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Abstract: In this paper we regard legged locomotion (e.g., running) as adaptive vibration, which is capable of
adapting to changes in internal parameters and in the external environment. We propose control concepts for
such adaptive running in general, and present a theoretical study of the bounding locomotion of a quadruped
robot according to the proposed control concepts. In our control method, a forced vibratory system with
a synchronization function is constructed by using a rhythm generator and a torque generator. The states
of both generators are modified by delayed feedback control (DFC) using a stance phase period measured
by contact sensors. Such sensory feedback to both generators makes the system adaptive to changes in the
physical parameters and also adaptive to changes in terrain. The effectiveness of the proposed method was
confirmed by simulations using a quadruped robot with an active hip joint and a passive knee joint in each
leg. MPEG footage of these simulations can be seen at: http://www.kimura.is.uec.ac.jp/running.

Keywords: Quadruped robot running, forced vibration, synchronization, delayed feedback control

1. INTRODUCTION

Among researchers who have studied the running of legged robots, Raibert’s monopod, biped
and quadruped robots are well known (Raibert, 1985). Motivated by Raibert’s success, many
studies have been conducted on the running of legged robots. Since the 1990s, there has
been progress in the stability analysis of one-legged hopping and in the development of
hopping robots (Koditschek and Buehler, 1991; Vakakis et al., 1991; Ahmadi and Buehler,
1997; Hyon and Mita, 2002). By simulating the marvelous mobility of four legged mam-
mals, various control strategies for quadruped running have been explored in simulation
studies (Berkemeier, 1998; Krasny and Orin, 2004; Herr and McMahon, 2000; Palmer et al,
2003; Poulakakis et al., 2003) and experiments (Furusho et al., 1995; Kimura et al., 1999;
Poulakakis et al., 2005b; Zhang et al., 2003).
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However, studies of autonomous dynamic adaptation, allowing a robot to cope with
infinite variation of terrain, have begun only recently, and are being performed by only a
few research groups. One example is the recent achievement of high-speed mobility of a
hexapod over irregular terrain with appropriate mechanical compliance of the legs (Saranli
et al., 2001; Cham et al., 2004). The purpose of this study is to produce adaptive running for
various states or terrains using a mammal-like quadruped robot.

For efficient running, a quadruped robot must have an energy-restoring system such as
a spring mechanism. In such cases, running can be considered to be a vibration adapting to
changes in internal parameters and the external environment. When running is considered
as a vibration, the dynamic properties of the mechanism are important. We should consider
that running motion and running control take advantage of such dynamic properties. In this
paper, we first consider quasi-passive running in a bounding gait with no energy loss, and use
a fixed point of a Poincaré map as the desired motion. Steady running at a fixed point has two
advantages that utilize the dynamic properties of the mechanism. These are energy efficiency
and self-stability (Blickhan, 1989; Serfarth et al., 2002). To cause the motion of a quadruped
robot to converge to one fixed point in the presence of energy loss and disturbance, we next
employ a rhythm generator and a torque generator combined with sensory feedback that we
refer to as delayed feedback (Osuka et al., 2004). We use the stance phase period measured
by contact sensors with practical levels of accuracy. This original method autonomously
generates energy-efficient running with self-stabilizing ability against disturbances causing
no energy loss, and generates adaptation ability against disturbances causing energy loss. As
aresult, the running motion considered in this paper is forced vibration with synchronization.
The effectiveness of the proposed method is confirmed by simulations using a quadruped
robot with an active hip joint and a passive knee joint in each leg.

In contrast with Raibert’s (1985) control strategy, we do not directly utilize the forward
speed, the jump height or the pitch angle of the body as measured by sensors. As a result,
our proposed control method is simpler and more robust. In addition, it is important to
mention here that the structure of the proposed controller is clearer and more practical for
the generation of a bounding gait than that proposed by Poulakakis et al. (2005a) in two
respects. First, the running converges to a definite fixed point. Second, mechanisms capable
of stabilizing the gait and energy are explicitly integrated.

2. CONCEPTS FOR ADAPTIVE RUNNING

Legged locomotion can be considered to be vibration that adapts to changes in internal para-
meters and in the external environment. Ono and Okada (1994) indicated that such adaptive
vibration can be generated by two types of systems; a self-excited vibratory system, or a
combined system with forced vibration and synchronization. Self-excited vibration is good
for adapting to changes in internal parameters (e.g., leg length, stiffness and viscosity), but it
is inadequate for adjustments of stride and speed and for adaptation to the external environ-
ment. On the other hand, forced vibration itself has no adaptability. Thus, synchronization
is necessary for the system to adapt to changes in internal parameters and in the external
environment.
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Figure 1. Legged locomotion generation and adaptation using a combined forced vibration and
synchronization system.

Full and Koditschek (1999) pointed out that thythmic motion is mainly generated by
the spring-mass system in high-speed running, and that the self-stabilization property of a
mechanism can cancel disturbances. In other words, self-excited or forced vibration without
synchronization is sufficient for running in steady state. However, synchronization ability
will play an important role in transient states such as the transition from standing to steady
running, running up steps and so on.

Legged locomotion generated by forced vibration and synchronization is illustrated in
Figure 1. The forced vibratory system and the mechanical system (i.e., a quadruped robot
with compliant legs) have their own nonlinear dynamics. These two dynamic systems are
coupled to each other, and can generate locomotion by interacting with the environment
emergently and adaptively (Taga et al., 1991; Fukuoka et al., 2003). We called this method
forced vibration and synchronization based locomotion. In this method, there is no difference
between motion generation and adaptation. The forced vibration and synchronization system
can induce autonomous adaptation according to its own dynamics in response to changes in
the environment (e.g., adaptive running on irregular terrain).

In this paper, we propose a new legged locomotion generation and adaptation method,
taking the following issues into account:

1. Whether we can construct a system in which the spring-mass system is dominant in a
steady state and the forced vibration and synchronization system works in transient states;

2. Whether we can design a forced vibratory system which has no natural cyclic period and
can be synchronized with the natural cyclic period of the spring-mass system;

3. What kind of sensory information is appropriate for adaptive running while considering
some difficulties from an engineering point of view (e.g., noise and drift).
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Figure 2. Sagittal plane model of a quadruped robot.

3. UTILIZING NATURAL DYNAMICS OF MECHANICAL SYSTEMS

In order to realize the forced vibration and synchronization based locomotion generation
which works with the natural dynamics of a mechanism, we first numerically analyze the
self-stability in quasi-passive running of a quadruped robot.

We present a number of sagittal plane models for construction of a hybrid quadruped
bounding system in Section 3.1. In each case, the corresponding equations of motion are
derived based on the Lagrangian method. Moreover, we introduce several self-stabilizing
properties by seeking the fixed point of a Poincaré map modeling the bounding cycle, as
described in Section 3.2 and Section 3.3. Although an identical analysis has been studied in
a conservative model of Scout II (Poulakakis et al., 2003), we seek the fixed points and re-
confirm the self-stabilizing property in our quadruped bounding system, which uses different
mechanisms from Scout II.

3.1. Definition of the Hybrid Quadruped Bounding System

A sagittal plane compliant model, as shown in Figure 2, is used to analyze running of the
quadruped. The model is composed of a rigid body and a pair of spring-loaded two-segment
legs. The center of gravity of the body is located at the center of the body link (x, y).
The mass, moment of inertia, length and pitch angle of the body are M,, Iy, 2L, and 6,
respectively. The suffixes f and & represent the forelegs and hind legs, respectively. The
angle of the hip joint with respect to the toe is y, (I = {f, h}). k; is the spring constant. The
knee joints are always passive.

Several assumptions form the basis for the modeling and analysis of bounding locomo-
tion:

1. The bounding locomotion is primarily planar. The velocity of a robot’s components in
directions perpendicular to the plane of progression are typically small for quadruped
running gaits. Our models and analysis will therefore be constrained to the sagittal
plane;
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Figure 3. Phase transitions of the sagittal plane bounding gait. This bounding gait contains four phases
(flight, forelegs stance, four legs stance and hind legs stance).

2. The leg mass is negligible relative to the body mass. It is assumed that the leg mass is
sufficiently small for their effect on the body dynamics to be limited to the transmission
of the ground reaction forces at the toes to the body when they are in contact with the
ground. This assumption is a fairly accurate approximation as a result of the very light
legs on our experimental platform;

3. The toe will be treated as a frictionless pin joint when it is in contact with the ground.
This implies that no slipping between the toe and the ground occurs and that the toe
makes point contact with the ground;

4. The friction in each joint and between the leg and ground is negligible. The energy loss
can be avoided so that the whole system satisfies the energy conservation principle.

In light of these assumptions, the leg can be arbitrarily placed during the swing phase period
at no energetic cost, and the collision equations of the legs with the ground can be omitted
from the definition of the hybrid quadruped bounding system.

The quadruped bounding system consists of four phases (flight, forelegs stance, four
legs stance and hind legs stance) in one cycle of running (see Figure 3), where only one
flight phase, the “extended flight phase” (Krasny and Orin, 2004), appears after the hind legs
stance phase. In all phases, we choose the same parameterization of the configuration space:
By the Cartesian coordinates of the mass center of the body (x, y) and the orientation of the
body in the inertial frame, 6. In each phase, the equation of motion is

M(x)x = H(x, x) + Fq + G, (D
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where x = [x, y, 8]7, M is the inertia matrix and H, Fq and G are the vectors of the Cori-
olis, elastic and gravitational forces, respectively. The geometric constraints as transition
conditions for touchdown and lift-off events are

swing = stance

y'4 £ Lysin® < Ly cos fi* + L, cos al?
(2)

stance = swing

or = dyp, G =m—=p—a)

where [ = {f, h} for the fore (4 in equation (2)) and hind (— in equation (2)) legs respec-
tively. y' is the height of the center of the body at the touchdown moment. d;,, which is
defined as 2.095 rad in this study, represents the initial posture of the two-link leg.

3.2. Searching for Fixed Points

Steady rhythmic locomotion can be formulated by defining a return map called a Poincaré
map and achieved by stabilizing the discrete dynamical system expressed by the Poincaré
map. Specifically, in our study, we first choose the state variables at the apex height in the
flight phase p = [y,,0,,X,, ] ,,]T, as a reference point of the Poincaré map and use the
touchdown angles of the forelegs and hind legs q = [y ’fd, 141" as the control inputs of the
system. Next, we integrate the equations of motion of all the phases in one bounding cycle
from initial states at the n'" apex height by using an adaptive step 4" order Runge-Kutta
routine in MATLAB. This process yields the state variables at the (n + 1)"* apex height,
which is the value of the Poincaré map calculated at the n'" apex height. This relationship

can be formulated as follows:
pln + 1] = P(pln], q[n]). 3)

Finally, in order to obtain repetitive and cyclic bounding, we seek conditions for which the
resulting state variables at the new apex height are identical with the initial state variables. In
the field of nonlinear dynamics, the state variable that satisfies the equilibrium conditions is
called a fixed point. To find a fixed point in equation (3) that maps on to itself, the following
equation is solved

p—Pp) =f(p) =0, 4)

for all reasonable values of touchdown angle. In our study, we utilize the simplest multidi-
mensional root finding method, the Newton-Raphson method, to seek an approximation of
the asymptote of equation (4). Here, f(p) can be expanded in a Taylor series

f(p + op) = £(p) +J - op + O(p?). ®)
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Figure 4. Fixed points for various forward speeds (between 0.75 m/s and 1.35 m/s) and constant apex
height (0.2 m).

By neglecting terms of order p? and higher, and by assuming that f(p 4+ Jp) is nearing 0, we
obtain a linear equation (equation (6)) for the corrections Jp that moves each function closer
to zero simultaneously.

J-op=—f(p). (6)

Matrix equation (6) can be solved by LU decomposition. The corrections are then added to
the solution vector

Puew = Pola + 5P, (7)

and the process is iterated until convergence. In general, it is a good idea to check the degree
at which all variables have converged. Once either variable reaches machine accuracy, the
other will cease to change. We set the machine accuracy to 1e—6 during a complete bounding
cycle.

A large number of fixed points of the Poincaré map for different initial conditions and
different touchdown angles have been searched. Figure 4 shows the fixed points as the
forward speed varies between 0.75 m/s and 1.35 m/s while the apex height is kept constant
(at 0.2 m). In addition, the stabilities of these fixed points have been studied by seeing
whether all the eigenvalues of the Jacobian matrix (equation (8)) relating to the equilibrium
status (p*,q*) have magnitude less than one.

_Pe".q)

J op

®)
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C Language Controlled Variables ~ WWorking Model 3D

Control System Link Mechanical System
Simulator Program Simulator

Quantities of State

Virtual Quadruped Robot
- H

—

Figure 5. The composition of the hybrid simulator. The mechanical system simulator is constructed in
Working Model 3D, and the control system simulator is described in the C language.

Table 1. The characteristics of the fixed point p* used in the simulations. y,, 8, X, and
0, are the height, pitch inclination, forward speed and pitch rate of the body at the apex,
respectively.

yp (m) 0.2 0, (rad) 0
X, (m/s) 0.95 6 ,(rad/s) —1.52
y'f (rad) 0.524 yid (rad) 0.838
energy (J) 1.36 cyclic period (s) 0.292
eigenvalues of J 0.0003, 0.0005, —0.032, 0.0213

3.3. Self-Stability of Quadruped Bounding System

In this paper, we adopt p* = [0.2,0,0.95, —1.52]" as a typical fixed point and use the
touchdown angles q* = [0.524, 0.838]7 corresponding with this fixed point. Since all the
eigenvalues of its Jacobian matrix have magnitude less than one as shown in Table 1, the
typical fixed point can be regarded as an asymptotically stable fixed point. Other quantities
related to this fixed point are also shown in Table 1.

In order to demonstrate that the self-stabilizing property can still work effectively even
when friction and collision cause energy loss, we have chosen to study the more practical
bounding, approximating an actual robot where, unlike the quasi-passive running model, the
leg mass, moment of inertia, viscous friction in each joint, and collision between legs and
the ground are considered. Thus, we build a more accurate simulator by using a combination
of Working Model 3D and the C programming language (see Figure 5). For one thing, we
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Table 2. The parameter values used for the quadruped physical model. c;;, and cyee
indicate the viscous friction coefficients at the joints. ay and S, represent the joint angles
of the knee and hip joints in the initial standing posture.

parameters value parameters value
M, (kg) 1.12 Iy (kgm?) 55E -2
M, (kg) 0.35 I, (kg) 2.05E — 4
M, (kg) 0.12 I, (kgm?) 231E —4
Ly (m) 0.15 Ly (m) 0.08
L, (m) 0.15 p (m) 0.03

ks (kN/m) 20 ky, (KN/m) 20
chip (Nms/rad) 0.017 Cinee (Nms/rad) 0

o (rad) 0.685 Lo 0.812

construct the mechanical system of the model in Working Model 3D and describe the control
system in the C language. The simulator was built by combining the mechanical and control
systems using a special linking program. Note that the inelastic collision model implemented
in Working Model 3D is used in the following simulations. The parameters of the quadruped
model are shown in Table 2.

In this simulation, the quadruped robot first begins to run from an initial condition that
satisfies the state variables of the asymptotically stable fixed point as given in Table 1. Sec-
ond, a small and temporary disturbance (0.034 rad) of the touchdown angle in the hind leg
during the swing phase period appears after 2 s. Here, the control system decides the phase
(i.e., stance or swing) of each leg based on measurements from contact sensors located in
the robot’s feet. During the stance phase period, appropriate constant torque capable of sus-
taining stable bounding (Zhang et al., 2005) is output by actuators in the hip joints. A PD
controller driving the touchdown angle to a desired value is engaged during the swing phase
period. As shown in Figure 6, the forward speed increases (A) and the apex height decreases
(B) when the disturbance of the touchdown angle occurs. Because of the self-stabilizing
property, the bounding finally converges upon a fixed point similar to the initial condition.
Even though friction and collision cause energy loss from the system in this simulation, the
self-stability of the quadruped bounding system is capable of suppressing the disturbance
where there is no potential energy change relative to the touchdown plane. Indeed, there
exists a regime where the quadruped bounding system can stabilize the forward speed and
jump height itself without directly measuring these state variables simply by driving the
touchdown angles of the legs to the desired values. This fact could provide a significant hint
as to how to simplify control.

In the light of the above consideration, we conclude that a fixed point with the self-
stabilizing property is very appropriate as the desired steady state. The fixed point described
in Table 1 will therefore also be used as the desired steady state when the sensory feedback
is introduced in following sections.
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Figure 6. The simulation results for running with friction and collision on a flat floor with disturbance to
the touchdown angle of the hind leg. In the stance phase, the actuators’ output torque is calculated
by energy reference control (Zhang et al., 2005). Depending on the self-stability, the robot stabilizes
bounding locomotion.

4. IMPLEMENTATION OF A FORCED VIBRATION AND
SYNCHRONIZATION SYSTEM

The above-mentioned facts concerning self-stabilizing properties provide insight into the
basic stabilization regime of a quadruped running system in terms of forward speed, jump
height and touchdown angle. Even though the stabilization regime arises from an analysis
relating to unactuated and conservative dynamics, it provides a significant guideline for the
design of a control method. In an actual robot, if we can reasonably compensate for the
energy loss caused by friction and collision, the robot may depend on the basic stabilization
regime to realize stable bounding as it would in a conservative system.
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4.1. Engineering Limitations on Sensory Feedback

In general, in order to realize the above-mentioned compensation for lost energy, use of an
energy-based control method would be considered. For an energy-based control method,
reliable knowledge of the system energy is vitally important. However, when measuring the
forward speed or jump height, which are essential parameters for the calculation of the sys-
tem energy, through a combination of several sensors, we have to confront such difficulties
as integration error, noise and drift. Since it is difficult to accurately calculate and measure
the system energy in an actual robot, the energy-based control method appears unsuitable for
practical application. Thus, to use our control method for quadruped bounding, we need to
use a practical sensory feedback system that can overcome sensory measurement limitations.

As outlined in the work of Cham et al. (2004), it is much easier to measure the stride
period through a binary switch attached to the feet of a robot than to measure the inclination
of the body using an angular velocity sensor or the forward speed with an acceleration sensor.
Cham et al. achieved high-speed running of a hexapod robot over various types of terrain
by adjusting the stride period as measured by a binary switch. Motivated by this idea, we
also selected the stance phase period, measured using a contact sensor, as sensory feedback
in our study.

4.2. Motion Generation and Adaptation

From our current knowledge, it seems reasonable to hypothesise that the rhythm and gait
of running locomotion will be governed by the spring-mass system in the steady state (e.g.,
stable running), and generated and adjusted by the rhythm generator in the transient state
(e.g., shifting from the standing state to the stable bounding state or running up a small step).
Thus, we design a thythm generator capable of adjusting the period and phases of running
locomotion so as to easily generate a stable running rhythm with the required gait (e.g, stable
bounding) via the proposed control method.

On the other hand, the stabilization of rhythmic locomotion (e.g., walking and running)
can be considered to be a control issue concerning convergence upon a fixed point. It is
similar to the concept of delayed feedback control (DFC) in the field of chaotic control.
Following up on this research, Osuka et al. (2004) selected the kinetic energy on the impact
point as the controlled variable used by the DFC method to stabilize bipedal quasi-passive-
dynamic-walking in simulations. However, since an energy-based controller is inadequate
when it comes to practical application, as described in Section 4.1, we modified Osuka’s
DFC method and propose our original control method of quadruped bounding for an actual
robot.

4.2.1. Rhythm Generator

We define the phase ¢, of each leg in the n' step as given by equation (9). Here, the robot
uses the leg phase to switch the torque generator:

¢, = sin(oy[nlt + w;) + Pg, w[n] = 9
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PD Control Constant Torque Qutput
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h
q
¢| <0
|
swing phase of stance

the rhythm generator

Figure 7. Switching of the hip joint controller according to the output phase ¢, of the rhythm generator.

Where 7;[r] and w,[n] are the cyclic period and the angular frequency of the leg / in the
n' step, respectively. The initial phase v, is defined for the generation of the gait. (Where
w; = 0, y, = m for the bounding gait and v, = =, y, = = for the prancing gait,
where 0 and 7 mean that the leg begins to move from the swing phase and stance phase,
respectively.) The offset ¢,; determines the duty factor. T;[n] is calculated by using the DFC
method described in Section 4.2.3. The timing for each leg to switch between the stance and
swing phase is: ¢, > 0: swing phase, ¢; < 0: stance phase (Figure 7).

4.2.2. Torque Generator

Depending on the leg phase ¢; generated by the rhythm generator, the following different
control actions are assigned as shown in Figure 7: In the swing phase (¢, > 0), the PD
control expressed by equation (10) is performed;

Tty ==K,(y, — ;") — Ka7, (10)

in the stance phase (¢; < 0), constant torque 7;'[n] of the hip joint in each leg is output, as

expressed by equation (11).
7,(t) = 7}’ [n]. 11

In the control action of the swing phase, y ! is the touchdown angle corresponding with the
fixed point (Table 1). K, and K are the gains of the PD control. In the control action of the
stance phase, the DFC method described in Section 4.2.3 determines z)’[n].

4.2.3. Convergence upon a Fixed Point based on DFC

The properties of delayed feedback control motivate the control method of quadruped bound-
ing described here. It is advantageous to use a DFC method that results in a steady-state cy-
cle. As outlined in the previous section, we use the stance phase period to provide the sensory
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Table 3.The parameter values of the controller used in simulations.

parameters value parameters value
Yy 0 Y T
Pos 0.16 Pon 0.09
y'f (rad) 0.524 y 14 (rad) 0.838
KDF~T 0.12 KDF~1 6.8
K, (N-m/rad) 1.2 K,; (N-ms/rad) 0.02

feedback for the DFC method since the stance phase period is easy to measure accurately.
Hence, the proposed DFC methods are:

Tiin+11 = Tinl— Kprr(@'[n]l —1'[n —1]) (12)
t)'[n+11 = 7)'[n] = ()Kpr..()'[n] —1)'[n — 1]) (13)

{ —1, = f: foreleg

o)y =
1, [ =h:hindleg
where Kpr.r and K pr., are the DFC gains, which are decided by trial and error in simula-
tions. Equations (12) and (13) are used to calculate the cyclic period of the leg phase and the
torque of the hip joint for the next stance phase, respectively. The parameters used by the
control system in the following simulations are listed in Table 3.

S. SIMULATION RESULTS

5.1. Transition from Standing to Steady Bounding

We present here some simulation results for bounding running on flat terrain where the run-
ning locomotion shifts from the standing state to the steady bounding state. For these sim-
ulations, we use the touchdown angles corresponding with a fixed point of quasi-passive
running, as listed in Table 1, and the associated parameters shown in Table 3 for the control
system. In order to generate the bounding gait, we must decide the initial values of the DFC
approach. Here, we adopt {T[0], 7,,[0], 7 £[0], z,[0]} = {0.20, 0.69, —1.0, 1.3} as the initial
condition of the DFC approach expressed by equation (12) and equation (13). As described
in Section 4, the quadruped robot, according to y,, begins to run with the initial condition
in which forelegs are in the swing phase and hind legs are in the stance phase. In this case,
the initial values of 7;,[0] and 7,[0] are much larger than those in the steady state in order to
provide sufficient kinetic energy during the first stance phase period of the hind legs. Fig-
ure 8 shows the forward speed, jump height and energy of the system as function of time.
As shown in this figure, the apex height and forward speed in the steady state are similar
to the state at the fixed point of quasi-passive running, as given in Table 1. In addition, the
maximum heights of the toes (i.e., clearances) for the forelegs and hind legs are 3 cm and
2 cm, respectively. Figure 9 illustrates /' [n], T;[n], 7)'[n] relating to the DFC approaches
expressed by equation (12) and equation (13). As shown in this figure, the DFC approach
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Figure 8. The simulation results of DFC in the transition from standing to steady running. (a) Forward
speed x, (b) height y and (c) total energy are shown.

based on the stance phase period change is capable of stabilizing the period of the rhythm
generator and the torque of the hip joint during the stance phase period.

As shown in Figure 10, the running period 7;[n] generated by the rhythm generator
accords with that measured by a contact sensor after the 20" step. At this point, the leg
phases of the rthythm generator and motion are synchronized and converged on the bounding
gait. Furthermore, the period and the leg phase difference in the steady state are the same as
those of the fixed point. Consequently, it means that the rhythm generator and the practical
motion are mutually synchronized by using the DFC approach expressed by equation (12),
and the motion can be converged to a fixed point.

In this simulation, we treated the touchdown angle of each leg as the only feedback about
the fixed point. We took advantage of the original DFC method by changing the stance phase
period measured by contact sensors. Based on coupling between the forced vibration sys-
tem and mechanical system, we achieved an autonomous transition from standing to steady
bounding through the interaction between the robot’s mechanism and the ground (see Fig-
ure 1). The steady state of bounding accorded with an asymptotically stable fixed point of
quasi-passive running. In addition, torque was required in the steady state only to compensate
for the energy loss caused by friction and collision. Consequently, the stable bounding gen-
erated can be considered to be efficient locomotion because it requires only a small amount
of power and is less reliant on sophisticated real-time calculations or on substantial sensory
feedback.
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Figure 9. The simulation results of the DFC in the transition from standing to steady running. The
parameter 1/ [n] is measured using the contact sensor. 7;[n] and t;’[n] are calculated using equation
(12) and equation (13), respectively. The period of a single step is approx. 0.29 s.

5.2. Convergence to a Fixed Point in the Presence of Errors

For practical applications, the robustness of the proposed control method to errors in the
model is important. Figures 11 and 12 show the performance of three different quadruped
robots going from standing to stable bounding. The physical parameters of robotl have the
values listed in Table 2. Robot2 and robot3 are similar to robotl but with differences in
the robot’s mass, the spring constant, and the coefficient of viscosity in the hip joint. The
mass, spring constant of the leg and coefficient of viscosity in the hip joint of robotl, ro-
bot2 and robot3 are 3 kg, 20 kN/m, 0.017 Nms/rad; 3.15 kg, 20.1 kN/m, 0.01785 Nms/rad;
and 3.3 kg, 20.2 kN/m, 0.0187 Nms/rad, respectively, and robot2 and robot3 can be re-
garded as robotl with model errors. As shown in Figure 11, with the initial conditions
{T([0], T»[0], 7 £[0], z4[0]} = {0.20, 0.69, —1.0, 1.3}, the forward speed and jump height of
each robot converge upon a steady state under the proposed control method. 7;[n] and 7}’[n]
relating to the DFC method expressed in equation (12) and equation (13) are plotted in Fig-
ures 12 for the three robots examined. Since the rhythm generator and bounding motion
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Figure 10. The simulation results of the DFC in the transition from standing to steady running. The cyclic
period of the rhythm generator and the cyclic period of leg motion measured by the contact sensor are
shown in the upper graph. The output phase of the rhythm generator and the phase of the leg measured
by the contact sensor are shown in the lower graph. The period of a single step is approximately 0.29 s.

are mutually synchronized through DFC, the cyclic period of the rhythm generator and the
torque of the hip joint in a stance phase can be stabilized. Examining Figures 11 and 12,
we can see that the bounding of each of the three robots converges to a different fixed point,
although the difference is very small. This indicates that the proposed control method enables
the bounding motion of each quadruped robot to converge to another fixed point based on
its own dynamics, in spite of using the pair of touchdown angles corresponding to the fixed
point obtained using the model of the robotl.

In addition, we have completed a number of such simulations where the robot’s physical
parameters (e.g., mass, spring constant of the leg, length of the leg, length of the body, etc.)
are changed to various values. The difference among the resulting fixed points is very small
in the case the model errors of less than 5%, but the difference is very apparent with an error
of 10% or more.

5.3. Role of Synchronization in the Proposed Method

As described in Section 2, the synchronization ability should play an important role in tran-
sient states. In order to confirm the effectiveness of the synchronization function in the
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Figure 11. Performance tests relating to convergence on fixed points for quadruped robots with different

physical parameters in the transition from standing to steady bounding. The period of a single step is
approx. 0.29 s.

Downloaded from http://jvc.sagepub.com at DENKI TSUSHIN UNIV LIBRARY on February 21, 2007
© 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://jvc.sagepub.com

1378 Z.G.ZHANG ET AL.

cyclic period of the rhythm generator cyclic period of the rhythm generator
of the hind leg (Tj,[n]) of the fore leg (T¢[n])
0.7¢ ' ' ' . . I
robot 1
0.6 —=——-robot 2
—————— robot 3

robot 1
———- robot 2
| o1t e robot 3
0 10 20 30 o 10 . 20 30
Steps Steps
(a) (b)
hip joint torque of the hind leg (<[n]) hip joint torque of the fore leg (t;[n])
robot 1 0 I A A
———- robot 2
- robot 3 el
£
z Z
b £
e g
it = 1 robot 1
1 ———-robot 2
-1.0 A — robot 3
‘ ‘ ‘ ] ‘ | 0 10 20 30
0 10 Steps 20 30 Steps
() (d)

Figure 12. Performance tests relating to convergence on fixed points for quadruped robots with different
physical parameters in the transition from standing to steady bounding.

rhythm generator, we attempted to generate a constant bounding pattern without DFC relat-
ing to the cyclic period of the rhythm generator outputting the leg phase (i.e., equation (12)).
As a result of this, the cyclic periods of motion of the forelegs and hind legs cannot synchro-
nize, and the running locomotion cannot converge to a stable bounding gait (see Figure 13).

5.4. Running Up a Small Step

We will now use the proposed DFC approach described in Section 4.2 to conduct a simulation
where the robot begins in the steady state and reaches a 2cm-height step after 2 s. As shown
in Figure 15, since 7{'[n] changes when the robot runs over the step in the 7 step, the DFC
begins to work. More specifically, the DFC outputs larger torques for the hip joints in the
hind legs (B) because of the longer stance phase period of the hind legs (A) in the 8" step,
providing the necessary energy input (the energy change at about 2.3 s in Figure 14). After
the transition states, the gait, torque and so on converge at the initial condition in the 17"
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Figure 13. The simulation results in the transition from standing to steady bounding without DFC relating
to the cyclic period of the rhythm generator. The cyclic periods of the rhythm generators of the four legs
are held at 0.29s.

step. Figure 14 shows that the forward speed, jump-height and energy then re-converge at
the initial condition after adjustments based on the DFC.

These results show that the proposed approach is capable of autonomously adapting to
irregular terrain by treating the irregularity of the terrain as a temporary disturbance. How-
ever, when the energy relative to the touchdown plane regularly increases and decreases (e.g.,
the robot runs uphill and downhill), or when the robot runs over a big obstacle, additional
control enabling state variables to transfer to other fixed points by adjusting the touchdown
angle is necessary (Hyon and Emura, 2004).
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Figure 14. The simulation results of running over a 2cm-height step with DFC.

6. DISCUSSION

Poulakakis et al. (2005a) achieved transitions from standing to steady running in several
running gaits with their quadruped robot without utilizing a thythm generator by determin-
ing the constant torque needed to drive a leg to a sweep limit angle during the stance phase
period and adopting a PD controller to drive a leg to a touchdown angle during the swing
phase period. However, we indicate in Section 5 that the use of a rhythm generator in the
control system of a quadruped robot brings several advantages to our study. First, our en-
ergy efficient stabilization method explicitly enables state variables to converge at the known
asymptotically stable fixed point of quasi-passive running, while Poulakakis et al.’s method
used a sweep limit angle and constant torque. Also, this rhythm generator, combined with
our method for adjusting the torque of the hip joints in the stance phase, improves the ro-
bot’s anti-disturbance capability. Of course, since the rhythm of motion is mostly generated
by spring mechanisms during steady running, the role of the rhythm generator gradually be-
comes smaller as the motion approaches steady running. Consequently, the concept of forced
vibration and synchronization described in Section 2 is valuable in the generation of adaptive
running.
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Figure 15. The simulation results for running up a 2cm-height step with DFC. The period of a single step
is approx. 0.29 s. Note that the time scale is different between ;' [n] and T;[n].

7. CONCLUSION

In the forced vibration and synchronization system proposed in this study, the relationships
bweteen the components (rthythm generator, torque generator, sensory feedback and mecha-
nism) were defined simply, and locomotion generation and adaptation were emergently pro-
duced by the coupled dynamics of a forced vibratory system (i.e., the rhythm generator and
torque generator) and a mechanical system interacting with the environment. For synchro-
nization, we applied a delayed feedback control to the rhythm and torque generators based
on the stance phase period measured by contact sensors with practical levels of accuracy.
Our simulations produced the following results:
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1. The proposed original method generates stable running in a bounding gait with good
energy efficiency utilizing natural dynamics.

2. Running motion as physical vibration is mutually synchronized with a rhythm generator
as a forced vibration.

3. When a robot runs on flat terrain without any disturbance causing an energy loss, the
self-stabilization property is sufficient.

4. When a robot runs up a small step, the energy relative to the touchdown ground is tem-
porally changed. In such a case, the self-stabilization property is not sufficient, but the
proposed DFC method is effective.

5. The spring-mass system is dominant in steady state, and the forced vibration and synchro-
nization system plays an important role in transient states.
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