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Distributed Intelligence:
Overview of the Field and its

Application in Multi-Robot Systems
Lynne E. Parker

Abstract—This article overviews the concepts of distributed
intelligence, outlining the motivations for studying this field of
research. First, common systems of distributed intelligence are
classified based upon the types of interactions exhibited, since
the type of interaction has relevance to the solution paradigm
to be used. We outline three common paradigms for distributed
intelligence — the bioinspired paradigm, the organizational and
social paradigm, and the knowledge-based, ontological paradigm
— and give examples of how these paradigms can be used in
multi-robot systems. We then look at a common problem in multi-
robot systems — that of task allocation — and show how the
solution approach to this problem is very different depending
upon the paradigm chosen for abstracting the problem. Our
conclusion is that the paradigms are not interchangeable, but
rather the selection of the appropriate paradigm is dependent
upon the specific constraints and requirements of the application
of interest. Further work is needed to provide guidance to the
system designer on selecting the proper abstraction, or paradigm,
for a given problem.

Index Terms—Distributed intelligence, multi-robot systems,
multi-agent systems, task allocation.

I. INTRODUCTION TO DISTRIBUTED INTELLIGENCE

D ISTRIBUTED Intelligence refers to systems of entities
working together to reason, plan, solve problems, think

abstractly, comprehend ideas and language, and learn. Here,
we define an entity as any type of intelligent process or system,
including agents, humans, robots, smart sensors, and so forth.
In these systems, different entities commonly specialize in
certain aspects of the task at hand. As humans, we are
all familiar with distributed intelligence in teams of human
entities. For example, corporate management teams consist of
leaders with particular specialties such as Chief Executive Of-
ficer (CEO), Chief Operating Officer (COO), Chief Financial
Officer (CFO), Chief Information Officer (CIO), and so forth.
Oncology patient care teams consist of doctors that specialize
in various areas, such as surgical oncology, medical oncology,
plastic and reconstructive surgery, pathology, etc. Distributed
intelligence is also exhibited in military applications, such
as special forces A-Teams, where team members specialize
in weapons, engineering, medicine, communications, and so
forth. Another military example includes personnel on an
aircraft carrier flight deck, who are segmented into the catapult
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crew, the landing signal officers, ordnancemen, plane handlers,
etc. As humans have clearly learned, these teams can very
efficiently solve complex tasks by making use of specialists
who work together productively.

The objective of distributed intelligence in computer science
(and related fields) is to generate systems of software agents,
robots, sensors, computer systems, and even people and ani-
mals (such as search and rescue dogs) that can work together
with the same level of efficiency and expertise as human
teams. Clearly, such systems could address many important
challenges, including not only urban search and rescue, but
also military network-centric operations, gaming technologies
and simulation, computer security, transportation and logistics,
and many others.

As a research topic, the study of distributed intelligence
has gained much popularity in recent years. Figure 1 shows
data from the Web of Science resulting from a keyword
search on the terms “distributed intelligence”, “distributed
AI”, “distributed artificial intelligence”, “multiagent”, “multi-
agent”, “distributed robot”, “multirobot”, and “multi-robot”.
Each year’s results show the number of publications that
appeared containing these keywords in that year. The search
begins in year 1980 — the most recent year with no publica-
tions containing any of these keywords — up through 2006.
While this is an admittedly incomplete survey of this area of
research, the data clearly shows the significantly increasing
interest in this research area, as investigators and application
developers are recognizing the potential power of distributed
intelligence.

What is the potential promise of distributed intelligence?
Certainly, some applications can be better solved using a
distributed solution approach — especially those tasks that are
inherently distributed in space, time, or functionality. Further,
if a system is solving various subproblems in parallel, then
it offers the potential of reducing the overall task completion
time. Any system consisting of multiple, sometimes redundant
entities, offers possibilities of increasing the robustness and
reliability of the solution, due to the ability for one entity
to take over from another failing entity. Finally, for many
applications, creating a monolithic entity that can address all
aspects of a problem can be very expensive and complex;
instead, creating multiple, more specialized entities that can
share the workload offers the possibility of reducing the
complexity of the individual entities.

Of course, these advantages of distributed intelligence are,
to some extent, offset by some disadvantages. For example,
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Fig. 1. Web of Science data showing the number of publications appearing
per year on topics related to distributed intelligence.

even though the individual entity cost and complexity may be
less, determining how to manage the complete system may be
more difficult and complex, because of the lack of centralized
control or of a centralized repository of global information.
Further, distributed intelligent systems may require more com-
munication to coordinate all the entities in the system. Increas-
ing the number of entities can lead to increased interference
between entities, as they must act without complete knowledge
of the other entities’ intents. Finally, systems of multiple
entities will typically experience increased uncertainty about
the state of the system as a whole.

Overall, however, as new solution approaches are being
developed and validated, the research and user community is
finding that it is often possible to realize the advantages of
distributed intelligence systems while countering many of the
possible disadvantages. The challenge is determining how best
to properly design the system so as to achieve global coherence
through the local interactions of individual entities.

II. THE DOMAIN SPACE OF DISTRIBUTED INTELLIGENCE

As researchers are discovering, there are many possible
solution strategies, or paradigms, for achieving distributed
intelligence. Not all of these paradigms are appropriate for
all types of distributed intelligence. Thus, it is important to
understand the various types of distributed intelligence that
can occur in different application settings.

There are many ways to classify distributed intelligent
systems and multi-robot systems, such as those proposed in
[28], [17], [24], [102]. While these existing classifications
provide important insight to various characteristics of multi-
robot systems, they do not focus specifically on the types of
of interactions exhibited by these systems. For our purposes,
we believe it is helpful to view the domain space in distributed
intelligence in terms of the types of interactions that can take
place between the entities in the system. To help make the
distinctions between the various types of interactions clear,
we find it useful to define a minimal set of variables (or
characteristics) whose values, together, can help us easily
categorize the different types of interactions exhibited in multi-
robot systems.

Toward this end, as illustrated in Figure 2, we view the
types of interactions along three different axes — the types of
goals, whether entities have awareness of others on the team,
and whether an entity’s actions advance the goals of others
on the team. In terms of types of goals, we classify systems
into two types — those in which each entity has individual
goals, and those in which the entities have shared goals. For
the awareness of others axis, we divide the systems into those
that are aware and those that are not aware. By aware in this
context, we refer to whether entities reason about the actions
and intentions of their teammates. Robots that are not aware
may sense the presence of local entities and move so as to
maintain a certain distance, for example, but otherwise perform
no other reasoning to understand the intent or future plans
of the teammates. Often, these “un-aware” systems operate
based on the principle of stigmergy, in which communication
between entities is not direct, but rather through changes made
in the environment.

Finally, we segment systems into those in which an entity’s
actions do advance the goals of others on the team (yes) and
those that do not (no). An example of an entity advancing the
goals of others with its actions is a floor cleaning robot, as a
member of a floor cleaning robot team. Each robot’s actions of
cleaning a bit of the floor are helpful to the other teammates,
who do not have to repeat the floor cleaning in that particular
spot.

Obviously, these segmentations of the domain space are
approximate, yet we believe they are helpful in quickly un-
derstanding and categorizing the primary types of interactions
that can occur in typical applications. Different areas of this
subspace represent common types of interactions seen in
systems of distributed intelligence. These common forms of
interaction are:

• Collective
• Cooperative
• Collaborative
• Coordinative

In the following paragraphs we describe these types of interac-
tions in more detail, discussing their relevance and application
to multi-robot systems.

Perhaps the simplest type of interaction is the collective
interaction, in which entities are not aware of other entities
on the team, yet they do share goals, and their actions are
beneficial to their teammates. An example of this type of
interaction in multi-robot systems is the swarm robotics work
of many researchers (e.g., [73], [71], [59]). This work focuses
on creating systems of robots that can perform biologically-
relevant tasks, such as foraging, swarming, flocking, herding,
formation-keeping, and so forth. Robots in these systems
typically perform relatively simple local control laws which,
when combined with larger numbers of robots, result in the
global goal being achieved, often as an emergent property of
the local interactions.

The second type of interaction is the cooperative interaction,
in which entities are aware of other entities, they share goals,
and their actions are beneficial to their teammates. In multi-
robot systems, an example of this type of interaction is
multiple robots working together and reasoning about each
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other’s capabilities in order to accomplish a joint task, such as
pushing a box (e.g., [39]), cleaning up a worksite (e.g., [82]),
performing search and rescue (e.g., [77]), or extra-planetary
exploration (e.g., [103]). In these systems, robots may at times
be working on different parts of the higher level goal, and thus
may at times have to ensure that they share the workspace
without interfering with each other. However, the majority
of the work of the robots is focused on working together to
achieve a common goal.

A third type of interaction in systems of distributed intel-
ligence occurs when robots have individual goals, they are
aware of their teammates, and their actions do help advance
the goals of others. This part of the domain space is typically
called collaborative, and is characterized by entities helping
each other to achieve their individual, yet compatible, goals.
While closely associated to the cooperative domain space, we
make a distinction here to focus on the ability of entities to
work together to help others better achieve their individual
goals. In human research teams, we are familiar with the
concept of collaboration, in which each person brings unique
expertise that helps the team as a whole achieve a broader ob-
jective. Each team member has his/her own goal of performing
his/her own aspect of the research, but by working together
with others with complementary expertise, each can help the
other members better achieve their individual goals. Of course,
most of these collaborations are also cooperative, and it is
possible to turn a collaborative team into a cooperative team
by simply viewing the team goals from a higher perspective.
A multi-robot example of a collaborative team is a group of
robots that each must reach specified goal positions that are
unique to each member. If robots are unable to reach their
goal positions independently, due to sensor limitations, they
could work together with other robots by sharing sensory
capabilities to help all team members reach their individual
goal locations. This type of collaboration is sometimes called
coalition formation, and has been illustrated in multi-robot
systems in [85], [119].

Finally, the fourth type of interaction relevant to distributed
intelligence is what we call coordinative. In these systems,
entities are aware of each other, but they do not share a
common goal, and their actions are not helpful to other team
members. In multi-robot systems, these situations often occur
when robots share a common workspace. The robots must
work to coordinate their actions to minimize the amount of
interference between themselves and other robots. Multi-robot
path planning techniques (e.g., [56], [43], [1], [25], [86], [88],
[19], [107], [53], [93], [63]) or traffic control techniques (e.g.,
[40], [54], [66], [3], [125], [121]) are commonly used in these
domains.

As a side note, we could have extended the third axis of
our domain space to categorize systems based on whether they
(1) positively affect the goals of other entities, (2) have no
effect on the goals of other entities, or (3) negatively effect
the goals of other entities. Then, we could create a new type
of interaction in which entities have individual goals, they
are aware of each other, but their actions have a negative
effect on others’ goals. This defines the adversarial domain, in
which entities actively work against each other. In multi-robot

Fig. 2. Categorization of types of interactions in systems of distributed
intelligence.

systems, this topic is studied extensively in the multi-robot
soccer application domain (e.g., [55], [15], [118], [101]). This
form of interaction also has clear relevance for many security
and military applications.

Understanding the types of interactions that we want to
achieve in a distributed intelligence system can provide in-
sights into the appropriate solution strategy. The following
section outlines some common paradigms for distributed in-
telligence that can achieve these varying types of interactions
in multi-robot systems.

III. PARADIGMS FOR DISTRIBUTED INTELLIGENCE

Just as there are many types of interactions in systems of
distributed intelligence, there are also many paradigms for
achieving distributed intelligence. Each paradigm abstracts
the problem space in a different way, enabling the system
designer to view the system from a perspective that sheds
light on proper solution strategies. Often, these paradigms take
inspiration from societies of insects, or societies of humans.
Not all paradigms are appropriate for all types of interaction
dynamics. In this section, we outline some of the more
common paradigms for distributed intelligence, especially
focusing on their relevance to multi-robot systems. Note that a
fundamental challenge in all of these paradigms is determining
how best to achieve global coherence from the interaction
of entities at the local level. By abstracting the problem in
different ways, alternative solution strategies become apparent
that can help address this challenge.

Three commonly used paradigms for building systems of
distributed intelligence include:

• Bioinspired, emergent swarms paradigm,
• Organizational and social paradigms, and
• Knowledge-based, ontological, and semantic paradigms.
The following subsections outline these paradigms in more

detail.

A. Bioinspired, emergent swarms paradigm

The behavioristic approach to autonomous robot control that
gained popularity beginning in the 1980’s [13] has its roots
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in the observations of animal behavior. Animals, particularly
the lower animals, are existence proofs that interesting results
can be achieved without the need for a complex, human-
level architecture. Many animals appear to be “hard-wired”
for certain behaviors, producing very stereotypical reactions
to particular stimuli. For instance, a robin begins defending
its territory when it sees the red breast of another robin, or
even a bunch of red feathers [26]. A pregnant Three-spined
Stickleback fish approaches a male Stickleback with a red
belly, or even a crude model of a Stickleback, as long as it is
painted red underneath [114]. A male grayling butterfly flies
up to mate rather large, dark, close, dancing objects, which
could include not only female graylings, but also birds, falling
leaves, and shadows [115].

Applying animal observations to the realm of autonomous
robotics, interesting and seemingly intelligent activities can
be obtained by layering behaviors that react to stimuli from
the world according to the robot’s current internal state [13].
Rather than decomposing the robot control system based on
information processing functions, the behavioristic approach
decomposes the control into task achieving behaviors, such
as obstacle avoidance, exploration, and map building. The
result was a series of autonomous robots that can survive in a
dynamic world, avoiding obstacles, exploring the environment,
following walls, building maps, climbing over uneven terrain,
and so forth [14].

But this same approach — the observation of animal behav-
ior — that has been used for inspiration in the development
of individual robots is just as easily used to gain insight
into the creation of groups of robots that cooperate toward
attaining some goal [80]. By learning how various species of
animals function as groups, ideas can be obtained for building
a cooperating team of autonomous robots.

1) Two Types of Animal Societies: Since there are so many
varieties of social behavior in the animal kingdom, a classifi-
cation of animal societies is useful. One such classification,
proposed by Tinbergen [114], is of particular interest for
current robotics research in multi-robot systems, as it parallels
two possible approaches to achieving multi-robot systems.
According to Tinbergen, animal societies can be grouped into
two broad categories: those that differentiate, and those that
integrate.

Societies that differentiate are realized in a dramatic way in
the social insect colonies [124]. These colonies arise due to
an innate differentiation of blood relatives that creates a strict
division of work and a system of social interactions among the
members. Members are formed within the group according to
the needs of the society. In this case, the individual exists
for the good of the society, and is totally dependent upon
the society for its existence. As a group, accomplishments are
made that are impossible to achieve except as a whole.

On the other hand, societies that integrate depend upon the
attraction of individual, independent animals to each other.
Such groups do not consist of blood relatives that “stay
together”, but instead consist of individuals of the same species
that “come together” by integrating ways of behavior [90].
These individuals are driven by a selfish motivation which
leads them to seek group life because it is in their own

best interests. Interesting examples of this type of society are
wolves, or the breeding colonies of many species of birds, in
which hundreds or even thousands of birds congregate to find
nesting partners. Such birds do not come together due to any
blood relationship; instead, the individuals forming this type
of society thrive on the support provided by the group. Rather
than the individual existing for the good of the society, we
find that the society exists for the good of the individual.

2) Parallels in Multi-Robot Systems: In analyzing research
in multi-robot systems, a parallel can be drawn with the
classifications of animal societies discussed above. A large
body of work in robotics, including much of the earliest work
(e.g., [21], [112], [98], [23], [70], [10], [59], [99], [33], [122]),
involves the study of emergent interactions in colonies of
robots — an approach comparable to differentiating animal
societies. This research emphasizes the use of large numbers of
identical robots that individually have very little capability, but
when combined with others can generate seemingly intelligent
group behavior. This intelligent group behavior is achieved as
a side-effect of the individual robot behaviors. This type of
interaction is typically called collective.

In this paradigm, the need for communication between en-
tities is greatly reduced by assuming the ability of the entities
to sense relevant information in their local environments (i.e.,
stigmergy). The application requirements in these problems
allow for simple action protocols, or control rules, that are
identical on each entity, and that lead to the desired group
behavior. An example local control rule under this paradigm
that can cause all the agents/robots to aggregate (as in a
swarm) is [71]:

Aggregate:
If agent is outside aggregation

distance
then turn toward aggregation

centroid and go.
Else

stop.

This is a powerful paradigm for those applications that
require the same task to be performed across a distributed
workspace, where the task does not require complex interac-
tions of entities and all entities are interchangeable. Research
challenges include developing tools that can predict the global
behavior given a set of local control rules, as well as the
inverse problem, in which we want to derive the local control
rules, given a desired global behavior. This paradigm is
relevant for many spatially distributed applications, including
flocking, schooling, and formations (e.g., [92], [70], [5], [81],
[105], [73], [75], [76], [8]); foraging, coverage, and search
(e.g., [87], [31], [120], [34], [4], [104], [94], [106], [16], [69]);
target tracking and observation (e.g., [7], [123], [65], [62],
[57], [51], [111]); sorting and clumping [8], and so forth.
While earlier approaches to these applications were based on
human-generated local control rules that were demonstrated
to work in practice, more recent work is based on control
theoretic principles, with a focus on proving stability and con-
vergence properties in multi-robot team behaviors. Examples
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of this work include [47], [9], [116], [29], [68], [35], [36],
[108], [2].

Other types of interactions, however, require more complex
solution paradigms. Thus, a second approach parallels the
integrative societies in the animal kingdom. This research
aims to achieve higher-level, “intentional” cooperation or
collaboration amongst robots. Rather than beginning with
robots having very low-level behaviors, individual robots that
have a higher degree of “intelligence” and capabilities are
combined to achieve purposeful cooperation or collaboration.
The goal is to use robots that can accomplish meaningful
tasks individually, and yet can be combined with other robots
with additional skills to complement one another in solving
tasks that no single robot can perform alone. To be purely
analogous to the integrative animal societies, robots in this
type of interaction would have individual, selfish, motivations
which lead them to seek cooperation or collaboration [72].
Such interactions would be sought because it is in the best
interests of each robot to do so to achieve its mission. Of
course, the possession of a selfish motivation to cooperate
or collaborate does not necessarily imply consciousness on
the part of the robot. It is doubtful that we would attribute
consciousness to all the integrative societies in the animal
kingdom; thus, some mechanism must exist for achieving this
type of productive interaction without the need for higher-
level cognition. A large body of multi-robot systems research
falls into this category (e.g., [82], [123], [78], [12], [15], [67],
[101], [103], [119], [1]). The next two paradigms discussed
in this article — namely, the organizational/social paradigm
and the knowledge-based/ontological/semantic paradigm —
are additional techniques that have been used to create similar
higher-level, intentional cooperation and/or collaboration in
multi-robot teams.

The type of approach one should use for the multi-robot
solution is dependent upon the applications envisioned for
the robot team. The differentiating interaction approach is
useful for collective tasks requiring numerous repetitions of the
same activity over a relatively large area (relative to the robot
size), such as waxing a floor, cleaning barnacles off of ships,
collecting rock samples on a distant planet, and so forth. Such
applications would require the availability of an appropriate
number of robots to effectively cover the work area while
continuing to maintain the critical distance separation.

On the other hand, the intentional interaction approach
would be required for cooperative or collaborative interactions
in applications requiring several distinct tasks to be performed,
perhaps in synchrony with one another. Throwing more robots
at such problems would be useless, since the individual tasks
to be performed cannot be broken into smaller, independent
subtasks. Examples of this type of interaction include container
management in ports [1], some aspects of extra-planetary
exploration [103], some types of search and rescue [49], some
aspects of mineral mining [95], transportation [113], industrial
and household maintenance [83], construction [96], hazardous
waste cleanup [82], security [27], [44], agriculture [89], and
warehouse management [45].

Of course, there is overlap in the relevance of these ap-
proaches to various applications, and in some instances the dif-

ferences are a matter of degree. For instance, if large numbers
of robots are too expensive or are not available to be applied
to, say, planetary exploration, then more purposive interaction
(i.e., cooperation or collaboration) is required to achieve the
goal of the mission. Combinations of the approaches are also
possible by using intentionally interacting robots to guide the
activities of smaller groups of swarm robots in a coordinated
way (e.g., [84]).

B. Organizational and social paradigms

Organizational and social paradigms are typically based on
organizational theory derived from human systems. Knowl-
edge from the fields of sociology, economics, and psychology,
and related areas, have proven valuable for understanding how
to create systems of intelligent artifacts that can work together
to solve complex problems. In these approaches, agent/robot
interactions are designed by modeling individual and group
dynamics as part of an organization. These approaches reduce
the communications requirements among entities by making
use of models drawn from these fields. This type of approach
is commonly used for cooperative and collaborative types
of distributed intelligence. Three examples of organizational
theory applied to multi-robot systems are the use of roles, the
use of market economies, and the use of teamwork models.

Roles are often used to divide the application into man-
ageable portions of the work that can each be assigned to
a different robot in the team. An easy division of work
is achieved by assigning roles according to the skills and
capabilities of the individual team members. For instance, in
multi-robot soccer [100], [67], [118], positions played by the
different robots are often defined as roles, such as goal keeper,
left defender, right defender, left forward, right forward, and so
forth. The robot best suited, and perhaps in closest proximity,
to the available roles/positions then selects to perform that
role.

Market economies are used in multi-robot systems as a
paradigm for task allocation, which we discuss further in
the next section. In brief, task allocation is the problem of
mapping tasks to robots, such that the most suitable robot is
selected to perform the most appropriate task, leading to all
tasks being satisfactorily completed. Market-based approaches
to task allocation (e.g., [22], [126], [39], [12]) make use of the
theory of market economies to determine how best to allow
robots to negotiate on responsibilities in the mission. Market
economy approaches define methods for how to manage bids,
how to handle multiple bids in parallel, how to consider
multiple tasks at once, and so forth. More discussion on this
topic is given in the next section.

Teamwork models allow agents/robots to explicitly rea-
son about coordination and communication. In dynamic en-
vironments, the ability to reason about the interactions of
agents/robots can enable the team members to reorganize
themselves as needed to address new situations that arise.
Many teamwork models, such as Tambe’s STEAM model
[109], are based on the concept of joint intentions [20], which
models the joint mental state of the team. The idea is that
a team is jointly committed to a task if its individual team
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members are committed to the task and believe that they are
executing the task. Protocols for establishing team member
commitments are defined as part of this general model. A
related concept is that of shared plans [41], which represent
agents’ intentions to perform particular tasks.

C. Knowledge-based, ontological, and/or semantic paradigm

A third paradigm commonly used for developing systems
of distributed intelligence is the knowledge-based, ontological,
and/or semantic paradigm. The focus in these approaches is on
knowledge sharing between heterogeneous robots/agents, with
the objective of easily allowing these entities to share and un-
derstand knowledge from disparate sources. Often, knowledge
is defined as an ontology, which specifies a common vocab-
ulary and semantics for the knowledge in the system. Such
approaches require a language for representing knowledge,
such as the Knowledge Interchange Format (KIF) [37], as
well as a language for communicating knowledge, such as the
Knowledge Query and Manipulation Language (KQML) [30].
This paradigm achieves communication reduction by making
use of shared assumptions of vocabulary and semantics.

This type of paradigm can be used for many types of
interactions, including cooperative, collaborative, and coordi-
native. However, while this paradigm has become perhaps the
dominant paradigm in multi-agent systems, it is not commonly
used in multi-robot systems, at least in the form of full-
fledged ontologies. More than likely, this is because physical
robot systems are more challenged by noise and uncertainty
in sensing and actuation, as well as low-bandwidth communi-
cations, limited power, and limited computation. As such, the
limiting bottleneck in multi-robot systems is not typically the
semantics of the shared knowledge, but rather dealing with
these uncertainties. However, this does not mean that multi-
robot systems do not use knowledge-based approaches. On the
contrary, many approaches do model information about the
system and about the teammates in order to more effectively
cooperate, collaborate, and coordinate.

IV. CONTRASTING PARADIGMS FOR A TYPICAL
MULTI-ROBOT CHALLENGE: TASK ALLOCATION

Having explored three common paradigms in systems of
distributed intelligence, we now compare and contrast these
paradigms in their approach to a common challenge in multi-
robot systems — that of task allocation. As previously intro-
duced, task allocation arises in many multi-robot applications
in which the mission of the team is defined as a set of tasks
that must be completed. Each task can usually be addressed
by a variety of different robots; conversely, each robot can
usually work on a variety of different tasks. Independent tasks
can be achieved concurrently, while dependent tasks must
be achieved according to their interdependence constraints.
Once the set of tasks has been defined, the challenge is
to determine the preferred mapping of robots to tasks that
optimizes some objective function. This is the task allocation
problem. (See Gerkey [38] for a taxonomy and formal analysis
of the computational complexity of variants of the Multi-
Robot Task Allocation (MRTA) problem.) The general task

allocation problem is known to be NP-hard [38], meaning that
optimal solutions cannot be found quickly for large problems.
Therefore, solutions to this problem are typically approxima-
tions that are acceptable in practice. The following subsections
examine how each of the paradigms we have discussed would
handle the multi-robot task allocation problem.

A. Bioinspired approach to task allocation

The bioinspired approach to task allocation typically as-
sumes large numbers of homogeneous robots that are all in-
terchangeable. In this situation, any robot that is available and
senses the need for a task to be performed can select to perform
that task (i.e., the task is allocated to that robot). Because
of stigmergy, robots do not have to explicitly communicate
to decide which task to undertake. Or, alternatively, robots
may broadcast minimal information about their state or their
environment without undertaking any conversations with other
robots about which robot should perform which tasks. Robots
that fail can be replaced by any other available robot. If all
robots operate under this principle, then the entire mission is
typically accomplished.

An example of this type of task allocation is the work of
Balch and Arkin [6]. While this work focused on the effect of
communication on a society of robots, their work also achieved
implicit task allocation through stigmergy and minimal inter-
robot communication of robot state and/or goal information.
The tasks studied in this work were Forage, Consume, and
Graze. The Forage task requires robots to wander in the
environment, seeking out an attractor object. Once found, the
robot attaches to the attractor and returns it to home base.
The Consume task is similar to the Forage task, except that the
robot performs work in place on the object, rather than return it
home. Finally, the Graze task requires the robots to collectively
visit all areas of the environment. To accomplish these tasks,
the robots were programmed with a schema-based reactive
control system that enabled robots to avoid obstacles, detect
attractors, move to a desired goal destination (e.g., Home or
an attractor), etc. Through a variety of simulations that varied
the settings of parameters in the system, Balch and Arkin
showed that the robots could successfully complete their set
of tasks through stigmergy, when available, or through the use
of minimal state communication when sensing through the
environment (i.e., stigmergy) was not possible.

Most other bioinspired approaches to achieving robot collec-
tives also implicitly achieve task allocation through stigmergy.
Examples of these approaches include [59], [60], [70], [74],
[87], [99], [105], [106].

B. Organizational approach to task allocation

An organizational approach to task allocation could make
use of roles, as we described previously for multi-robot soccer.
Each role encompasses several specific tasks, and robots select
roles that are best suited for their capabilities. In this case,
robots need not be homogeneous, but instead can have a vari-
ety of different sensing, computation, and effector capabilities.

An example of role-based task allocation is the work of Sim-
mons, et al. [96], who have developed the Distributed Robot
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Architecture ( DIRA), which allows autonomy in individual
robots and facilitates explicit coordination among robots. Their
approach is based on a layered architecture, in which each
robot’s control architecture consists of a planning layer that
decides how to achieve high-level goals; an executive layer
that synchronizes agents, sequences tasks and monitors task
execution; and a behavioral layer that interfaces to the robot’s
sensors and effectors. Each of these layers interacts with those
above and below it. Additionally, robots can interact with
each other via direct connections at each of the layers. Task
allocation is achieved through a role-based approach, in which
each robot takes on one of the roles necessary for the task.
This architecture has been demonstrated in a team of three
robots — a crane, a roving eye, and a mobile manipulator —
performing a construction assembly task. This task requires the
robots to work together to connect a beam at a given location.
Each robot fulfills a critical role of the overall task. In these
demonstrations, a software agent acting in the “foreman” role
decides which robot should move the beam at which times.
Initially, the crane moves the beam to the vicinity of the
emplacement based on encoder feedback. The foreman then
sets up a behavioral loop between the roving eye and the crane
robot to servo the beam closer to the point of emplacement.
Once the beam is close enough, the foreman tasks the roving
eye and the mobile manipulator to servo the arm to grasp the
beam. After contact is made, the foreman tasks the roving eye
and the mobile manipulator to coordinate to servo the beam
to the emplacement point, thus completing the task.

Teamwork models for cooperation and collaboration in
multi-robot/multi-agent teams often also use roles to achieve
task allocation. For example, in the work of [109], roles are
used to simplify the assignment and execution monitoring of
the activities of agents on the team during the mission. Other
role-based approaches include [101], [117], [48], [18], [79].

An alternative organizational approach to task allocation
is the market-based approach. In these approaches, robots
explicitly communicate to bid for tasks according to their
expected contribution to those tasks. Assignments are typically
made by greedily assigning each task to the robot that can
perform it with the highest utility. The fundamental paradigm
for interaction in this case is based upon the Contract Net
Protocol [97], which was the first to address the problem of
how agents can negotiate to collectively solve a set of tasks.
The use of a market-based approach specifically for multi-
robot task allocation was first developed in the M+ architecture
[12]. In the M+ approach, robots make incremental choices of
tasks to perform from the set of executable tasks. Tasks are
considered executable if all of their predecessor tasks have
been accomplished or are underway. For these tasks, robots
create their own individual plans, estimating their costs for
executing these tasks. The robots then compare their costs to
offers announced by other robots. The robot selects to perform
the task of lowest cost that it can perform that is better than the
cost announced by any other robot. Other aspects of the M+
architecture allow robots to negotiate with other teammates to
incrementally adapt their actions to suit the team as a whole,
through the use of social rules that facilitate the merging of
plans.

A significant amount of recent work addresses more pow-
erful market-based approaches for task allocation [39], [58],
[96], [117], [61], [11], [91], [127], [42], [52], [64], [32], [50],
[85]. These approaches can deal with more complex task
representations, more coupling between tasks, dynamic events,
combinatorial auctions, and so forth. See [22] for a complete
survey of these approaches.

C. Knowledge-based approach to task allocation

The knowledge-based approach is also used for task alloca-
tion in multi-robot teams, through the modeling of teammate
capabilities. Many variations are possible, such as in the AL-
LIANCE approach by Parker [82], in which robots model the
ability of team members to perform the tasks of the system by
observing team member performance and collecting relevant
task quality statistics, such as time to task completion. Robots
then use these models to select tasks to perform that benefit
the group as a whole. In this approach, explicit communication
is not required for the selection of task assignments.

Other techniques are also possible that make use of learned
models of teammate capabilities. For example, the COBOS
work of Fua and Ge [32] maintains a task suitability matrix,
which is a team model representing the suitability of each
robot on the team to perform each task. Tasks can be broken
down into subtasks, and the suitability of a robot to perform a
macro task can be calculated from its suitability for performing
lower-level basis tasks. In this work, suitability is calculated
based on the compatibility of a robot’s intrinsic abilities
fundamental to the task; extrinsic factors, such as time and
distance, can also be incorporated into the task description.

Work by Parker and Tang [85], [110] in the development
of ASyMTRe is an example of a semantic approach to task
allocation. In ASyMTRe, each robot team member possesses
a set of building-block capabilities, called schemas. Examples
of schemas include perceptual schemas, which extract infor-
mation from sensors, and motor schemas, which convert infor-
mation from perceptual schemas to motor command outputs.
In this approach, each schema’s inputs and outputs represent
semantic information types that must be obtained (in the case
of inputs), or are generated (in the case of outputs). This
semantic information can be obtained from any source, such as
from a schema on the same robot, or a schema on a different
robot. By determining a valid information flow through a com-
bination of schemas within, and across, robot team members,
the team as a whole is able to compose coalitions for solving
given tasks. The use of semantic information in this approach
enables sensor sharing across heterogeneous team members in
a manner that is flexible and extendible to a variety of team
compositions and team tasks.

D. Summary of contrasting paradigms for task allocation

As we see through these task allocation examples, a specific
problem in multi-robot systems can be addressed in many dif-
ferent ways, based upon the paradigm selected for abstracting
the problem at hand. Each paradigm has its own advantages
and disadvantages, which may be specific to the application.
The paradigms are therefore not interchangeable for many
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applications, with the most suitable approach depending upon
the relevant constraints and requirements of the application.

V. CONCLUSIONS

In this paper, we have outlined aspects of the field of dis-
tributed intelligence, focusing on the types of interactions that
can occur in such systems, and some common paradigms used
to achieve distributed intelligence. To explore the challenges,
we have used examples from the field of multi-robot systems
to illustrate, compare, and contrast the alternative interactions
and paradigms. The main message of these discussions is
that the choice of paradigm is not always obvious, and is
dependent upon the requirements of the application to be ad-
dressed. We also note that complex systems of multiple robots
can make use of several different paradigms simultaneously.
For example, a large-scale exploration, mapping, deployment,
and detection problem, such as that described in [46], can
make use of an organizational paradigm to define roles for
the high-level abstraction, an application-specific knowledge-
based approach for multi-robot mapping, a knowledge-based
modeling approach for mobile network deployment, and a
bioinspired approach for creating a mobile sensor network.
The challenge as system designers is to create and make use
of the appropriate paradigms that best address the specific
constraints and challenges of the application at hand.
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