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Abstract

We describe a set of design principles for building

“Fungus Eaters”. “Fungus Eaters” are complete

autonomous systems. The goal is to extract and

describe in a compact way a large part of the insights

which have been acquired in the animats field. The

principles have been developed from a cognitive

science perspective. Although they represent only a

very modest beginning, they make immediately clear

what sort of ideas about intelligence and cognition they

endorse. They all contrast sharply with classical

thinking. Moreover, they provide powerful heuristics

for design.

1 Introduction

In their review paper of the first SAB conference in 1990,

Jean-Arcady Meyer and Agnès Guillot argue that the animat

approach will play an important role in resolving some of

the fundamental controversies in the study of intelligence or

cognition (Meyer and Guillot, 1991). Four years later, at the

third SAB conference, they propose three types of goals for

animat research, short term, intermediate term, and ultimate

goals. In the short term it is the discovery and exploration

“… of architectures and working principles that allow a real

animal, a simulated animal, or a robot to exhibit a behavior

that solves a specific problem of adaptation in a specific

environment.” (Meyer and Guillot, 1994, p. 7). In the

intermediate term, it is the generalization of this knowledge

in order to better understand the relation between

architectures, working principles and adaptive performance

vis-à-vis different types of environments. The ultimate goal,

then, is to understand the adaptive value and working princi-

ples of human cognition. They conclude by stating that “…

the domain is in definite need of theoretical advances that

could provide useful generalizations of still highly disparate

pieces of knowledge” (p. 8). This paper is an attempt to

make a—however modest—contribution towards

generalization. The contribution will be in the form of a set

of design principles of autonomous agents.

Currently, there is no generally accepted theoretical

framework. Although there have been some efforts at

developing overarching theories, they are typically only

recognized and taken up by a small part of the community.

Examples are the “Behavioral Economics” approach

(McFarland and Bösser, 1993), the dynamical systems

approach (Beer, in press; Steinhage and Schöner, in press),

and the evolutionary approach (for a review, see Harvey et

al., in press). Maes, in a review paper, tries to capture some

general principles contrasting the traditional and the animat

approach (Maes, 1992).

*

Figure 1: A “Fungus Eater” ingesting fungus on a distant
planet. It has to perform its task autonomously while
maintaining its energy supply (Cartoon by Isabelle Follath,
Zurich).

In this paper we will focus on “Fungus Eaters” or real-

world autonomous agents. We do not further discuss work

that involves simulation only. “Fungus Eaters” are a

particular species of animats. The term is inspired by

Masanao Toda’s seminal book entitled “Man, Robot, and

Society” (Toda, 1982). Briefly, “Fungus Eaters” are

complete autonomous creatures, sent to a distant planet for

collecting uranium ore. They have to worry about energy

supply—they feed on a particular type of fungus that grows

on the planet—and predators, while performing their task

(figure 1). Toda suggested the study of “Fungus Eaters” out



of a dissatisfaction with the way psychology, in particular

cognitive psychology, was going at the time. The main point

was that we should study “complete” systems, however

simple, rather than only isolated faculties like planning,

memory, or decision making.

One of the reasons for the lack of consensus is that the

field is very new. Another one is that what we consider to be

a good design of an autonomous agent or an interesting and

valuable theory, depends on the goals we have in mind. If

we want to build robots that collect garbage we are looking

for something very different than the biologist who is trying

to understand evolution. Or the computer scientist who is

interested in the power of evolutionary algorithms is after

something else than the psychologist trying to understand

cognition. The interdisciplinary nature of the field adds to

its diversity.

Although this diversity bears a lot of creative potential,

it might nevertheless be useful to try and ferret out some of

the accumulated insight and represent it in a compact form.

We have tried to capture some of the results as a set of

“design principles of autonomous agents”. The principles

presented here have emerged out of five years of intensive

research on various aspects of the animat field, or “New

AI”, and prior to that over 10  years of research in

traditional AI and psychological modeling (e.g. Pfeifer,

1988; Pfeifer, 1994; Pfeifer, 1995; Pfeifer et al., 1989;

Pfeifer and Verschure, 1992, 1995). They do not constitute a

“theory”, but they could represent a starting point for

discussion. Ultimately, the idea would be to discover the

“theory” from which these principles can be derived. We

put “theory” in quotes to indicate that it is an entirely open

question whether there will ever be one unifying theory of

intelligence or cognition. We are not saying that everyone

should agree with these principles. But we do hope that they

will help to focus a debate about the underlying principles

of naturally intelligent systems.

We begin with a short argument of why we chose the

form of “design principles”. We then present some

reflections on the design process from a cognitive science

and an engineering perspective. Then we describe a set of

design principles. We conclude with some comments on

what we have achieved and what should be done next.

2 Why “Design principles”?

The short answer to this question is that the design

perspective is highly productive. The animat approach is by

definition synthetic. The underlying slogan is

“understanding by building”. Design principles provide

guidance on how to build animats. The way we build our

animats is a manifestation of our views of intelligence. One

purpose of the design principles is to make this knowledge

explicit. The great advantage of the synthetic approach is, of

course, that we have built the agents ourselves, i.e. we know

what is in our systems, and that we can experiment with

alternatives as much as we like. This experimental freedom

also accounts for the popularity of computer simulation

models.

In this paper we do not want to study simulation but

“Fungus Eaters”. “Fungus Eaters” are “complete” in the

sense that everything needed for behaving in the real world

has to be there. It is not sufficient to model only one aspect,

say its memory or its perceptual system. On the one hand,

this makes it harder, but on the other, it constitutes the real

power of the approach .

There is an additional point that makes the design

perspective especially attractive. Natural animats, i.e.

animals, can be productively viewed from a designer’s

perspective: evolution as a designer, perhaps a blind and

slow one, but nevertheless a designer, and a good one at that

(e.g. Dawkins, 1986). McFarland’s “animal robotics”

approach capitalizes on this point (e.g. McFarland and

Bösser, 1993).

Before discussing the design principles, let us briefly

look at some issues in design.

3 Engineering and cognitive science

Assume that the task is to build a robot that collects ping-

pong balls in a particular room as quickly as possible.

Figure 2 illustrates two alternative designs. The solution on

the left shows a powerful vacuum cleaner, sucking in the

ping-pong balls at great speed. On the right, there is a robot

with sensors and manipulators, and with mechanisms that

enable the robot to learn distinctions between different kinds

of objects and to learn grasping and carrying light, delicate

objects without hurting them. From an engineering per-

spective, the robot on the left is perfect. The only con-

siderations are performance and price. The performance

criterion in this case is obvious, namely the number of balls

collected per unit time. It turns out to be much harder to

evaluate the performance of autonomous agents. There are

promising first attempts (e.g. Gat, in press; Hemelrijk and

Lambrinos, 1994; Mataric, 1995; Smithers, 1995), but there

is no consensus. Now, the design principles may also be

used to assess whether a particular design is of potential

interest from a cognitive science point of view.

Figure 2: One the left the engineering solution, on the right,
the cognitive science solution.

In a cognitive science context, what matters is of a

completely different nature than what is relevant for

engineering. While performance is certainly a criterion, it is



by no means the only one, nor is it the most important one.

In cognitive science the important question is what we can

learn about intelligence from our robot. And it seems that

the robot on the right in figure 2 can teach us more. The

kinds of behaviors it can display are more interesting

(flexibility and adaptivity). From the robot on the left we

can learn about good engineering, but only little about

cognitive science.

4 Design principles of autonomous agents

4.1 Types of explanations

There is a kind of “meta principle” that has to be endorsed if

the design principles are to make sense. The meta principle

suggests that designs for “Fungus Eaters” always be

evaluated from three different perspectives, namely

functional, learning and development, and evolutionary.

Since our goal is to understand intelligence, we should

always keep these three types of explanations in mind.

Experience has shown that they contribute in

complementary ways to our understanding. While we may

choose to focus on one of them we should demonstrate

compatibility with the others.

The functional perspective1 explains why a particular

behavior is displayed by an agent based on its current

internal and sensory state, given its physical set-up. Often,

this kind of explanation is used in engineering. But also in

cognitive science it is highly productive. Just think of the

creative nature of the Braitenberg vehicles, where it is

surprising how seemingly sophisticated kinds of behavior

result from very simple mechanisms (Braitenberg, 1984).

The learning and developmental perspectives not only

resort to the current internal state, but to some events in the

past in order to explain the current behavior. They provide

explanations of how the actual behavior came about. The

distinction between learning and development is that

development includes maturation of the organism, whereas

learning does not.

Evolutionary explanations put the agent into the context

of an evolutionary process. The fact that we argue with

evolutionary principles does not mean that we have to

reproduce evolution in simulation. Biologists have talked

for many years about evolution without making simulation

models. We have included evolutionary consideration

throughout the paper, but we do not specifically elaborate

the design principles underlying simulated evolution. For an

excellent review, see Harvey et al. (in press).

There is a somewhat orthogonal perspective on

intelligent systems, namely the one of societies of agents. A

satisfactory explanation of intelligence would also have to

include aspects of social systems. While at the functional

                                                
1The term “functional” is used in different ways in the literature.
Here the term is used to distinguish one level of explanation from a
learning/developmental and an evolutionary one.

level, society is not an issue, in ontogenetic and

phylogenetic development, it is an essential perspective. We

will not go further into this aspect in this paper.

4.2 Classes of principles

There are three classes of design principles. The first one

concerns the kinds of agents and behaviors that are of

interest from a cognitive science perspective. The second

concerns the agent itself, its morphology, its sensors and

effectors, its control architecture, and its internal

mechanisms. The third class contains principles that have to

do with ways of thinking and proceeding, with stances,

attitudes, and strategies to be adopted in the design process.

Because of space limitations we will  focus on the first and

the second class, and only briefly mention the third. An

overview of the principles is given in table 1.

Table 1: Summary of design principles

Principle Name

Types of agents of interest, ecological niche
and tasks

1 The “complete agents” principle

2 The “ecological niche” principle

Morphology, architecture, mechanism

3 The principle of parallel, loosely
coupled processes (the “anti -
homunculus” principle)

4 The “value” principle

5 The principle of sensory-motor
coordination

6 The principle of “ecological balance”

7 The principle of “cheap designs”

Strategies, heuristics, stances, metaphors

8 “Frane-of-reference” principle

9 “Constraints” principles

10 Compliance with principles

etc.

4.3 Type of agents, ecological niche, and tasks

Principle 1: The “Fungus Eaters” principle

As pointed out above, the kinds of agents of interest are the

“Fungus Eaters”. They are “complete systems”, i.e. systems

capable of performing a set of tasks in the real world

independently and without human intervention. In other

words, they are (a) autonomous, (b) self-sufficient, (c)

embodied, and (d) situated.

Principle 1a: The agents must be autonomous, i.e. they

have to be able to function without human intervention,

supervision, or instruction.

Principle 1b: The agents must be self-sufficient, i.e. they

have to be able to sustain themselves over extended periods

of time. They have to be able to perform a set of tasks,

including maintaining themselves (keeping a sufficient



energy level, keeping clean, lubricated, undamaged, etc.),

without incurring an irrecoverable deficit in any of its

resources. This principle imposes constraints on the

architecture (see below).

Principle 1c: The agents must be embodied, i.e. they

must be realized as a physical system capable of acting in

the real world. Although simulation studies can be

extremely helpful in designing agents, building them

physically typically leads to surprising new insights. This

point has been forcefully made by Brooks (1991). Physical

realization often facilitates solutions which might seem hard

if considered only in an information processing context. An

agent existing only in simulation would not be complete.

Principle 1d: The agents must be situated, i.e. the whole

interaction with the environment must be controlled by the

agent itself, i.e. the world must always be seen from the

perspective of the agent. Moreover, the agent has to be able

to bring in its own experience in dealing with the current

situation.

The “Fungus Eater” perspective implies that the agent

be studied over extended periods of time. This time span is

relevant because we are specifically interested in how

agents evolve over time, either on an ontogenetic time scale

(which includes learning), or an evolutionary one. In

physical agents there is at best a learning perspective—

developmental and evolutionary ones are confined to

simulation because of technological problems.

An example of what a “Fungus Eater” might look like

is shown in the cartoon in figure 1. True “Fungus Eaters”

that fulfill all the criteria of principle 1 still do not exist.

Note the contrast to classical views of intelligence

where often only performance on one particular problem

solving task was at issue.

References supporting this principle include: Brooks,

1991; McFarland and Bösser, 1993; Toda, 1982.

Principle 2: The principle of the ecological niche

There is no universality in the real world. Animats are

always designed for a particular niche. The concepts of

autonomy, self-sufficiency, deficits, etc. only make sense

with respect to an ecological niche. This implies defining all

the tasks the agent has to fulfill. Note that the definition of

the task is, in a sense, independent of the agent itself. The

designer decides what the tasks of the agent are and he will

design it such that it will accomplish them. This does not

mean that there must be an explicit representation of the

task within the agent. This point is nicely illustrated by one

of Maja Mataric’s remarks about the behavior of her robots:

“They’re flocking, but that’s not what they think they are

doing” (quoted in Dennett, in press).

The description of the ecological niche also includes the

kinds of possible competition (e.g. McFarland, 1991). A

garbage collecting robot has to compete with other robots,

but also with other machines and with humans. Moreover,

environments may be characterized formally. A well-known

example is the characterization in terms of so-called

sensory-state machines, as class 0, 1 or 2 environments

(Wilson, 1991).

The definition of the ecological niche provides useful

constraints for the design of the agent. An illustrative

example is Ian Horsewill’s robot Polly. It is based on a

cheap vision system that exploits the fact that office floors

are flat. If the floors are flat, a higher y-coordinate implies

that the object is further away (given the object is standing

on the ground). This is illustrated in figure 3. In addition,

learning problems that are intractable if considered from a

purely computational view, often turn out to be benign, if

the constraints of a particular ecological niche are taken into

account (see below, principle 7).

a b
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Figure 3: Ian Horsewill’s robot, Polly, exploiting constraints
of an ecological niche (flat floors in offices).

Evaluation of agents always has to be done with respect

to a particular ecological niche, otherwise a comparison of

performance is not possible.

Classical views of intelligence do not include the notion

of an econiche because programs are restricted to virtual

spaces.

References supporting this principle include: Horsewill,

1992; McFarland, 1991; McFarland and Bösser, 1993.

4.4 Morphology, architecture, mechanism

Principle 3: The principle of parallel, loosely coupled
processes

In essence, this principle states that intelligence or cognition

is emergent  from a large number of parallel, loosely

coupled processes. These processes run asynchronously and

are largely peripheral, requiring little or no centralized

resources. Principle 3 could also be called the “anti-

homunculus” principle. It is directly motivated from

biology.

A strong proponent of this principle is Brooks (e.g.

1991). The Braitenberg vehicles (Braitenberg, 1984), the

extended Braitenberg architectures (e.g. Scheier and Pfeifer,

1995), Action Selection Dynamics (Maes, 1991), and PDL

(Steels, 1992) can be seen in the same spirit. In all of these

approaches, there is no “faculty” deciding on what to do

next, i.e. there is no centralized action selection mechanism.



One of the main claims made here is that coherent

behavior can be achieved without central control. A

beautiful example that fully endorses this principle is the

Cog project (Brooks, 1994; Brooks and Stein, 1993). In our

own work we have applied this principle in all our agents.

They employ an Extended Braitenberg Architecture (EBA),

a straightforward generalization of standard Braitenberg

architectures (e.g. Lambrinos, 1995; Scheier and Pfeifer,

1995).

While this principle is accepted by many researchers

where lower levels of intelligence (e.g. insects, reptiles) are

concerned, it is often contested when applied to human

cognition. We feel that the principle should be maintained

much longer and not given up until there is unequivocal

evidence for the need of “higher” processes (Pfeifer, 1995).

Figure 4: Cog—a robot displaying coherent behavior based on
many parallel, loosely coupled processes.

The principle of parallel, loosely coupled processes

contrasts sharply with classical thinking where a centralized

seat of intelligence is assumed. Classical thinking does not

object to parallel processes. The objection is that coherence

cannot be achieved unless there is central integration.

References supporting this principle include:

Braitenberg, 1984; Brooks, 1991; Brooks and Stein, 1993;

Maes, 1991; Steels, 1992; Scheier and Pfeifer, 1995; Pfeifer

and Scheier, in press

Principle 4: The “value” principle

This principle states that the agent has to be embedded in a

value system, and that it must be based on self-supervised

learning mechanisms employing principles of self-

organization. If the agent is to be autonomous and situated it

has to have a means to judge what is good for it and what

isn’t. This is achieved by a value system, a fundamental

aspect of every “Fungus Eater” and more generally of every

animat.

There is an implicit and an explicit aspect of the value

system. In a sense, the whole set-up of the agent constitutes

value: the designer decides that it is good for the agent to

have a certain kind of locomotion (e.g. wheels), certain

sensors (e.g. IR sensors), certain reflexes (e.g. turn away

from objects), certain learning mechanisms (e.g. selectionist

learning), etc. These values are implicit. They are not

represented explicitly in the system. To illustrate the point,

let us look at reflexes for a moment. Assume that a garbage

collecting robot has the task to collect only small pegs and

not large ones. Moreover, it should learn this distinction

from its own perspective. The agent is equipped with a

number of reflexes: turning away from objects, turning

towards an object, and grasping if there has been lateral

sensory stimulation over a certain period of time. The value

of the first reflex is that the agent should not get damaged.

The second and the third reflex increase the probability of

an interesting interaction. Note that this interpretation in

terms of value is only in the eye of the designer—the agent

will simply execute the reflexes.

These reflexes introduce a bias. The purpose of this bias

is to speed up the learning process because learning only

takes place if a behavior is successful. If the behavior is

successful, i.e. if the agent manages to pick up a peg, a

value signal is generated. In this case, an explicit value

system is required. In this way, the intuition that grasping is

considered rewarding in itself, can be modeled. Figure 5

shows a learning robot, receiving a value signal because it

has successfully grasped an object.

Figure 5: The garbage collecting robot has succeeded in
grasping a small peg. An explicit reinforcement signal is
generated which enables the robot to eventually learn the
distinction between small (graspable) and large (non-
graspable) pegs.

According to the “value” principle, the learning

mechanisms have to be based on principles of self-

organization, since the categories to be formed are not

known to the agent beforehand. Examples are competitive

schemes (e.g. Kohonen, 1988; Martinetz, 1994), or

selectionist  ones (Edelman, 1987).

If we were only interested in performance, there would

be easier solutions. But the processes described are

fundamental for understanding cognition. There is

increasing evidence that categorization and concept

formation in human infants is strongly based on value



systems and processes of self-organization (Thelen and

Smith, 1994).

This view of value systems and self-organization

contrasts with classical thinking. The metaphor of in-

formation processing that underlies traditional AI and

cognitive science, cannot accommodate self-organization.

The “value” principle is closely related to the principle of

sensory-motor coordination and ecological balance.

References supporting this principle include: Edelman,

1987; Pfeifer and Verschure, 1992; Pfeifer and Scheier, in

press; Thelen and Smith, 1994;

Principle 5: The principle of sensory-motor coordination

This principle states that the interaction with the envi-

ronment is to be conceived as a sensory-motor coordination.

Sensory-motor coordination involves the sensors, the

control architecture, the effectors, and the agent as a whole.

A consequence of this principle is that classification,

perception, and memory should be viewed as sensory-motor

coordinations rather than as individual modules (e.g.

Dewey, 1896; Douglas, 1993; Edelman, 1987).

Normally, perception is viewed as a process of mapping

a proximal (sensory) stimulus onto some kind of internal

representation. The enormous difficulties of classical

computer vision to come to grips with the problem of

invariances suggests that there may be some fundamental

problems involved. Viewing perception as sensory-motor

coordination has a number of important consequences.

From an information theoretic view, the sensory-motor

coordination leads to a dimensionality reduction of the high-

dimensional sensory-motor space (Pfeifer and Scheier, in

press). This reduction allows learning to take place even if

the agent moves. In fact, movement itself is beneficial since

through its own movement, the agent generates correlations

in the interaction with the environment. The second

important aspect of sensory-motor coordination is the

generation of cross-modal associations, including

proprioceptive cues originating from the motor system

(Thelen and Smith, 1984; Scheier and Lambrinos, 1996).

Additional support for the principle of sensory-motor

coordination comes from developmental studies. There is a

lot of evidence that concept formation in human infants is

directly based on sensory-motor coordination (Thelen and

Smith, 1984; Smith and Thelen, 1993; see figure 6). The

concepts of humans are thus automatically “grounded”.

Similarly, if this principle is applied to artificial agents, the

latter will only form fully grounded categories. The symbol

grounding problem is really not an issue—anything the

agent does will be grounded in its sensory-motor

coordination. Note that the terms categorization and concept

building are entirely observer-based. They relate only to the

behavior of the infant, not to any sort of internal

mechanism.

There is another kind of approach that closely relates to

this principle, namely active vision (e.g. Ballard, 1991).

Vision is not seen as something that concerns only input,

but movement is considered to be an integral aspect.

Figure 6: Infant categorizing objects and building up concepts
while engaged in sensory-motor coordination.

As already alluded to, this view contrasts with the

traditional view of perception as a process of mapping a

proximal stimulus onto an internal representation. In the

view proposed here, the object representation is in the

sensory-motor coordination. “Recognizing” an object

implies re-enacting a sensory-motor coordination. Most

objections to this view of perception have their basis in

introspection. The latter has long ago been demonstrated to

be a poor guide to research (Nisbett and Wilson, 1977).

References supporting this principle include:  Ballard,

1991; Dewey, 1896; Douglas, 1993; Edelman, 1987; Thelen

and Smith, 1994; Smith and Thelen, 1993; Scheier and

Lambrinos, 1996; Pfeifer and Scheier, in press; Scheier and

Pfeifer, 1995;

Principle 6: The principle of “ecological balance”

The principle of “ecological balance” states that there has to

be a match between the “complexity”  of the sensors, the

actuators, and the neural substrate. Moreover, it states that

the tasks have to be “ecologically” adequate. The way the

term “complexity” is used here, appeals to our everyday

understanding: a human hand is more complex than a

forklift, a CCD camera more complex than an IR sensor.

From this principle we can get considerable leverage.

Let us look at an example illustrating how not to proceed.

Assume that we have a robot with two motors and a few IR

sensors, say the robot Khepera. In some sense, this design

is balanced due to the intuition of the engineers that built it

(except that its processor is too powerful if it is fully

exploited). Assume further that some researchers have

become frustrated because with the IRs they can only do

very simple experiments. They would like to do more

interesting things like landmark navigation.

The next logical step for them is to add a CCD-camera.

It has many more dimensions than the few IR sensors. The

rich information from the camera is transmitted to a central

device where it is processed. This processing can, for

example, consist in extracting categories. But the categories

are formed as a consequence of a sensory-motor



coordination. Because the motor system of the agent is still

the same, the resulting categories will not be much more

interesting than before (although they may be somewhat

different). Trying to build categories using only the visual

stimulation from the camera (not as a sensory-motor

coordination) would violate principle 5. Classical computer

vision has violated this principle—and the problems are

well-known. It would be a different story if, together with

the CCD camera, additional motor capabilities would have

been added to the robot, like a gripper or an arm of sorts.

Figure 7 shows a balanced design on the left , an unbalanced

one in the middle, and again a more balanced one on the

right.

Figure 7: Balanced design on the left, unbalanced design in
the middle, and again more balanced design on the right.

An approach that is fully compatible with the principle

of “ecological balance” is again the Cog project. More

sophistication on the sensor side (two eyes, each with a

camera for peripheral and foveal vision), is balanced by

more complexity on the motor side. The arm and the hand

are quite sophisticated. Moreover, the head and the eyes can

all move which leads to a system of a very large number of

degrees of freedom. A lot of the processing is done

peripherally, and the central processing capability is not

inflated artificially. It is not surprising that Cog fulfills this

design principle. It was Brooks who pointed out that tasks

need to be ecologically appropriate (Brooks, 1990). In

particular he argued that “elephants don’t play chess.” We

couldn’t agree more.

Important evidence for this principle comes also from

studies in infant psychology by Bushnell and Boudreau

(1993). Their results suggests that there is in fact a kind of

co-evolution in the sensory-motor development of the

infant. Roughly speaking, acuity of visual distinctions

highly correlates with precision of motor movement.

Again, this view sharply contrasts with traditional AI

and cognitive science, where intelligence was seen as

centralized information processing, with no, or very little

consideration given to the physical set-up. A concept like

“ecological balance” would not make sense in that

framework.

References supporting this principle include:  Brooks,

1991, 1994; Pfeifer, 1995; Smith and Thelen, 1993;

Bushnell and Boudreau, 1993.

Principle 7: The principle of “cheap design”

The principle of “cheap design” states that good designs are

“cheap”. This requires a bit of explanation. “Cheap”, as

used here, includes various components.

First, cheap means literally cheap. If the robot is built

cheaply, we have to worry about physics. For example, the

well-known Puma arm is not cheap. It is, in a way, “too

good”: it can be programmed without having to worry much

about the real world. In a sense, the real world has largely

been taken care of by the engineers. The programmer can

simply choose the angles, and the arm will move to the

requested position, as long as it is physically possible. If the

arm is worse, if it is not so neatly engineered, the

programmer has to worry much more about forces, about

eigenfrequencies, about sensory-motor coordination, about

interacting with the environment. Incorporating

considerations about the physics into designs, typically

leads to better and more robust designs. In this sense, cheap

means capitalizing on the system-environment interaction.

A lovely illustration of exploitation of the physics is

insect walking. Leg coordination in insects does not require

a central controller. There is no internal process corre-

sponding to global communication between the legs, they

communicate only locally with each other (e.g. Cruse,

1991). But there is global communication between all the

legs, namely through the environment. If the insect lifts one

leg, the force on all other legs is changed instantaneously

because of the weight of the insect. This communication is

exploited for the purpose of coordination.

Second, cheap means parsimonious in the traditional

sense of Occam’s razor. If there are several models or

designs achieving the same task performance, the most

parsimonious model is considered the best. Even if the term

“parsimonious” is subject to debate, the general idea is clear

and generally accepted as a scientific principle. But of

course, this depends on what we consider to be the task and

the environment (principles 1 and 2). If the environment is

subject to considerable change, and if the changes are

unpredictable, it may be necessary to equip the agent with

resources that it currently does not require to perform its

task. Such a design would still be cheap in the sense used

here. Depending on the adaptive requirements, even an

Edelman-style system, based on selectionist mechanism

would be considered cheap, much cheaper than

preprogrammed systems, where all the potential situations

would have to be foreseen. Having a system with general

capabilities that can be exploited in specific situations, can

be a cheap strategy.

And third, cheap means exploiting the constraints of the

ecological niche. Above we have already seen that some

behaviors can be achieved much more efficiently. An

example is Horsewill’s robot Polly, which exploits the fact

that office floors are flat (see figure 3). Learning systems do

not have to be universal: only very rarely is there a need in



the real world to learn something odd like an XOR function.

It has even been experimentally shown, that natural systems

perform poorly on XOR learning tasks (e.g. Thorpe and

Imbert, 1989). And it is hard to think of natural situations in

which the ability to solve an XOR problem would confer an

advantage. “In general, if two cues both signal that food is

about to arrive, when the two are present at the same time,

the food is even more likely to appear!” (Thorpe and Imbert,

1989, p. 85). As a consequence much simpler neural

networks may be used.

Focusing on cheap designs has the additional advantage

that the limitations of a design, the ecological niches in

which it will function, become immediately evident.

It is interesting to note that cheap designs in the sense

discussed here imply ecological balance. Inflating one part,

like building a huge brain while leaving sensors and

effectors at the same level of complexity, will in any case be

too expensive.

This view of cheap designs does not really have an

analog in classical AI and cognitive science. There is no

embodiment, there is no physics to be exploited, and there

are no interesting interactions with the environment. The

only overlap seems to be Occam’s principle. But all the rest

does not make sense in a classical perspective. Again, we

see very clearly the fundamentally different view of

intelligence endorsed here.

There is an interesting relation of the principle of

“cheap design” to societies of animats. Often, tasks can be

accomplished much cheaper by having a society of less

sophisticated agents, rather than having one or only a few

highly complex individuals (e.g. Mataric, 1995).

References supporting this principle include: Brooks,

1991; Horsewill, 1992; Franceschini et al., 1992; Pfeifer,

1993, 1995; Thorpe and Imbert, 1989.

4.5 Strategies, stances, metaphors

This category of design principles concerns the design

process itself. Rather than constraining the designs of the

agents directly as the set of principles outlined above, they

provide suggestions on how to proceed. These principles are

less well articulated and will not be discussed here. They

include compliance with the design principles, taking the

“frame-of-reference problem” into account (Clancey, 1991),

incorporating constraints of the ecological niche,

capitalizing on system-environment interaction, viewing the

complete agent as a dynamical systems, etc.

 5 Discussion

The design principles outlined above do not cover all the

insights of the very rich field of animats. But we do believe

that they capture a large part of the most essential aspects of

what has emerged from pertinent research in the area. The

principles described may seem somewhat vague and overly

general, but they are enormously powerful as heuristics,

providing guidelines as to what sorts of experiments to

conduct next and what agents to design for future

experiment. In order to achieve some degree of generality

we have deliberately left out a lot of detail. These principles

not only help us evaluate existing designs, but they get us to

ask the right questions.

As mentioned initially we have not specifically

discussed simulated evolution. Eventually, we may include

some pertinent principles into our current set. In a number

of places we have resorted to evolution for explanation. If

evolutionary robotics gets to a stage where not only control

architectures, but also morphology, sensors, effectors, and

whole bodies can be evolved, it will be fascinating to see

whether our principles also hold for these evolved creatures.

A prerequisite is, of course, that the simulation environment

reflects our laws of physics. Will these creatures also have

value systems and self-organizing schemas? Will they also

exploit the physics in interesting ways?  If the creatures

turned out to obey our design principles this would add

additional force to them. But that remains to be seen.

 In the future we might be looking for something more

formal, than merely a set of verbally stated design

principles. Eventually, this will certainly be necessary. As

pointed out initially, the mathematical theory of dynamical

systems is a promising candidate. But since we are dealing

with “Fungus Eaters”, i.e. complete multifaceted systems, it

may be a while before we have a formal theory of “Fungus

Eaters”. This does by no means exclude productive use of

formal methods to study specialized issues like learning

algorithms, problems of mechatronics, etc.

What is needed right now is an in-depth discussion of

these principles. They have to be revised and the list of

principles has to be augmented. Moreover, an appropriate

level of abstraction has to be found. It may turn out that the

principles will be more useful if they are more concrete.

However, that would imply the well-known trade-off

between generality and direct applicability.

7 Conclusions

The design principles discussed in this paper communicate a

view of intelligence and human cognition that is entirely

different from the classical one endorsed by traditional AI

and cognitive science. It seems that it would be premature to

ask for a theory of autonomous agents. This is why we

started with  a set of principles that can help us formulate

our beliefs about the nature of intelligence in a compact

way.

Having a concise way of talking about our views of

intelligence is extremely important since we want to

convince researchers from other disciplines like psychology,

biology, and neurobiology, that novel perspectives and

directions can be expected from the animat field. The

animate perspective may shed new light on old

controversies. Examples are the conundrums involved in

perception and categorization. While designing agents—as

discussed above—is a fascinating and productive endeavor



in itself, it is a highly creative tool for other scientific

disciplines involved in the study of intelligence.

Let us conclude by saying that we hope to have made a

small contribution towards Jean-Arcady Meyer and Anne

Guillot’s quest for theoretical advances and generalizations
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