by a biologist in a glider with auxiliary engine.

Long-Distance Migration

Birds cover enormous distances on their annual migrations. Unless

they forecast the weather well, they risk running into serious trou-

ble. Since their cruising speeds are relatively low, they will con-

sume too much fuel if they run into headwinds. When the wind

shifts direction, they risk being blown off course, with fatal conse-

quences if they should end up over the open ocean. Careful prepa-

rations are necessary before they start on their journey. This is

especially true for small birds, such as the North American passer-

ines (chimney swifts, bank and cliff swallows, purple martins,

blackpoll warblers, redstarts, and the like) that cross the Gulf of

Mexico on their way south. Their performance should not be

underestimated: 500 miles nonstop is quite a feat. But the real he-

roes of Gulf migration are the monarch butterfly and the ruby-

throated hummingbird. Both of them are known to consume fat on

their way across the Gulf, and both convert sugar into fat in prepa-

ration for the trip.

When I drafted the first edition of this book, I assumed, on the

authority of ornithologists, that all birds that choose to cross the

Sahara desert directly, instead of making detours over Israel or

Gibraltar, do so nonstop. Massive amounts of recent radar data

prove that I was mistaken. Little songbirds typically fly at night,

and hide from the daytime heat in shadowy spots along the way,

in order to minimize evaporative water loss. Since they cannot fat-

ten up along the way, they must store enough fat for the entire

1,000-mile Sahara crossing.

The little European passerines that migrate to Africa for the win-

ter, and have to cross both the Mediterranean Sea and the Sahara,

include various kinds of warblers, wagtails, pipits, chiffchaffs,
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flycatchers, redstarts, and nightingales. With a migration speed of

only 10 meters per second (22 miles per hour), they wait for strong

tailwinds before they start their crossing. Little birds consume rela-

tively large amounts of energy. For passerines, just as for Tucker’s

parakeet, the specific energy consumption (E ¼ D/W ) is approxi-

mately 0.25. At cruising speed, therefore, their aerodynamic drag

is about one-fourth their weight, which is not particularly econom-

ical. Because all these birds cross the Sahara without a chance to

forage, their cruising range must be at least 1,000 miles. They man-

age this by storing so much fat on their chests that they can barely

fly. A 20-gram wagtail, with a normal fuel reserve of 5 grams, starts

its journey across the Sahara with an additional 10 grams of fat. Its

takeoff weight is 30 grams (a little more than an ounce)—twice its

zero-fuel weight. Half of its takeoff weight is fuel, much as for a

long-distance airliner. Because songbirds must fatten themselves

Common buzzard (Buteo buteo): W ¼ 10 N, S ¼ 0.27 m2, b =1.35 m.
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in preparation for their flight across the Mediterranean, and be-

cause they have trouble taking off with so much excess weight,

they are easy prey for Maltese bird catchers. (A roasted nightingale

tastes much better when its meat is wrapped in fatty tissue.)

Let’s take the average weight of a wagtail on a long-distance

flight to be 24 grams, and assume that its drag is one-fourth of its

weight. Its average drag then is 6 grams, or 0.06 newton. As was

explained in chapter 2, a newton is a joule per meter. If we can

compute how many joules of mechanical energy are supplied by

metabolizing 15 grams of bird fat, we can calculate the wagtail’s

maximum range. Bird fat supplies 32 kilojoules per gram (chapter

2); hence, 15 grams supply 480 kilojoules. However, since the

bird’s metabolic efficiency is only about 25 percent, the net supply

of mechanical energy is no more than 120 kilojoules. This is used

up at a rate of 0.06 joule per meter, or 0.06 kilojoule per kilometer.

After 2,000 kilometers (1,250 miles), all the fat is gone.

Flamingo (Phoenicopterus ruber ).
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With fuel reserves for only 250 miles on a 1,000-mile trip, there

is not much to spare. Airliners don’t cut it that close! Birds cannot

afford any miscalculations in their weather forecasts. They are

wise enough to wait for the wind to blow in the right direction. Cir-

cling over their feeding grounds each morning, they check the me-

teorological conditions. The starting signal for the great journey is

given only when conditions are favorable. Even with a strong tail-

wind, the flight across the Sahara takes at least two days. Wagtails

happen to fly during daytime and rest at night, unlike most other

passerines. If the weather suddenly deteriorates during the trip,

many of the migrating birds may die. Similar risks are taken in

crossing the Gulf of Mexico. Few passerines survive when they are

blown far out into the Atlantic by unexpected westerly gales. For

many centuries sailors have told stories of songbirds escaping their

fate by dropping on the deck of a ship, famished and exhausted,

then recuperating quickly on bread crumbs, scraps of bacon, and

some tender loving care.

Some bird species do make nonstop flights across the Sahara.

Even one species of gull does. Swiss ornithologists brought their

radar equipment to the inland deserts of Mauritania to observe the

spring migration of lesser black-backed gulls (Larus fuscus). These

are big birds, comparable in size to herring gulls. Their weight is

7.2 newtons, their wingspan 1.34 meter, and their wing area

0.1934 square meter. This gives them a calculated cruising speed

of 10 meters per second (22 miles per hour). The airspeed observed

by the Swiss radar crew is only a little faster: 11 meters per second

(24 miles per hour). These gulls start from the Atlantic shores near

Dakar, Senegal, and proceed to climb to 3,500 meters, where 22-

mph tailwinds make their ground speed twice their airspeed. With

this much tailwind they need not fly at top speed, so they don’t.

But it does mean they can cross 3,000 kilometers (2,000 miles) of

desert in just 48 hours. This is what they do, nonstop from Dakar

to the shores of the Mediterranean Sea near Algiers. They do not

have to fatten up much before departure, because they get 1,000

miles free. Less than 100 grams of fat would do. They also don’t

Chapter 3 74



have to worry about overheating and water loss, because it is cool

enough at altitude. Still, their performance is a marvel. These

ocean birds would be at a loss if they had to land in the desert for

a stopover. (This daring strategy is impossible during autumn mi-

gration, because it is hot over the desert at the end of the summer,

and the northeasterly trade winds can be exploited only when fly-

ing low. The gulls therefore follow a route closer to the Atlantic

coast on their return to Africa in the autumn, and make a number

of stopovers then.)

Some migrating ocean birds cover distances much greater than

the 500 miles across the Gulf of Mexico or the 1,000 miles across

the Sahara. Several species of plovers, godwits, and sandpipers

make nonstop trips from Cape Cod to Trinidad, a distance of 2,500

miles. Since this kind of flying requires much more advanced aero-

dynamics, the bodies of ocean birds are streamlined and their

wings slender. As a result, the ratio between drag and lift decreases

substantially: for ocean birds it is about 0.07, instead of the 0.25

typical of songbirds. Wilson’s phalarope, a little shore bird that

migrates more than 5,000 miles along the Pacific coast of the Amer-

icas, prepares for its annual journey by filling its belly with brine

shrimp in Lake Mono, California. Like migrating passerines, it

fattens itself until it can barely fly. Because the ratio E ¼ D/W

Osprey (Pandion haliaetus): W ¼ 15 N, S ¼ 0.3 m2, b ¼ 1.60 m.
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remains roughly the same, its aerodynamic drag increases by 50

percent when its weight grows to 50 percent above normal. Carry-

ing that much excess weight, yet using the same wings, the phala-

rope must fly more than 20 percent faster. The power required

equals drag times speed (P ¼ DV; see chapter 2); it increases to al-

most twice the normal value (1.5 � 1.225 ¼ 1.84). If a phalarope

continued stuffing itself, it wouldn’t be able to take off at all. Once

airborne, however, with such an economical value of E, it flies

more than 3,000 miles nonstop. Even so, it cannot make the jour-

ney from California to Chile without stopping for fuel along the

way. From time to time it has to forage for shrimp and other sea-

food along the beach.

Each species has its own strategy. The sandpipers that breed

along the coast of Greenland and pass the beaches of northwestern

Europe each August, en route to destinations further south, appear

to have learned that westerly winds are generally stronger at high

altitudes. On their 1,200-mile journey to Scotland, they have been

observed flying as high as 7 kilometers (23,000 feet)—almost above

the weather. For the same reason they skim the waves on their

journey back to Greenland, riding on the easterly surface winds

blowing north of mid-latitude storms.

Plovers, Knots, and Godwits

Let’s take a closer look at the performance of three species of wad-

ing birds. Red knots (Calidris canutus) start their spring migration

from the shores of Mauretania to northern Siberia against the sub-

tropical trade winds along the African west coast. How do they

manage that, all fattened up? No bird flies into a headwind when

it doesn’t have to. Ringed plovers (Charadius hiaticula) have to

cross the Greenland ice cap on their way to the Dutch Wadden

Sea. How do they climb 10,000 feet to clear the snow-covered high-

lands there? In autumn, bar-tailed godwits (Limosa lapponica)

make nonstop flights from Alaska to New Zealand, a distance of

11,000 kilometers (7,000 miles)! When I drafted the first edition of
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this book, I did not dare to conceive of such feats. I was convinced

that nonstop flights of 5,000 kilometers were the very longest one

could expect. Available data on flight muscle efficiency, aero-

dynamic drag, and flight speed would have ruled out such day-

dreams. But we realize fully now that the flight performance of

wading birds is about twice as good as professionals have thought

for more than 30 years.

The red knot is a species that has been thoroughly investigated.

Theunis Piersma of the Netherlands Institute for Sea Research will

be remembered forever because a subspecies of knot was named af-

ter him. He and his Swedish colleagues Åke Lindström and Anders

Kvist studied the physiological changes in knots in preparation for

and during migration. They discovered that knots ‘‘burn their en-

gine’’ during their journey, decreasing their muscle mass as they

lose weight during the trip. They also found that knots engage in

‘‘body building without power training.’’ Their flight muscles dou-

ble in weight before they start their trip. Other physiological

change are drastic, too. Knots shrink their digestive organs to a

minimum in the days before takeoff, and their hearts and pectoral

muscles shrink as they proceed on their journey. In fact, Piersma

Monarch butterfly (Danaus plexippus).
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says, forgetting about their bones and feathers, ‘‘only their brains

don’t change during the trip.’’ Piersma’s Swedish colleagues sup-

plemented these investigations with wind-tunnel work. Knots

seem fairly comfortable in a wind tunnel, and will fly for hours on

end as long as an experimenter remains at the window to keep

them company. Still, they fooled the Lund University staff with

rather sloppy metabolism. On migration, they have to treat every

gram of fuel with care, but in a wind tunnel their apparent muscu-

lar efficiency is hopelessly low.

In any case, suppose you are a knot foraging on the wetlands of

Mauretania, a little north of Dakar on the west coast of Africa, and

preparing to take off for the 5,000-kilometer journey to the wet-

lands of Holland. Your weight has grown to 2 newtons (200 grams)

and your flight muscles have grown to 45 grams. You have 60

grams of fat wrapped around your chest and belly. With a wing

area of 0.0286 square meter, your most economical speed (accord-

ing to equation 2 in chapter 1) computes as 14 meters per second.

But the trade winds blow at least 10 meters per second, and right

from the direction you have to head for. Flying against such a

headwind clearly is no option. So you have to climb to 10,000

feet, where counter-tradewinds prevail, which will give you an ap-

preciable tailwind. Biological evolution has programmed you to

strengthen your muscles for this exact reason. Forty-five grams of

flight muscle provide 4.5 watts of mechanical power. At a speed of

14 meters per second, you need only 2 watts for level flight; you

can use the rest for climbing. Lifting a weight of 2 newtons at a

rate of 1 meter per second requires 2 watts. That is what you

choose; you don’t want to go to the limit.

You are now at 10,000 feet above Morocco’s coastline, with a fair

tailwind. Your muscles are big and strong, and you decide to take

advantage of their good condition. So you speed up to 20 meters

per second (45 miles per hour), a speed at which your aerodynamic

performance is somewhat worse than before. Your drag increases

to one-twelfth of your weight (that is, 0.17 newton), so you now

require 3.4 watts of muscle power. There is some power to spare;
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before too long you will begin to consume both your heart and

your muscles bit by bit. By the time you arrive at Holland’s shores,

you have slimmed down to 120 grams and you have only 20 grams

of flight muscle left. You still race at 20 meters per second, which

at this weight is quite at lot faster than the economical cruising

speed. However, your body has slimmed down considerably, so its

drag has become less. This way, your total drag is still one-twelfth

of your body weight (0.1 newton). Therefore, the power required is

2 watts. You are evidently going to the limit, because your muscles

produce only 2 watts at the end of the trip. However, the end is in

sight, and you can drop out of the sky completely exhausted. With-

in a few weeks, you are off again for the next 5,000-kilometer stage

of your journey, heading for the breeding grounds on the Taymyr

Peninsula of northeastern Siberia.

But did you have enough fuel on board to fly 5,000 kilometers

nonstop? You have lost 80 grams of weight, mostly fat but also

some muscle. At an average metabolic value of 32 kilojoules per

Ruddy turnstone (Arenaria interpres).
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gram, you have consumed about 2,500 kilojoules of energy. If your

energy-conversion efficiency is 25 percent, that corresponds to 625

kilojoules mechanical. How much work did you need to perform to

overcome aerodynamic drag? Your average weight during the trip

was 1.6 newton, and your drag was one-twelfth of that (0.133 new-

ton). Force times distance equals work. Thus, over 5,000 kilo-

meters you used up 667 kilojoules, somewhat more than you had

available. Fortunately, tailwinds helped to overcome this discrep-

ancy. In case of bad luck, you would have made a fuel stop half-

way through.

In this story I have used approximate performance numbers

based on experimental results obtained in recent years. The aero-

dynamic drag of wading birds is not one-eighth of their weight,

but one-twelfth at the high speeds typical of their migration. And

the metabolic efficiency of their muscles is not in the neighborhood

of 10 percent, as a number of wind-tunnel experiments seem to

suggest. Human long-distance athletes manage 25 percent; why

should the performance of traveling birds be inferior?

These numbers find support in the entirely unexpected behavior

of ringed plovers, which breed on the tundra of Baffin Island, on

Canada’s east coast. In early autumn, they return to their winter

home on the Dutch Wadden Sea, and on their way they have to

clear the high dome of the Greenland ice cap. Naturally, they start

their trip with strong westerly winds. When these winds hit the

high cliffs of Greenland’s west coast, they cause appreciable slope

winds. What do the plovers do? They stop flapping and start soar-

ing! If their drag is one-fourteenth of their weight at a flight speed

of 15 meters per second, vertical wind speeds of more than 1 meter

per second will lift them over the cliffs without their having to

spend energy. In other words, these plovers now act as if they

were gulls! This behavior would not occur if their flight perfor-

mance was as poor as it was long thought to be.

This brings me to the bar-tailed godwits that cross the entire Pa-

cific Ocean without refueling. As waders go, these are large birds,

with a takeoff weight of 500 grams, a wingspan of 0.73 meter, and
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a wing area of 0.0573 square meter. With these numbers, the eco-

nomical cruising speed computes as 15 meters per second, just

like that of other waders. Their flight muscle mass at takeoff is 70

grams, providing 7 watts of power. How much power do they

need? If their lift-to-drag ratio at takeoff is 12 (I chose a fairly con-

servative number because they are so fat), their drag is 0.42 newton

and the power required is a little more than 6 watts. Godwits are

cutting it close; they have virtually no power left for climbing. For-

tunately, they don’t need it, because they need not pass mountain

ridges and are smart enough to wait for the fierce northerly winds

that prevail right after the passage of the first big autumn storm. Off

they go. By the time they arrive over the coasts of New Zealand

and the Northern Territory of Australia, their weight is down to

220 grams. They have consumed 220 grams of fat, 40 grams of

flight muscle, and 20 grams of other body tissues. The metabolic

energy consumed is about 9,000 kilojoules. With a conversion effi-

ciency of 25 percent, this becomes about 2,300 kilojoules mechani-

cal. Their average weight during the trip is 3.6 newtons, and with a

Franklin’s gull (Larus pipixcan): W ¼ 2.5 N, S ¼ 0.08 m2, b ¼ 0.95 m.
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lift-to-drag ratio of 14 their average drag is 0.26 newton. With these

numbers, their flight range computes as 8,800 kilometers (5,500

miles)—2,200 kilometers short of the 11,000 kilometers needed.

There is some explaining to do here. How much do these god-

wits gain in the tailwinds of the first day after takeoff? Winds of 70

kilometers per hour are not uncommon in the Northern Pacific,

giving the birds a 1,700-kilometer advantage in the first 24 hours.

Not enough, though. But we can fiddle with the sums. I picked an

optimistic number for the aerodynamic drag, but I could easily be

less conservative about the meteorology these birds have mastered.

If they manage to ride the northeasterly trade winds north of the

equator, and climb high enough to profit from the counter-trades

in the southern hemisphere, they might gain another 1,000 kilo-

meters. Also, the energy-conversion efficiency of their flight

muscles might be better than I assumed. Some human athletes

reach 30 percent; what if godwits manage that, too? Available me-

chanical energy then computes as 2,700 kilojoules, and the flight

range as 10,300 kilometers. With 1,700 kilometers of wind assis-

tance there are even 1,000 kilometers to spare on arrival. The tank

isn’t emptied to the last drop, so to say.

The point of these exercises, however, is not to obtain precise

numbers. That is impossible anyway if one thinks of all the factors

that may affect a 7,000-mile flight. Instead, I am doing these sums

in order to confirm that recent data on the migration of wading

birds require a drastic revision of conventional wisdom on aero-

dynamic performance and metabolic efficiency.

Taking Off and Landing

Whenever they can, birds and airplanes take off and land into the

wind. They need speed in order to become airborne. It is the speed

with respect to the air that matters, not the speed with respect to

the ground. Pilots speak of airspeed versus groundspeed. When

the wind blows, groundspeed and airspeed are not the same.

Franklin’s gull and the similar European black-headed gull have
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an airspeed of nearly 10 meters per second. That is 22 miles per

hour, or force 5 on the Beaufort scale. With a headwind of 10

meters per second, a gull makes no headway at all. This is a nui-

sance if one has to get somewhere, but it becomes an advantage

during takeoff and landing. A gull perched on a warehouse roof or

a harbor bollard in a stiff breeze has only to spread its wings to ob-

tain the lift required. A little hop into the air, a few casual wing-

beats, and away it flies, with no effort at all. Taking off in calm

weather is not so easy. The gull can either dive off its perch or take

off vertically with rapid beating of its wings. The second option is

hard work, requiring 4 times as much power as ordinary flight.

This is why most birds prefer to take off from a tree, a telephone

Rock dove (domestic pigeon, Columba livia): W ¼ 2.8 N, S ¼ 0.07 m2, b ¼ 0.78 m.
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pole, a gutter, or some other elevated object. Starting with a brief

dive, the bird gains the necessary airspeed by letting gravity do

the work.

Landing works in much the same way. If circumstances allow, a

bird lands into the wind, because that minimizes groundspeed.

This is why a bird can land on a fence quite casually, as though

it doesn’t require great precision and exacting coordination. A

pigeon lands on a roof ledge or a windowsill by deliberately

approaching the landing spot from below and sailing gracefully up-

ward in the last few meters, losing speed on the way up until its

flight speed drops to zero at the chosen spot.

If a bird has to cope with a tailwind when taking off, it is in trou-

ble. Because its groundspeed is now higher than its airspeed, it

must run like crazy before its airspeed is high enough for takeoff.

When the wind comes from behind, a bird must make an extremely

long takeoff or landing run.

Airliners also have to worry about the wind, though not as much

as birds, because their speeds at takeoff and touchdown—about

200 and 150 miles per hour, respectively—are much faster than

typical wind speeds. Nevertheless, no airplane can afford to take

off or land with the wind at its back.

The runways of major airports are usually about 2 miles long. Is

that long enough for the takeoff run of a wide-body jet? An airplane

can lift itself off the ground only after achieving sufficient airspeed.

It must be accelerated before it can fly, and to do the necessary cal-

culations we need to know the plane’s acceleration when all its

engines are running at takeoff power. The jet engines of a modern

airliner deliver a total thrust equal to roughly one-fourth of the

takeoff weight. Not all of this thrust can be used for acceleration,

however; we have to make an allowance for the average aero-

dynamic resistance during the takeoff run. Therefore, we estimate

the net thrust to be 20 percent of the takeoff weight. With T stand-

ing for thrust and D for drag, we have

T � D ¼ 0.2W. (7)
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Because force times distance equals work, the product of the net

thrust and the length R of the takeoff run is the work performed by

the engines. This work is converted without any loss into the ki-

netic energy of the airplane. You may remember from your high

school science class that the energy of motion, or kinetic energy, is
1
2mV 2, where m is the moving object’s mass and V is its speed. The

last thing we need here is the relation between mass and weight.

The weight W is the force exerted on an object of mass m by the

pull of gravity. If we call the acceleration of gravity g, we can write

W ¼ mg. (8)

With the aid of equation 8, we can write the kinetic energy as

K ¼ 1
2mV 2 ¼ 1

2(W/g)V 2. (9)

The energy supplied by the engines equals the net thrust times the

length R of the takeoff run. Using equations 7 and 9, we obtain

1
2(W/g)V 2 ¼ 0.2WR. (10)

This can be simplified. When we divide both sides of equation 10

by W and multiply both sides by 2g, we find

V 2 ¼ 0.4gR. (11)

Computing the length of the takeoff run now becomes easy. With

g ¼ 10 meters per second squared and V ¼ 84 meters per second

(190 miles per hour), we obtain R ¼ 1,764 meters (almost 5,800

feet; a little more than a mile). However, in order to provide an

adequate margin of safety, a runway must be roughly twice as long

as the takeoff run. Should one of the engines fail during takeoff, an

airplane should still be able to stop at the far end of the runway.

Therefore, an airplane requiring a 1-mile takeoff run needs a 2-

mile runway. This, incidentally, is a good example of the design

philosophy used in aviation safety calculations. Fair margins, nei-

ther too large nor too small, are incorporated to allow for adver-

sities that rarely arise.
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Sandhill crane (Grus canadensis): W ¼ 45 N, S ¼ 0.5 m2, b ¼ 2 m.
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When we start adding realistic details, calculations such as those

described above become rather involved. The maximum speed at

which a takeoff run can be safely aborted depends on the gross

weight of the airplane and several other factors, such as the air

temperature (in hot air, jet engines deliver less thrust). The co-pilot

consults the airplane’s manual to find the precise number, and

when the ‘‘decision speed’’ is reached he or she lets the captain

know. Beyond this point it is impossible to brake to a full stop.

The plane is now committed to taking off, even if one of the

engines fails. A few seconds after reaching decision speed, the pi-

lot pulls the nose up, and a few seconds after that the airplane

leaves the ground. The risk of engine failure was one of the reasons

why intercontinental airliners had to have at least three engines

(witness the awkward position of the tail engine on the almost for-

gotten Lockheed Tri-Star and Douglas DC10). This requirement

was gradually dropped after 1990. A Boeing 777 with only one of

its two engines operating properly can still take off safely, though

it cannot climb very fast anymore and it is not allowed to continue

its journey. It is a tribute to the tremendous reliability of modern

jet engines that all long-distance airliners, including many types

with two engines, are allowed to cross the oceans nowadays.

For more heavily loaded airplanes, the margins become nar-

rower. A 747-400 with a takeoff weight of 380 tons must accelerate

to 210 miles per hour before it can become airborne—20 miles per

hour more than the speed that was mentioned a moment ago. With

V ¼ 93 meters per second (210 miles per hour) instead of 84 meters

per second (190 miles per hour), we compute R ¼ 2,160 meters (al-

most 7,100 feet). At that point, a 10,000-foot runway has only 2,900

feet left. No wonder the decision speed is much lower than the

takeoff speed in this case: only 180 miles per hour. At this point,

about 5,000 feet of runway have disappeared under the wheels.

It is easy to compute how wind speed affects a takeoff run. If

there is a 30-mile headwind, the airspeed of 210 miles per hour

needed by a fully loaded 747 for liftoff is reached at a groundspeed

of 180 miles per hour. The takeoff run is then reduced from 7,100

In Wind and Weather 87



to 5,200 feet. While you are checking this, using equation 11,

please take a moment to consider the opposite situation. With a

30-mph tailwind during takeoff, the groundspeed would have to

be 210 þ 30 ¼ 240 miles per hour before the airspeed would be

high enough for liftoff, requiring a ground run of 9,300 feet. This

would leave precious little runway to spare. (Don’t worry; no pilot

would ever try this.)

It is also advantageous to land into the wind, of course. In a 30-

mph headwind, a Fokker F100, with a landing speed of 120 miles

per hour, has a groundspeed of only 90 mph when it touches

down, which shortens the landing run considerably. For this rea-

son, air traffic in the vicinity of an airport is always arranged in

such a way that all aircraft take off and land into the wind. Divert-

ing traffic to the runway causing the least noise pollution is possi-

White stork (Ciconia alba): W ¼ 34 N, S ¼ 0.5 m2, b ¼ 2 m.
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ble only when there is little wind. As airliners preparing to land at

London Heathrow skim their rooftops, the citizens of the London

suburb of Hounslow are forcefully reminded of the prevailing

westerly winds.

Approach Procedures

Rigid procedures must be observed in order to achieve orderly air

traffic around airports. The usual preparation for the landing se-

quence begins with a descent to 5,000 feet. The pilot then receives

radar vectors to a point about 12 miles ‘‘downwind’’ (that is, paral-

lel to the intended runway but in the opposite direction). Then the

plane makes a 180� ‘‘procedure turn’’ to align itself with the run-

way. After this last turn, flaps and landing gear are extended and

airspeed is reduced to about 150 miles per hour, or 2.5 miles per

minute. Since there is a distance of about 12 miles to cover before

touchdown, this segment of the flight, which is called the ‘‘final

approach,’’ takes about 5 minutes. Most passengers wouldn’t mind

having this part sped up a little, but for pilots the last few minutes

before touchdown are very busy. A hurried approach, with a steep

turn just before touchdown, would cause great stress in the cock-

pit. Stunts like that are best left to fighter pilots and barnstormers.

It is not only pilots who need to practice approach procedures

until they become routine. Birds must do the same thing. In my

college years I used to go to summer camp on an island off the

Dutch coast. There was plenty of time for bird watching, and once

I saw a mature herring gull teaching his fledgling son step by step

what is involved in making a smooth landing. First, choose your

landing site and watch the waves for the wind direction. Next,

monitor the crosswinds that drive you off course and fly down-

wind for a while before making a turn into the wind. Now real

skills are needed. Stop flapping your wings, start your descent at a

speed that allows you to cope with wind gusts, monitor your de-

scent with reference to your landing site, extend your legs a little

if you are not descending fast enough, reduce your speed during
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the last few seconds of the approach by leaning back and keeping

your nose high, decelerate all the way by spreading your wings

and tail fully, lower your landing gear, lift your wings above your

shoulders, touch down, and fold your wings.

The juvenile gull, easy to spot because of its mottled gray and

brown feathers, did its best to follow father’s example, but with

mixed success. On that afternoon it already knew the difference be-

tween downwind and final approach; however, it couldn’t manage

to fly a smooth approach after the final turn. Sometimes it would

come in too high, sometimes too low. When its speed was too

high, the youngster tried to correct by leaning back rather than

extending its legs. What happened then? Lift increased, and the

bird would soar upward until it realized that it was well above its

glide path. A steep dive followed: wrong again. Diving generates

excessive speed. If you try to fix that by pulling up again, you will

find yourself too high for a second time. All very reminiscent of a

student pilot early in flight training. This rather undignified perfor-

mance often culminated in pure embarrassment. Despite its efforts,

the young gull did not manage to make a single smooth touch-

down. Sometimes it would land too fast and would trip over its

feet, performing an accidental somersault. Then it would try to im-

itate its father’s gentle ‘‘flare-out.’’ (By leaning back and fully

extending its wings and legs just before touching down, a bird

loses speed without gaining altitude. At the moment its lift and its

speed drop to zero, its feet should be only an inch or so above the

Cape pigeon (Daption capensis): W ¼ 4.3 N, S ¼ 0.077 m2, b ¼ 0.88 m.
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beach. Now the bird simply falls, but since it has performed this

trick so well it touches the sand with a barely perceptible impact.)

But the young gull continued to overreact by flaring out so abruptly

that it would lose lift and speed several feet above the beach, then

drop like a brick.

A large and cumbersome bird can’t maneuver as nimbly as its

smaller cousins. This makes it even more important for such a

bird to follow correct flight procedures. A herring gull at Fisher-

man’s Wharf in San Francisco has to be wary of sudden gusts of

wind between the piers and the warehouses, but a few rapid wing-

beats and a steeply banked turn will get it out of trouble quickly if

something unexpected happens. The brown pelicans that also live

here must pay much more attention to the wind. A pelican is a

large bird, with a weight of 3 kilograms (7 pounds), a wingspan of

2.20 meters (7 feet), and a wing area of approximately 0.5 square

meter (5 square feet). Its wing loading is around 60 newtons per

square meter, and its cruising speed is about 12 meters per second

(27 miles per hour). Because its wings are enormous, a pelican flies

no faster than a herring gull or a homing pigeon, though its weight

is comparable to that of the common loon, which must cruise at

more than 20 meters per second (45 miles per hour) in order to

stay in the air.

Laughing gull (Larus atricilla): W ¼ 3.3 N, S ¼ 0.01 m2, b ¼ 1 m.
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While having lunch at Fisherman’s Wharf many years ago, I

watched a mature pelican that wanted to join a small group of oth-

er pelicans waiting for the return of the fishing boats that had gone

out to sea that morning. The bird had to make its final approach

less than a foot above the mastheads of a dozen fishing boats

moored alongside a large warehouse. That necessitated a steep de-

scent in the last 100 feet of the flight. Diving down was out of the

question, because that would have made the pelican gain speed

just when it needed to lose both speed and altitude. On the first

try, everything went wrong. Thirty feet before touchdown the peli-

can was suddenly blown off course by a vicious crosswind gust—

the same kind of mishap that pilots of small planes worry about.

The pelican had to shift gears instantly, summoning all the emer-

gency power of its massive wings to perform a steeply banked

climbing turn. It avoided a collision with the landing pier by only

inches, shifted back to maximum continuous power, made a proce-

dure turn to the right, and flew 300 feet on the downwind leg of the

approach pattern in preparation for the next attempt. Then it made

a 180� procedure turn to the right to begin final approach, and

skimmed the mastheads of the fishing boats in its steep descent to-

ward the pier. The pelican flew as slow and low as it dared. Fortu-

nately there were no further gusts. The bird extended its feet,

reduced its speed to the bare minimum, and flared out. It made a

beautiful landing, giving no hint of having required all the skill a

pelican can muster. It didn’t even have to move its feet; it just

turned around and joined its friends.

As a young engineer, I once was involved in a ‘‘near miss’’ at

Rotterdam Airport. Having recently obtained my private pilot’s li-

cense, I was practicing takeoffs and landings in a single-engine

Saab Safir with the reporting marks PH-UEG (‘‘Echo Golf’’ in radio

communications). In the jargon of pilots this kind of practice is

called ‘‘touch and go.’’ I was flying in the traffic pattern, on course

and on speed, half a mile downwind of the runway threshold, with

everything under control. Suddenly, in my earphones, I heard a

sharp command: ‘‘Echo Golf, turn left now.’’ The ‘‘now’’ meant
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that the order was to be executed immediately. As I rolled the Safir

hard left to begin the required turn, I responded ‘‘Turning,’’ con-

firming that I was following the order without delay. I hadn’t

noticed it yet, but the traffic controller knew that 15 miles away an

airliner had just started its approach. There were still a few

minutes to spare, and the man in the control tower evidently

thought that there was sufficient room to slip the student pilot on

touch-and-go exercises in front of the distant airliner. Even before

I arrived in front of the runway, the controller cleared my way:

‘‘Echo Golf, cleared to land runway two four.’’ Busy with landing

gear, wing flaps, airspeed, carburetor heating, and lots of other

details, I continued on ‘‘short final,’’ pulling back on the steering

column in order to lose speed, extending the wing flaps fully, and

Space Shuttle (W ¼ 1 � 106 N, S ¼ 250 m2, b ¼ 24 m) and Northrop T-38 (W ¼
1.15 � 105 N, S ¼ 17.3 m2, b ¼ 8.13 m).
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closing the throttle all the way. When I was a few hundred feet

from the threshold of the runway, with only seconds to go before

touchdown, another airliner suddenly started to taxi onto the run-

way in preparation for takeoff. The pilot had neither seen nor

heard me, and he hadn’t waited for clearance from traffic control.

(One must always request and obtain explicit permission before

entering an active runway.) Realizing the danger, I rammed the

throttle lever full forward. By doing that I could have killed myself.

Airplane piston engines tend to starve from lack of fuel when the

throttle is suddenly opened; their carburetors don’t have accelera-

tion pumps. The engine hiccupped, and the propeller seemed to

stop, but then, thank God, the engine picked up and started to

roar. At full power, I just managed to avoid the tail of the airplane

that had committed the traffic violation. White around the gills, I

flew the traffic circuit once more. Although my touchdown wasn’t

particularly smooth, I was happy to be on the ground again. Still

trembling, I rode back home on my ancient moped. All was well.

Afterward I heard my instructor’s voice, over and over again:

‘‘With the throttle you should be just as considerate as with your

girlfriend. Never treat the throttle roughly.’’ Procedures have to be

practiced until one can carry them out when rattled.
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4 Flying with Finesse

I took my ice skates along when I moved to the United States in

1965. That winter, after a couple of nights of hard freeze, I drove

up the hills to the small lake behind Whipple Dam in Centre

County, Pennsylvania. People were whispering to one another as

I tied my skates to my shoes. My antique contraptions, with their

leather straps, must have seemed like poor substitutes for decent

skates. But the whispers faded when people saw that even the

strongest teenager on hockey skates could not keep pace with me.

The transmission of your car and that of your bicycle consist of

gears that keep the engine’s revolutions and your pedaling rate

within limits at high speeds. For the engine this is primarily a mat-

ter of fuel economy, but for your legs it is mainly a question of en-

durance. Muscles at work convert glucose into lactic acid; if the

acid cannot be eliminated quickly enough, muscle power drops

precipitously. Humans’ leg muscles are powerful (a typical ath-

lete’s one-hour maximum is about 200 watts), but only if the fre-

quency of the motion remains within limits. A bicycle has a set of

gears to make this possible, but on speed skates such complexity is

not necessary.

The art of skating produces a fully automatic transmission at ab-

solutely no cost. As you push off, the track of your skate describes

a small angle in relation to your direction of travel (figure 11). That

angle can be changed. As you increase your forward velocity V,

the tracking angle i becomes smaller. You do that automatically.

Your legs want to keep the lateral speed w at an acceptable level.

This keeps the frequency of your leg movements within limits,

thus preventing your muscles from becoming saturated with lactic

acid.



The geometry of figure 11 has consequences for the triangle of

forces, for the relation between the forward speed V and the lateral

speed w, and for your energy budget. Since ice skates have hardly

any friction in the direction of their motion, the force K that you

exert with your leg is perpendicular to the skate track. Because the

skate track is at an angle i to the direction of travel, the force K has

both a lateral component Z and a forward component T (thrust, as

in chapter 2). This is as it should be: without thrust you cannot

overcome the aerodynamic resistance.

The force triangle KZT leads to a large lateral force Z and a small

thrust T. Because K is perpendicular to the skate track, the angle I

between Z and K is identical to the angle i between the direction of

travel and the skate track. Hence (this seems trivial, but it is cru-

cial), the proportions within the force triangle are identical to those

Figure 11 Force and speed for the right-side skating stroke, seen from above. The force K be-
tween the ice and the skate is perpendicular to the skate track, because the friction
of the skate on the ice is extremely small. The motion of the leg generates not only a
large sideways force (Z ) but also a forward force (the thrust, T ). Because the force
triangle has the same proportions as the speed triangle, the ratio T /Z is equal to the
ratio w /V between the sideways motion of the skate and the forward motion, V, of
the skater.
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within the speed triangle. In particular, the ratio between the small

thrust T and the large lateral force Z equals the ratio between the

low lateral velocity w of the leg and the high forward speed V of

the skater:

T/Z ¼ w/V. (12)

If we write this formula somewhat differently, its elegance is even

more striking. Multiplying both sides by V and by Z in order to

clear the denominators, we get

TV ¼ Zw. (13)

The left-hand side of this relation is clearly the power P that is

needed for propulsion, just as it is for birds, cars, and airplanes

(chapter 2). Power equals force times speed; forward force T times

forward speed V equals propulsive power P. But the right-hand

side represents some kind of power, too. The lateral force Z

exerted by your legs times the lateral speed of the skate strokes

equals the power supplied by your legs. Thus, equation 13 states

that the work performed by your muscles during the lateral move-

ment of your legs is converted without any loss into the power

needed for propulsion, P ¼ TV. This is the basis for your ‘‘free

gearbox’’: 100 percent of the work done by the large force Z at the

small speed w is converted into the work done by the small force T

at the high forward speed V. To increase V, you simply push off

harder to increase Z without having to increase the frequency of

your leg strokes.

The Art of Flapping

A bird in flapping flight faces essentially the same problem as a

skater: because flapping its wings too rapidly as its speed increases

will cause a buildup of lactic acid in its muscles, the bird must find

a way of flapping that limits the frequency of its wing strokes.

The image of flapping that many people have in their heads is

one of ducks and geese rowing through the air with their wings.
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Close observation, however, reveals a very different sort of motion.

On the downstroke a bird’s wings move slightly forward. Rowing

with backward strokes would not work. Just imagine moving at 50

miles per hour and having to push your wings back at an even

higher rate in order to propel yourself through the air. You would

need to maintain a ridiculously high wing-beat rate. You would

also spend much more energy than is necessary, because you

would generate a lot of unwanted turbulence in the air behind

you. Propulsion by paddling is terribly ineffective. If you don’t be-

lieve me, spend an afternoon on a lake or a canal, alternating be-

tween sculling and rowing. That experience, when I was 14 years

old, made me an instant convert. Ship designers were converted

much earlier: paddle-wheel steamers became obsolete more than a

century ago.

The flapping of a bird’s wings is like a skater’s or a sculler’s

strokes. The only difference is that the plane of action is rotated

90� (figure 12). The downstroke of the wing must generate both lift

and thrust. Because the aerodynamic drag on the wing itself is rel-

atively small, the aerodynamic force K on the wing is almost per-

pendicular to its direction of motion. As the wing moves down,

the force K has not only a vertical component (L), which supplies

the lift needed to keep the bird aloft, but also a forward component

(T ), which provides the required thrust.

The intentional similarity between figures 11 and 12 probably

did not escape your attention. The proportions within the force tri-

angle KTL are identical to those within the speed triangle, of which

V is the horizontal component and w the vertical component.

Therefore, the ratio T/L between thrust and lift equals the ratio

w/V between the downward speed of the wing and the forward

speed of the bird:

T/L ¼ w/V. (14)

If we treat this in the same way as equation 12, to ensure that all

quantities wind up in the numerator, we obtain

TV ¼ Lw. (15)
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The significance of this is exactly the same as that of equation 13.

The product of T and V is the power P required for propulsion.

That power is supplied, virtually without loss, by the large force L

operating at the small downward speed w. Lift is necessary to over-

come gravity and keep the bird in the air, but as the wing moves

down the lift force also generates power. This power, the product

of L and w, is transmitted in its entirety to the propulsive effort,

the product of T and V. Power, which equals force times speed,

can apparently be converted at will from large force times small

speed into small force times large speed. As long as a bird main-

tains a small angle between the wing stroke and the direction of

flight, it minimizes the loss of energy to the air. That way, it also

keeps its wing-beat frequency down.

Are there any data to support this line of thought? Yes, there are.

It is useful to introduce a new non-dimensional parameter first.

Since wings produce both lift and thrust in the downstroke, it is

Figure 12 Force and speed for the downstroke of a wing, seen from the side. The aerodynamic
force, K, is practically perpendicular to the track of the wing, because the air drag on
the wing is quite small. The downstroke generates not only lift (L) but also thrust
(T ). Because the force and speed triangles have the same proportions, the ratio T /L
is equal to the ration w /V between the downward speed of the wing and the forward
speed of the bird.
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useful to compare them with propellers. Those are characterized

by their ‘‘advance ratio,’’ which is the ratio between the airspeed

V and the tip speed of the propeller blades. The tip speed is equal

to pfd, where d is the propeller diameter and f its turning rate. The

advance ratio of a propeller then is V/pfd. It is made large for high-

speed flight, because that minimizes energy losses to the air. But

the advance ratio of modern wind turbines, whose task it is to ex-

tract as much energy as can be extracted from the air, is made

as low as 1:5. Their blades slice through the air like a pineapple

cutter.

Flapping wings are like high-speed propellers, and are likely to

operate at a high advance ratio. What is the ratio between the flight

speed V and the tip speed of its flapping wings? Since there are

very few data on tip speeds, we will have to make do with the esti-

mate that the wing-beat amplitude is roughly one-half of the wing-

span. The tip speed then becomes equal to the product of the

wingspan b and the wing-beat frequency f, and the advance ratio

can reliably be estimated as V/fb. Several investigators have mea-

sured this non-dimensional parameter and have found values be-

tween 2 and 4, with V/fb ¼ 3 as the median. This means that the

vertical speed of the wingtips is roughly one-third the forward

speed of the bird. This number is confirmed by direct tip-speed

data on swallows from the wind tunnel at Lund, Sweden. In fact,

swallows apparently speed up their downstroke when flying fast,

to make sure the tip speed does not get too small. High-speed flight

causes more drag, which cannot be overcome with a shallow wing-

beat. The barnacle geese featured in chapter 2 are another case in

point: with V ¼ 19 meters per second, b ¼ 1.35 meter, and f ¼ 5

beats per second, the advance ratio of their wings, V/fb, is 2.8.

When I first drew figure 12, I knew of no data in support of its ge-

ometry, but I happened to be right on the nose.

Most birds have little latitude in their wing-beat frequency. It is

constrained by muscle physiology. But birds can, and do, vary

their wing-beat amplitude. Jackdaws casually switch between glid-
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ing and shallow flapping as they scan for food. They are flying

slowly, about 8 meters per second, and their drag is low, too. So

they need only a little thrust from their wingtips. One-half their

regular flight speed, and one-half their regular wing-beat ampli-

tude: the geometry of figure 12 does not change much. But they do

need to obtain some lift from their upstrokes, which reduces

thrust. Apparently, they don’t mind. Swifts don’t either: in the

Lund wind tunnel their upstrokes cut the effective thrust in half.

But if a bird has to accelerate rapidly, as a homing pigeon does im-

mediately after its vertical takeoff or as a pheasant does when try-

ing to escape a fox, all subtleties are ignored. Making the wing-

beat amplitude so large that the tips are touching each other at

both extremes of each stroke, birds then replace the geometry of

figure 12 temporarily by one in which the advance ratio is much

smaller. If we take V/fb ¼ 1 as a typical geometry during rapid ac-

celeration, then the angle i in figure 12 becomes 45�, which implies

that the air flow over the wingtips is
p
2 faster than the flight speed.

The aerodynamic forces, which increase as the square of the speed,

thus become twice as large. This does help to generate the sudden

burst of thrust required. But quick acceleration comes at a price:

the wings now work as fans, transmitting a lot of energy to the jet

of air they leave behind.

I believe that birds with advanced aerodynamics can make the

advance ratio of their wingbeats larger than average, but I know of

only a few data that support this claim. According to Colin Penny-

cuick, a famous specialist on bird flight, herons fly with V/fb ¼ 2,

which seems to fit their flight style: these are slow-flying birds

with broad wings and a none-too-tight coat of feathers. Kittiwakes

(Larus tridactyla) and common gulls (Larus canus), however, with

their slender wings and smooth surfaces, reach V/fb ¼ 4. They can

do this because their aerodynamic drag is small, requiring only a

little thrust for a given weight. But starlings and pigeons at top

speed also achieve V/fb ¼ 4, although their aerodynamic perfor-

mance is not nearly as good as that of gulls.
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Horizontal Flight

The analogy between skating and flapping flight is useful for un-

derstanding how birds and airplanes glide. There too the propor-

tions within the force triangle are equal to those within the speed

triangle, and there too both triangles are slender. But first we must

recall the frame of reference developed in chapter 2. The quickest

way to do that is to look at the force balance in horizontal powered

flight (figure 13). The weight W is kept in balance by the lift L, and

the aerodynamic drag D is overcome by the thrust T. In horizontal

flight at constant speed, therefore, L ¼ W and T ¼ D.

Figure 13 The force balance in horizontal flight. The weight W is balanced by the aerodynamic
lift L, and the aerodynamic drag D is overcome by the thrust T. The airspeed is V,
and the product of T and V is the work that must be performed per second (that is,
the power required) to maintain the force balance. Most of the time, D is much
smaller than L. The small D /L, the better.
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Power equals force times speed; thus, the relation between thrust

T and power P needed to maintain horizontal flight is given by

P ¼ TV, just as in skating or flapping. We can better judge the en-

ergy requirements of anything that flies by computing the specific

energy consumption E ¼ P/WV, which was introduced in chapter

2. The force balance in figure 13 allows us to transform E in vari-

ous ways. With the aid of P ¼ TV we obtain

E ¼ P/WV ¼ T/W ¼ D/L. (16)

The ratio between drag and lift determines the specific energy

requirements. Tucker’s parakeet achieved a minimum of 0.22 at a

speed of 11 meters per second (25 miles per hour). For parawings

and most small birds, the value of D/L is comparable. Seagulls

(D/L ¼ 0.07), jetliners (D/L ¼ 0.06), and albatrosses (D/L ¼ 0.05)

are much more economical. Extremely low values of D/L are

obtained by state-of-the-art soaring planes, which easily attain

D/L ¼ 0.025 and in some cases even D/L < 0.02. (All these values

are minima; at speeds above or below the optimum value, the spe-

cific energy consumption is higher.)

If you want to save energy in flight, you have to minimize D/L. In

flight performance the ratio between drag and lift is a measure of

aerodynamic quality. It is inconvenient, however, that this number

decreases as the aerodynamic quality is improved. It would be bet-

ter if we could arrange matters so that the quality number increases

as the energy needs decrease. And that is quite easy: just turn D/L

upside down. The quantity L/D, to which French aeronautical

engineers have given the beautiful and appropriate name finesse,

has the very properties we desire:

L/D ¼ 1/E ¼ F. (17)

It is a pity that aeronautical engineers in most other countries have

given F such unimaginative names. Dutch and German engineers

use the equivalent of ‘‘glide number’’ (correct but dull). English-

speaking engineers use ‘‘glide ratio’’ (equally correct and equally

dull).
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The best finesse a grass parakeet achieves is 1/0.22 ¼ 4.5. The fi-

nesse of a wandering albatross is about 25, and that of a Boeing 747

at cruising speed is about 16. The 747 can do somewhat better

(F ¼ 18) when it flies slower, but its engines are less efficient at

lower speeds. Advanced sailplanes achieve F ¼ 40 with ease;

some reach F ¼ 60. The finesse of a bird or an airplane can be

enhanced by slender wings and a smooth, streamlined body.

The Subtleties of Gliding

In the absence of thrust, an airplane cannot maintain the balance of

forces required for horizontal flight; it will inevitably lose altitude.

When an airplane descends, a new balance is obtained, the compo-

nent of the weight W directed along the glide path becoming equal

to the drag D (figure 14). As with a bicyclist freewheeling downhill,

gravity takes over. The lift L and the drag D constitute the aerody-

namic force K that balances the weight W. And, just as in skating

and wing flapping, the force triangle is slender; in most cases D is

much smaller than L.

The force and speed triangles in figure 14 have the same propor-

tions. Hence, the ratio between the rate of descent w and the air-

speed V equals the ratio between the drag D and the weight W:

w/V ¼ D/W. (18)

As with skate strokes and wingbeats, this can be put in a form that

clarifies the energy budget of gliding. Multiplying equation 18 both

by W and by V, we obtain

Ww ¼ DV. (19)

The power P ¼ DV required to overcome the aerodynamic drag is

apparently supplied by the large force W acting at the small down-

ward speed w. Power equals force times speed—in this case, the

force of gravity times the rate of descent.

The proportionality between the force and speed triangles also

provides useful information on the distance that can be covered in
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a glide. If we call the horizontal component of the airspeed U, the

ratio between it and the rate of descent w must be equal to the ratio

between the lift L and the drag D. But the ratio L/D is the finesse, F.

What we discover is that the finesse (and only the finesse; no other

quantity is involved) determines how many meters a gliding bird

or plane can travel for each meter of descent:

F ¼ L/D ¼ U/w. (20)

Figure 14 The force balance in gliding flight. With the throttle closed, the thrust equals zero.
The drag D now must be overcome by the component of the weight W that is
directed along the glide path. Again the force triangle has the same proportions as
the speed triangle; hence D /W ¼ w /V, where w is the rate of descent and V is the
airspeed, now along the glide path. The work performed per second by the weight
W is equal to wW, but also to DV.
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It is for this reason that aeronautical engineers speak of glide ratio

when they talk about the finesse of an airplane. A Boeing 777 has a

glide ratio of almost 20. Should both its engines fail at an altitude

of 10 kilometers (33,000 feet), the plane can remain airborne for

another 200 kilometers (125 miles). An airliner flying to Amster-

dam from the United States starts its descent over the British Isles,

well before crossing the North Sea. For the same reason, almost

half of the flying time on short hops (such as from Chicago to

Detroit) consists of descending flight. A jet can easily reach an

alternate airport in case of engine failure over Europe or the con-

tinental United States; at almost any point there are several air-

ports within 100 miles. But a failure of both engines just after

takeoff requires quick decisions. The pilot who safely landed his

crippled airliner on the Hudson River on January 15, 2009, acted

with superb professional judgment. Deservedly, he became the

hero of the ‘‘miracle on the Hudson.’’

A glider with F ¼ 40 can travel 40 feet per foot of altitude lost. At

a distance of 4,000 feet from its landing spot, the glider needs to be

only 100 feet above the ground. Since that is barely above the tree-

tops, this cannot be regarded as a safe approach procedure. A pilot

must be able to see where he or she is going, and the view should

not be obstructed by trees or buildings. For this reason, all sail-

Black-browed albatross (Diomeda melanophris): W ¼ 38 N, S ¼ 0.32 m2, b ¼
2.20 m.
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planes are fitted with air brakes (also known as spoilers). With

spoilers extended, a sailplane can descend steeply. During the final

approach, just before touchdown, F ¼ 10 is more than adequate.

(The spoilers on some automobiles are not meant to increase drag

but to spoil unwanted aerodynamic lift and keep the wheels in

contact with the road at high speeds. But those spoilers are not ef-

fective at legal highway speeds; the aerodynamic forces are simply

not large enough.)

In a glide, the power P ¼ DV needed to overcome the drag D is

supplied by gravity: P ¼ Ww (equation 19). But this means that the

rate of descent w can be used as a measure for the engine or muscle

power that a bird or a plane must have available to stay aloft:

w ¼ P/W. (21)

The rate of descent in gliding is equal to the ratio between the

power P needed to maintain horizontal flight and the weight W

(the ‘‘power loading,’’ P/W ). The significance of this can be

grasped easily by recalling some data from chapter 2. On long

flights the pectoral muscles of a bird supply about 100 watts per ki-

logram of muscle mass. But the flight muscles account for about 20

percent of a bird’s mass. The flight muscles therefore supply about

20 watts per kilogram of body mass, which amounts to 2 watts per

newton of overall weight. As table 2 shows, watts per newton are

meters per second. Equation 21 states that birds with rates of de-

scent greater than 2 meters per second (400 feet per minute) do

not possess muscles strong enough to keep them aloft for any

length of time.

The Great Gliding Diagram

According to equation 21, we must look not only at the finesse but

also at the rate of descent when we want to judge the performance

of birds and airplanes. We can do so in an orderly way by plotting

rate of descent against airspeed (figure 15). In this figure—again a

proportional diagram, so that the relative proportions remain the
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same all over—the performance characteristics of insects, birds,

and planes can be compared in a straightforward way.

There is a great deal to be learned from figure 15. First let’s look

at gliding birds. A pheasant descends at more than 4 meters per

second—twice the maximum we just calculated. A pheasant can-

not fly for more than a minute or so; a quick dash to escape a fox

or a hunting dog is all it can manage. A parakeet, with a rate of de-

scent of 2 meters per second, is capable of continuous flight, but

Figure 15 The Great Gliding Diagram. Airspeed is plotted on the horizontal axis. Rate of de-
scent is plotted along the vertical axis, downward. The diagonals running from top
left to bottom right are lines of constant finesse. The practical soaring limit, 1 meter
per second, is indicated by the horizontal line.
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without any power to spare. A larger bird with the same poor value

of F (a pheasant, for example) would not have lasted long in Vance

Tucker’s wind tunnel. But a swift (Apus apus) has plenty power to

spare for aerobatics. I didn’t include a curve for swifts in figure 15,

because it overlaps the curve for jackdaws, about which much

more will be said a bit later. The continuous power rating of a swift

is 2 watts per newton, but it needs only 0.6 watt per newton to

maintain horizontal flight. Hence, it has 1.4 watt per newton to

spare. This means that it can climb 1.4 meter per second (roughly

300 feet per minute) without much effort. And if it really wants to

exert itself in a brief climb, its muscles may be able to produce 4

times the normal rate, or 8 watts per newton. With only 0.6 watt

per newton needed to maintain altitude, the remaining power can

be used for ascending 1,500 feet per minute. That is a faster rate of

climb than that of a Beech Bonanza. The top speed of swifts is

equally impressive. In a dash, with 4 watts per newton and a fi-

nesse of only 6, swifts have been observed to achieve 20 meters

per second (45 miles per hour). The impression of speed is height-

ened because the human eye judges the speed of a flying object by

the object’s size. At its maximum cruising speed, a swift travels 40

wingspans per second. A cruising 747 manages four wingspans per

second, a 747 on final approach less than two.

Homing pigeons (Columba livia) occupy center stage in figure

15. They have been used in many wind-tunnel studies over the

years, but not all the data obtained that way are mutually consis-

tent. For one, gliding speeds obtained in wind tunnels (around 10

meters per second) are much lower than the speeds reported by

owners of racing pigeons. Pigeon fanciers (as they are called) quote

numbers up to 20 meters per second (45 miles per hour). That

number agrees with radar data, but not with the gliding perfor-

mance given in figure 15. If we extrapolate that curve to 20 meters

per second, we get a power need of about 8 watts per newton. Can

a racing pigeon achieve that? Its chest muscles produce 2 watts per

newton of body weight, not nearly enough to support the observed

racing speed (a horizontal line at 2 meters per second of descent
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crosses the pigeon curve at a flight speed of 14 meters per second).

This discrepancy can be overcome by realizing that flapping wings

are two-stroke engines, in which the downstroke has to produce an

amount of lift that is equal to twice the weight. The consequence of

this train of thought is that the curve in figure 15 has to be shifted

40 percent to the right, down along the diagonals, before it can be

used for flapping flight. When you do that and repeat the calcula-

tion, you will find that the problem resolves itself. (I will not give

the numbers for pigeons, but within a few pages I will do these

sums for jackdaws, the birds that in 2002 overturned my previous

thinking.)

In general, larger birds must fly faster. With the same aerody-

namic quality, which is to say at the same value of finesse, birds

therefore slide along the diagonals toward the lower right corner

in figure 15 as they become heavier. Hence, they require propor-

tionally more power to remain airborne. Inevitably there comes a

moment when the flight muscles are no longer strong enough. If

we set this limit, as we did above, at 2 watts per newton, corre-

Whooping crane (Grus americana): W ¼ 68 N, S ¼ 0.6 m2, b ¼ 2.2 m.
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sponding to a rate of descent of 2 meters per second, and if we take

F ¼ 12 as the greatest attainable practical value for the glide ratio

of large birds, then the maximum achievable cruising speed

becomes 2 � 12 ¼ 24 meters per second (54 miles per hour).

Thanks to their extremely slender wings, albatrosses achieve

F ¼ 20 or more (for the largest species, the wandering albatross

Diomedea exulans, I estimate F ¼ 25), but continuous flapping

flight is beyond their capabilities. A cruising speed of 24 meters

per second demands a wing loading of 220 newtons per square me-

ter. For a bird of average proportions (i.e., one that stays in the vi-

cinity of the main diagonal in figure 2), the corresponding weight

is about 100 newtons (10 kilograms, 22 pounds). Birds that wish to

maintain flapping flight for extended periods should not exceed

this limit. Those that do need oversize wings to reduce their power

requirements. But oversize wings are ill suited for continuous flap-

ping. It is no coincidence that most of the very large birds special-

ize in soaring.

Piston-engine airplanes have a similar upper limit. An aviation

gasoline engine weighs roughly a kilogram per kilowatt of takeoff

power, and about half of that power is available in cruising flight.

The specific cruising power, therefore, is 500 watts per kilogram,

or 50 watts per newton. A practical limit for the weight of the

engine(s) is 20 percent of the plane’s total weight. This gives

P/W ¼ 10 watts per newton of total weight. The corresponding

rate of descent (equation 21) is 10 meters per second. Again we

choose F ¼ 12 as a representative value of the finesse, which makes

the cruising speed 120 meters per second (270 miles per hour).

According to figure 2, the wing loading should then be about

5,000 newtons per square meter. An average airplane with that

wing loading weighs about a million newtons, or 100 tons. As

Howard Hughes discovered with his Spruce Goose, a piston-engine

airplane bigger than that (for example, one the size of a 747) is dan-

gerously underpowered. Aircraft manufacturers switched to jet

engines as soon as they could because jet engines have much better

power-to-weight ratios than piston engines.
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If a bird or a plane wants to stay aloft effortlessly for extended

periods, its rate of descent must be less than the strength of the

updrafts in the air along mountain ridges or in convective ther-

mals. A practical limit is 1 meter per second. (See figure 15.) Para-

keets, chickens, partridges, and pheasants do not need to bother

about learning to soar; they descend far too quickly. Modern

gliders achieve a rate of descent as small as 0.6 meter per second

(120 feet per minute). They can do this because they have ex-

tremely slender wings and carefully maintained, smoothly pol-

ished skins. Albatrosses are similarly specialized: their minimum

rate of descent is less than 0.8 meter per second. Great soaring

birds of prey, such as the golden eagle and the California condor,

have solved the problem in a different way: they have developed

relatively large and broad wings, which give them low cruising

speeds. Their rates of descent are within the soaring limit of 1 me-

ter per second, though they do not come anywhere near the alba-

tross in finesse.

Butterflies can soar without worrying much about aerodynamic

quality (F ¼ 4). Their wing loadings are so low that they can de-

scend at a rate of 0.3 meter per second. But the real mavericks in

figure 15 are human-powered airplanes, represented in figure 15

by the first of the species, the Gossamer Condor (1975), and the

last, the Daedalus (1988). With the pilot on board, human-powered

aircraft weigh about 100 kilograms, yet their rate of descent is less

than that of a 0.15-gram cabbage white.

Trailing Vortices and Induced Drag

It seems quite strange that flying should be uneconomical at low

speeds. In all other forms of locomotion (including swimming,

bicycling, and driving automobiles) the drag increases as the

square of the speed, so twice as fast means 4 times as much drag.

But everything that flies can choose an optimum speed, and that

optimum need not be unfavorable if it happens to occur at high

speeds. Though a Boeing 747 flies much faster than a swift, it has
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about the same finesse. In other words, as a fraction of its weight

the drag of a 747 is no larger than that of a swift—in fact, it is a bit

lower: a 747-400 has D/L ¼ 1
17, while a gliding swift has D/L ¼ 1

13.

Evidently there must be a drag component that decreases as the

speed goes up. It is helpful here to take another look at figure 7,

where the drag of Tucker’s flapping parakeet is plotted against

speed. It is evident that the drag of a bird comes down in a hurry

when the speed goes up. It does not begin to increase until much

higher speeds are reached. This is no small matter. I muddled

through it in the first edition of this book because I did not dare to

cope with the intellectual hurdles involved. (To handle this subject

elegantly, one must use differential analysis of continuous vector

fields.) I was not pleased with myself, and neither were colleagues

and reviewers. This time I will do better.

The best way to explain the strange behavior of drag as speed

increases is to employ what is called the ‘‘vortex theory of lift and

drag.’’ I will do so at a leisurely pace, because it is not easy going,

though it is immensely rewarding. If you’re not eager to follow me

in this, you may skip forward to equation 28.

In freshman physics or electrical engineering courses, many of

us have learned about the electromotive force, the force that makes

electric motors spin. When an electrical current flows through a

Painted Lady (Vanessa cardui ).
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copper wire that is exposed to a magnetic field, a force is exerted

on the wire that is at right angles both to the wire and to the mag-

netic field. The strength F of the electromotive force is propor-

tional both to the strength of the magnetic field B and the strength

of the electric current J. In shorthand: F ¼ J � B. Electrical engi-

neers prefer to understand this force as a consequence of the way

the magnetic field is distorted by the ‘‘induced magnetic field’’

that is associated with the electric current through the copper. The

induced magnetic field wraps itself around the wire in closed

loops. Adding these to the imposed magnetic field, you will find

that the distorted field has a pronounced convex curvature on one

side of the wire.

Ludwig Prandtl, the German grandfather of aerodynamics, was

thoroughly familiar with these concepts. About 100 years ago, he

realized that the flow field around a wing can be interpreted in a

similar way. A wing deforms the flow field around it and, in doing

so, creates a force that is perpendicular both to the air flow and to

the ‘‘corkscrew’’ motion of the induced flow that it creates by mov-

ing through the air. That force, the lift L, has a strength that is pro-

A Pilatus Turbo Porter, the perfect airplane for rough jobs and short airstrips. It has
fixed landing gear and a powerful turboprop engine: W ¼ 27.7 kN, S ¼ 30 m2,
b ¼ 16 m, P ¼ 410 kW (550 hp).
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portional both to the airspeed and to the amount of flow distortion

generated by the wing. The only difference between this case and

that of the electromotive force is that a current-carrying wire is

pushed away from the convex side of the field distortion, whereas

a wing is pulled toward the convex side.

The aerodynamic counterpart of F ¼ J� B now becomes

L/b ¼ rV � G. (22)

Here L is the lift and G is the ‘‘circulation’’ around the wing. The

circulation is expressed in meters of circumference times meters

per second (that is, meters squared per second). The circulation is

the product of the length of a contour around the wing and the tan-

gential speeds prevailing there. I use the lift per unit span, L/b, in

equation 22, because the electromotive force is also expressed per

unit length. The air density r is needed to make sure that the force

is larger in a denser medium and to give equation 22 consistent

units.

Air circulating around a wing—does that agree with the discus-

sion of lift in chapter 1? Let us first check whether equation 22 is

consistent with the idea that a wing gives the airflow around it a

downward impulse. At the trailing edge, we found that the down-

ward component of the airspeed is proportional to aV, where a is

the angle of attack. Imagine that this is made possible by an imagi-

nary vortex surrounding the cross-section of the wing. The strength

of this ‘‘bound vortex,’’ which we now dare to equate to G, must be

proportional to aV times the wing chord c, or else the required

downward component of the airspeed is not obtained. With G now

proportional to aVc, equation 22 turns into

L/b ¼ nrV � aVc. (23)

Here n is a non-dimensional coefficient that is irrelevant to this

train of thought. If we multiply both sides by the wingspan b, and

replace L by the weight W, this converts to

W ¼ narV 2bc ¼ narV 2S. (24)
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Obviously we are on the right track, because equation 24 agrees

with equation 1 in chapter 1.

Prandtl knew that electric motors have ‘‘winding losses’’ or ‘‘end

losses’’ caused by the finite length of the wires in the magnetic

field. He also knew how to calculate these losses: with the formal-

ism known as the Biot-Savart equations. How should he proceed?

He realized that the circulation around a wing cannot stop at the

wing’s tips. An electrical current, the analogue of the circulation,

has the same property: it cannot stop cold, but has to continue in

the parts of the winding that are outside the magnetic field. So

Prandtl concluded that the circulation around the wing must come

off the wingtips as a pair of ‘‘tip vortices.’’ The circulation has no

choice but to continue without any loss of strength as two long

rotating braids in the air behind the wing. These two trailing vorti-

ces mark the path that a bird or a plane has carved in the air. If you

don’t believe me, just go outside on a clear day and watch the con-

trails of a high-flying jetliner. Since it is very cold at 30,000 feet,

the moist exhaust gases from the engines soon condense and freeze

into tiny crystals. The exhaust plumes made visible this way are

subsequently sucked up by the tip vortices. Figure 16 and other

illustrations on these pages give an impression of this beautiful

phenomenon.

The contrails of a Boeing 747 flying overhead wrap themselves around the trailing
vortices. The contrails from the inboard engines temporarily fan out farther than
those of the outboard engines.
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Figure 16 Top: A jetliner seen from behind, with tip vortices and the formation of exhaust con-
trails shown. Note that the distance between the contrails far behind the plane is
much larger than the distance between the engines. Center: A representation of the
vertical velocity field behind the wing, including the upwash beyond the tips, which
is exploited by wingmen and geese flying in formation. Bottom: A sketch of the
channel in the air caused by the airplane.
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Trailing vortices are dangerous! Take the case of a Boeing 747-

400 on final approach. If we substitute W for L in equation 22, it

converts to

G ¼ W/(rVb). (25)

What are the relevant numbers? At the end of a long trip, the

weight of a 747 is down to 300 tons, or 3 million newtons. The

approach speed is about 70 meters per second, the air density 1.24

kilogram per cubic meter, and the wingspan 65 meters. With these

numbers, G computes as about 530 meters squared per second.

Thirty meters away from the core of one of these whirlwinds, the

circumference is about 200 meters long. Circulation equals circum-

ference times tangential speed, so the latter is more than 2.5 meters

per second (almost 9 feet per second, or 500 feet per minute) 30

meters out. Don’t get near if you are piloting a small plane! In fact,

the separation rules for air traffic are designed to avoid these risks.

Trailing vortices force each other down. They are about one

wingspan apart, and they induce in each other a downdraft equal

to G/2pb. For our 747 on final approach, this is a bit more than 1

meter per second, more than 200 feet per minute. The downwash

on the centerline is 2.6 meters per second, or 500 feet per minute.

In aviation parlance, this is called ‘‘wake turbulence.’’ Turbulent or

not, it is wise to keep a very safe distance away from these trenches,

even if the plane in front of you is a lot smaller than a 747.

The message of this story is not all bad and dangerous, though. If

you dare to fly in the upwash a little away from the wingtip of the

lead pilot up front, you can throttle back a little. This is why geese

typically fly in V-shaped formations. The advantage to the flock as

a whole is spread over all its members. Every so often, the lead

goose veers off to rejoin the end of the pack, where it can relax a

little.

The downdraft created by the interaction between the two tip

vortices also produces downwash in the flow just in front of the

wing. This means that a plane or a bird has to cope with the down-

wash it is continuously creating. That requires an additional

amount of power, just as climbing a hill does.
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How much power is needed to climb this hill? In front of the

wing, the local downdraft produced by the tip vortices is given by

w ¼ G/b ¼ W/rVb2. (26)

Lifting the weight W up this slope requires that work be performed

at a rate given by Ww joules per second (Ww watts):

Ww ¼ Pi ¼ W 2/rVb2, (27)

where Pi is called ‘‘induced power’’. Induced power is the rate at

which the trailing vortices are supplied with kinetic energy. This

is how the additional effort mentioned a moment ago is spent. To

obtain the total cost of flying, the work that has to be done to create

trailing vortices must be added to the work that has to be done to

overcome friction. It would have been logical to speak of ‘‘wingtip

losses,’’ but that is not the way it is phrased in aeronautical jargon.

Instead, equation 27 is reformulated as if the rate of working

against the self-induced downdraft were an actual contribution to

the total aerodynamic drag. Power equals drag times speed, so

drag equals power divided by speed. The ‘‘induced drag’’ D i can

therefore be written as

D i ¼ Pi/V ¼ W 2/rV 2b2. (28)

This is no minor matter. The square of the airspeed appears in the

denominator, not the numerator. When the airspeed increases, the

induced drag decreases in a hurry. When an airplane flies twice as

fast as its design speed, its induced drag decreases by a factor of 4.

The other side of this coin is devastating, however: when the speed

is halved, the induced drag becomes 4 times as large. This is why

everything that flies is uneconomical at low speeds, and this is

why the most economical speeds of birds and airplanes are high

relative to those of other ways of locomotion and transportation.

Animals that move on land are supported by the ground; animals

that fly have to support themselves by speeding—and the faster

the better, because sufficient lift to overcome gravity then is

obtained without causing large disturbances in the air passing by.
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Equation 28 has another surprise in store. It is not only the

square of the speed that appears in the denominator; the square of

the wingspan b is there too. When you manage to double the wing-

span, you are awarded by a fourfold reduction in induced drag.

(Birds could also generate the lift required by surfing on their bel-

lies, which is how human skydivers do it. But that generates outra-

geously high induced drag, giving your flight an abominably low

finesse. If you want to fly economically, your wings must be

slender.)

The slenderness of wings is the ratio between length and width.

But the width of most wings does not remain constant along the

span; it usually tapers off toward the tips. For this reason, aeronau-

tical engineers use the ratio b2/S. This ratio, called the ‘‘aspect ra-

tio’’ in the English technical literature, is assigned the symbol A.

Dutch aerodynamicists use the equivalent of ‘slenderness’ instead,

conjuring up images of shapeliness, grace, elegance, and refine-

ment. That is most appropriate, as we shall see in a moment. Using

A ¼ b2/S and dividing equation 28 by W, we obtain

D i/W ¼ W/rV 2SA. (29)

The right-hand side of this equation contains the same rV 2S that

occurs in equation 24. Using that opportunity, we can write the

induced drag as

D i/W ¼ na/A. (30)

We are on the right track here. The induced drag decreases with

decreasing angle of attack a and with increasing aspect ratio. That

makes sense. The angle of attack decreases when one flies faster,

and faster flight means less energy loss to the tip vortices. The

advantages of a high-aspect-ratio wing are obvious: if the distance

between the wingtips is large, the energy lost in the tip vortices is

small.

If we were to go on this way, we might come close to convincing

ourselves that wings should always be as slender as they can be.

But that isn’t true. Aerodynamic friction counterbalances induced
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drag. Induced drag decreases as the square of the airspeed, but fric-

tional drag increases at the same rate, as was explained in chapter

2. The total drag is the sum of frictional drag and induced drag; in

the simple theory used here, it has a minimum when the frictional

drag equals the induced drag. On that basis, a few more calcula-

tions, found in the professional literature but not reproduced here,

give the following results. At the airspeed that maximizes the fi-

nesse L/D, we obtain

L/D ¼ p
(A/f ), (31)

a ¼ 10
p
( fA). (32)

Here f is the friction factor, a non-dimensional representation of

the frictional drag. The factor 10 in equation 32 has been chosen

so that the angle of attack, a, can be measured in degrees. Keep in

mind that when a goes up speed comes down, and vice versa.

When an airplane has just passed the top of a cumulus cloud, its tip vortices cause
quite a stir.
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A Boeing 777 has a very good finesse: L/D ¼ 20. Relative to most

airliners, its wings are slender: A ¼ 8.7. Putting these numbers into

equation 31, we obtain the friction factor f ¼ 0.022. Using this in

equation 32 and recalling that A ¼ 8.7, we obtain a ¼ 4.5�. Or take

a gliding jackdaw, with A ¼ 6.2 and L/D ¼ 12.5, as measured in

Lund. Its numbers are f ¼ 0.040 and a ¼ 5.0�. How about a wan-

dering albatross? With A ¼ 19 and L/D ¼ F ¼ 25, we find f ¼ 0.030

and a ¼ 7.5�. Open-class sailplanes have A ¼ 38 and F ¼ 60, so

that f ¼ 0.011 and a ¼ 6.3�.

Equations 31 and 32 make perfectly clear how the case of friction

versus aspect ratio should be argued. Equation 31 shows that low

friction and high aspect ratio contribute equally to the glide ratio,

and equation 32 supports that by saying that we shouldn’t fool

with the angle of attack if a high glide ratio is our goal. In fact,

equation 32 supports the crude but robust choice made in chapter

1: economical cruising flight is achieved when the angle of attack

is kept close to 6�.

What goes wrong if you don’t follow this wisdom? Suppose you

want to give an airplane high-aspect-ratio wings, but are willing to

cope with a high friction factor (perhaps because you refuse to in-

vest in retractable landing gear)? Equation 31 shows that this

reduces L/D, which was to be expected. But equation 32 shows

that a has to increase, perhaps to a point where your airplane is

stalling because it has lost too much speed. With more frictional

drag, you have no choice but to slow down. The wings of your

plane will now keep you in the air only if you pull back on the

control stick. And since you have to fly slower, you might just as

well choose larger but stubbier wings. In short: if f is larger than

usual, A might just a well be smaller than you first had in mind.

For house sparrows and hang gliders, smooth streamlining does

not have high priority. Their wings must be able to withstand fre-

quent folding and considerable abuse, since accidental collisions

with obstacles occur all too often. Conversely, if you want to get

the best of both worlds, you have to aim for the smallest feasible

friction factor and the largest glide ratio that you can manage. The
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word ‘slenderness’ thus acquires a deeper meaning. If you want to

achieve a high value for the finesse, you will have to give your

plane elegant, slender wings, but you also will have to improve its

streamlining: sleek curves, smooth surfaces, absolutely no loose or

poorly fitting parts, no dangling legs, everything flush and tight.

It is useful to continue this train of thought with a few more

numbers. The major difference between the Boeing 747-400 and

its predecessors, the 747-200 and the 747-300, is the increase in

wingspan from 60 to 65 meters. Correspondingly, the aspect ratio

A increased from 7.0 to 7.8, about 11 percent. Assuming that the

friction factor didn’t change from one model to the next, this gives

a more than 5 percent increase in the glide ratio. Boeing’s engi-

neers played it safe: they claimed a 3 percent decrease in fuel con-

sumption. And in designing the 777, they bet on the same horse

by increasing the aspect ratio even more (A ¼ 8.7), thus adding

another 5 percent to the finesse. Boeing discarded the once-

fashionable habit of increasing the effective span of a wing by

fencing it off with winglets, such as those that grace the tips of

the 747-400 and several recent versions of the 737. If you want a

higher aspect ratio, you might just as well increase the length of

the wing spars. Structural engineers prefer that option.

With these deliberations in mind, it is instructive to study the

values of F and A for various birds. A number of examples have

been collected in table 5. Many of the numbers for F given in this

table are quite different from those in the first edition of this book.

For example, I now list crows as having a finesse of 10, not 5. My

estimates for the performance of other birds have changed consid-

erably, too. I have assigned F ¼ 15 to herring gulls because their

wings are so much narrower than those of a jackdaw, which

reaches F ¼ 12 in the wind tunnel. Recent wind-tunnel measure-

ments of swifts and barn swallows determine the numbers given

for them, and the observed migration performance of godwits,

knots, and plovers necessitates that their finesse be estimated as

F ¼ 14. The values given for large soaring birds of prey (raptors,

to the experts) are based on their observed soaring performance.

Flying with Finesse 125



Table 5 Aspect ratio A and finesse F for various birds and airplanes. The values for A have
been calculated, those for F have been measured or estimated.

W (N) S (m2) b (m) A F

Magnolia warbler 0.09 0.007 0.20 6 4

House wren 0.11 0.005 0.17 6 4

Barn swallow 0.17 0.012 0.31 8 8

Chimney swift 0.17 0.010 0.32 10 10

Tree swallow 0.20 0.013 0.32 8 8

Orchard oriole 0.23 0.010 0.24 6 4

House sparrow 0.28 0.009 0.23 6 4

Swift 0.36 0.016 0.42 11 13

American robin 0.82 0.024 0.38 6 7

Purple martin 0.43 0.019 0.41 9 9

Starling 0.83 0.024 0.38 6 7

Blue jay 0.89 0.024 0.38 6 7

Common tern 1.2 0.056 0.83 12 14

Red knot 1.3 0.029 0.50 9 14

Merlin 1.4 0.044 0.60 8 9

Hobby 1.7 0.056 0.75 10 10

Kestrel 1.8 0.060 0.74 9 10

Jackdaw 2.4 0.068 0.65 6 12

Montagu’s harrier 2.4 0.130 1.10 9 11

Rock dove 2.9 0.075 0.80 8.5 8

Bar-tailed godwit 3.2 0.052 0.73 10 14

Hen harrier (male) 3.3 0.140 1.00 7 10

Cooper’s hawk 4.3 0.090 0.71 5.6 9

Royal tern 4.7 0.108 1.15 12 14

Hen harrier (female) 4.7 0.176 1.15 7.5 11

Wood pigeon 4.9 0.082 0.75 7 8

Barn owl 5.0 0.168 1.12 7.5 8

Carrion crow 5.7 0.138 0.91 6 10
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Table 5 (continued)

W (N) S (m2) b (m) A F

Marsh harrier 6.5 0.204 1.16 7 10

Goshawk (male) 7.0 0.170 0.97 5.5 9

Peregrine falcon 7.9 0.126 1.02 8 10

Red-shouldered hawk 8.0 0.166 1.02 6 11

Common buzzard 8.9 0.269 1.24 6 11

Herring gull 11 0.197 1.34 9 14

Red-tailed hawk 11 0.209 1.22 7 11

Goshawk (female) 12 0.240 1.15 5.5 10

Pheasant 12 0.088 0.72 6 4

Brent goose 13 0.113 1.01 9 12

Osprey (male) 13 0.26 1.45 8 12

Turkey vulture 15 0.44 1.75 7 11

Barnacle goose 17 0.115 1.08 10 12

Osprey (female) 20 0.30 1.60 8.5 13

Black vulture 21 0.33 1.38 6 10

Cormorant 22 0.224 1.40 9 10

Sooty albatross 28 0.34 2.18 14 20

White stork 34 0.50 2.00 8 10

Black-browed albatross 38 0.36 2.16 13 20

Golden eagle 41 0.60 2.03 7 14

Bald eagle 47 0.76 2.24 6.6 15

White-tailed eagle 50 0.72 2.10 6 14

Canada goose 57 0.28 1.70 10 14

Griffon vulture 70 1.00 2.60 7 15

Wandering albatross 85 0.62 3.40 19 25

Mute swan 106 0.65 2.30 8 10

Gossamer Condor 1,000 70 29 12 20

Daedalus 1,000 31 34 37 38

Hang glider 1,000 15 10 7 8
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Several smaller birds of prey have flown in wind tunnels; I base my

estimate for buzzards (F ¼ 11) on those data. Wherever it seemed

necessary, I took into account that slender wings lead to better

glide ratios. Montagu’s harrier (Circus pygargus) has very slender

wings, but I did not dare to assign it a value of F better than the

measured value for a jackdaw, because no other raptor of that size

comes even close. I hope a biologist with a wind tunnel will at-

tempt to find out if the number I give is too conservative.

There is a significant difference between standard-class and

open-class gliders. For good reasons, the standard class has a pre-

scribed wingspan: 15 meters. If the span were left to the discretion

of the designers, everyone capable of building a wing of greater

span would be able to achieve a higher finesse (that is, a better

glide ratio). A rigid limit on the wingspan amounts to a firm upper

limit on A, and thus the standard class needs no handicap rules.

Like an albatross, a standard-class glider has an aspect ratio of

about 20.

Table 5 (continued)

W (N) S (m2) b (m) A F

Parawing 1,000 25 8 3 4

Powered parawing 1,700 35 10 3 4

Ultralight 2,500 15 10 7 8

Standard-class sailplane 3,500 10.5 15 21 40

Icaré solar plane 3,600 25 25 25 35

Open-class sailplane 5,500 16 25 39 60

Boeing 737-900 850,000 125 35 10 15

Boeing 777-300 3,510,000 435 65 10 20

Boeing 747-400 3,950,000 524 65 8.1 16

Airbus A380 5,600,000 845 80 7.5 16

Chapter 4 128



In the open class, designers attempt to achieve extremely high

values of A. This is no minor undertaking. Aspect ratios as high as

40 make sense only when the skin of the wings, the tail, and the

body is extremely smooth, with every seam or crack securely

taped. Besides that, the wing spars must withstand enormous

bending forces with little flexing, and this makes a sailplane much

heavier. The empty weight of a standard-class sailplane is about

250 kilograms (550 pounds); that of an open-class sailplane is

about 450 kilograms. Nevertheless, it is tempting to increase the as-

pect ratio of the wings.

Buzzards, eagles, vultures, harriers, and various other birds of

prey spend their days soaring around in thermals. A relatively low

wing loading keeps a bird’s airspeed down, enabling it to achieve a

low rate of descent (less than a meter per second). A typical aspect

ratio for such a bird is 7. Nevertheless, the finesse of these birds is

higher than expected: F ¼ 10. Some investigators have speculated

that fully spread primary feathers (the strong quills on the tip of

each wing), with wide gaps between them, produce an effect simi-

lar to that of increased wingspan (figure 17). A final verdict has not

yet been reached.

The Jackdaw in Sweden: Gliding and Flapping

A young female jackdaw (Corvus monedula) demonstrated supe-

rior gliding performance in the Lund wind tunnel. This forced me

to make radical revisions in my thoughts on flapping and gliding.

Two things stood out: its finesse (glide ratio) was much better than

I had assumed for many years, and its best gliding speed was much

lower than any of the travel speeds I had seen in the research liter-

ature.

As far as the gliding is concerned, I could have known better if I

had just been more attentive. I once had lunch in a restaurant

embedded in the cliffs on the North Cape at Lanzarote, one of the

Canary Islands. These cliffs are exposed to the northeasterly trade

winds, which make them an ideal location for soaring. Brilliant,
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Figure 17 Dimensional data on various birds of prey. All the species in this figure except the
peregrine falcon (a high-speed design) have been adapted to slow soaring.

Chapter 4 130



daring soaring exhibitions were performed by the gulls there, ex-

actly as I had expected. But occasionally a jackdaw would join the

fun, matching the various stunts of the gulls. It did not cross my

mind that these jackdaws couldn’t have competed with the gulls if

their aerodynamic performance had been far inferior. By the time I

realized my misapprehension, many years later, a friendly biolo-

gist had explained to me that jackdaws are cliffs dwellers by origin,

and that the evolution of the species would have given them quite

respectable soaring characteristics.

The jackdaw in Lund had a weight of 1.8 newton, a wing area of

0.059 square meter, and a wingspan of 0.60 meter. The cruising

speed computed from equation 2 in chapter 1 is 9 meters per sec-

ond. The flight speed for the best glide ratio in the wind tunnel

was 8.5 meters per second, not too different from the number

White-tailed eagle (Haliaetus albicilla): W ¼ 50 N, S ¼ 0.72 m2, b ¼ 2.20 m.
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obtained with equation 2. At that speed the glide ratio was 12.5,

the number that surprised me so much.

The fantastic glide ratio of jackdaws was a pleasant surprise, but

what bothered me was that the migration speed of jackdaws is

much higher than 8.5 meters per second. In 2001 the Swiss Orni-

thological Institute reported 15 meters per second (34 miles per

hour), and in 2007 the Lund University group reported 12.5 meters

per second (28 miles per hour). I first attempted to reconcile these

numbers by extrapolating the observed gliding performance to high

speeds, but that didn’t help. Wings designed for 9 meters per sec-

ond create far too much drag at higher speeds. What had I done

wrong? I hadn’t taken into account that flapping wings are like

two-stroke engines. The downstroke is the power stroke; in the up-

stroke wings recuperate from the work just done. How to perform

the downstroke without undue energy loss? Not by forcing the

wings to do their job at a too high angle of attack. Not only would

that bring the wings close to stalling, but it also would greatly in-

crease the induced drag (see equation 30). It is much smarter to

keep the angle of attack during the downstroke equal to the one

that gives the best glide ratio. Since the downstroke has to produce

a lift force equal to twice a bird’s weight, and the lift is propor-

tional to the square of the speed, the proper solution is to fly 40

percent faster. This is a drastic simplification, but it allows me to

make the jump needed for a first attempt at reconciling the

observed gliding performance with the observed migration speeds.

I decided to resolve the matter by making a graph (figure 18). I

plotted the glide data from the wind tunnel in two ways: as drag

versus speed (curve A) and as power versus speed (curve C). Curve

A is equivalent to the jackdaw curve in figure 15, but upside down.

In gliding, gravity provides the power needed to maintain speed.

At 7.5 meters per second, the rate of descent of the jackdaw was

0.6 meter per second. The power supplied by gravity to a 1.8-

newton bird then was 0.6 � 1.8 ¼ 1.08 watt, as figure 17 shows.

The next thing I did was to slide the drag curve 40 percent to the
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Figure 18 Observed gliding performance and estimated flapping performance of the jackdaw in
the wind tunnel at Lund University. Curve A is the drag computed from the wind-
tunnel data. The drag is lowest at a flight speed of 8.4 meters per second. The cor-
responding glide ratio is 12.5. Curve B is the estimated drag during flapping flight. It
is obtained from curve A by shifting it 40 percent to the right, and giving it a 20 per-
cent penalty to account for upstroke losses. Curve C gives the power provided by
gravity in gliding flight. It is obtained from curve A by the formula P ¼ DV (power
equals drag times speed). Curve D is the estimated power required for flapping
flight, obtained in the same way from curve B. At a flight speed of 12 meters per
second, flapping flight is most economical. The power needed at that speed is a bit
more than 2 watts. The estimated maximum continuous power from the flight
muscles is 3.6 watts, permitting migration speeds up to 16 meters per second.



right, adding a 20 percent penalty to account for upstroke losses.

This procedure resulted in curve B, which has its minimum at 12

meters per second, not far from the migration speed recorded by

the Swedes. Minimum drag means minimum fuel costs per mile,

so 12 meters per second is appropriate for migrating jackdaws not

in a desperate hurry. Curve B is an estimate, but it isn’t in gross

disagreement with the sparse facts.

Using P ¼ DV to convert drag to power, I obtained curve D from

curve B. The difference in power level between gliding and flap-

ping is remarkable. Almost 1.2 watt is enough when gravity does

the work, but 2 watts or more are needed in flapping flight. How

much power can be supplied by the flight muscles? The rule of

thumb is that the pectoral muscles of a bird can deliver 20 watts

per kilogram of body mass. For a 180-gram bird this computes as

3.6 watts of maximum continuous power. Comparing this with

curve D in figure 17, I conclude that jackdaws can manage 16

meters per second if they are behind schedule or if they run into

headwinds. The speed reported by the Swiss radar crew is 15

meters per second, just a little less than the computed top speed.

I am aware the computed numbers presented are merely esti-

mates. I would much prefer actual wind-tunnel data on flapping

jackdaws, but no such data are available. The numbers given here

are mutually consistent, however, and provide a plausible explana-

tion for the difference between the best gliding speeds and the

speeds chosen during migration.

Blue underwing (Catocala fraxini ): W ¼ 0.012 N, S ¼ 0.0027 m2, b ¼ 0.08 m.
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Hummingbirds and Other Hoverers

Hummingbirds and many insects sip nectar from flowers while

hovering in the air. Relative to forward flight, this way of living

requires a lot of energy. As might be expected from equation 26,

the induced power Pi becomes very large when the forward speed

V becomes zero. Some calculations are in order.

For the second time we use the principle that a force equals the

product of a velocity imparted by an object and a mass flux. The

mass flux generated by the buzzing wings of a hummingbird is

about one-fourth of dwb2, where w is now the downward velocity

in the jet of air that keeps the bird aloft. It is useful to compare

this with equation 23, where the airspeed V plays the role that w

plays here. The aerodynamic lift generated by the momentum

transfer to the jet is

W ¼ 0.25rw2b2. (33)

Hummingbirds and most insects do not have particularly slender

wings; A ¼ b2/S typically has a value around 6. Substituting this

into equation 33, we obtain

W ¼ 1.5rw2S. (34)

Again we need equation 1, which reads

W ¼ 0.3rV 2S.

This allows us to compare the downward velocity w in the jet of

air by which the hovering bird or insect keeps itself aloft with the

nominal cruising speed V:

w ¼ 0.45V. (35)

This relation explains why hummingbirds, wasps, bees, and bee-

tles have computed cruising speeds of roughly 7 meters per sec-

ond. When we substitute V ¼ 7 meters per second into equation

35, we obtain

w ¼ 3 meters per second.
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We have seen this type of expression before. The rate of descent of

a gliding bird is a measure of the specific power, P/W, that it needs

in horizontal flight (equation 21). For hovering birds and insects,

the downward velocity of the airstream generated by the wings

plays exactly the same role. Since the continuous power rating of

flight muscles is about 100 watts per kilogram, and since about 30

percent of the overall weight of hovering birds and insects consists

of flight muscles, the specific power output is about 30 watts per

kilogram of overall weight, or 3 watts per newton. But watts per

newton equal meters per second. At full power, therefore, hum-

mingbirds and bees can generate a jet with a velocity of 3 meters

per second to keep them airborne. But that is exactly what we cal-

culated above! In other words, hummingbirds and bees are running

at full power continuously. In retrospect, the airspeed of 7 meters

per second at which hummingbirds, bees, wasps, and beetles are

listed in figure 2 is not primarily a measure of the cruising speed

they can maintain. (They have plenty of spare power with which

to fly faster if they want to.) Instead, it is a measure of the strength

of the jet they can generate beneath their buzzing wings (3 meters

per second).

Mallard (Anas platyrhynchos): W ¼ 11 N, S ¼ 0.093 m2, b ¼ 0.9 m.
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Hummingbirds have evolved to run at full power all the time be-

cause the job of transferring momentum to the surrounding air is

strenuous when the forward speed is zero. The same is true for

helicopters: they can relax a little only when their forward speed

is high enough. In forward flight it is much easier to transfer the

required momentum to the air. How does this work out for larger

birds? Isn’t it true, for example, that many kinds of ducks are capa-

ble of vertical takeoff and landing? The wing loading of a mallard

(Anas platyrhynchos) is about 120 newtons per square meter. This

corresponds to a cruising speed of roughly 18 meters per second.

On vertical takeoff a mallard must therefore generate a downward

jet with a velocity of 8 meters per second (equation 35:

0.45 � 18 ¼ 8). But that requires 8 watts of takeoff power per new-

ton of weight. That is 4 times the continuous power rating of the

flight muscles. A mallard can sustain this much power for only a

few seconds. After takeoff it shifts into forward flight as soon as it

can.

Now we can also understand why the largest hummingbirds are

much smaller than the largest birds. For hummingbirds the upper

Puffin (Fratercula arctica): W ¼ 2.7 N, S ¼ 0.035 m2, b ¼ 0.56 m.
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limit is about 20 grams, while the largest birds weigh approxi-

mately 10 kilograms. Hovering is an uneconomical way of life.

How much fuel does a hummingbird consume? Sugar supplies

14 kilojoules per gram, as does honey. Nectar, half water and half

honey, supplies 7 kilojoules of energy per gram. With a metabolic

efficiency of 25 percent, the hummingbird’s net production of me-

chanical energy is a little less than 2 kilojoules per gram. Now we

have to calculate the power requirements. The energy transferred

to the downward jet of air is W � w joules per second. A 3-gram

hummingbird hovering at full power, with w ¼ 3 meters per sec-

ond, therefore requires a mechanical energy supply of 0.09 joule

per second. After all, 0.03 newton times 3 meters per second

equals 0.09 watt. Since there are 3,600 seconds in an hour, the

hummingbird needs a little more than 300 joules per hour. Nectar

supplies 2,000 joules per gram; thus, a gram of nectar suffices for 6

hours of flying. But this implies that a 3-gram bird consumes its

own weight in fuel every 18 hours! One hopes that hummingbirds

are permitted some rest at night, because a full day’s work in the

tropical rain forest requires two-thirds of its weight in nectar. This

kind of luxury is feasible only in the overwhelming extravagance

of a tropical ecosystem, where flowers bloom abundantly through-

out the year.

In view of the high fuel consumption of hummingbirds, it is even

more amazing that some species migrate over long distances. Every

autumn the ruby-throated hummingbird travels from the United

States to Central America, crossing the Gulf of Mexico on its way,

and every spring it retraces its route. It could not manage if it could

not switch from burning sugars to burning fats on long hauls. The

journey across the Gulf of Mexico takes about 30 hours (500 miles

at 17 miles per hour). I can’t imagine how the hummingbird could

perform that feat on sugar water alone, though it is smart enough to

wait for a firm tailwind before it takes off.
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Gossamer Albatross: W ¼ 940 N, S ¼ 70 m2, b ¼ 29 m.



5 Flying Playthings

Among the redeeming qualities of our species is that we play. In-

deed, we surround ourselves with toys, and we remain preoccupied

with them throughout life. Flying toys range from paper airplanes,

kites (some simple, many exotic), boomerangs, frisbees, aerobees,

and spring-powered toy birds to radio-controlled model airplanes,

full-scale hot-air balloons, blimps, airships, hang gliders, ultra-

lights, and sailplanes. There are home-built racers, human-powered

airplanes, and even solar-powered planes. We display almost in-

conceivable creativity as we tinker with our playthings. The force

of imagination and the passion for experimenting propel us toward

outrageous designs and technological experiments.

By the mid 1970s, sailplanes had achieved a finesse of 40 and a

rate of descent of 60 centimeters per second (120 feet per minute).

One would think that this would satisfy even the most fanatical

glider pilots. (A lot of work was needed to maintain this kind of

performance. Every weekend started with hours of scrubbing and

polishing, and after every flight the dead bugs had to be removed

from the leading edge of the wings. To keep the finesse from drop-

ping to 20, the wings had to be perfectly smooth.) Designers didn’t

see much scope for progress: more sophisticated airfoil designs

would require expensive wind-tunnel tests and computer simula-

tions, and longer wingspans were not possible with the structural

materials then available.

The wind-tunnel problem was not as difficult as it seemed. The

smart thing to do when you need sophisticated equipment is to get

in touch with professionals. Before you know it, they are as enthu-

siastic as you are and will use their spare time to do the necessary



research. The Schleicher ASW-22B open-class competition sail-

plane, for example, achieves a finesse of 60 in part because of a

wingtip design that was lovingly perfected in Delft, in the same

aerospace engineering department where I studied many years

ago. It must have cost untold hours to wring that last bit of progress

out of a mature technology.

The great breakthrough in sailplane construction came around

1980, when various new materials arrived on the scene: carbon

and aramid fibers, expanding foam fillers that made ‘‘sandwich’’

construction possible, and adhesives that could withstand struc-

tural stress. It was some time before appropriate assembly methods

were developed, but after that the designers had a field day. In air-

plane technology, where every ounce of superfluous weight must

A toy ornithopter.
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be avoided, such opportunities are exploited. Boeing’s 747-400

saves about 7,000 pounds through the use of advanced materials

and construction techniques. If it would use the saved weight to

carry an additional pallet of fresh flowers across the ocean, it

would earn almost $10,000 extra. Toymakers are just as quick to

take advantage of space-age technology. The frame of the Revolu-

tion kite is made of ‘‘100% aerospace graphite,’’ most kites nowa-

days have Dacron sails and Kevlar or Dyneema strings, the wing

spars of human-powered airplanes are made from aramid fibers,

and nearly all sailplanes are now built with vacuum-formed com-

posite construction techniques, which combine low weight with

great rigidity. Through such advances, today’s best competition

sailplanes, with a wingspan of 25 meters, achieve a finesse of 60

and a rate of descent of 40 centimeters per second (80 feet per min-

ute). In finesse they beat albatrosses, the best nature has to offer, by

a factor of 3, and in rate of descent they outperform their nearest

avian competitors, swifts and swallows, by a factor of 2, even

though the birds have a substantially lower weight, wing loading,

and cruising speed. In fact, open-class competition gliders perform

so well that they carry 200 liters of water as ballast. Aeronautical

engineers are always keen to save weight, yet here are competition

sailplanes taking ballast along! Why? As we saw in chapter 4, the

distance covered in gliding is determined by the finesse. In turn,

the finesse is determined by streamline shape, surface smoothness,

and wing aspect ratio, not by wing loading. As the weight of an air-

plane increases, its speed must increase, but its finesse remains the

same. Therefore, if you are in a hurry or if you want to cut your

losses in a headwind, you are better off if you are overweight: that

increases your cruising speed. The only sacrifice you make is that

your rate of descent increases somewhat, but it was extremely low

anyway. So, contrary to all aeronautical principles, you make your

sailplane heavier than is strictly necessary. And in order to have

the best of both worlds, you arrange it so that you can dump your

ballast when the updrafts are weaker than anticipated. Water is
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useful for this purpose, since at worst it might create an unex-

pected shower for some innocent bystander.

A wide range of flying playthings is available. At one end we find

indoor flying models, which are designed for extremely low speed.

Even with a rather modest finesse (F ¼ 8 at best), such a model

achieves a very low rate of descent. Its wing loading is only 0.1

newton per square meter, one-tenth that of a small butterfly. The

largest of these models have a 90-centimeter wingspan (3 feet), a

wing area of 1,000 square centimeters, and a weight of 2 grams

(less than a sugar cube). Half of that weight is accounted for by a

tightly wound rubber band driving a very large and slow propeller.

In a sports hall, such a model achieves a flight duration of 45

minutes, traveling only half a meter per second. Once the propeller

stops turning, the model loses altitude at a rate of 5 centimeters per

Icaré 2, a solar-powered airplane: W ¼ 3,500 N, S ¼ 21 m2, b ¼ 25 m.
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second (10 feet per minute). Its rate of descent is one-sixth that of a

cabbage white. At the other end of the scale are airplanes spe-

cifically designed for racing. The Questair Venture, with a 224-

kilowatt (300-horsepower) Porsche engine, reaches a top speed of

463 kilometers (290 miles) per hour on wings with a surface area

of less than 7 square meters. The engine alone accounts for 30 per-

cent of the takeoff weight. When you hit the throttle for the first

time in this machine, you had better take care; it is probably just

as temperamental as the late-model Hurricanes and Spitfires of

World War II.

Whereas the top speed of a 300-horsepower sports car is only

160 miles per hour, a sports plane with the same engine goes

nearly twice as fast. If you really get a kick from speed, you would

do better to take up flying. At least you won’t be a menace to others

on the freeways.

You don’t really need several hundred horsepower to have

plenty of weekend flying fun; 30 will suffice. You can see why at

any airstrip where ultralights are flown. You will find them there

Questair Venture: W ¼ 8,000 N, S ¼ 6.76 m2, b ¼ 8.40 m, P ¼ 224 kW (300 hp).
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in many shapes and sizes—ragtag contraptions held together by

steel cables and covered with spinnaker nylon. They look like

hang gliders with tricycle gear and lawnmower engines. If you

want to fly a hang glider, you must first find a mountain slope and

wait for sufficiently strong winds, but with an ultralight you can

come and go as you please, even on the plains and in quiet

weather. If you don’t mind spending the additional effort, you can

even attach flotation gear. That gives you the opportunity to visit

quiet lakes in the countryside.

Suppose you want to design your own ultralight. Allowing 70

kilograms for your own weight, 40 kilograms for the wings, 30 kilo-

grams for the engine and the propeller, and several tens of

kilograms for wires, cables, piping, frame, wheels, and a small fuel

tank, you can estimate the total flying weight as 200 kilograms

(440 pounds). Suppose you wish to cruise at 60 kilometers per

hour (almost 17 meters per second). The first step in the design

process is to consult equation 2, which shows that a wing loading

of 106 newtons per square meter is required. From this number

and the 2,000-newton overall weight, it is a small matter to calcu-

late that the wing area must be 19 square meters (200 square feet).

Now look at figure 15. A finesse of 8 would seem reasonably con-

servative; you can’t pretend to aim for sophisticated streamlining.

With a cruising speed just under 17 meters per second and a fi-

nesse of 8, the rate of descent of your ultralight will be a little over

2 meters per second. But the rate of descent tells you how much

power you need to keep your weight airborne: w ¼ P/W, as equa-

tion 21 shows. Since W ¼ 2,000 newtons and w ¼ 2 meters per sec-

ond, this puts the power required at 4,000 watts. But that is not

enough. If you want to be able to climb at a rate of 3 meters per sec-

ond (600 feet per minute), you will need an additional 6,000 watts,

for a total of 10,000 watts. Ten kilowatts, or 14 horsepower, doesn’t

seem much. But you haven’t yet factored in that you are stuck with

a somewhat small and fast propeller. In this application a fairly

large and slow propeller would be best, but you must make do

with a small propeller mounted directly to the crankshaft of a
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Figure 19 Two amphibious ultralights.
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fast-running engine. At best you can hope for a propeller effi-

ciency of 50 percent, and this forces you to select a 20-kilowatt

(27-horsepower) engine. Now the time has come to sit down at a

drawing board and work out the details of your design, making

allowances for the unforeseen so that, for example, a wing de-

sign that turns out to be slightly heavier than expected will not be

disastrous.

For just about anything that flies it is a good idea to maximize

the finesse, given all the other design constraints. A kite, however,

doesn’t really benefit from a finesse higher than 2. An aerodynami-

cally advanced kite with slender wings will float almost straight

above your head. But a kite is not stable in that position. It will be-

have like an errant sailplane, dangling a slack string behind. Since

the string has fallen slack, a brisk tug won’t help; the kite will float

around until it begins to drift sideways. By the time it draws its

string taut, the sideways dive of the beautiful design you worked

so hard on over the weekend will have become uncontrollable.

A two-string kite can be maneuvered out of danger, and Dacron

cloth and carbon-fiber spars can stand a lot more abuse than the

Chinese paper and bamboo spars of earlier days. Still, kites per-

form best when they draw their strings taut. This requires stalled

airflow over the wings—an aerodynamic condition that birds and

aeronautical engineers will do anything to avoid.

An aeronautical engineer would also hesitate before selecting a

steam engine to power a plane. It is far too heavy, and its thermal

efficiency is hopelessly poor. Yet the first powered model airplane

in the world was driven by steam. In 1896 the American aviation

pioneer Samuel Pierpont Langley flew a powered model airplane

across the Potomac River near Washington, a distance of more

than two-thirds of a mile. The craft had tandem wings spanning 12

feet and weighed 30 pounds. With its boiler, the steam engine

weighed 7 pounds. The power delivered to the propeller was prob-

ably only 300 watts, one-tenth the power output of a combustion

engine of the same weight, but the event was a significant step for-

ward in the history of aviation. Seven years later, on December 17,

1903, the Wright brothers made their historic flight at Kitty Hawk.
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A flock of geese flying in formation with an ultralight airplane, taking advantage of
the updrafts caused by the tip vortices.
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Trials with a Paper Airplane

A book on flight would not be complete without a few pages on pa-

per airplanes. Who hasn’t played with a paper plane at one time or

another? Without getting distracted by intricate folding techniques,

you can easily make a paper plane that concentrates on the art of

flying. All you need is a 4 � 6-inch index card and a large paper

clip (figure 20). (A smaller, thinner piece of paper and an ordinary

paper clip are suitable, too; there is room enough for experimenta-

tion here.) You will see why you need the paper clip as soon as

you attempt to launch your model plane. You do that by giving it

a push forward, at a speed comparable to that of walking. But it

doesn’t want to fly; it starts to tumble backward. The reason is that

the center of gravity of the index card lies in the middle of the pa-

per, while the aerodynamic forces are located in front of the center

of gravity. The problem is solved by shifting the center of gravity of

the index card forward—hence the paper clip. The plane’s center

of gravity should be located at roughly 30 percent of the distance

between the leading and trailing edges of the wing.

Don’t make any fold or crease in the index card yet. Position the

paper clip carefully, making sure that it sits exactly on the center-

line, and resume your flight trials. You will discover soon enough

that a paper airplane is extremely sensitive to the exact location of

the center of gravity. If you move the paper clip just a little too far

forward, the plane dives into the ground; if you slide it back even a

fraction of an inch, the plane can’t seem to settle down to a smooth

and steady glide. As the nose moves up, the plane loses speed until

it stalls, its nose drops, and its speed increases. But then the nose

moves up again, and the process repeats itself. If the center of grav-

ity is a little too far to the rear, the paper airplane behaves exactly

like the juvenile herring gull mentioned in chapter 3.

Your airplane will be in proper trim when the center of gravity is

in the right place. It will then glide smoothly. Knowing that a very

high finesse cannot be expected from a simple piece of paper, you

may note with satisfaction that your plane glides 4 feet for each

foot of altitude lost. F ¼ 4: not bad for a toy. But not all is well yet.
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Figure 20 A simple paper airplane. The center of gravity should be located at about 30 percent
of the chord (the distance between the leading edge and the trailing edge). The con-
trol surfaces in back can be used both as elevators and as ailerons. Once you have
adjusted the position of the paper clip for optimum performance, fix it with a piece
of tape.
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From time to time your plane starts sliding sideways, slowly at first

but gradually faster. Experimenting in a gym or in the stairwell of a

large office building, you will find that your plane tends to acceler-

ate into a high-speed ‘‘spiral dive.’’ It has a disappointing instabil-

ity, and it cannot maintain a stable course. But exactly what is

going wrong? Since there is still no fold in the index card, your air-

plane is just a flat piece of paper; it can slide sideways through the

air without meeting any resistance. As figure 20 shows, you can

correct this by simply making a crease along the centerline. The

wingtips are slightly higher now; if the plane tends to slide to the

left, the left wing will be pushed up some and the right wing

pulled down. The plane rolls to the right, starting a right turn to

correct for the sideslip to the left, exactly as a bicyclist counters a

gust of crosswind. This is the remedy for the spiral dive. Your

plane is now directionally stable.

Once you have caught the spirit of experimentation, you will do

well to fix the paper clip with tape. It is also a good idea to fold the

trailing-edge corners of the wings up a little so they will serve as

control surfaces and make the plane fly slower. Don’t overdo it,

though; the plane is very sensitive to changes in control-surface an-

gle. With some dexterity and a bit of patience you can make your

plane fly near the stalling speed. The control surfaces will also

come in handy if the paper clip shifts a little after a crash landing

A Norway maple samara (Acer platanoides): W ¼ 0.002 N, S ¼ 0.0015 m2, b ¼
0.10 m.
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into the furniture. You need not put it back to the original position,

since changes in control-surface angle can easily compensate for

minor shifts in the center of gravity. An airliner corrects for differ-

ences in its load distribution in the same way: if the center of grav-

ity moves forward, the elevators (the movable parts of the tail) turn

up a few degrees to keep the nose of the airplane up. That is how,

notwithstanding variations in its load distribution, an airliner can

keep its balance. But there is not much room for error, for the cen-

ter of gravity must stay within narrow limits.

The control surfaces of your paper airplane can also be used to

make it turn. If you want it to turn left, turn the left corner up a lit-

tle; if you want it to turn right, do the same on the right side. Now

you are using the control surfaces as ailerons. Small aileron deflec-

tions are needed also to make sure that your plane keeps flying

straight if a minor mishap should make it somewhat asymmetrical.

There is one more kind of instability that you may run into: if

your paper plane finds it difficult to fly at constant speed, it suffers

from what aeronautical engineers call the ‘‘phugoid.’’ This is best

A flock of whooping cranes following an ultralight at a comfortable flight speed of
40 miles per hour.
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corrected by shifting the center of gravity forward and turning the

control surfaces further upward. In any event, you should avoid

shifting the center of gravity so far back that the control surfaces

must be bent down to maintain trim. That is asking for disaster.

Pedal Power

People have always dreamed of flying under their own muscle

power. In Greek mythology there is the famous story of Daedalus,

an inventor in the court of King Minos. Because he had assisted

Ariadne in arranging for Theseus to escape, Daedalus was impris-

oned in a labyrinth of his own design. But he and his son Icarus

managed to flee from Crete by constructing wings made of goose

feathers and beeswax. Icarus, the story tells, flew too close to the

sun, and the wax melted. He crashed and drowned. Daedalus, on

the other hand, managed to reach the continent safely. Many cen-

turies later, Leonardo da Vinci made sketches of helicopters and

human-powered airplanes. The flapping wings he tried to design

were not a very sound idea: our leg muscles are much more power-

ful than our arm muscles, not to mention the construction prob-

lems encountered when designing oversize flapping wings. But

the dreaming continued; around 1990 Otto Lilienthal conducted

his famous experiments with hang gliders.

The development of human-powered airplanes began in earnest

after World War I. In the years before the war, the aforementioned

Ludwig Prandtl of Göttingen, Germany, one of the founders of

modern aerodynamics, had systematized the basic principles of

flight. The spectacular progress achieved by Prandtl and his col-

leagues inspired several German universities to include aeronauti-

cal engineering in their curricula, and by 1914 aeronautics had

become a popular discipline.

World War I brought the first large-scale use of military air-

planes. When the war was over, Germany was prohibited by the

Treaty of Versailles from engaging in the design or production of

war machinery. As a result, German aeronautical engineers were
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limited to designing unpowered airplanes. Then, as now, designing

an actual airplane formed an integral part of the curriculum for

senior-year students. Because fighters and bombers were out of

the question, German students focused on gliders. To this day,

European soaring competitions are dominated by teams from

universities in Berlin, Darmstadt, Braunschweig, Karlsruhe, and

Stuttgart. Each year, the professors dream up new senior-year de-

sign projects in the hope of perfecting their super-sophisticated

toys.

In the period between World War I and World War II, the efforts

of German aeronautical engineers resulted in well-engineered

gliders with creditable performance for their time. The Germans

also attempted to design human-powered airplanes, but these

were failures. After World War II there was a revival of interest in

human-powered airplanes in England. This fire was kindled by a

prize of £5,000 offered in 1959 by the industrial tycoon Henry

Kremer. It would be awarded to the first pilot who would complete

a figure-eight pattern between two posts half a mile apart. A group

at Southampton University tried first, but failed. Then the Hatfield

Man-Powered Aircraft Club took up the challenge. They built their

Puffin (figure 21) within two years. It flew it in the autumn of 1961.

Puffin was a high-tech plane for its time, but the design choices

were all wrong. The design team failed to do the simple calcula-

tions that would have told them that an extremely low airspeed

was required for a decent chance of success. Instead, they believed

they had good reasons to chose a wing area of 31 square meters.

With a total weight of 260 pounds (1,200 newtons), Puffin’s air-

speed computed at 10 meters per second (22 miles per hour), far

too fast for human athletes. Speeds like that cannot even be main-

tained for any length of time by amateurs on racing bicycles. One

way to confirm these numbers is to start with an estimate for the fi-

nesse of Puffin. I put that at 30, meaning that the aerodynamic drag

is 1
30 of 1,200 newtons—that is, 40 newtons. Drag times speed

equals power, so Puffin required 400 watts to stay in the air. Lance

Armstrong could have managed, but most bicycle racers still can’t,
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Figure 21 Three human-powered airplanes. From top: the 1961 Puffin, the 1979 Gossamer
Condor, and the 1988 Daedalus.
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not even for a few minutes. The longest hop Puffin managed was

900 meters, a little over half a mile.

The years passed, but no contender was successful. Kremer grad-

ually increased the stakes, and by 1975 the prize had risen to

£50,000. That was enough to stimulate some serious thinking on

the part of Paul McCready, an aeronautical engineer and president

of the California environmental consulting firm Aerovironment. He

started by considering available muscle power. Provided that the

effort lasts no longer than several minutes, a well-trained athlete

can attain a power output of 250 watts. McCready also realized

that the weight of the airplane must be kept low. A heavy plane

must fly fast, thus requiring too much power. McCready decided

that the takeoff weight could not exceed 100 kilograms. With a 65-

kilogram bicycle racer on the pedals, this left only 35 kilograms for

the airplane. And since one can’t expect aerodynamic perfection

from a lightweight contraption made of corrugated cardboard, pi-

ano wire, and Saran Wrap, one can’t achieve a very high finesse.

McCready chose F ¼ 20, not the F ¼ 40 that had become common

for sailplanes.

If the total weight is 100 kilograms and the finesse is 20, then the

drag is 5 kilograms, or 50 newtons. It was at this point that

McCready made the crucial computation: if you have 250 watts to

offer and you have to overcome a resistance of 50 newtons, at what

speed can you travel? Since a watt is a newton-meter per second,

250 watts will give you a maximum speed of 5 meters per second

against a 50-newton drag. (See chapters 2 and 4.) Five meters per

second, or a little over 10 miles per hour, is typical of a teenager

on a ‘‘granny bike.’’ To keep 100 kilograms airborne at a speed of

5 meters per second requires extremely large wings. The rule of

thumb from chapter 1 is

W/S ¼ 0.38V 2.

With W ¼ 1,000 newtons and V ¼ 5 meters per second, the wing

area S would have to be more than 100 square meters (1,100 square

feet)—roughly the floor space of a small two-bedroom apartment.
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McCready decided that he could achieve the same result with 70

square meters of wing area if the plane were to fly at a speed very

close to stalling.

If a plane is to achieve a finesse of 20, its wings must be very

slender. According to the data in chapter 4, the aspect ratio must

be at least 12 to yield the desired result. On this basis, McCready

calculated that his plane would need a wingspan of 30 meters

(100 feet). That’s the height of a ten-story apartment building;

that’s twice the wingspan of a standard-class glider; that’s almost

as long as two tractor-trailers; that’s the full length of a high school

gymnasium! Just think of the design job: 100 feet of wing that must

not weigh more than 25 kilograms, because the last 10 kilograms

must be reserved for a bicycle frame, pedals, gears, chains, and a

propeller. McCready’s team succeeded nevertheless, and in the

early morning of August 23, 1977, the Kremer Prize was won.

With a multitude of problems to overcome, McCready often

came close to abandoning the project. Accidental gusts caused sev-

eral crashes; after a while, all flight trials were conducted before

dawn. Fortunately, the primitive construction methods used by

his team allowed for quick repairs; McCready said he probably

wouldn’t have persevered if repairs had taken more time. He was

also lucky to have several friends who worked in the Graduate

Aeronautical Laboratories of the California Institute of Technology

and at the University of Southern California. In the early stages of

the project, McCready could not design a suitable propeller. With

only one-third horsepower available, he could not afford any en-

ergy losses. Professor Peter Lissaman helped him out by writing a

sophisticated computer program to optimize the propeller design.

A few unauthorized weekend runs on USC’s supercomputer

quickly solved the problem.

The board of directors of the giant chemical company DuPont,

prepared as ever to support intelligent dreamers, offered to sponsor

McCready’s project and to supply advanced materials, including

Mylar, Kevlar, and carbon fibers. Meanwhile, Peter Lissaman

made additional computer calculations, and other associates con-
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cocted construction methods that reduced the amount of piano

wire and thus the aerodynamic drag. The finesse inched its way

upward to 25, while the empty weight of the plane came down at

least 6 kilograms. With W ¼ 940 newtons and F ¼ 25, the drag was

not 50 newtons but 38; at a speed of 5 meters per second the power

required was only 190 watts. A professional bicycle racer in good

condition could keep that up for several hours. Long-distance trips

were coming within reach.

The McCready team was responding to Henry Kremer’s latest

challenge. Kremer had announced a prize of £100,000 for the first

human-powered flight across the English Channel from Dover to

Calais. That prize was won by Bryan Allen, the same cyclist who

had captured the first one two years earlier. On June 12, 1979, he

pedaled the Gossamer Albatross from England to France. Allen

counted on having to pedal for just under 2 hours, but near Cap

Griz-Nez he encountered unexpected headwinds. Because of the

wind, it took him 2 hours and 45 minutes to reach the other side.

Kremer just couldn’t stop teasing the human-powered-airplane

crowd. He thought McCready’s planes were far too slow, which

made them sensitive to turbulence, gusts, and headwinds. What’s

the use of a plane that can be flown only at dawn? So he offered

yet another prize: £20,000 for the first human-powered airplane to

complete a one-mile triangular course within 3 minutes. This

would require a speed of more than 20 miles per hour. Engineers

and scientists at the Massachusetts Institute of Technology used

their ingenuity to achieve a still greater finesse than the Gossamer

Albatross. Twenty miles per hour is about 10 meters per second; at

that speed, a finesse of 33 is needed to bring the drag of a 100-kilo-

gram plane down to 30 newtons. The power required then is 300

watts, a rate a professional bicyclist can maintain for 10 minutes

at best. In May 1984, the MIT team’s plane, named Monarch, won

the prize.

The dream of Daedalus came true on April 23, 1988, when the

Greek cyclist Kannellos Kannellopoulos managed to fly from Crete

to the island of Santorini, 120 kilometers away. The plane, named
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Daedalus, had a wingspan of 34 meters, a wing area of 31 square

meters, and a finesse of 38. It had been designed and built by same

MIT team (led by Mark Drela and John Langford) that had built

Monarch. United Technologies had sponsored the project with

half a million dollars. With a cruising speed of 7 meters per sec-

ond, 210 watts was sufficient—too much to demand of an amateur,

but within reach of the professional Kannellopoulos. It had taken a

team of physiologists, ergonomists, and other experts 4 years to se-

lect and train the winning pilot. Several others had been elimi-

nated from the competition because of inefficient metabolism or

poor muscle discipline. Great strength in itself is not necessarily

an asset when it comes to flying.

Solar Power

Once Paul McCready had won the two Kremer Prizes, he took to

designing solar-powered airplanes. His Gossamer Penguin, piloted

by his teenage son, managed a few brief flights on the California

desert, and on July 7, 1981 his Solar Challenger flew from Paris to

London with a human pilot in the cockpit. With financial support

from NASA, McCready also designed and built the unmanned

Pathfinder, a 250-kilogram solar-powered flying wing with a 30-

meter wingspan and six propellers, which first flew in 1993. It was

followed by a string of successors and competitors, designed to fly

day and night far above airline traffic. The proponents were dream-

ing of ‘‘eternal flight,’’ with unmanned solar planes recharging

their batteries in daylight and continuing on battery power at

night.

The ultimate challenge for solar-powered flight came when, in

1994, the German city of Ulm offered a prize of 100,000 Deutsche

Marks for a piloted airplane that would have to be capable of level

flight at half the 1,000 watts per square meter of solar power avail-

able on a sunny day and would have to withstand diving speeds up

to 70 miles per hour. The toughest requirement was that the plane

would have to take off and climb 2 meters per second (400 feet per
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minute) until it reached an altitude of 1,500 feet. With a pilot, such

a plane would easily weigh 350 kilograms, as much as a standard-

class sailplane. Lifting this weight (which amounts to 3,500 new-

tons) at a rate of 2 meters per second requires a power of

2 � 3,500 ¼ 7,000 watts. That is about 10 horsepower, far too

much to be supplied by solar cells. Obviously a pack of batteries

was needed. But those would add to the weight, making the design

puzzle harder yet.

Many groups decided to participate in the Ulm competition, but

only four showed up at the fly-off in July 1996, and only one air-

craft actually managed to fly. It was Icaré 2, designed by a team

from the University of Stuttgart. It had a wingspan of 25 meters, a

wing area of 25 square meters, and a total weight, including the pi-

lot, of 3,600 newtons (almost 800 pounds). At the design speed of

17 meters per second (28 miles per hour) it had a glide ratio of 40,

so the drag was 90 newtons. Therefore, the power required was

90 � 17 ¼ 1,530 watts (roughly 2 horsepower). Twenty-one square

meters of solar cells, with an efficiency of 17 percent, delivered

about 1,800 watts at the specified solar energy input. After deduc-

tions for transmission and propeller losses, only 1,600 watts of

power were available. But think of the opportunities! Roll your

solar-powered plane out on a sunny morning and relax on the ter-

race of the airport’s diner. While you’re having a cup of coffee,

your plane, like a giant dragonfly, is basking in the sunlight and

recharging its batteries. Then take off on battery power and climb

to 1,500 feet. On a sunny day, the power output of the solar cells

is twice as much as was specified for the Ulm competition: about

3,000 watts (4 horsepower). So you can climb higher if you want,

or you can make a high-speed crossing to the next thermal, where

you can soar and recharge the batteries at the same time.

Solar power has inspired toymakers, too. Many kinds of minia-

ture solar-powered planes have appeared on the market in recent

years. Because the energy-conversion efficiency of commercially

available solar cells is low, these toys have to fly slowly. They typ-

ically have one-fourth the wing loading and one-half the flight
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speed of birds of the same weight (figure 2). The smallest—weigh-

ing only 4 ounces, a little more than a newton—fly no faster than

the Gossamer Condor: about 5 meters per second (11 miles per

hour). A large cluster of solar toy planes centers around a weight

of 10 newtons (somewhat more than 2 pounds), with a wing load-

ing of 25 newton per square meter, a wingspan of 5 feet, and a

speed of 8 meters per second (18 miles per hour).

Failure and Success

The story of engineering progress is not complete if the endless se-

ries of mishaps that pave the way toward success is ignored.

In the late 1990s a group of Boeing engineers attempted to design

and produce a human-powered airplane that would be able to out-

perform Daedalus. Their Raven, constructed from black carbon-

fiber composites, was intended to achieve a flight duration of 5

hours, an hour more than Daedalus. But construction problems

and insufficient funding grounded the project.

All too often, airplane designers are not conservative enough.

They risk running into trouble when they stretch the limits of tech-

nology. Raven is a case in point; so is Beechcraft’s Starship. The

Starship had a ‘‘canard’’ wing in the rear, and control surfaces up

front. That caused unfamiliar stability and control problems. The

futuristic-looking Starship did not sell well. It is worth contemplat-

ing why all long-distance airliners still copy the engine mounts of

the Boeing B-47 bomber, which first flew in 1947. Engines hung in

pods below the wings can be shed when they shake apart, and an

engine fire does not threaten the passenger cabin. All other design

options have disappeared. Another chronic design problem is that

new jet fighters are loaded with so many options that they become

far too heavy. I attribute the worldwide success of the General

Dynamics F-16 to the company’s decision to design a lightweight

fighter. That decision reversed the trend toward ever-heavier weap-

ons systems. A classical story about designers taking irresponsible
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risks is told in Nevil Shute’s 1948 book No Highway, in which the

fictional Reindeer airliner suffers fatal fatigue cracks.

In 1982, Henry Petroski, the author of several perceptive books

on the evolution of engineering, published To Engineer Is Human:

The Role of Failure in Successful Design. His most recent book,

dating from 2006, is called Success through Failure: The Paradox

of Design. Petroski attributes the collapse of the Tacoma Narrows

bridge in 1940 to its stubborn chief designer, who underestimated

the instabilities of a narrow two-lane road deck. The Golden Gate

bridge, with its four-lane deck, is a lot safer, though it came close

to collapsing when a quarter of a million people converged on it to

celebrate the bicentennial in 1976. Petroski’s message is clear: suc-

cess tends to make us overconfident; failures force us to rethink

our assumptions. In the words of the philosopher Karl Popper,

‘‘we can learn from our mistakes.’’ If you don’t, you may run into

the narrow margins of success.
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Boeing 747-400: W ¼ 3.95 � 106 N, S ¼ 530 m2, b ¼ 65 m.



6 The Heritage of the 747

On November 23, 1991, en route to Washington, I was standing in

the cockpit of a British Airways Concorde, chatting with the flight

engineer. We were flying at 58,000 feet at twice the speed of sound

(22 miles a minute). The sun had just risen above the western hori-

zon. I scanned the fuel gauges but couldn’t find what I was looking

for.

‘‘What is your fuel flow?’’ I asked.

‘‘Twenty tons per hour,’’ the engineer replied.

‘‘That’s twice the fuel flow of a 747,’’ I said.

‘‘Yes, but we’re going twice as fast.’’

A Concorde needed a lot of fuel to carry 100 passengers across

the ocean. In fact, 3 hours in the air required 77 tons of kerosene.

Allowing for a few empty seats, this comes to 1,000 liters per per-

son. A 747 also consumes about 70 tons of fuel between Heathrow

and Washington-Dulles, but it carries 350 people and 30 tons of

freight along on the trip. The Concorde could not afford to carry

any freight and its range was only 7,000 kilometers. Its tanks had

to be filled to their full capacity before it could take British jet-

setters to Barbados.

My relationship with the Concorde is an uneasy one. It dates

from 1964, well before the plane’s first flight. Preliminary designs

for the Concorde and its American and Russian competitors were

on the drawing boards at the time. I argued at my doctoral thesis

defense (much to the chagrin of the professors on the examination

committee) that supersonic airliners would be a step backward in

the history of aviation.

The finesse (glide ratio, in conventional parlance) of aircraft

designed to penetrate the sound barrier is hopelessly low. A



Boeing 777 has a finesse of almost 20, but the Concorde barely

reaches 6. In 1964 there were hopes that this disadvantage could

be compensated by the high thermal efficiency of supersonic jet

engines, but the high-bypass-ratio engines of present-day subsonic

jetliners, twice as efficient as their early counterparts, easily out-

perform supersonic jet engines. The Concorde looks much more

elegant than any other airliner, but its performance is not elegant

at all.

An airplane flying faster than the speed of sound creates shock

waves in the air, much like the bow and stern waves of a tugboat

crossing a harbor at speed. This is what causes ‘‘sonic booms.’’

Creating these waves takes a lot of energy. Because a plane in su-

personic flight can’t avoid making shock waves, the problem of

declining finesse is insoluble. Although Concorde passengers

didn’t notice anything as their plane penetrated the sound barrier,

the economic barrier was real enough. If you want to exceed Mach

1, it will cost you 3 times as much as staying below the speed of

sound. For the aircraft industry, supersonic flight was indeed a

step in the wrong direction. Time and again, before aeronautical

engineers started dabbling with supersonic flight, they had man-

aged to reach higher speeds at lower costs. The Concorde broke

that trend.

Farewell Concorde; Back to Common Sense

In retrospect, the Concorde was an ill-advised prestige project of

the British and French governments. Commercially, it was a failure

from the very start. The price of Concorde tickets was outrageous.

(I profited from an off-season discount rate, with a return trip by

747.) Only 20 Concordes were built. Since all of them were in fact

prototypes, they never outgrew their teething problems, and they

required excessive maintenance. The curtain fell after the fiery

crash (caused by tire debris on the runway that ruptured a fuel

tank) of an Air France Concorde in a Paris suburb on July 25,

2000. British Airways quit flying Concordes in October of 2003.
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The moral of the Concorde story, as I see it, is that dreams of

progress and glory are dangerous. Megalomania was the force be-

hind several aviation enterprises that failed. Howard Hughes’s

‘‘Spruce Goose,’’ which in 1947 made a brief flight over San Diego

Harbor, is one example. With a takeoff weight of more than 150

tons, a wing area of 1,060 square meters (twice that of a 747), and

a wingspan of 98 meters, it was powered by eight 3,000-hp

engines. Other airplanes that did not fulfill the expectations of

their designers are the Lockheed Constitution, the Convair B-36

bomber, the Bristol Brabazon, and various earlier French, Italian,

and German planes. If you want to know more, Google the Caproni

60, which had nine wings, or the Dornier X, which sported twelve

engines. Seen from an evolutionary perspective, all these planes

were misfits.

Progress in aviation came in an entirely different way. In 1965,

Juan Trippe, the strong-willed president of Pan American Airways,

negotiated with Boeing for a wide-bodied jet that could easily be

Concorde (W ¼ 1.8 � 106 N, S ¼ 358 m2, b ¼ 25.6 m). Lines represent shock
waves.
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converted to a cargo plane after a takeover of the passenger market

by supersonic airliners (which was then thought likely). Trippe

was not only badly mistaken about the prospect of supersonic

flight; he also misread the future of low-cost, long-distance mass

transportation. Pan American had quite a reputation for luxurious

travel among movie stars, statesmen, royalty, and business execu-

tives; cheap air travel for the millions was not Trippe’s ultimate

dream. Nevertheless, his insistence forced Boeing to design the air-

liner that changed the world of long-distance air travel: the 747.

Boxed in by Constraints

An airliner must fly as fast as is possible without a major sacrifice

in finesse. The higher its speed, the smaller the capital expenses

per ton-mile or passenger-mile of travel. If depreciation alone is

going to cost you several million dollars a year, you can’t afford

to drag your feet. Incidentally, this is the argument that kills recur-

rent dreams of travel by airship. One hundred miles per hour just

won’t do.

A second constraint is that an airliner has to fly slower than the

speed of sound or else it will suffer from the drastic drop in finesse

that occurs at supersonic speed. If supersonic flight didn’t require

so much fuel, it would be great. However, it doesn’t work out that

way. Mach 0.9 is an absolute maximum. These two constraints al-

low no latitude: a cruising speed of about Mach 0.85 is both the

minimum and the maximum for long-distance airliners. But there

is a bonus here: jet engines are more efficient when they fly faster.

Speed acts like a turbo compressor, so at Mach 0.85 jet engines en-

joy an appreciable amount of turbo boost. It comes as no surprise

that the speed of jetliners hasn’t changed since the first of them,

the Boeing 707 and the Douglas DC8, appeared on the market in

the late 1950s. In fact, the design speed of airliners has decreased

somewhat since the 747 arrived on the market. The 747 was

designed for 1,000 kilometers per hour (620 miles per hour), but

its cruising speed was lowered to 900 kilometers per hour (560

Chapter 6 168



miles per hour) to reduce fuel consumption. Later jetliners were

designed for 900 kilometers per hour from the start. How can you

confirm this? The wings of modern Airbuses and Boeings are a bit

less raked than those of a 747. The ‘‘sweep-back angle’’ of their

wings is about 30�, not 35� as on the 707 and the 747.

A third constraint arises because jet engines perform best in very

cold air. The efficiency of jet engines improves as the difference be-

tween the intake temperature and the combustion temperature

increases. The efficiency of converting heat into useful work

depends on temperature differences, as was discovered by the

French engineer Sadi Carnot (1796–1832). Cold intake air and ex-

tremely high turbine temperatures (up to 2,500�F nowadays) make

for superior engine efficiency. This has far-reaching consequences

for jetliners. The coldest air is found in the lower stratosphere,

above 10 kilometers (33,000 feet). The temperature there is about

�55�C. Long-distance planes must fly high in order to travel far,

but again there is a bonus: clouds and thunderstorms are extremely

Interior arrangement of a Boeing 747-400.
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rare in the stratosphere, so flight schedules can disregard meteoro-

logical conditions. In the stratosphere, airplanes fly ‘‘above the

weather.’’ This is advantageous for passengers too: above the

weather only occasional turbulence is encountered.

Flying high has yet another advantage. At high altitudes, the air

is much less dense than at sea level. In order to remain airborne at

33,000 feet, an airplane needs large wings. Near the ground, large

wings permit lower speeds: the sea-level cruising speed is about

one-half the cruising speed at altitude. If the wings are fitted with

extensive flaps and slats, the takeoff and landing speeds are lower

yet. This helps to limit the required runway length.

A fourth constraint is that an airplane shouldn’t fly any higher

than is necessary. Rarefied air requires oversize wings. Moreover,

jet engines operating in rarefied air suffer respiration problems. If

you insist on flying too high, your plane needs not only oversize

wings but also oversize engines.

Other design factors may interfere with the fourth constraint.

The Concorde, for example, had oversize wings because it had to

take off from and land on the same runways as subsonic jetliners.

In order to minimize the disadvantages of those wings, the Con-

corde had to fly high in the stratosphere.

Together, the third and fourth constraints suggest that 10 kilo-

meters (33,000 feet) is the correct cruising altitude. It does not pay

to go higher, because it is just as cold higher up. Conditions are op-

timal at the tropopause (the boundary between the troposphere and

the stratosphere), where the highest density consistent with the

quest for low outside temperatures is found. The cruising altitude

is not left to the designer’s discretion, but is determined by

straightforward engineering logic.

A well-designed jetliner must fly a little slower than Mach 0.9 at

a cruising altitude of 10 kilometers. For present purposes, let’s

choose a speed of 250 meters per second (900 kilometers per hour,

560 miles per hour, Mach 0.83). That’s on the safe side of the abso-

lute maximum. Now let’s use equation 1, which shows how wing

loading depends on density and airspeed:
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W/S ¼ 0.3rV 2.

At an altitude of 10 kilometers, the air density r is 0.413 kilogram

per cubic meter. (See table 6.) If we substitute r ¼ 0.413 kg/m3 and

V ¼ 250 m/s into equation 1, we find that the wing loading of our

airplane, W/S, should be 7,740 N/m2. What is the gross weight of a

mundane, sensible airplane with that wing loading? Both oversize

and undersize wings have their drawbacks, so let’s stay in line

with the main diagonal in figure 2:

W/S ¼ 47W 1=3.

The result is W ¼ 4,470 kilonewtons, or 447 tons. The wing area

then becomes 578 square meters (about 6,200 square feet). It would

have been easy to manipulate these numbers in such a way that the

precise figures for the 747 would have been obtained. The 747-400

has a maximum takeoff weight of 394 tons and a wing area of 524

square meters (5,640 square feet). Our calculations would have

come close if we had taken into account that the numerical coeffi-

cient in equation 1 should be somewhat smaller than 0.3 when

computing the cruising speed of a jet, because of the improved en-

gine efficiency at higher speeds. But that would have been nitpick-

ing. Equations 1 and 3 are merely rules of thumb; great precision

Douglas DC-10: W ¼ 2.56 � 106 N, S ¼ 368 m2, b ¼ 50 m.
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cannot be expected. Nor is great precision required to realize that

the weight of an airplane designed to fly 900 kilometers per hour

at an altitude of 10 kilometers should be approximately 400 tons.

The big jetliners of the 1960s, the Boeing 707 and the Douglas

DC8, were too small. And they do seem small nowadays: the

longest of the current 737s is almost as large as a 707, and carries

even more passengers.

What about the Boeing 777, the Airbus A340, and the Airbus

A380? The 777, the offspring of the 747, is on its way to maturity:

the 777-300ER weighs 350 tons, and the next model may grow to

400 tons if the engineers at General Electric manage to improve

Table 6 Atmospheric data: altitude h, temperature T, air density r, ratio between density at
altitude and at sea level (r/r0), ratio between cruising speed at altitude and at sea
level (V /V0), and speed of sound at altitude.

h (m) T (�C) r (kg/m3) r/r0 V /V0

Speed of sound

(m/sec)

0 15.0 1.225 1.000 1.00 340

1,000 8.5 1.112 0.908 1.05 333

2,000 2.0 1.007 0.822 1.10 333

3,000 �4.5 0.909 0.742 1.16 329

4,000 �11.0 0.819 0.669 1.22 325

5,000 �17.5 0.736 0.601 1.29 321

6,000 �24.0 0.660 0.539 1.36 317

7,000 �30.5 0.590 0.481 1.44 312

8,000 �37.0 0.525 0.429 1.53 308

9,000 �43.5 0.466 0.381 1.62 304

1,0000 �50.0 0.413 0.337 1.72 300

11,000 �56.5 0.364 0.297 1.83 295

12,000 �56.5 0.311 0.254 1.98 295

13,000 �56.5 0.266 0.217 2.15 295

14,000 �56.5 0.227 0.185 2.32 295
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their new engines a bit more. The two Airbuses are respectable

competitors. As far as I am concerned, the size of all modern

wide-body jets confirms my original analysis. Earlier jetliners were

compromises between conflicting design criteria; the Boeing 747

was the first one that obeyed ruthless engineering logic. The fact

that its successors and competitors are all of comparable size dem-

onstrates unequivocally that the principles of flight have taken the

decision out of human hands. Yet you shouldn’t accept these con-

clusions unless I support them with further argumentation. The

best way to argue the case is to see what happens if we deviate

from the rules. After all, the main diagonal in the Great Flight Dia-

gram allows plenty of scope for the ingenuity of aircraft designers.

A designer can choose to move to the left or to the right of the main

diagonal, giving a plane a lower or a higher wing loading than is

typical for its weight.

Need a jetliner weigh 400 tons? Of course not; it is easy enough

to design a smaller airplane. But a smaller airplane has a smaller

wing loading if it has wings to suit its size, and a lower cruising

speed to match. If you nonetheless insist on cruising at 560 miles

per hour, you must fly abnormally high. The Boeing 737-300

weighs 57 tons; if it had ordinary wings for its size, its wing load-

ing would be 3,900 newtons per square meter and its wing area 146

square meters (equation 3). At a design speed of 900 kilometers per

hour, or 250 meters per second, the air density would have to be

0.2 kilogram per cubic meter (equation 1). The corresponding

cruise altitude is 15 kilometers (49,000 feet). But a short-distance

airliner cannot afford to climb to such an altitude. For this reason,

the designers of the 737 had to compromise both on cruising speed

and on altitude. There was an advantage to be gained with a

higher-than-average wing loading (that is, with undersize wings).

With a wing size of 105 square meters (see table 7), the wing load-

ing of the 737 is in fact a little over 5,400 newtons per square me-

ter—40 percent higher than average for airplanes of similar weight.

Why not produce a 737 with the same wing loading as a 747?

The wings would be too small. The wings of a 57-ton plane with a

wing loading equal to that of a 747 would be no larger than 77

The Heritage of the 747 173



square meters (830 square feet), which is only half the median

value for the plane’s weight. A bird with undersize wings has a

comparatively fat body, which creates additional air resistance

and renders the design less economical than it could be. Moreover,

a 737 with a wing loading equal to that of a 747 would need two-

mile runways. It would not be able to land at smaller airports,

where the standard runway is only a mile long. The 737 is in-

tended for short distances, and a commuter plane unable to use re-

Table 7 Dimensional data on popular airliners.

Take-off

weight, W

(tons)

S

(m2)

B

(m)

Sea-level

thrust, T

(tons) W /T W /S Seats

Airbus 380-800 560 845 80 4 � 36.3 3.86 6,627 550

Boeing 747-8 440 570 69 4 � 30.2 3.64 7,719 470

Boeing 747-400 395 524 65 4 � 25.7 3.84 7,538 421

Airbus 340-600 368 439 63 4 � 25.4 3.62 8,383 380

Boeing 747-200 352 511 60 4 � 21.3 4.13 6,888 387

Boeing 777-300ER 351 435 65 2 � 52.3 3.35 8,089 365

Boeing 777-200ER 297 428 61 2 � 42.5 3.49 6,939 305

Airbus 350-900 265 443 64 2 � 39.5 3.35 5,982 314

Boeing 787-9 245 370 60 2 � 31.1 3.94 6,622 250

Boeing 767-300 172 283 48 2 � 26.3 3.27 6,078 224

Boeing 707-320B 151 283 44 4 � 8.4 4.49 5,335 190

Boeing 737-900 85 125 35 2 � 12.4 3.43 6,800 180

Airbus 320 74 123 34 2 � 12 3.08 6,016 150

Boeing 737-300 57 105 29 2 � 9.1 3.13 5,429 124

Boeing 737-200 52 91 28 2 � 8.5 3.06 5,714 110

Fokker 100 43 93 28 2 � 6.7 3.21 4,624 107

Bombardier CL600 24 55 21 2 � 4.1 2.93 4,364 50

Embraer ERJ145 21 51 20 2 � 3.3 3.18 4,118 50
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gional airports makes no economic sense. Although the wing load-

ing of a 737 is above average for its weight class, it is not excessive.

The Boeing 737 is a reasonable compromise between the desire

to fly faster than is appropriate for its weight and the price to be

paid for insisting on doing this. It is a sensible solution to conflict-

ing design specifications, but it remains a compromise. Many ver-

sions of the 737 have been produced—some short, some with

various stretched fuselages, some with winglets and some without.

Because the whims of executives determine such matters, not engi-

neering logic, airlines can place customized orders. Boeing will-

ingly complies.

What about a much larger airplane—a 1,000-ton giant with a

wing loading of 10,000 newtons per square meter? Yes, it would fit

right on the trend line in figure 2. However, at that wing loading

runways would have to be three miles long instead of two. Also,

such a giant plane would have to fly lower if required to fly at 900

kilometers per hour. It would have to travel at an altitude where

the air density is 0.53 kilograms per cubic meter (equation 1). But

that corresponds to 8 kilometers (26,000 feet; see table 6), which is

not high enough to be above the weather. Also, it is not cold

enough at this height: only �37�C, not �56�C as in the strato-

sphere. The wing loading would have to be reduced in order to

reach a cruising height of 10 kilometers and to maintain a decent

landing speed. This means that the plane would need oversize

wings, which would make it heavier than necessary and would re-

duce its payload capacity.

Boeing or Airbus?

The Airbus A380, with a takeoff weight of 560 tons, competes with

the Boeing 747 for long-range traffic between major airports. Boe-

ing has responded with a lengthened 747, called the 747-8. Both

show signs of engineering compromises. Because airport restric-

tions limit the wingspans of jetliners to 80 meters, the wings of

the A380 are not nearly as slender as those of a Boeing 777. Also,
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neither the Boeing 747-8 nor the Airbus A380 is suited for the most

powerful engine currently available, the General Electric GE90-

115B.

The GE90-115B engine produces 115,000 pounds (512 kilonew-

tons, 52 tons) of thrust at takeoff. Almost all of the thrust is gener-

ated by an enormous fan up front, with a diameter of 3.25 meters

(almost 11 feet). As in all modern fanjet engines, the engine itself

(called the core) is much smaller in diameter than the fan. Most of

the air sucked in by the fan bypasses the core: the ‘‘bypass ratio’’ is

10, meaning that 10 times as much air flows around the engine as

into the compressor. The bypass ratio in the fanjet engines of the

Boeing 707 was as small as 1:1. In the engines of the Boeing 747 it

increased to 4:1. The recent step forward to a bypass ratio of 10:1

reduces fuel consumption but tightens the operational envelope.

Don’t fly these engines too fast or too slow! Present-day fanjet

engines can be thought of as propjets that hide their propeller in a

casing. The casing makes the propeller more efficient and substan-

tially reduces unwanted engine noise. At takeoff, the fan swallows

3,600 pounds of air per second. The air pressure at the exit of the

compressor, which is the entrance to the combustion chambers, is

40 times the ambient air pressure. Compare this compression ratio

to that of a gasoline engines (typically only 8:1) or that of a diesel

engines (about 20:1). When the exhaust gases hit the first turbine

stage, the temperature has risen to almost 1,400�C (that’s 2,500�F).

Such extreme temperatures require extremely hardy turbine

Airbus A380: W ¼ 5,600 kN, S ¼ 845 m2, b ¼ 80 m.
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blades, but the efforts and expenses involved (a single engine of

this size costs about $20 million) are paid back in improved engine

efficiency, lower specific fuel consumption, and longer range.

Eighteen-hour nonstop flights have become possible.

The main reason for the popularity of high-bypass-ratio jet

engines is their low fuel consumption. At cruising altitude, each

GE90-115B engine consumes about 5,000 liters per hour, and pro-

duces 10 tons of thrust at an airspeed of 900 kilometers per hour.

Force times speed equals power, so in metric units we have 100

kilonewtons � 250 meters per second, or 25 megawatts (33,000

horsepower). The fuel consumption then computes at 0.15 liter

per horsepower per hour. Your car, which needs about 20 horse-

power at a speed of 100 kilometers per hour and uses about 7 liters

per hour at that speed, consumes about 0.3 liter per horsepower

per hour. This is in line with other numbers we have encountered.

The thermal efficiency of the piston engine in your car is only 25

percent, but a high-bypass-ratio jet engine, assisted by very low

outside air temperatures and high turbine temperatures, manages

Fokker F-100: W ¼ 4.3 � 105 N, S ¼ 94 m2, b ¼ 28 m.
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50 percent! Both for the jet and for the car, the heat of combustion

computes as 36 megajoules per liter (about 45 megajoules per kilo-

gram), corresponding fairly well with the data in table 3.

What are the design parameters of airplanes powered by the

GE90-115B? Designing a four-engine jetliner around these engines

is straightforward. Four times 52 tons of thrust equals 208 tons.

The takeoff weight fitting this number is 3.6� 208 tons, that is 750

tons. (For the weight-to-thrust ratio of large airliners, see table 7.)

We limit the wing loading to 7,500 newtons per square meter, so

the wing area needed is 1,000 square meters. We want a slender

wing to minimize induced drag, so we should choose an aspect ra-

tio of 9 (like that of a Boeing 777). The wingspan then becomes 95

meters. That would be one beautiful airplane, good for 700 passen-

gers, but unfit for docking at present airport gates.

Now let’s take this argument one step further. Suppose we want

to build a modern competitor for the Antonov AN225, with six

engines of 52 tons thrust each. The takeoff weight of such a plane

would be 1,120 tons. Since the wing loading has to be kept at

7,500 newtons per square meter, a wing of 1,500 square meters,

with a span of 116 meters, would be needed. This plane could

carry 1,000 passengers, but bigger is not necessarily better. For the

time being, I don’t see any aircraft company daring to build a

1,000-ton, 1,000-passenger airliner. For as long as I can remember,

designers have floated speculations about ‘‘super-jumbos,’’ but the

largest airliner now flying, the bloated Airbus A380, is at best a

‘‘mini-super.’’

The logical alternative is a twin-engine jetliner with each engine

delivering 52 tons of thrust and with a takeoff weight of 374 tons.

Keeping the wing loading at 7,500 newtons per square meter, we

obtain a wing area of 500 square meters. Something special is hap-

pening here. Our off-hand calculation produces numbers that com-

pare well with those for the 777-300ER, but also with those of the

747-200 and the Airbus 340. (See table 7.) This is what biologists

call ‘‘convergence.’’ All the long-range airliners that have survived

in the evolutionary struggle for success have a weight and a wing
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area not unlike those of the original Boeing 747. Still, if I had to

choose among the 747, the Airbus A380, the Airbus A340, and the

777, I would pick the 777, because it has two engines rather than

four.

In Praise of the 747

The glory of the Boeing 747 is fading. The world’s major airlines

are slowly phasing it out. About 1,400 of the planes are still

around; all of them will gradually be shifted into charter and

freight service. Not many stretched 747s will be built. But all

descendants and competitors of the 747 are testimony to its incred-

ible success. No wonder some designers dream of a ‘‘747-twin’’

that would retain the old airframe but would replace the four orig-

inal engines with two of the current breed. However, I am not sure

that is a good idea.

The 747 remains one of the great engineering wonders of the

world, like the pyramids of Egypt, the Eiffel Tower, or the Panama

Canal. No longer the largest wide-body airliner in the world, but

Boeing 737-700: W ¼ 600 kN, S ¼ 125 m2, b ¼ 34 m.
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surely the most successful one, it incorporates everything one can

reasonably demand of a mode of transportation: reliability, ease of

maintenance, productivity, fuel economy, speed, and ample cargo

space. For its weight, the 747’s wing loading is quite ordinary. Nor

need the size of the 747 impress us. From the viewpoint of econ-

omy of scale, it is a happy coincidence that the optimal solution

necessitates a large and heavy airplane; however, the size of the

747 is not a matter of choice, even though it may have seemed that

way to Mr. Trippe and the Boeing design team.

A single 747 flying back and forth between Amsterdam and New

York produces at least 2 million seat-miles a day, based on 300þ
seats and a one-way distance of 3,600 statute miles. Even with

maintenance and periodic inspections, a 747 makes more than 300

round trips a year, so its annual production, not including freight,

is 600 million seat-miles. Ten 747s match the entire traffic volume

of the Netherlands State Railways. Admittedly the Netherlands is

a small country, but nevertheless several hundred coaches and

commuter trains are required to achieve that performance. In the

United States, an Amtrak train making the two-day run between

Chicago and San Francisco with 400 passengers aboard accounts,

in theory, for less than half a million seat-miles a day, and in prac-

tice delays, maintenance, and time-consuming turnaround proce-

dures cut that in half: the net rate is only 200,000 seat-miles a day.

The French high-speed train, the TGV, fares somewhat better. The

250-mile run between Paris and Lyon takes 2 hours and carries 500

Boeing 737-300: W ¼ 5.7 � 105 N, S ¼ 105 m2, b ¼ 29 m.
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people. Making three round trips a day, a TGV, with almost twice

as many seats as a 747, produces more than 700,000 seat-miles a

day—but that is only one-third of a 747’s productivity.

A new 747 costs roughly $200 million. The first owner writes

this cost off over 10 years. After 10 years, though, a 747 still has

plenty of life in it. Since the major airlines are now phasing out

their 747s, you may want to profit from the current buyers’ market.

Let’s assume you can buy a ten-year old 747 for $100 million. Av-

erage depreciation and interest over the first 10 years are estimated

at $10 million and $5 million per year, respectively, for a total of

$15 million per year. One-third of that amount must be earned by

carrying freight, leaving roughly $10 million to be recovered by

selling 600 million seat-miles. This works out at 2 cents per seat-

mile. Compare that with your car. The Consumers Union estimates

automobile interest and depreciation at about 30 cents per mile.

With two people in a car on average, the cost is thus 15 cents per

passenger-mile—considerably more expensive than an airplane.

Trains are not very economical on this score, either. Per seat-mile,

the direct energy consumption of a train is half that of a car (see

chapter 2), but the other costs are disappointing. Railroads must

maintain an extensive infrastructure and must invest heavily in

their inefficiently utilized rolling stock. In order to break even in

their passenger operations, railroads the world over depend on

massive state subsidies. As a rule of thumb, the price of a railroad

ticket covers only half of the real cost.

It is easy to see why the great ocean liners were doomed as soon

as jetliners appeared on the transatlantic market. A ship of some

stature easily costs $500 million. Let’s assume that a round trip be-

tween Southampton and New York takes 2 weeks; that allows 20

round trips a year if we exclude the winter season. With 1,500 pas-

sengers on board, an ocean liner produces 200 million passenger-

miles a year. If we estimate interest and depreciation optimistically

at $50 million a year, this comes to 25 cents per passenger-mile—

10 times the capital expenses of a 747. The fuel consumption of

an ocean liner isn’t very favorable either: an ocean liner burns 90
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gallons of fuel oil per mile, so the carbon footprint of each passen-

ger is worse than that of each person in a jetliner. Low-speed travel

is relaxing, but it remains unprofitable when you look at total pro-

ductivity. A slow mode of transportation makes it difficult to re-

coup one’s investment. This is what drove ocean liners into the

luxury cruise business, this is why airships (zeppelins) will sur-

vive only in tiny niche markets.

All wide-body jets are unequaled as freight carriers. Let’s com-

pare freight against passengers. With luggage and meals included,

passengers account for an average of 100 kilograms each. On inter-

continental flights economy-class passengers pay approximately 10

cents per mile. Of this, 2 cents is for fuel and 2.5 cents for capital

expenses. Converted to weight, the passenger tariff becomes

roughly a dollar per ton-mile. But freight doesn’t require flight

attendants, chairs, pillows, blankets, toilets, kitchens, and meals.

It should therefore be possible to offer freight service at approxi-

mately half the price per ton-mile. Indeed, the going rate for inter-

continental airfreight is about 50 cents per ton-mile, increasing to a

dollar per ton-mile for fresh-cut flowers, vegetables, and other per-

ishables, and with additional surcharges for horses, elephants, and

day-old chicks.

Imagine you are a fashion buyer at Macy’s in New York or Har-

rods in London, and you need an extra supply of some suddenly

hot-selling jeans from a supplier in Asia. Now, 2,000 pairs of

denim trousers, at roughly a pound each, weigh about a ton. Any

Boeing or Airbus can carry that order 10,000 miles at a cost of

$6,000, or $3 per pair. Your department store can recover this ex-

pense with ease by increasing the price of the jeans from $49 to

$59.

Gladioli from South Africa can’t lie flat; they have to be trans-

ported upside down to prevent their tips from becoming crooked.

Roses from Argentina find their way to American flower shops on

the same day. Freesias from Israel are auctioned off at dawn near

Amsterdam and are on their way to Chicago before noon. The sky

is literally the limit in the variety of products that are flown around
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the world. Take off-season string beans: 1,200 miles between Tuni-

sia and Holland, at a rate of 50 cents per ton-mile, make the trans-

portation cost only 30 cents per pound. In the middle of winter I

certainly would not mind paying that extra charge for a special

treat.

Though airfreight has a reputation of being expensive, the differ-

ences are not as great as one might think. FedEx and UPS offer sur-

face rates not much below the rates for regular airfreight. Indeed,

FedEx owns a large fleet of cargo planes, and it wouldn’t if that

weren’t profitable. Substantially lower rates are offered by long-

distance trucking companies. Bulk shipments of ore and grain by

rail are cheaper still, and barges on the Great Lakes charge only 2

cents per ton-mile or even less. For the time being, therefore, one

should not expect to find planes being loaded with ore or gravel.

Nevertheless, the potential of airfreight should not be underesti-

mated. Once fully depreciated 747s are bought up by freight and

charter operators, the rate may drop to 30 cents per ton-mile. The

first 747 entered service with Pan American in 1969. There are

plenty superannuated 747s are around today. Just look around the

tarmac the next time you are waiting for a connecting flight at

Atlanta or Pittsburgh: the far ends of the apron are cluttered with

unmarked airliners painted in unattractive colors, with their win-

dows riveted shut.

The Boeing 747 was designed with the North Atlantic in mind.

This was the corridor with the most business, the fiercest competi-

tion, and the most potential income 40 years ago, and it is still the

densest corridor today. By a stroke of luck, it also happened to be

the run that provides the most efficient flight schedules. In the

1950s, a propeller plane took an average of 14 hours to make the

crossing; a day later it began its return trip. Nowadays a westbound

flight takes about 8 hours, and 3 hours later the plane is on its way

back, to land in London, Amsterdam, or Frankfurt 7 hours later.

Just 18 hours after its departure, a wide-body jet is back home, in

time for the early cleaning and maintenance shifts. An excellent

routine: no clumsy personnel from outside contractors, no overtime
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payments, and a fixed pattern of home port maintenance running

like clockwork. Such a routine helps to keep costs down.

On the longer runs between Europe and the United States there

is little time to spare. Amsterdam–San Francisco must be com-

pleted within 10 hours, or else a fixed schedule with the plane

back home every morning becomes impossible. That journey is

5,000 miles, 1,500 miles longer than the Amsterdam–New York

run. A travel time of 10 hours demands a cruising speed of at least

500 miles per hour to allow time for taxiing, taking off, waiting in

the holding pattern, and landing.

Airline traffic across the Pacific has become a lot denser in recent

years, and will continue to grow rapidly as the Chinese economy

expands. This corridor is served best by ultra-long-range airliners

capable of flying at least 8,000 miles nonstop. All current wide-

body jets can fill this bill, but not without some drawbacks. For

one, two cockpit crews are needed, because pilots who have been

Boeing 777-200: W ¼ 2.4 � 10? N, S ¼ 428 m2, b ¼ 61 m.
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flying 14 hours or more are likely to be too sleepy to make a safe

landing. Also, return flights on the same day are out of the ques-

tion, which makes scheduling and utilization more difficult.

Lose Weight, Gain Altitude

A jetliner’s weight decreases as it consumes its fuel, but the wings

cannot change size. Therefore, the wing loading decreases. If the

plane remained at the same altitude, so that the air density

remained constant, the decreasing wing loading would require the

plane to slow down, thus affecting the schedule. Moreover, the effi-

ciency of the jet engines would suffer, for they do not perform opti-

mally at lower speeds. As its weight decreases, a plane must find

more rarefied air in order to maintain its speed. If its wings have

become too large for flying at an altitude of 10 kilometers, it moves

up a kilometer. The engines don’t mind: when the weight

decreases, so does the drag if the finesse remains the same. Less

drag means that the engines need to deliver less thrust. It does not

matter, therefore, that as the cruising altitude increases the engines

breathe somewhat thinner air.

On a long intercontinental flight, say from Tokyo to Amsterdam,

a Boeing 747-400 might start out cruising at an altitude of 9,000

Airbus A380: W ¼ 5600 kN, S ¼ 845 m2, b ¼ 80 m.
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meters (30,000 feet) and a weight of 380 tons. Thirteen hours later,

when it begins its descent toward Amsterdam over Berlin, its

weight has decreased by one-third, to 250 tons. In the meantime,

it has climbed to an altitude where the air density is also 66 per-

cent of its initial value: 12,100 meters (40,000 feet). Each hour it

must climb roughly 800 feet in order to compensate for the fuel

burned.
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Epilogue

More than 2,000 years ago the Romans invested heavily in a great

highway system. The empire needed a good road infrastructure in

order to maintain unity and suppress local conflicts. The Roman

highways were engineered so well that their remnants can still be

found all over Europe. In seventeenth-century Holland, canals

were dug to promote passenger traffic on a regular timetable, inde-

pendent of fog and wind. A Haarlem banker could commute to

Amsterdam, do his business, and be back home in time for dinner.

The mobility of the merchant class helped to keep the United Prov-

inces together. In the eighteenth century, England and France built

extensive canal systems, judging a massive investment in infra-

structure to be the best preparation for the future. As often hap-

pens, this investment came too late: by the time the canal system

became fully operational a century later, railroads made the expen-

sive canal system obsolete. The first transcontinental railroad in

the United States dates from 1869, when the Union Pacific met the

Central Pacific at Promontory Point in Utah. Nearly a century later,

this infrastructure was supplemented by the interstate highway

system, originally conceived, like its Roman predecessor, for rapid

movement of military materiel. Over and over again, statesmen

have learned that adequate transportation facilities are necessary

to keep a country united.

When Marshall McLuhan dreamed of the ‘‘global village,’’ he

was thinking primarily of telecommunications. He felt that the in-

cessant chatter on long-distance party lines would inevitably bring

people closer together. We can’t blame him for not forecasting the

cell-phone and Internet revolutions that have changed the way

people all over the world communicate. But McLuhan also did not



pay sufficient attention to the continuing need for physical mobil-

ity. Ultimately, cell phones and e-mail are not enough. The time

comes when you want to see the Grand Canyon or the Pyramids

for yourself, meet and talk to people from other continents, or sip

beer in the backyard of your international business partner. Jet-

liners have become the indispensable commuter buses of the

global village.
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Appendix Flight Data for Migrating Birds

Birds are listed in order of ascending weight. The weight W is

given in newtons, the wing area S in square meters, and the wing-

span b in meters. The cruising speed (meters per second) calcu-

lated with W/S ¼ 0.38V 2 is listed as Vc, and the observed

migration speed in level flapping flight as Vm. All data are taken

from the following papers: B. Bruderer and A. Boldt, Flight charac-

teristics of birds: I. Radar measurements of speeds, Ibis 143(2001):

178–204; T. Alerstam et al., Flight speeds among bird species:

Allometric and phylogenetic effects, PLoS Biology 5(2007): 1656–

1662.

In general, small birds not on migration fly substantially slower

than given here, at speeds comparable to those calculated. Very

large birds, such as swans, fly somewhat slower than calculated, at

speeds which require the least muscle power. Migrating waders,

such as plovers, knots, and godwits, fly faster than most geese.

Ducks are fast, too. Gulls, terns, and eagles, on the other hand,

seem to take it easy, even on migration.

Several species listed here prefer to soar if they have a chance.

Storks and eagles do not cross the Mediterranean Sea unless

pressed for time or seduced by strong tailwinds, because there are

no thermals over open sea. They travel via Gibraltar or Israel. The

net cross-country speed of soaring birds is relatively low, if only

because thermals occur only in daytime.



W S b Vc Vm

Coal tit 0.09 0.0073 0.18 5.7 10.6
Parus ater

Siskin 0.14 0.0076 0.21 7 10.6
Carduelis spinus

Sand martin 0.15 0.0096 0.27 6.4 14.3
Riparia riparia

House martin 0.15 0.0104 0.29 6.2 9.7
Delichon urbica

Barn swallow 0.16 0.0136 0.32 5.6 10
Hirundo rustica

Yellow wagtail 0.18 0.0103 0.26 6.8 12.7
Motacilla flava

Great tit 0.19 0.0109 0.23 6.8 13.6
Parus major

White wagtail 0.21 0.0126 0.26 6.8 14.1
Motacilla alba

Tree pipit 0.22 0.0126 0.27 6.8 12.7
Anthus trivialis

Swift 0.38 0.0168 0.4 7.7 9.7
Apus apus

Skylark 0.39 0.0207 0.35 7.0 15.1
Alauda arvensis

Dunlin 0.54 0.0156 0.36 9.5 15.3
Calidris alpina

Redwing 0.61 0.0233 0.36 8.3 13.8
Turdus iliacus

Ringed plover 0.64 0.0179 0.41 9.7 19.5
Charadius hiaticula

Song thrush 0.68 0.0218 0.36 9.1 11
Turdus philomenos

Alpine swift 0.78 0.0304 0.57 8.2 12.6
Apus melba

Starling 0.83 0.0244 0.38 9.5 16.2
Sturnus vulgaris
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W S b Vc Vm

Arctic tern 1.1 0.0571 0.8 7.1 10.9
Sterna paradisaea

Turnstone 1.11 0.0252 0.47 10.8 14.9
Arenaria interpres

Mistle thrush 1.14 0.0333 0.44 9.5 11.9
Turdus viscovorus

Red knot 1.28 0.0286 0.5 10.9 20.1
Calidris canutus

Eurasian jay 1.62 0.0644 0.54 8.1 12.9
Garrulus glandarius

Greenshank 1.74 0.0406 0.61 10.6 12.3
Tringa nebularia

Kestrel 2.03 0.0708 0.73 8.7 10.1
Falco tinninculus

Grey plover 2.19 0.042 0.62 11.7 17.9
Pluvialis squatarola

Northern lapwing 2.19 0.0744 0.75 11.7 17.9
Vanellus vanellus

Hobby 2.38 0.0667 0.73 9.7 11.3
Falco subbuteo

Jackdaw 2.45 0.0684 0.65 9.7 12.5
Corvus monedula

Sparrow hawk 2.77 0.0768 0.67 9.7 11.3
Accipiter nisus

Black-headed gull 2.83 0.0976 0.97 8.7 11.9
Larus ridibundus

Long-tailed skua 2.97 0.0891 1.01 9.4 13.6
Stercorarius longicaudus

Bar-tailed godwit 3.18 0.052 0.73 12.7 18.3
Limosa lapponica

Common teal 3.48 0.0428 0.59 14.6 19.7
Anas crecca

Eleonora’s falcon 3.87 0.104 0.95 9.9 12.8
Falco eleonora
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W S b Vc Vm

Kittiwake 4.08 0.0953 0.96 10.6 13.1
Rissa tridactyla

Common gull 4.11 0.1246 1.11 9.3 13.4
Larus canus

Hen harrier 4.33 0.157 1.1 8.5 9.1
Circus cyaneus

Arctic skua 4.38 0.118 1.06 9.9 13.8
Stercorarius parasiticus

Rook 4.88 0.138 0.91 10.4 13.5
Corvus frugilegus

Wood pigeon 4.91 0.0824 0.75 12.4 16.3
Columba palumbus

Carrion crow 5.66 0.138 0.91 10.4 13.5
Corvus corone

Marsh harrier 6.53 0.204 1.16 9.2 11.2
Circus aeruginosus

Lesser black-backed gull 7.19 0.193 1.34 9.7 13.1
Larus fuscus

Honey buzzard 7.78 0.247 1.26 9.1 12.5
Pernis apivorus

Peregrine falcon 7.89 0.1257 1.02 12.9 12.1
Falco peregrinus

Buzzard 8.85 0.269 1.24 9.3 11.6
Bureo buteo

Rough-legged buzzard 9.43 0.332 1.35 8.6 10.5
Buteo lagopus

Red kite 10.12 0.325 1.66 9.1 12
Milvus milvus

Pintail 10.24 0.0879 0.9 17.5 20.6
Anas acuta

Mallard 10.82 0.106 0.88 16.4 18.5
Anas platyrhynchos

Herring gull 11.42 0.197 1.34 12.4 12.6
Larus argentatus
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W S b Vc Vm

Raven 11.5 0.247 1.21 11.1 14.3
Corvus corax

Brent goose 13.1 0.113 1.01 17.4 17.7
Branta bernicla

Lesser spotted eagle 13.9 0.515 1.47 8.4 11.7
Aquila pomarina

Grey heron 14.4 0.372 1.73 10.1 12.5
Ardea cinerea

Goosander 14.9 0.077 0.93 22.6 19.7
Mergus merganser

Red throated diver 15.1 0.089 1.04 21.1 18.6
Gavia stellata

Osprey 15.8 0.32 1.6 11.4 13.3
Pandion haliaetus

King eider 15.9 0.108 0.93 19.7 16
Somateria spectabilis

Great black-backed gull 16.7 0.288 1.67 12.4 13.7
Larus marinus

Barnacle goose 17.1 0.115 1.08 19.8 17
Branta leucopsis

Common eider 20.2 0.131 0.98 20.1 17.9
Somateria mollissima

Cormorant 22.3 0.224 1.4 16.1 15.2
Phalacrocorax carbo

Black-throated diver 25.4 0.12 1.2 23.6 19.3
Gavia arctica

White-fronted goose 25.8 0.184 1.41 19.2 16.1
Anser albifrons

Bean goose 30.4 0.268 1.62 17.3 17.3
Anser fabilis

Greylag goose 33.3 0.308 1.55 16.9 17.1
Anser anser

White stork 34.3 0.533 1.91 13 16
Ciconia ciconia
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W S b Vc Vm

Canada goose 36.3 0.372 1.69 16 16.7
Branta canadensis

Golden eagle 40.7 0.597 2.03 13.4 11.9
Aquila chrysaetos

Common crane 56.1 0.586 2.22 15.9 15
Grus grus

Tundra swan 66.4 0.461 1.98 19.5 18.5
Cygnus columbianus

Whooper swan 86.9 0.605 1.98 19.5 18.5
Cygnus cygnus

Mute swan 106 0.65 2.3 20.7 16.2
Cygnus olor
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