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Abstract—This paper proposes a method for the visual-based

navigation of a mobile robot in indoor environments, using a

single omni-directional (catadioptric) camera. The geometry of

the catadioptric sensor and the method used to obtain a bird’s

eye (orthographic) view of the ground plane are presented. This

representation significantly simplifies the solution to navigation

problems, by eliminating any perspective effects.

The nature of each navigation task is taken into account when

designing the required navigation skills and environmental rep-

resentations. We propose two main navigation modalities: Topo-

logical Navigation and Visual Path Following.

Topological Navigation is used for traveling long distances and

does not require knowledge of the exact position of the robot but

rather, a qualitative position on the topological map. The navi-

gation process combines appearance based methods and visual

servoing upon some environmental features.

Visual Path Following is required for local, very precise navi-

gation, for e.g. door traversal, docking. The robot is controlled

to follow a pre-specified path accurately, by tracking visual land-

marks in bird’s eye views of the ground plane.

By clearly separating the nature of these navigation tasks, a

simple and yet powerful navigation system is obtained.

Keywords—Omni-directional Vision, Navigation, Visual Servo-

ing, Topological Maps

I. Introduction

We address the problem of indoor navigation of a mo-
bile robot based on visual information provided by an omni-
directional (panoramic) camera.

Most of the research on vision-based navigation has been cen-
tered on the problem of building full or partial 3D representa-
tions of the environment [1], which are then used to drive an
autonomous robot. We argue that shifting the emphasis from
the actual navigation problem to the process of building these
3D maps, explains why most existing systems require large com-
putational resources, but still lack the robustness required for
many real-world applications. In contrast, examples of efficiency
can be drawn from biology. Insects, for instance, can solve very
large and complex navigation problems in real-time [2], in spite
of having limited sensory and computational resources.

One striking observation is the diversity of “ocular” geome-
tries. Many animals eyes point laterally, which seems more
suitable for navigation purposes. The majority of insects and
arthropods benefit from a wide field of view and their eyes have
a space-variant resolution. To some extent, the performance of
these animals can be explained by their specially adapted eye-
geometries. Similarly, in this work, we explore the advantages of
having large fields of view by using an omni-directional camera
with a horizontal field of view of 360◦.

Studies of animal navigation [3], [4] suggest that most species
utilize a very parsimonious combination of perceptual, action
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and representational strategies that lead to much more efficient
solutions when compared to those of today’s robots.

Both robustness and an efficient usage of computational and
sensory resources can be achieved by using visual information in
closed loop to accomplish specific navigation tasks or behaviors
[5], [6]. However, this approach cannot deal with global tasks
or coordinate systems (e.g. going to a distant goal), because
it lacks adequate representations of the environment. Hence,
a challenging problem is that of extending these local behav-
iors, without having to build complex 3D representations of the
environment.

Another point worth discussing is the nature of the naviga-
tion requirements when covering long distances, as compared to
those for short paths. Many animals, for instance, make alter-
nate use of landmark-based navigation and (approximate) route
integration methods [2]. For example, to walk along a city av-
enue, it is sufficient to know our position to within an accuracy
of one block. However, entering our hall door would require
much more precise movements.

This path distance/accuracy tradeoff between long-distance/low-
precision and short-distance/high-accuracy mission segments
plays an important role in finding efficient solutions to the robot
navigation problem. In this paper, we denote these navigation
modes as Topological Navigation versus Visual Path Following.

We show how omni-directional images can be used for both
navigation modes and provide suitable environmental represen-
tations where Topological Navigation and Visual Path Following
can be integrated in a natural way.

A. Omni-directional Vision

Omni-directional cameras provide a 360◦ view of the robot’s
environment, in a single image, and have been applied to au-
tonomous navigation, video conferencing and surveillance [7]-
[12], among others. Omni-directional images are usually ob-
tained with Catadioptric Panoramic Cameras, which combine
conventional cameras (lenses) and convex mirrors. Mirror
shapes can be conic, spherical, parabolic or hyperbolic [13], [14],
[15].

Visual landmarks are easier to find with omni-directional im-
ages, since they remain in the field of view much longer, than
with a conventional camera. The imaging geometry has various
properties that can be exploited for navigation or recognition
tasks. For example, vertical lines in the environment are viewed
as radial image lines. The main downfall of omni-directional
images is the loss of resolution in comparison with standard
images.

We describe the image formation model for an omni-
directional camera with a spherical mirror. Although our sensor
does not have a single projection center as in [13], [14], [15], we
found that this is not a severe limitation to our approach. We
show how to unwarp omni-directional images to obtain (ortho-
graphic) Bird’s eye views of the ground plane, where perspective
effects have been removed.

B. Topological Maps for Navigation

Topological Navigation is the approach used to travel long dis-
tances in the environment, without demanding accurate control
of the robot position along a path. The environment is rep-
resented by a Topological Map [16], [17], [18], described by a
graph. Nodes correspond to recognizable landmarks, where spe-
cific actions may be elicited, such as entering a door or turning
left. Links are associated with regions where some environmen-
tal structure can be used to control the robot.
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Fig. 1. A topological map of touristic landmarks in Lisbon, Portugal.

In our approach, landmarks are directly represented by
(omni-directional) images. Links are represented by sequences
of images that correspond to trajectories which the robot can
follow by servoing upon some environmental features, allowing
corridor following behavior.

A map is thus a collection of inter-connected images, as in
the example of Figure 1, representing touristic landmarks in
Lisbon, Portugal. To go from one particular locale to another,
we do not have to think in precise metric terms. For example, to
get from the city center, Rossio, to Saldanha square, we may
go forward until we reach the statue in Rotunda, turn right
in the direction of Picoas and carry on until we finally reach
Saldanha Square. The navigation problem is decomposed into
a succession of sub-goals, identified by recognizable landmarks.
The required navigation skills are the ability to follow roads,
make turns and recognize that we have reached a landmark.

We use omni-directional images as an implicit topological rep-
resentation of the environment, and rely on appearance based
methods [19]-[22] to provide a qualitative measurement of the
robot’s global position. Progression is assessed by comparing the
current view with images acquired a priori [23]. Images of the
topological map are encoded as a manifold in a low dimensional
eigenspace obtained from Principal Components Analysis.

In [24], localization was achieved by matching images in the
frequency domain, whereas Horswill [25] used the actual views
as landmarks. The work most closely related to ours is that de-
scribed in [26], which combined appearance based methods and
visual servoing, although the image geometry, matching scheme
and method of servoing were different from those detailed in
this paper.

Visual servoing is applied to control locally the pose of the
robot relative to image features, and to navigate between nodes.
In this work, we control the robot heading and position by servo-
ing upon the corridor guidelines, extracted from bird’s eye views
of the ground plane. Thus, the combination of appearance based
methods and visual servoing, at the global level, means that we

Fig. 2. Left: omni-directional camera. Right: camera mounted on the

mobile robot.

can maintain a causality constraint while traversing longer dis-
tances and sampling the environment less frequently than with
previous approaches [21], [23], [24].

C. Visual Path Following

Topological Maps can be used for navigating between dis-
tant environmental sites, using only qualitative and topological
properties of the environment. A different approach is neces-
sary when precise guidance or localization are required (e.g. for
docking). For these precise navigation problems, we propose the
approach of Visual Path Following, to complement topological
navigation.
Visual Path Following allows a robot to follow a pre-specified

path to a given location, relying on visual tracking of features
(landmarks) [27], [28]. We track visual features with bird’s eye
views, the same image geometry as used for topological navi-
gation, to self-localize the robot. We design a closed loop con-
troller to drive the robot accurately along a desired trajectory,
pre-specified in image coordinates, relative to a visual landmark.

The combination of omni-directional images and the Topo-
logical and Visual Path Following navigation strategies are il-
lustrated by the complete experiments described in this paper.
We believe that the complementary nature of these approaches
and the use of omni-directional imaging geometries result in a
very powerful solution to build efficient and robust navigation
systems.

II. Omni-directional Vision

The only sensor used in this work is an omni-directional cam-
era that provides a rich description of the environment around
the robot. It is composed of a CCD camera pointed upwards
looking at a spherical mirror, and is mounted on top of the mo-
bile platform, aligned with the platform’s axis of rotation (see
Figure 2).

Omni-directional images contain both ground and wall re-
gions. The spherical mirror distorts the image projection and,
in general, 3D straight lines are projected as curves in the im-
age. The horizon line is projected as an image circle and a
corridor appears as an image band with a narrower width for
points further away from the robot. Only 3D lines which belong
to vertical planes project as straight lines.

A. A Catadioptric Panoramic Camera with a Spherical Mirror

The geometry of image formation is obtained by relating the
coordinates of a 3D point, P, to the coordinates of its projection
on the mirror surface, Pm, and finally to its image projection p.
Figure 3 shows the most relevant parameters of the geometric
model for image formation.

The spherical mirror radius is denoted by R (8.35cm), and its
distance to the camera projection center by L. The reflection
point, Pm, is observed from the camera at an angle β. The
mirror normal at Pm makes an angle γ relative to the vertical
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axis, and the incident and reflection angles are denoted by γi, γr.
The elevation angle, α, is that formed between the vertical axis

and a ray from a 3D point, P, to Pm. Finally, r =
√
x2 + y2,

indicates the radial distance to the optical axis and the vertical
coordinate is denoted by z.

A point Pm = (rm, zm) on the mirror surface has to fulfill
the following equations:


rm = (zm + L) tanβ

z2
m + r2m = R2

γr = γi ⇔ −2 arctan (rm/zm) = α− β

(1)

These equations are reduced to a vertical plane containing
the vertical z axis, since the system is rotationally symmetric
around that axis. The last equation can be expressed as a func-
tion of the vertical viewing angle, α, or the coordinates of a
3D point (r, z). Some parameters involved in Equation (1) are
fixed by the physical setup (R,L), whereas (α, β) depend on the
coordinates of an observed 3D point.

B. Projection of a 3D Point

Let P = [x y z]T denote the coordinates of a 3D point. We
want to find the image projection, p = [u v]T , of P. We first de-
termine Pm on the mirror surface, and finally project this point
onto the image plane. The coordinates of P can be expressed
in cylindrical coordinates as

P =
[
ϕ r z

]T
=

[
arctan (y/x)

√
x2 + y2 z

]T

The vertical viewing angle α for P can be expressed as:

αP = arctan
(
z − zm

r − rm
)

+
π

2
,

where (rm, zm) denote the coordinates of Pm on the mirror
surface. Hence, we can replace α in Equations (1) and solve the
resulting non-linear system of equations to determine (rm, zm).
Notice that knowing (rm, zm) determines the value of β.

Finally, we can project the 3D point Pm = [ϕ rm zm]T onto
the image plane p = (u, v). Using perspective projection and
taking into account the camera intrinsic parameters, we get:[

u
v

]
=

[
fu 0 u0

0 fv v0

][
tanβ cosϕ
tanβ sinϕ

1

]
,

where fu, fv denote the focal length expressed in (vertical and
horizontal) pixels; and u0, v0 is the position of the principal
point in the image coordinate system.
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Fig. 4. Top: omni-directional image (left) and corresponding bird’s eye

view (right). Bottom: panoramic image.

We have derived an operator, P that projects a 3D point P
onto its image projection p. This operator depends on all the
intrinsic and extrinsic parameters of the catadioptric panoramic
camera, which can be estimated based on a set of image projec-
tions pi, with known 3D coordinates, Pi.

C. Panoramas and Bird’s Eye Views

Images acquired with our omni-directional camera are natu-
rally distorted. For instance, a corridor appears as an image
band of variable width. Knowing the image formation model,
we can correct some distortions to obtain Panoramic images or
Bird’s Eye Views.

In a panoramic image, each scan line contains the projections
of all visible points at a constant angle of elevation. Hence, the
unwarping consists of mapping concentric circles to lines [29].
For example, the horizon line is actually transformed to a scan
line.

Bird’s eye views are obtained by radial correction around the
image center1. The bird’s eye view is a scaled orthographic pro-
jection of the ground plane, and significantly simplifies the nav-
igation system. For example, corridors appear as image bands
of constant width. Image panoramas and bird’s eye views are
illustrated in Figure 4.

III. Navigating using Topological Maps

We use a topological map to describe the robot’s global envi-
ronment. This map is used to reference the qualitative position
of the robot when traveling long distances. A mission could be
specified as: “go to the third office on the left-hand side of the
second corridor”.

The robot must be able to travel along a corridor, recognize
the ends of a corridor, make turns, identify and count door
frames. These behaviors are implemented through an appear-
ance based system and a visual servoing strategy.

The appearance based system provides qualitative estimates
of the robot position along a corridor, and recognizes distinc-
tive places such as corners or door entrances. This is achieved
by comparing current omni-directional images to previously ac-
quired views of the corridor (landmarks).

To control the robot’s trajectory along a corridor, we detect
the corridor guidelines and generate adequate control signals
to keep the robot on the desired trajectory. This processing is
performed on bird’s eye views of the ground plane, computed
in real-time.

Topological maps scale easily by connecting graphs at multi-
ple resolutions to map different regions of the environment. All

1Hicks [30] has demonstrated how to obtain ground plane unwarped images,

directly from a custom-shaped mirror.
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Fig. 5. The first 6 eigenimages obtained with the omni-directional vision

system.

the robot needs is a specialized behavior to navigate along the
links by using a vision-based control process and a procedure
to recognize the locations/nodes where further actions may be
undertaken.

A. Image Eigenspaces as Topological Maps

The topological map consists of a (large) set of reference im-
ages, acquired at pre-determined positions (landmarks), con-
nected by links on a graph. Since the robot perceives the world
through (omni-directional) images, these images are a natural
way of represent landmarks.

During operation, the reference image that best matches the
current view indicates the robot’s qualitative position in the
topological map. Hence, the reference images can be seen as
a large-dimensional space where each point indicates a possible
reference position of the robot.

In general, the number of images required to represent the
environment is very large, and one needs to find a method to
compress this information. We build a reduced-order manifold
to approximate the reference images, using Principal Compo-
nent Analysis (PCA), as described in [31].

The input space is composed of N images, Ik. Using PCA,
we can determine a set of M � N eigenimages, ej , that form a
low dimensional subspace which approximates the original set of
reference images. These eigenimages are the eigenvectors of the
covariance matrix formed by all the input images, and can be
computed efficiently [32]. Each eigenvalue, λj , is proportional
to the relevance of its associated eigenimage.

Figure 5 shows the first 6 eigenimages computed from 50
omni-directional images that represent one corridor, shown in
descending order in accordance with their eigenvalues.

For our experiments, we keep the 10-12 eigenimages with the
highest eigenvalues, denominated as the Principal Components.
The reference images, Ik are coded by a vector of coefficients,
Ck, representing their projection along the principal compo-
nents ej of the reduced-order eigenspace.

Figure 6 illustrates how the reduced-order manifold, with only
10-12 eigenimages, can efficiently approximate the original input
images.

Each reference image, Ik is associated with a qualitative robot
position (e.g. half way along the corridor). To find the robot
position in the topological map, we have to determine the ref-
erence image that best matches the current view, I.

The distance, dk, between the current view and the reference
images can be computed directly using their projections, C and
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Fig. 6. The input (left) and retrieved (right) omni-directional images are

very similar.

Ck, on the lower dimensional eigenspace

dk = (C − Ck)T Λ(C − Ck) (2)

where Λ is a diagonal matrix containing the (ordered) eigein-
values which express the relative importance of the various di-
rections in the eigenspace. Notice that dk is computed between
M-dimensional coefficient vectors (10-12, in our case), as op-
posed to image size vectors (128 × 128). The position of the
robot is that associated with the reference image, Ik having the
lowest distance, dk.

Using omni-directional images, it is easier to deal with a rela-
tively dynamic environment, where people partially occlude the
robot’s view. Even when a person is very close to the robot
(Figure 7), the occlusion is not sufficiently large so as to cause
the robot to misinterpret its topological position. Using PCA,
the closest image is still correctly determined. An alternative
approach is taken in [33] which used a number of small image
windows (9x9 pixels) to deal with occlusions. Tolerance to il-
lumination variations can also be improved by normalizing the
brightness distribution.

An additional benefit of building the topological map using
omni-directional images is that the same eigenspace can be used
along both the forward and return trajectories, simply by rotat-
ing, in real-time, the acquired omni-directional images by 180o.

Similarly, one could use the image’s power spectrum, both
to build the eigenspace and to represent the acquired images.
The power spectra of panoramic images is invariant to image
rotation and therefore, to the direction of robot motion. It
offers an alternative way to travel along the topological map
and recognize the various locations irrespective of the robot’s
orientation.

B. Corridor Following Behaviour

To navigate along the topological graph, we still have to define
a suitable vision-based behavior for corridor following (links in
the map). In different environments, one can always use simple
knowledge about the scene geometry to define other behaviors.
We exploit the fact that most corridors have parallel guidelines
to control the robot heading direction, aiming to keep the robot
centered in the corridor.

The visual feedback is provided by the omni-directional cam-
era. We use bird’s eye views of the floor, which simplifies the
servoing task, as these images are a scaled orthographic projec-
tion of the ground plane (i.e. no perspective effects). Figure 8
shows a top view of the corridor guidelines, the robot and the
trajectory to follow in the center of the corridor.

From the images we can measure the robot heading with re-
spect to the corridor guidelines, β, and the distance to the cen-
tral reference trajectory, εd.

We use a simple kinematic planner to control the robot’s po-
sition and orientation in the corridor, using the angular velocity
as the single degree of freedom. We consider a look-ahead dis-
tance, D, that defines, at each instant, the goal point that the



894 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 6, DECEMBER 2000

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500
20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120
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θ.

robot should aim for. Combining D and the robot heading and
position errors, β and εd, we obtain the desired robot orienta-
tion, θ:

θ = β + arctan (
εd
D

)

The value of D quantifies the overall influence of the displace-
ment. It was set to 7.5% of the image width, which corresponded
to about 1 meter. The value of θ is the input to a dynamic con-
troller which controls the robot’s angular velocity.

Tracking the corridor guidelines also benefits from using
bird’s eye (orthographic) views of the ground plane. We use
projective-planar transformations (homographies) to predict
the position of points and lines from one image to the next.
These homograhies describe Euclidean image transformations
and can be computed reliably using differential odometric data.
Future improvements will eliminate the need for odometric read-
ings.

To extract the corridor lines, we first find edges within pre-
dicted bounding boxes, and then use a robust line fitting proce-
dure, based on RANSAC [34], which can deal with occlusions.
The prediction is very accurate and vastly improves the proba-
bility of extracting the corridor guidelines rather than erroneous
data such as door frames. Figure 9 shows a sequence of bird’s
eye view images acquired during tracking.

Notice that the use of bird’s eye views of the ground plane
simplifies both the extraction of the corridor guidelines (for e.g.
the corridor has a constant width) and the computation of the
robot position and orientation errors, with respect to the corri-
dor’s central path.

IV. Visual Path Following

Topological navigation is used to travel between distant
places, without relying on accurate localization along a path.
For local, precise navigation tasks, we rely on Visual Path Fol-
lowing for e.g. door traversal, docking and navigating in clut-
tered environments. In such cases, the robot must follow a
reference trajectory accurately.

A. Feature tracking and self-localization

We use bird’s eye views to track environmental features, esti-
mate the robot’s position/orientation and drive the robot along
a pre-specified trajectory.

As features, we use corner points defined by the intersection
of tracked edge segments which compare favorably, in terms of
accuracy and stability, with the use of corner detection filters.
Long edge segments are easier to track than corner points di-
rectly. For instance, we can continually track edge segments
even when their intersection is occluded in the image, a situa-
tion where a corner detector would fail.

Edge segments are represented by 15 to 30 sampled points,
that are tracked by searching the image perpendicularly to the
edge segments. The search criterion is based upon the evalua-
tion of the image gradient and the distance to the original edge
position. Edge segments are obtained through a robust fitting
procedure [34], and the new corner points are determined by
their intersection.

We track edges lying on the ground plane as well as vertical
edge segments. Corner points are defined by the intersection
between ground edge segments or between vertical and ground
line segments. Notice that vertical lines project as radial (or
vertical) lines, in the bird’s eye view (or panoramic) images.
Since the robot position and orientation are estimated relative
to a pre-defined coordinate system, the process of tracking is
simplified by utilizing bird’s eye (orthographic) views of the
ground plane, thus preserving angular measurements and uni-
formly scaling distances.

Figure 10 illustrates tracking and self-localization while
traversing a door from the corridor into a room. The tracked
features (shown as black circles) are defined by vertical and
ground-plane segments, tracked in bird’s eye view images.

Currently, the user initializes the relevant features to track.
To detect the loss of tracking during operation, the process is
continuously self-evaluated by the robot, based on gradient in-
tensities obtained within specified areas around the landmark
edges. If these gradients decrease significantly compared to
those expected, a recovery mechanism is launched.
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Fig. 9. Bird’s eye views during tracking of the corridor guidelines.

Fig. 10. Top: Feature tracking at three instants (black circles); Bottom:

estimated scene model and self-localization results.

B. Robot Control

The robot state consists of a pose vector, x̃ = (x, y, θ), de-
scribing its position (in pixels) and orientation. The navigation
system can modify the robot’s linear and angular velocities de-
noted by (v, ω). The robot dynamic model is that of a wheeled
unicycle mobile robot, with 2 degrees of freedom (linear and
angular velocities).

We use an Extended Kalman Filter to estimate the temporal
evolution of the robot’s pose, (x, y, θ) and velocities, (v, ω). We
assume that (v, ω) are constant and driven by white noise.

The path to follow, Ψ, is defined as a set of points x̃Ψ =
(xΨ, yΨ, θΨ), expressed in the same coordinate system and units
as the robot state vector, x̃.

At each time instant, the motion planning module must de-
termine a reference point on the trajectory, (xref

Ψ , yref
Ψ ) which

is then used to determine the position and orientation errors so
as to correct the robot’s motion:

(xref
Ψ , yref

Ψ ) = arg min
(x

ref
Ψ ,y

ref
Ψ )

{
‖ (xref

Ψ , yref
Ψ ) − (x, y) ‖2

}
To avoid multiple solutions, we use a regularization term that
selects the path point, x̃ref

Ψ (k) closest to that at the previous

time instant, x̃ref
Ψ (k − 1). A signed distance-to-path error, d

and an orientation error, θ̃ are defined as:

d = [x− xref
Ψ y − yref

Ψ ][nx ny]T , θ̃ = θ − θref
Ψ

where [nx ny] is the normal to the path at the chosen reference
point. The geometry of this kinematic motion planner is shown
in Figure 11.

[n  ,  n   ]y ref ref    ref(x    , y    ,       )θ

(x ,  y ,    )

x

θd

~
θ

Fig. 11. Kinematic motion planner used to reference points and to define

the control error for the visual path following system.

The dynamic controller used to generate the robot’s angular
velocity was proposed in [27] for path following, and shown to
be stable:

ω = −k3|v|θ̃ − k2v d
sin θ̃

θ̃
+
v cos θ̃c(s)

1 − c(s) d (3)

where k2, k3 are constants to be tuned, s designates the path
length, and c(s) is the local path curvature.

Mostly, the forward velocity, v, is equal to the maximum,
Vmax but for safety reasons, we impose a maximum value on
the angular velocity, |ω| < Wmax. When this value is achieved,
we saturate ω and reduce v to Vmax.Wmax/ |ω|, in order to avoid
overshooting in narrow turns.

V. Experimental Results

The experiments described in this paper were undertaken at
the Instituto de Sistemas e Robótica (ISR), in Lisbon, Portu-
gal. It consists of a typical indoor environment, with corridors,
offices and laboratories.

We used a TRC Labmate from HelpMate Robotics Inc.,
equipped with an omni-directional vision system (Figure 2) built
in-house. This system contains a Cohu CCD camera pointed up-
wards, looking at a spherical mirror. Grayscale images were cap-
tured with a full resolution of 768x576 pixels, and sub-sampled
to 128x128 images for PCA and 600x600 for visual servoing
and Visual Path Following. All the processing was carried out
on-board the mobile platform by a Pentium II 350MHz PC.

The results obtained illustrate the potential of our approach
in a variety of different tests. First, we show separate results for
Topological Navigation and Visual Path Following. Finally, we
present integrated results which combine both global and local
navigation methodologies.

A. Navigating using the Topological Map

The topological map was built with omni-directional images,
acquired every 50 cm, along the corridors. At corresponding
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distances, bird’s eye views were also acquired and used for local
pose control. Reference positions were ordered according to the
direction of motion, thus maintaining a causality constraint.

To show that appearance based methods can provide qualita-
tive estimates of the robot’s position, we acquired a set of prior
images, P , and ran the robot in the corridor to acquire a dif-
ferent set of run-time images, R. Figure 12 shows the distance
dk (see Equation (2)) between the prior and run-time images,
P and R.
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Fig. 12. A 3D plot of images acquired at run time, R versus those acquired

a priori, P. This plot represents the traversal of a single corridor. The

global minimum is the estimate of the robot’s topological position.

The error surface presents a global minimum, corresponding
to the correct estimate of the robot’s topological position, and
degrades in a piecewise smooth manner. Spurious local minima
are due to distant areas of the corridor that may look similar
to the robot’s current position. These local minima are easily
avoided by restricting the search space to images close to the
previous estimated position, since images are captured sequen-
tially according to the direction of motion.

In most cases we obtain the correct estimate for the robot
position, even in the presence of occlusions. If misclassifica-
tion occurs, the results are always in the vicinity of the correct
answer, due to the smoothness of the error function.

Figure 13 shows results obtained when driving the robot along
a corridor, using the behaviors described in Section III. The
distance traveled was approximately 21 meters. Odometry was
used to display the path graphically.

These results show that we can successfully drive the robot
along the corridor and switch to a different behavior, when ap-
propriate. In the example, this behavior is a 90o turn, in order
to proceed to the next corridor.

B. Visual Path Following Experiments

For Visual Path Following, we specified a reference trajec-
tory in image coordinates, relative to a single landmark com-
posed of two rectangles. The mobile robot uses the input of the
omni-directional camera to move under closed loop control, as
described in Section IV.

Figures 14(a,b) show estimates of self-localization. Noise is
primarily due to the small size of the chosen landmark and
poor image resolution. The Kalman filter can effectively reduce
noise mainly along smooth paths. Figure 14(c) shows that the
errors between the reference trajectory (dotted) and that re-
sulting from visual self-localization (solid line) are very small.
Figure 14(d) shows the mobile robot at the final position after
completion of the desired navigation task.

The processing time was approximately 0.8sec/image, where
50% was used on image processing and the remaining 50% for

Fig. 13. One of the paths traveled by the robot at ISR.
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Fig. 14. Visual Path Following, with the trajectory specified in image

coordinates. (a) x, y positions before (dotted line) and after filtering

(solid line). (b) Orientation before (dotted line) and after filtering

(solid line). (c) Dash-dotted line shows the landmark that defines

the origin. The dotted line is the specified trajectory and the solid

line shows the filtered position estimates. (d) Image of mobile robot

at the end of path following.

displaying debugging information, image acquisition and serial
communication with the mobile robot.

C. Integrated Experiments

The concluding experiment integrates global and local navi-
gation tasks, combining the Topological Navigation and Visual
Path Following approaches.

The mission starts in the Computer Vision Lab. Visual Path
Following is used to navigate inside the Lab, traverse the Lab’s
door and drive the robot out into the corridor. Once in the corri-
dor, control is transferred to the topological navigation module,
which drives the robot all the way to the end of the corridor.
At this position a new behavior is launched, consisting of the
robot executing a 180o turn, after which the topological naviga-
tion mode drives the robot back to the Lab entry point. During
this backward trajectory we use the same image eigenspaces as
during the forward motion (see Section III). Finally, and once
the robot is approximately located at the lab entrance, control
is passed to the Visual Path Following module. Immediately it
locates appropriate visual landmarks (see Section IV) and drives
the robot through the door. It follows a pre-specified path until
the final goal position, well inside the lab, is reached. Figure 15
shows an image sequence of the robot during this experiment.
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Fig. 15. A sequence of images of an experiment combining visual path

following for door traversal and topological navigation for corridor

following.

Figure 16 shows the robot trajectory during one experiment,
and its estimate using odometry. When returning to the labora-
tory, the uncertainty in odometry is approximately 0.5m. Thus,
door traversal would not be possible without the use of visual
control.
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Fig. 16. The experiment combining visual path following for door traver-

sal and topological navigation for long-distance goals. Trajectory

estimate from odometry (top) and true trajectory (bottom).

This integrated experiment shows the use of Topological Maps
for navigating between distant environmental points and Visual
Path Following for accurate path traversal. The resulting sys-
tem can robustly solve various navigation problems and makes
parsimonious use of the available computational resources.

VI. Conclusions

We presented a method for the visual-based navigation of a
mobile robot in indoor environments, using an omni-directional
camera as the sole sensor.

Our key observation is that different navigation methods and
environmental representations should be used for different prob-
lems, with distinct requirements in terms of processing, accu-
racy, goals, etc.

We distinguish between missions that involve traveling long
distances, where the exact trajectory is unimportant (e.g corri-
dor following), as opposed to other cases where the robot must
accurately follow a pre-specified trajectory (e.g. door traver-
sal). For these two types of missions we presented two distinct
paradigms: Topological Navigation and Visual Path Following.

Topological Navigation relies on graphs that describe the
topology of the environment. The qualitative position of the
robot on the graph is determined efficiently by comparing the
robot’s current view with previously learned images, using a

low-dimensional subspace representation of the input image set.
At each node (landmark), a different navigation behavior can
be launched, such as entering a door or turning left.

Whenever the robot needs to move in cluttered environments
or follow an exact path, it resorts to Visual Path Following. In
this case, tracked features are used in a closed loop visual con-
troller to ensure that the robot moves according to the desired
trajectory.

Omni-directional images are used in these two navigation
modes to build the necessary environmental representations.
For example, the Bird’s Eye Views of the ground floor sub-
stantially simplify navigation problems by removing perspective
effects.

Combining Topological Navigation and Visual Path Following
is a powerful approach that leads to an overall system which
exhibits improved robustness, scalability and simplicity.
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