
Collective Robotics: From Social Insects to RobotsC. Ronald Kube and Hong Zhangkube@cs.ualberta.ca zhang@cs.ualberta.caUniversity of AlbertaDepartment of Computing ScienceEdmonton, Alberta, Canada T6G 2H1October 1, 1993AbstractAchieving tasks with a multiple robot system will requirea control system that is both simple and scalable as thenumber of robots increases. Collective behavior as demon-strated by social insects is a form of decentralized controlthat may prove useful in controlling multiple robots. Na-ture's several examples of collective behavior have moti-vated our approach to controlling a multiple robot systemusing a group behavior. Our mechanisms, used to invokethe group behavior, allow the system of robots to performtasks without centralized control or explicit communica-tion. We have constructed a system of �ve mobile robotscapable of achieving simple collective tasks to verify theresults obtained in simulation. The results suggest thatdecentralized control without explicit communication canbe used in performing cooperative tasks requiring a col-lective behavior.1 IntroductionCan useful tasks be accomplished by a homogeneous teamof mobile robots without communication using decentral-ized control? The hypothesis implicit in this question isthat such a synergistic robot system|one whose capabil-ities are greater than the sum of its individuals|can becreated. Recent interest in task-achieving systems of mul-tiple robots has led to several approaches in the designof their controllers. Among them, the Animat approach[46], which models whole, albeit simple, animal-like sys-tems, o�ers a computational model in which perceptionand motor control may be studied. Using this approach,and motivated by several examples of cooperative behav-ior in social insects, we conjecture that decentralized con-trol techniques can be used with multiple robots to achievetasks in a cooperative fashion. In this paper, we describeour approach to collective robotics, the Collective RoboticIntelligence Project (CRIP), in which social insects are

�rst studied, interesting examples of cooperative behaviorare then simulated, and �nally real robots are constructedon which we run our experiments.The fact that man has yet to invent a highly au-tonomous robot capable of functioning in a changing en-vironment has led researchers to propose the organizationof several simpler robots into collections of task-achievingpopulations [9, 13, 33, 12, 25]. It has been conjecturedthat systems of multiple robots should prove more e�-cient and more fault-tolerant due to their number, morecost-e�ective due to their individual simplicity, and more
exible in their working con�gurations due to their re-dundancy, than a single robot [38]. These conjecturesare shared by researchers in Distributed Robotic Systems(DRS) [30], especially those involved with DistributedIntelligence|often referred to as Swarm Intelligence|andMulti-robot robotic systems [5]. Research in DRS con-centrates on three areas: the construction of physical sys-tems, the use of communication to form cooperative sys-tems, and the creation of task-accomplishing algorithms.Of the three areas of research, creating a system capableof displaying intelligent behavior from unintelligent unitsis dependent on progress being made in algorithms thatproduce \swarm intelligence" [5].Before starting on the intellectual challenges connectedwith designing a team of multiple robots, let us �rst con-sider eligible tasks. Collective tasks for such teams are ei-ther noncooperative or cooperative. Noncooperative tasksgain e�ciency in execution due to the parallel divide-and-conquer approach, but can be accomplished by a singlerobot given enough time. For example, a lawn mowedby a team of robots can also be mowed by one robot ina longer period. Other such tasks include sorting [13],searching [18], map making [32], material handling [15],and harvesting [19, 2]. On the other hand, cooperativetasks cannot be accomplished by a single robot and re-quire the cooperative behavior of several machines work-ing together. Such jobs include material-transport [34],1



Adaptive Behavior 2(2):189-219, 1993. 2box-pushing [11, 4], tandemmovement [27], and formationmarching [41]. With the advances of micromachine tech-nology promising to deliver multiple-robot applications asdiverse as aircraft engine maintenance, microsurgery, andwaste disposal [39], comes a growing need to develop con-trol strategies suitable for a collective or cooperative be-havior.In our research, a bottom-up approach to controllerdesign is taken, where tasks are accomplished using manyhomogeneous robots which function collectively in groups.In this regard we share many similar goals with Mataric[25]. We design feasible versus optimal solutions, withemphasis on ease of design. We design algorithms with anemphasis on locally sensed information, which allows fora decentralized control solution without the use of explicitcommunication.Although it seems intuitive that communication be-tween robots would allow greater cooperation, researchershave begun to investigate cooperative behavior withoutcommunication between robots [1, 34, 15]. The advantageof such a noncommunicating system lies in its ability toscale upwards without incurring a communication bottle-neck as more robots are added. As found in Nature, tasksare solved with feasible versus optimal solutions, with aresulting reduction in the complexity of both the system'scontroller and the computation mechanisms of the indi-vidual robots. The results, presented by these researchers,based on simulation, suggest several strategies exist whichproduce task-achieving cooperative behavior.Our own investigation of cooperative behavior, via abox-pushing task, has resulted in a decentralized system of�ve mobile robots capable of simple collective tasks with-out use of explicit communication [21, 22]. Our strategyinvolves group behaviors, and simple mechanisms to in-voke them. Since explicit communication is not possibleamong our �rst system of re
exive robots, a form of posi-tive feedback was necessary to ensure each robot was mak-ing progress in the task. The lack of any internal memoryin the robots has led to problems with stagnation andcyclic behavior, both to be explained in the sequel, andmotivated the development of our second multiple robotsystem.In this paper, our research on collective behavior is de-scribed. Social insects provide the inspiration for our ap-proach to collective robotics, and in Section 2 we discusswhy their study is a useful starting point in the designof decentralized control strategies. In Section 3, basedon these observations, we describe how group behaviorsare used to control multiple robots and the mechanismsused to trigger them. In Section 4 we present our sim-ulation results, obtained in our multiple robot simulatorSimbotCity, and some initial results obtained with a neuralnet controller used for behavior arbitration. Verifying our

simulation results by constructing real robots is a main re-quirement in our research and in Section 5 we discuss our�rst system of �ve mobile robots controlled using simplecombinational logic, which eventually led to the design ofa second system of 10 programmable robots. Finally, inSection 6 we discuss the problem of designing tasks suit-able for collective robotics, and the direction of our futurework.2 Social InsectsOne of Science's most challenging questions is how thebehavior of large systems is generated from its individualcomponents. Examples of task achieving societies aboundin Nature. Social insects such as bees, ants and termiteslive in societies and exhibit collective behaviors in main-taining their societies [43]. Can the study of social insectsmotivate the design of decentralized controllers for robots?Several researchers [40, 13, 33, 10] have proposed modelsbased on the study of social insects to control groups ofinteracting robots. By allowing Nature to guide us, byexample, valuable lessons in population dynamics and itscontrol may aid in the development of task speci�c collec-tive robotic systems.2.1 SensingWithout a master architect to orchestrate the actions ofindividual ants, what initiates these behavioral programs?The answer may lie in the ant's sensing abilities. Behav-ioral biologists examine the sensor physiology of a speciesas the �rst step in understanding its behavior [43]. Be-havior in social insects is thought to be like a stored pro-gramwhose execution is a result of speci�c sensory stimuli.Moser [26] writes:Insects function like tiny robots programmed todo speci�c jobs. Their nervous systems act likebiological computers; they are activated, as ifby punch cards, when their receptors are stim-ulated. The external receptors respond to pres-sure, sound, light, heat, and chemicals.The study of social insects has concentrated on fourmain species: ants, termites, bees and wasps. Of these,most is known about ants and bees. Considered the fore-most social insect, ants are the most abundant with apopulation of roughly 1015, or 1.5 million ants for everyperson on the planet.Honeybees are the most studied insect species with alarge repertoire of sensing capabilities. With its almostomnidirectional view, the honeybee sees fuzzy images ofobjects, but with a high sensitivity to broken patterns,



Adaptive Behavior 2(2):189-219, 1993. 3glimmering light, and sudden movement. Ants possess vi-sion ranging from complete blindness in some species tobee-like acuity in others. Both bees and ants are ableto estimate sunlight's plane of polarization providing di-rectional information that allows them to navigate usingthe Sun, even on overcast days, due to their ability to seeultraviolet light.Hearing of groundborne sound by bees and ants is ac-complished through their feet. The sense of smell in bothbees and ants is comparable to that of humans. The senseof taste is less sensitive, with coarser selection, than thatof man. Bees and ants have an excellent sense of balanceallowing them to orient to gravity at a constant angle.Bees are capable of sensing temperature changes of onequarter of a degree, allowing them to maintain a constanttemperature during honey production. A bee's ability tosense odor using its antennae allows it to estimate the dif-ference between two sources [24]. It is with this array ofsensing systems that bees and ants display their fascinat-ing repertoire of behaviors.These stored behavioral programs can be invoked byresearchers using appropriate stimuli. In ants, corpse re-moval is a collective behavior invoked by chemical odor.Workers dispose of dead ants by carrying them from thenest to a refuse pile. Wilson et al. [44] were able to in-voke the same behavior in ants by treating bits of paperwith acetone extracts of dead corpses. In fact, by daub-ing small amounts of acetone extract on live ants, theytoo were carried away by nestmates and dumped on therefuse pile! Thus, stimulus sensing serves to trigger storedpatterns of behavior and ultimately forms the basis forthe behavior-based approach to robot control.Without a complex computational mechanism howcan insects' sensory mechanisms solve the myriad prob-lems presented by the peculiarities of their environment?Wehner suggests \matched �lters," which are spatiallyplaced receptors specialized to some feature in the envi-ronment, as Nature's simple solution [42]. An examplecited is the 
at world of the Saharan salt pans inhabitedby desert ants. This environment, dominated visually bythe horizon, is particularly well suited to the structure ofthe ant's optics, in which a rather large number of horizon-looking photoreceptors are found. Wehner explains it isthese \band-like zones" of receptors that provide the highdegree of visual acuity. \These `visual streaks' are per-fectly aligned with the horizon, irrespective of the load anant may carry" [42].Animals living in open environments are all found tohave visual streaks. Among them, crabs were found tohave visual systems even more elaborate with receptorspacing varying at right angles to the visual streak [48].This variation in receptor spacing results in the stimula-tion of a constant number of receptors. This allows the

crab to detect objects that appear near the horizon of aconstant absolute size without regard to its distance away.Because of this spacing, and the eye's stabilization againstpitch and roll axis displacements, retinal images of objectslarger than the crab appear above the eye's horizontal, andthose objects smaller appear below [48]. This would al-low for a 
ee behavior to easily determine predators basedon size alone. Thus, these carefully evolved sensory sys-tems tuned to features unique to the animals environmentproduce robust behavior without complex processing.Given the simple stimulus-response mechanisms in-volved in behavior activation, it is a wonder that tasksare achievable by these insect societies. When the soci-ety is viewed as a whole, a behavioral complexity emergesthat seems to be more than just a composite of individualbehaviors.2.2 The Social MachineAn insect colony is often referred to as a superorganismdue to the resemblance between the many social phenom-ena it displays and the physiological properties of organsand tissues. These behavioral attributes of the superor-ganism are an emergent property resulting from the in-teraction of the colony's many members each displayingtheir own simple repertoire [43]. Deneubourg and Goss[14] raise the question of whether the colony's behavioralcomplexity lies within the individual members or betweenthem? Being able to deduce collective activity from in-dividual behavior is one of the main problems faced bybehavioral biologists; since as Pasteels et al. pointed out\collective behavior is not simply the sum of each par-ticipant's behavior, as others emerge at the society level"[29].As the superorganism's individuals are brought into fo-cus, one is startled to �nd the display of antagonistic ac-tions involved in a collective activity. Wilson provides anexample in the process of moving a nest [43]:As workers stream outward carrying eggs, larvae,and pupae in their mandibles, other workers arebusy carrying them back again. Still other work-ers run back and forth carrying nothing.Honeybees exhibit the same disarray in the constructionof comb cells. Workers, in search of pieces of wax for cellconstruction, will usually tear down walls that their nest-mates are in the process of building [23]. This seeminglychaotic activity usually results in a well constructed nestand is an example of Nature's feasible versus optimal solu-tion approach. So how is it possible then, for the colony todisplay such a purposeful collective behavior? The answermay lie in the positive feedback mechanism responsible forcollective decision-making.



Adaptive Behavior 2(2):189-219, 1993. 4One can not help but ponder, when viewing a two me-ter high termites' nest, the intelligence behind its con-struction, especially in light of the fact that, as Sudd [37]describes, \each of the grains of soil of which the nest isbuilt has been carried separately and placed by a termiteperhaps half a centimeter long." The mechanism involvedin this task-achieving collective behavior is allelomimesis,or positive feedback, which Deneubourg and Goss roughlytranslate as \do what my neighbour is doing"[14]; coupledwith a set of common simple rules and invoked by sensinga stimulus, this decentralized system generates a colony-level response characteristic of the behavioral attributesoften ascribed to a superorganism.How does the behavior of such a system arise? Suddsuggests that cooperative behavior is a result of the ap-plication of a three phase approach of disorder, search,and order. The e�ect of each is judged by positive feed-back communicated through the work itself. Thus, or-der \arises through the trial of many possibilities" [37].An example is nest construction by Weaver ants [45, 37].Nest walls are constructed from folded green leaves heldtogether by sticky larval silk. In order to fold a leaf, antsbegin by spreading over the leaf's surface and randomlypulling at any graspable edge. Some edges are more easilyturned, while unsuccessful e�orts are quickly abandoned,causing a search for a new edge. The success of a turningedge reinforces the continuance of the e�ort. The result isan ordered and collective e�ort of pulling on successfullyturned edges, with a folded leaf as the �nal outcome.The e�ect of positive feedback and the simple rulesshared by each individual can result in the performanceof the system exceeding the sum of its parts. An exampleis the prey-transport task. Franks conducted experimentsin group retrieval of prey by army ants. The evidencegathered suggested that workers in a retrieval group were\able to assess their own performance and their potentialcontribution to a group e�ort" [16]. Franks cites a simplealgorithm used in this prey-transport task [17]:If there is a prey item in the trail moving belowthe standard retrieval speed, and you are not car-rying an item, then help out; otherwise continue.Franks attributes the \supere�ciency" of the group to itsability to overcome rotational forces in the object beingtransported; forces too large for the individual to success-fully balance on its own [16].Simple shared rules also seem to play a part in a hon-eybee colony's collective ability to select the most prof-itable nectar sources. Seeley et al. [31] suggest if foragersof a honeybee colony all share the same rules for foodgathering, and adjust their response threshold betweenrecruitment and abandonment accordingly, a collective re-sponse will result. The response threshold adjustment re-

sults in the bees varying their foraging behaviors, such asthe strength of their waggle dance|used to recruit otherbees|and how often they visit or decide to return to thenectar source. How the bee is able to compare nectarsources for pro�tability|determined by such variables assugar concentration, distance from the hive, di�culty inacquisition and amount of nectar|is not known, but it ispresumed their nervous system is somehow calibrated todi�erentiate between low and high sources [31].As biologists uncover some of Nature's solutions to thesensing complexities faced by social insects, we stand togain much by the study of this natural example of decen-tralized control. In the next section we present severalmechanisms, motivated by social insects, used to controla team of robots.3 Collective BehaviorConstructing tools from a collection of individuals is nota novel endeavor for man. A chain is a collection of links,a rake a collection of tines, and a broom a collection ofbristles. Sweeping the sidewalk would certainly be di�-cult with a single or even a few bristles. Thus there mustexist tasks that are easier to accomplish using a collectionof robots, rather than just one. Of course the di�culty in-creases when the individuals are somewhat autonomous,and there lies the challenge. How do we create an in-telligent task-achieving collective behavior from a groupof simple robots? By studying Nature's many examplesof task-achieving collective behavior we hope to uncoversome of her more useful mechanisms.3.1 Controlling Robots Using Group Be-haviorA group behavior is the task-achieving activity for whichthe multiple robot system is designed, and it consists of acommon set of rules for accomplishing the task. The groupbehavior is simply the activity all the robots are engagedin, and some tasks may consist of two or more group be-haviors, like synchronized steps in a dance performed by agroup of dancers. A simple example of a collective task isemptying a room of heavy furniture which consists of twogroup behaviors: lifting-furniture and moving-furniture.From the examples seen in social insects, several mecha-nisms exist which may be used to invoke the group behav-ior. Mechanisms are ways to control the system of robotsand may consist of shared goals, as in the common taskmechanism, useful behaviors, such as following that keeprobots together in a 
oor-washing group behavior, or cuesin the environment, which may serve to either invoke asingle group behavior or cause the transition between two



Adaptive Behavior 2(2):189-219, 1993. 5group behaviors. These mechanisms by no means repre-sent a comprehensive set, but rather serve to illustrate ourinitial exploration into task-achieving collective behavior.The �rst mechanism is a common goal shared by allthe robots in the system. Such a single purpose systemis controlled by having only one activity to choose from.Leaf folding by Weaver ants could be considered such anactivity, as could the previously described corpse-removalbehavior. In the sequel we examine how a common goal,in the form of box-pushing, can be used to control a groupof robots.Collective tasks requiring groups of robots in close prox-imity may make use of a follow behavior to accomplishthe group behavior. Several examples of a follow behav-ior can be found among ants. Odor trails, tactile sensingused in tandem running, and visual stimulus used in rapidrunning are examples of group movement, which resultsfrom the activation of a follow behavior. A follow behav-ior may be used to maintain a formation and could proveuseful in a system designed for distributed environmentalsensing. These mobile sensors, traveling in herds, couldspatially cover a search area while gathering data. Fortasks which involve some dynamically changing physicalparameter such as the size of an area covered by a liquidspill, or the advancement of a rapidly spreading �re front,quicker response by the system is possible when robots arekept together.For tasks which require a dynamic stimulus to invokethe group behavior or which are accomplished using a se-quence of two or more group behaviors, an environmentalcue is used to control the transition between behaviors.This mechanism is found in many examples from the col-lective activity of ants. Food collecting behaviors are gov-erned by the visual cue of dawn and dusk. Termites usecues to control the transition between vertical construc-tion of columns and their bending toward one another inthe formation of an archway.The construction of archways by termites beginswith the random movement of pellets which eventuallyresults|by a seemingly random occurrence|in the place-ment of a second pellet on top [43]. Apparently, termiteshave a preference for this structure and continue to placepellets on top constructing a column in the process. Thenext step, in the construction of an archway, requires asecond column nearby. At some point in the column's con-struction termites, working on separate columns, begin tobend the column towards each other thereby forming anarchway. The environmental cue that causes the transi-tion to the bending step in the task is unknown, althoughit is hypothesized by Wilson to be olfactory in nature [43].In this manner cues serve to either initiate the group be-havior or serve in a regulatory manner guiding transitionsbetween group behaviors.

There is some evidence to suggest that some species ofants alter their behavior using group detection. Workerants were found to excavate soil and attend larvae at ahigher rate while in large groups. In fact, the stimulus re-sponsible for this altered behavior was found to be carbondioxide [20]. Wilson also found that worker ants kept insolitude did not respond to the natural alarm substancesof their species. However, when placed among hundredsof their coworkers they were found to respond normally tothe same alarm substance. This could prove to be usefulas a way of invoking a group behavior once a collectionof robots had formed. Consider the task of leveling theground by a number of small bulldozer robots. The ef-fect of a large blade, by a number of bulldozers with smallblades, is not realized until the group has con�gured itselfin an appropriate formation traveling in the same direc-tion. Thus the formation of robots itself invokes the groupbehavior.Collective behavior by social insects is an area of re-search rich in examples of mechanisms suitable for imple-mentation in collective robotics. Simulation is our nextstep in the investigation of some of these mechanisms, andit ultimately results in their implementation in real robots.4 SimulationInspired by the examples of cooperative behavior found insocial insects, we wish to simulate the common coopera-tive task of box-pushing. The objective is to locate andpush a large box too heavy to be moved by a single robot(see Figure 6). As such, it will require the cooperativee�ort of at least two robots both pushing on the sameside to move the box. Like the leaf folding task, all therobots involved will be interested in one common goal:box-pushing. To simulate such a task we have createda simulation environment, called SimbotCity, in which tomodel a small population of robots. The robots are mod-eled as a set of sensors, actuators and behaviors, combinedin a control architecture that uses either a subsumption [7]�xed priority or an Adaptive Logic Network [3] behaviorarbitration mechanism. The resulting herd of box-pushingrobots are capable of accomplishing their task, and theproblems of stagnation and cyclic behavior are partiallysolved by examining the social insects and their positivefeedback mechanisms.4.1 SimbotCity: A Robot PopulationSimulatorAccomplishing tasks using a decentralized system of au-tonomous robots without explicit communication requireseach robot's control algorithms to make use of local in-formation only. Acquired by the robot's onboard sensors,



Adaptive Behavior 2(2):189-219, 1993. 6this information mediated by behavior must be su�cientto ensure that the entire system of robots converges to-wards the desired goal. A task to be realized by sucha system de�nes the sensing requirements. For example,our box-pushing task requires the ability to sense the box,in order to locate it, sense other objects including otherrobots in order to avoid collisions, and sense task progres-sion in order to assess performance. Can these decentral-ized control mechanisms accomplish cooperative tasks?To successfully function as a group our system willneed some form of cooperation. Cooperation might sim-ply equate to noninterference as suggested in [47] withoutexplicit communication, or may involve a more elaborateexplicit form of communication. Can cooperative tasks beaccomplished without explicit communication?Allocation, also referred to as density dependence byBrooks [8], is the problem of how many robots to use ina collective task. Since the box-pushing task can be ac-complished with two or more robots, what is the optimalnumber of robots to be employed for the task, given aperformance measure?Our initial exploration of these questions resulted in thecreation of our robot population simulator SimbotCity, inwhich we have simulated the box-pushing task. Robotsare modeled as a collection of sensors, actuators and be-haviors presently combined using one of two arbitrationmechanisms. A con�guration �le speci�es the number ofrobots along with their initial positions. A simulationmaybe run continuously or single stepped while each robot'ssensor readings are displayed. Performance is measuredas a function of simulated time steps versus distance thebox has moved. The robot's model is based on our currentcapability to construct its physical counterpart.4.1.1 The Robot ModelA population consists of a group of robots with each robotcomposed of a sensor model, an actuator model, and abehavior model. Models can be further subdivided intomodel types. For example, sensor types may consist of in-frared for near obstacle detection, light for brightness cal-culations or sonar for long range distance measurements.The box-pushing task makes use of three sensors: a goalsensor, an obstacle sensor, a robot sensor, and two actu-ators: left and right wheel motors (see Figure 1). Thereare �ve behaviors: a goal behavior directing the robot to-ward the box, an avoid behavior to handle collisions, afollow behavior allowing one robot to follow another, aslow behavior which adjusts motor speed preventing rear-end collisions, and a �nd behavior used in exploration.

S2 Goal Sensor Range

S0 Robot Sensor Range

S1 Obstacle Sensor Range

Direction Indicator

A0 Right Wheel Motor

A1 Left Wheel Motor

Robot bodyFigure 1: The box-pushing robot model. Each robot isequipped with a goal sensor, an obstacle sensor, a robotsensor, and two actuators: a left and right wheel motor.Sensors Implemented as an abstract data type (ADT),the sensor model has six attributes: sensor number, type,sensor direction, view angle width, an input value for ac-tive sensors, and an output value. Processing is basedon sensor type with macros providing access to the sen-sor's data structure. Currently there are �ve sensor typescorresponding to the physical sensors available in ourlab. These types are: sonar, acoustic, infrared, light andswitch. Since sensor types may only represent physicalsensors, hardware implementation is easier and ensuresthe simulated robots may be built using the same sensingtechniques.Actuators The actuator model is also implemented asan ADT with �ve attributes: actuator number, type, posi-tion on the robot, input value, and on/o� switch. Access-ing and processing is also based on type, with four typesof actuators available: motor, hand, plow, and solenoid.For the box-pushing robots only the motor type is used,with one each for the left and right wheel motors. Steer-ing the robot is achieved by turning one motor on at atime. For example, to turn right the left motor is turnedon with the right motor turned o�. This switching takesplace for each simulation time step. Actuator and robotdynamics are not modeled.Behaviors A behavior maps sensor inputs to actuatoroutputs to de�ne a stimulus-response relationship. Forexample, a Braitenberg [6] vehicle that seeks light may becreated by cross connecting the left-light sensor with theright wheel motor illustrated in Figure 2.Sensors provide input to a behavior which then pro-cesses the data to provide output commands to actuators.During a simulation time step, each behavior reads itsconnected sensors and calculates an appropriate response,with the resulting command sent to a behavior arbitrationmodule. Behavior processing may include thresholdingwhere only signals of a certain strength are acted upon.
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seek-lightB0 Figure 2: The seek-light stimulus-response behavior ina simple Braitenberg vehicle is implemented by cross-connecting the opposite side sensor and wheel-motor ac-tuator pairs.
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thresholdFigure 3: Behavior processing may include simple thresh-olding, which may be of �xed value (i.e. � 6) or set byanother behavior.Thus our Braitenberg light-seeking vehicle may have apreference for very bright lights. Thresholds may be ex-ternally set by other behaviors or �xed as illustrated inFigure 3.Memory mechanisms may also be incorporated into abehavior. For example, a progress monitoring behaviorcould be created which counts to some predeterminedamount of time when it then becomes active. However,if progress is being made in the task, then a positive feed-back stimulus constantly resets the time counter neverallowing the behavior to become active as illustrated inFigure 4. This addition of a memory device creates whatWilson has termed a \Virtual stimulus-response" and al-lows behaviors to incorporate \intention memory" [46].4.1.2 Behavior ArbitrationIn a bottom up approach to designing robot control sys-tems, a problem arises as how to best arbitrate con
ictingactuator commands. One approach, the subsumption net-works [7], uses a �xed priority assignment between behav-
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B0 seek-lightFigure 4: A progress \virtual stimulus-response" behaviormonitors wheel-motion and constantly resets an intervalcounter.

iors. The resulting actuator commands are simply thosebelonging to the highest priority behavior. This requiresthe designer to consider all behaviors in the control sys-tem and decide on how to assign priority. As the numberof behaviors increases, so does the burden on the designerto make a priori decisions about behavior arbitration.An alternate approach to the behavior arbitration prob-lem which we have been exploring [22], is to formulate theproblem as a pattern classi�cation problem on which anAdaptive Logic Network (ALN) [3] can be trained. ALNsare neural networks formed in binary tree con�gurationswith nodes eventually assigned either the Boolean func-tion AND or OR. The base of the tree receive its inputcomprised of behavior actuator commands, with the rootof the tree forming a single output bit. A supervised train-ing procedure takes a subset of all possible behavior out-puts and classi�es each of them into one of many actuatorcommands. If the behavior output subset is truly repre-sentative of all possible outputs and a functional relation-ship between behavior outputs and actuator commandsexist, then the ALN will learn the relationship and cor-rectly classify yet unseen behavior outputs to the desiredactuator commands. The power of the technique onlybecomes evident as the ALN's input space (behavior out-puts) becomes large. In the sequel we will examine bothapproaches to behavior arbitration using the box-pushingcollective task.4.2 Box-PushingThe objective in the box-pushing task is to locate andmove a large box using a group of robots. The task is de-signed such that moving the box requires the net forceof at least two robots both pushing on the same side.We have experimented with two approaches in simula-tion, implementing the �rst in hardware. The �rst was asubsumption style behavior-based controller with a �xedpriority behavior arbitration. This controller was then fur-ther simpli�ed and implemented with �ve mobile robotsdiscussed in the sequel. We then came back to our simula-tion environment and revisited the problem using re
exivebehaviors and an ALN for behavior arbitration. This sec-ond approach allowed us to train the controller with asupervised training algorithm. It was not our intent todo a strict comparison between the two controllers, andalthough the ALN proved to be less e�cient in terms ofaccomplishing the task, it was much simpler to design.4.2.1 Subsumption NetworksTo accomplish the task each simulated robot was giventhree sensors, two actuators, and �ve behaviors illustratedin Figure 5. The lowest priority and default behavior is�nd, which requires no sensor inputs and causes the robot
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A0,A1 wheel-motorsFigure 5: The box-pushing robot's behavior architecture.A behavior's actuator commands may be suppressed (thecircles with an `S') and replaced by those of a higher pri-ority.to move in a large arc. Its output may be suppressed (thecircles with an \S") and replaced with actuator commandsfrom follow which causes robots to form groups by follow-ing other robots. While following, if a robot gets too closeto another, the slow behavior is activated and reduces therobot's speed while active. The goal behavior, activatedby a goal sensor, directs the robot towards the goal onlyto be suppressed by the highest priority avoid behaviorif obstacle collision is imminent. Figure 6 shows the boxbeing moved after several steps into the simulation.The design of the box-pushing controller begins byspecifying the task's sensing requirements. Collision freemovement will require an obstacle sensor; to follow otherrobots requires a robot sensor; and locating the box willrequire a box or goal sensor. Next, a default behavior ischosen. In this case, a �nd behavior that moves the robotforward on a gradual arc produces movement. Startingfrom an initial con�guration this single behavior controllercreates motion which often results in collisions. A followbehavior is added which uses a robot sensor to direct therobot toward its nearest sensed neighbor. Once follow be-comes active herds begin to form and are maintained byadapting the follow behavior with a behavior preference.Behavior preferences adapt a behavior by �ltering sen-sor input to suit the behavior's state. In the case of thefollow behavior, the sensor input is �ltered by consider-ing a smaller �eld of view|similar to narrowing focusof attention in visual tasks|while engaged in following.This eliminates distractions from passing robots movingin opposite directions. This mechanism can also allowa collision-avoidance behavior to pass through a narrowdoorway by having the doorway behavior adjust avoid'sbehavior preference.Without velocity control, robots moving the samespeed would not form groups, as distant robots could nevercatch up. For this reason, a simple two speed system isimplemented by having robots traveling in herds move atthe slower speed. Thus a slow behavior is added whichreduces the robot's velocity whenever neighboring robots
Figure 6: The initial con�guration of the cooperative box-pushing task (top) and after 404 simulation steps in whichthe box has been moved 130 units upwards. The robots(circles) must locate and push the large box, which is tooheavy to be moved by a single robot; therefore requiringthe cooperative e�ort of at least 2 robots pushing on thesame side.



Adaptive Behavior 2(2):189-219, 1993. 9are detected.To prevent collisions an avoid behavior is added whichbecomes active and stays active as long as the obstaclesensor has detected an obstacle. Collisions are avoided byturning a �xed number of degrees in the opposite directionat each simulation time step. The range of the obstaclesensor is 1.5 times the robot's diameter. Keeping task be-haviors active, only as long as their sensory stimulus ispresent, can solve some problems concerning the spatialdistribution of robots in a collective task. For example,the box-pushing task requires the robots to spatially dis-tribute themselves along the sides of the box. Findingan open spot on the box can be accomplished by a robotwhose persistent goal behavior is only momentarily dis-suaded by its noninterfering avoid behavior. As soon asan open spot appears, avoid switches o� allowing the goalbehavior to move the robot in and �ll the vacant spot.To locate the box, robots are equipped with a goal sensorcapable of detecting the box at a distance of six times therobot's diameter. Similar in design to the avoid behav-ior, the goal behavior turns the robot a �xed number ofdegrees toward the goal while active.The task is accomplished once several robots have lo-cated the box and collectively pushed it o� the edge oftheir world. Robots unfortunate enough to be caughtpushing on the opposite side of a herd are quickly pushedbackward. Task progression is implied in the forward mo-tion of a robot and a robot moving backward immediatelyturns away from the box to assume a new position thatallows forward motion.Two problems occur in which the box-pushing task doesnot progress. The �rst involves stagnation in which a num-ber of robots equally distribute themselves around thebox. In this situation the forces around the box canceleach other. The solution is to introduce a behavior tomonitor positive feedback which may be determined, inthis case, by a constant forward motion. As long as a for-ward motion is achieved every n time steps the behaviorremains inactive. However, once n time steps has passedsince the last forward motion was detected the behaviorbecomes active with a randommotion to break the stagna-tion. The second problem involves cyclic behavior|reallyanother form of stagnation but with motion|and can beillustrated by a robot moving in a cyclic pattern. Al-though movement is occurring, no progress is being madetoward the goal. A method to detect cyclic behavior re-mains an interesting challenge.4.2.2 Adaptive Logic NetworksAdaptive Logic Networks (ALN) are a kind of neural net-work designed to synthesize functions using a binary treeof logical AND and OR operations, where complemen-

tation is allowed only at the input level (see [3]). Theyare particularly well suited for Boolean input vectors, incontrast to the more familiar backpropagation networks,whose inputs are continuous variables, and whose out-puts are derived by applying a sigmoidal function to asum of weighted inputs. The adaptive, or learning pro-cess, adjusts a node's logical function (equivalent to theweight adjustment in backpropagation) based on a train-ing set of input vectors that are representative of the inputspace. Assuming generalization occurs (i.e. the trainingconverges) the network will correctly classify yet unseeninput vectors. Since trained ALNs are binary trees ofAND and OR functions, they are easily implemented inProgrammable Array Logic (PAL).As previously mentioned, behavior arbitration is theprocess of deciding which behaviors have control of theactuators resources at any given moment. When the num-ber of behaviors is small, as in our box-pushing controller,deciding on a behavior's relative priority is easy. However,as the number of behaviors increases their relationship toeach other during task execution is less clear, and we beginhaving di�culty deciding how to assign priority. On theother hand, as an observer of a simulated collective task,it is possible to decide what the team of robots shoulddo at any point, but di�cult to specify how the behav-iors should be arbitrated. Previous experience with ALNssuggested it may be possible to characterize behavior arbi-tration as a pattern classi�cation problem which an ALNwas suitable for.The architecture illustrated in Figure 7 was used totrain four ALNs, one for each motor control output bit.The actuators are the same left and right wheel motorseach with two control bits with their corresponding fourmotor commands shown in Table 1. Training the ALNin a supervised manner which con�rms correct responsesto a given input pattern of actuator commands resultsin a tree shown in Figure 8. Nodes are represented ascircles with the letters A, O, L, and R standing for thelogical functions AND, OR, LEFT and RIGHT. Upon im-plementation, LEFT and RIGHT nodes are replaced withconnections to the left or right subtree. Input leaves arerepresented as squares and receive actuator commands.Compliments of an actuator command are represented bya small circle on top of the leaf. Since there are �ve inputbits (S1 to S5), the four ALNs must learn 32 possible out-puts. Although the input space in this example is small,and easily handled by table lookup, we are interested intesting the feasibility of the approach.Training the ALN is accomplished using a supervisorycontroller illustrated in Figure 9. The supervisory con-troller sends motor commands to the simulated robotsin the same format as the ALN controller's motor com-mands. For example, suppose we are trying to create a
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Figure 11: The e�ects of population size on the box-pushing task.ALN Number of RobotsQuality Participating in Task5 7 9 11 13 15 17 1932 0 0 0 0 0 0 0 031 0 0 0 0 0 0 0 030 2 1 0 0 0 0 0 029 6 4 6 6 4 5 5 628 3 2 4 3 2 3 3 527 10 8 8 9 7 6 9 926 15 5 11 7 8 7 10 625 15 11 8 15 8 7 10 624 15 8 9 10 6 7 7 923 15 15 13 15 11 14 14 1422 15 14 14 15 11 9 15 15Table 3: Chances of failure in 15 trials.the tests which completed. Table 3 lists the number offailures in 15 trials for ALN controllers with 100 percentquality (i.e. 32/32 correct classi�cations) to 68.7 percentquality (i.e. 22/32 correct classi�cations).In the next section we discuss our hardware implemen-tation of the box-pushing task by a system of �ve mobilerobots controlled in a simple re
exive manner using com-binational logic.5 Real RobotsBased on our simulation experiments of the box-pushingtask, we now know three things about the mechanismsinvolved that should prove feasible in its implementation.First, to control the system of multiple robots in a coop-erative task, without using any communication betweenthe robots, we employ two simple rules that govern theinteraction between their behaviors:� avoid interfering with another robot;



Adaptive Behavior 2(2):189-219, 1993. 12ALN Number of RobotsQuality Participating in Task Average5 7 9 11 13 15 17 1932 399 372 343 296 306 308 365 342 34131 399 396 401 305 297 307 449 323 36030 406 378 397 316 337 342 409 331 36529 445 385 395 348 323 349 394 375 37728 456 394 400 314 325 395 402 347 37927 548 364 413 427 343 352 411 383 40526 N/A 576 494 520 504 471 777 515 55125 N/A 369 407 N/A 501 339 355 368 39024 N/A 369 438 336 339 339 291 358 35323 N/A N/A 586 N/A 462 662 333 639 53622 N/A 621 403 N/A 684 544 N/A N/A 563Average 442 437 409 415 420 370 485 371Table 2: Results of simulation on the e�ects of population size and the box-pushing task. Note: N/A refers to cases inwhich all tests failed to �nish.� work toward a common task while observing the �rstrule.This provides a decentralized control strategy for the sys-tem on the whole. Second, when designing individual be-haviors for the collective task, the behavior need only beactive as long as the stimulus in the environment|forwhich the behavior's sensors were chosen|is present, ascan be seen from the previous example, in Section 4.2.1, onspatial distribution. Stuart's study of nest wall repairs bytermites [35, 36] showed that wall repair behavior ceasedonce the stimulus that caused the behavior (i.e. a holein the nest wall) was removed. Third, a mechanism tomonitor task progression is needed to ensure stagnationdoes not occur. In simulation, progress was de�ned asforward motion and a backward motion sensor was usedto activate the avoid behavior.Having modeled our simulated robots with the inten-tion of later constructing them has simpli�ed our imple-mentation. Each robot has a left and right wheel motorproviding a di�erential drive mechanism. Obstacles aresensed using a left and right infrared sensor that providesa logic low signal when infrared energy is re
ected backfrom an obstacle. To locate the brightly lit box, left andright photocells are used with adjustable thresholds.Behaviors are implemented in hardware using simplecombinational logic. By adjusting the photocell thresh-old, to switch on under ambient lighting conditions, a de-fault �nd behavior is created as uneven lighting conditionscause the robots to wander their environment. By con�n-ing the robots to a small area, both the follow and slowbehaviors|used to form groups in wide open spaces|were unnecessary, and simpli�ed the experimental setup.The avoid behavior is created by thresholding the infrared

sensors, and connecting the left and right outputs directlyto the left and right wheel motors. The goal behavioris fashioned in a similar manner by thresholding the leftand right photocells and cross-connecting the motor out-puts. The completed control architecture is illustrated inFigure 12. Behavior arbitration is a simple �xed prioritybetween behaviors, with avoid having the highest and �ndthe lowest priority, and is implemented in combinationallogic illustrated in Figure 13.A system of �ve box-pushing robots were constructedbased on the architecture illustrated in Figures 12 and 13.The system was tested using a variety of initial con�g-urations �rst in simulation and then compared with theactual robots. Video recordings were made for later re-view. The robots located the brightly lit box, convergingupon and pushing it in a number of directions dependingon the number of robots on each side (see Figure 14). Theprogress sensor was implemented as a micro-switch whichactivated the avoid behavior when the robot was pushedbackward and moved the robot away from the side. Theavoid behavior kept robots from collidingmost of the time,with collisions occurring when sensors missed detectiondue to their limited �eld of view.The system demonstrated that a cooperative task ispossible using a simple common task and noninterfer-ence control mechanism; however, it also pointed out theimportance of progress monitoring behaviors to preventproblems with stagnation and cyclic behavior. The sys-tem demonstrates the feasibility of cooperative tasks with-out explicit communication in a decentralized system, apoint we are currently exploring with our new system of10 robots.
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Figure 14: Five box-pushing robots moving a brightly litbox in a cooperative manner.

Figure 15: New prototype robot constructed with plug-inmodules.The control logic for our system of �ve robots is hard-wired making changes tedious to implement. We aretherefore currently in the process of constructing a newsystem of robots built with plug-in modules (shown in Fig-ure 15). This new series of 10 robots is controlled usinga multitasking processor. A robot can literally be assem-bled from its individual components in �ve minutes with-out use of tools making its con�guration of sensors easilychangeable. Our plans for the new system are to investi-gate formation marching and to extend the box-pushingtask to a transport task.6 DiscussionDesigning \intelligent" autonomous robots that accom-plish useful tasks is a challenging and still elusive goal ofscienti�c research. Yet its pursuit has led to several newand unconventional approaches. Among them, achievingtasks through the use of a system of multiple robots has anappeal that captivates the imagination because of its anal-ogous relationship with the task-achieving populations ofsocial insects. The main hypothesis of the approach lies inthe hope that such a population of machines will achieve ahigher level of competence due to an emergent property ofthe system making it more than just the sum of its parts.



Adaptive Behavior 2(2):189-219, 1993. 14It is also this hope that largely fuels the current researche�orts in micromachine technology with promises of ap-plications unseen due to limitations in current technology.Nature's decentralized approach to achieving collectivetasks results in feasible versus optimal solutions. In fact,admitting some randomness occurs at the individual levelis felt by some researchers as part of the society's function-ing [29]. Oster and Wilson [28] have suggested that socialinsects can well a�ord behavioral variance. This variance,they claim, could increase the probability that the col-lective activity will eventually be performed, with theircollective reliability more than compensating for the indi-vidual ine�ciency. The usefulness of these conjectures incontrolling robot populations will only become evident aslarger systems of multiple robots are simulated and built.Although in principle communication among robotsshould improve their ability to cooperate, as a systemgrows in number, noncommunicating systems should scalemore easily. This essentially amounts to a tradeo� be-tween local and global sensing strategies, but may justresult in a degradation in response time to external stim-ulus.The key to controlling teams of robots using group be-haviors lies in the mechanisms with which they are in-voked. By combining the mechanisms, collective tasksmay be created and accomplished by robots with morethan one group behavior. Like executing the steps of aprogram on a synchronized distributed computer system,group behaviors form a nonconnected link between robotscoordinating their activity in a cooperative manner.In our animat approach to building intelligent systems,the study of social insects plays an important role inguiding our selection of control strategies for our multi-ple robot systems. Although the strategies proposed inthis paper are not a comprehensive set, they do representthe approach we have taken and are intended as examplesof our initial exploration into collective robotics. What isstill missing in our approach is a mathematics on which tobase our models, of both robots and the tasks they are de-signed to accomplish. Lacking this formal theory, we havetaken the approach of analyzing speci�c tasks, couched interms of their sensory requirements, in the hope that themore salient features will generalize across speci�c taskdomains.The discovery, by social biologists, of the variousstimulus-cues in collective tasks motivates our mecha-nisms in controlling tasks by multiple robots. A com-mon theory that adequately explains the cooperative be-havior of social insects is still missing in the �eld of be-havioral biology. However, the many well researched ex-amples of collective task-achieving behavior do provide astarting point from which to build systems in collectiverobotics. Whether these systems will show to be scalable
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