
Issues and Approaches in Design of Collective Autonomous AgentsMaja J Matari�cVolen Center for Complex SystemsComputer Science DepartmentBrandeis UniversityWaltham, MA 02254tel: (617) 736-2708, fax: (617) 736-2741maja@cs.brandeis.eduhttp://www.ai.mit.edu/people/maja/maja.htmlNovember 30, 1994AbstractThe problem of synthesizing and analyzing col-lective autonomous agents has only recently be-gun to be practically studied by the robotics com-munity. This paper overviews the most promi-nent directions of research, de�nes key terms, andsummarizes the main issues. Finally, it brie
y de-scribes our approach to controlling group behav-ior and its relation to the �eld as a whole.1 IntroductionThe problem of synthesizing and analyzing collective au-tonomous behavior has only recently begun to be prac-tically studied by the robotics community. This paperoverviews the most prominent directions of research, de-�nes key terms, and summarizes the main issues. Finally,it brie
y describes our approach to controlling group be-havior and its relation to the �eld as a whole.2 Overview of Work in the Field2.1 Physical Multi{Robot SystemsThe last decade has witnessed a shift in research em-phasis toward physical implementations of robotics ingeneral and mobile robotics in particular. Most of thework in robotics so far has focused on control of a singleagent, but a few e�orts have begun to address multi{robot systems. Fukuda, Nadagawa, Kawauchi & Buss(1989) and subsequent work describe an approach tocoordinating multiple homogeneous and heterogeneousmobile robotic units, and demonstrate it on a dockingtask. Caloud, Choi, Latombe, LePape & Yim (1990) andNoreils (1993) remain faithful to the state{based frame-work, and apply a traditional planner{based control ar-chitecture to a box{moving task implemented with tworobots in a master{slave con�guration. Kube, Zhang &

Wang (1993) and Kube & Zhang (1992) describe a seriesof simulations of robots performing a collection of sim-ple behaviors that are being incrementally transferredto physical robots. Barman, Kingdon, Mackworth, Pai,Sahota, Wilkinson & Zhang (1993) report on a prelimi-nary testbed for studying control of multiple robots in asoccer{playing task. Parker (1993b) and Parker (1993a)describe a behavior{based task{sharing architecture forcontrolling groups of heterogeneous robots, and demon-strates it on a group of four physical robots performingtoxic waste cleanup and box pushing. Donald, Jennings& Rus (1993) report on the theoretical grounding for im-plementing a cooperative manipulation task with a pairof mobile robots. Perhaps closest in philosophy as wellas the choice of task is work by Altenburg (1994), de-scribing a variant of the foraging task using a group ofLEGO robots controlled in reactive, distributed style,and Beckers, Holland & Deneubourg (1994), demonstrat-ing a group of four robots clustering initially randomlydistributed pucks into a single cluster through purelystigmergic communication.In terms of cooperation and communication, most ofthe above work has fallen along the two ends of thespectrum: it either uses extensive explicit communica-tion and cooperation, or almost none at all. In systemsthat are cooperative by design, the robots are aware ofeach other's existence, and can sense and recognize eachother directly or through communication. This type ofresearch explores explicit cooperation, usually throughthe use of directed communication, and is representedby the work of Caloud et al. (1990), Noreils (1993), andParker (1993a).The other category includes work on implicit coop-eration, in which the robots usually do not recognizeeach other but merely coexist and indirectly cooperateby having identical or at least compatible goals. Suchwork includes Dallas (1990) and Kube et al. (1993). Our1



work, described at the end of the paper, falls nearer thisend of the spectrum, but is focused on agents that candiscriminate each other from the rest of the world, andcan use this ability as a basis for social behavior.2.2 Simulations of Multi{Agent SystemsWith the exception of the work described above, theproblem of multi{agent control has been treated mostlyin simulation and under two major categories: simu-lations of situated systems and simulations of abstractagents.Simulations of situated systems involve some degree offaithfulness to the physical world, to the extent of em-ploying simple models of sensors, e�ectors, and physicallaws. A number of simulations of behavior{style con-trolled systems have been implemented. For instance,Steels (1989) describes a simulation of simple robots us-ing the principles of self{organization to perform a gath-ering task. Brooks, Maes, Matari�c & Moore (1990) re-port on a set of simulations in a similar task domain, witha fully decentralized collection of non{communicatingrobots. Arkin (1992) describes a schema{based approachto designing simple navigation behaviors, used for pro-gramming multiple agents working in a simulated en-vironment with future extensions to physical agents;Arkin, Balch & Nitz (1993) apply the approach to amulti{agent retrieval task. Brock, Montana & Ceranow-icz (1992) describe SIMNET simulations of large num-bers of tank{like robots performing avoidance and forma-tion following. Kube et al. (1993) propose a behavior{arbitration scheme that will be tested on physical robots.Simulations tend to simplify both sensing and actua-tion. Physically{based simulations, however, using re-alistic physics models of the agent, allow for generat-ing and testing more realistic behavior. For example,Hodgins & Brogan (1994) describe experiments withfully physically{based simulations of groups of hoppingrobots.In contrast to simulations of multiple robots, \swarmintelligence" refers to simulations of abstract agents deal-ing with more theoretical problems of communicationprotocols, the design of social rules, and strategies foravoiding con
ict and deadlock often in societies withwith large numbers of simple agents. Representativework includes Fukuda, Sekiyama, Ueyama& Arai (1993),Dario & Rucci (1993), Dudek, Jenkin, Milios & Wilkes(1993), Huang & Beni (1993), Sandini, Lucarini & Varoli(1993), Kurosu, Furuya & Soeda (1993), Beni & Hack-wood (1992), Dario, Ribechini, Genovese & Sandini(1991), and many others. Swarm intelligence work isalso related to DAI (see below) but deals with agents ofcomparatively low cognitive complexity.

2.3 Arti�cial LifeThe �eld of Arti�cial Life (Alife) focuses on bottom{up modeling of various complex systems, including sim-ulations of colonies of ant{like agents, as described byCorbara, Drogoul, Fresneau & Lalande (1993), Colorni,Dorigo & Maniezzo (1992), Drogous, Ferber, Corbara& Fresneau (1992), Travers (1988), and many others.Deneubourg, Goss, Franks, Sendova-Franks, Detrain &Chretien (1990) and related work have experimentedwith real and simulated ant colonies and examined therole of simple control rules and limited communication inproducing trail formation and task sharing. Deneubourg,Theraulax & Beckers (1992) de�ne some key terms inswarm intelligence and discuss issues of relating localand global behavior of a distributed system. Assad &Packard (1992), Hogeweg & Hesper (1985) and otherrelated work also report on a variety of simulations ofsimple organisms producing complex behaviors emerg-ing from simple interactions. Schmieder (1993) reportson an experiment in which the amount of \knowledge"agents have about each other is increased and decreasedbased on local encounters. Werner & Dyer (1990) andMacLennan (1990) describe systems that evolve simplecommunication strategies. On the more theoretical end,Keshet (1993) describes a model of trail formation that�ts biological data.Our work is related to Arti�cial Life in that both areconcerned with exploiting the dynamics of local inter-actions between agents and the world in order to cre-ate complex global behaviors. However, work in Alifedoes not typically concern itself with agents situated inphysically realistic worlds. Additionally, it usually dealswith much larger populations sizes that the work pre-sented here. Finally, it most commonly employs genetictechniques for evolving the agents' comparatively simplecontrol systems.2.4 Distributed Arti�cial IntelligenceDistributed Arti�cial Intelligence (DAI) also deals withmulti{agent interactions (see Gasser & Huhns (1989)for an overview). DAI focuses on negotiation and co-ordination of multi{agent environments in which agentscan vary from knowledge{based systems to sorting algo-rithms, and approaches can vary from heuristic searchto decision theory. In general, DAI deals with cogni-tively complex agents compared to those considered bythe research areas described so far. However, the types ofenvironments it deals with are relatively simple and lowcomplexity in that they feature no noise or uncertaintyand can be accurately characterized.DAI can be divided into two sub�elds: DistributedProblem Solving (DPS) and Multi{Agent Systems(MAS) (Rosenschein 1993). DPS deals with centrally de-signed systems solving global problems and using built{2



in cooperation strategies. In contrast, MAS work dealswith heterogeneous, not necessarily centrally designedagents faced with the goal of utility{maximizing coexis-tence.Examples of DPS work include Decker & Lesser(1993), addressing the task of fast coordination and re-organization of agents on a distributed sensor network,and Hogg & Williams (1993) showing how parallel searchperforms better with distributed cooperative agents thanwith independent agents. Examples of MAS work in-clude Ephrati (1992), describing a master{slave scenariobetween two agents with essentially the same goals, andMiceli & Cesta (1993), using estimates of usefulness ofsocial interactions for agents to select whom to interactwith. Along similar lines, Kraus (1993) studies negoti-ations and contracts between sel�sh agents and Durfee,Lee & Gmytrasiewicz (1993) discuss game{theoretic andAI approaches to deals among rational agents.Certain aspects of DAI work are purely theoreticaland deal with the di�culty of multi{agent planning andcontrol in abstract environments (e.g. Shoham & Ten-nenholtz (1992)). Some DAI work draws heavily frommathematical results in the �eld of parallel distributedsystems (e.g. Huberman (1990), Clearwater, Huberman& Hogg (1991), and many others). DAI and Alife mergein the experimental mathematics �eld that studies com-putational ecosystems, using simulations of populationsof agents with well de�ned interactions. The research isfocused on global e�ects and the changes in the systemas a whole over time. This process of global changes isusually referred to as \co{evolution" (Kephart, Hogg &Huberman 1990). Co{evolution experiments are usuallyused to �nd improved search-based optimization tech-niques (Hillis 1990). Often the systems studied havesome similarities to the global e�ects found in biologicalecosystems, but the complex details of biological systemscannot be reasonably addressed.3 Key Terms and De�nitionsPrevious section o�ered a glimpse at the highly varieddirections and approaches to studying multi{robot andmulti{agent systems. One of the main hurdles in the wayof cross{fertilization between research directions is incon-sistent vocabulary. This section de�nes and overviewssome of the key terms in order to make the describedresearch accessible.3.1 Behaviors and GoalsIn the last few years the notion of \behavior" as a fun-damental building block has been popularized in the AI,control, and learning communities. We de�ne behaviorto be a control law for reaching and/or maintaining aparticular goal. For example, in the robot domain, fol-lowing is a control law that takes inputs from an agent's

sensors and uses them to generate actions which will keepthe agent moving within a �xed region behind anothermoving object. This de�nition speci�es that a behav-ior is a type of an operator that guarantees a particulargoal, whatever its type. Attainment goals are terminalstates; having reached a goal, the agent is �nished. Suchgoals include reaching a home region and picking up anobject. Maintenance goals persist in time, and are not al-ways representable with terminal states, but rather withdynamic equilibria to be maintained. Examples includeavoiding obstacles and minimizing interference. Situatedagents can have multiple concurrent goals, including atleast one attainment goal, and one or more maintenancegoals.In the scope of our work, interaction is mutual in-
uence on behavior, and ensemble, collective or groupbehavior is an observer{de�ned temporal pattern of in-teractions between multiple agents. Of the innumerablymany possible such behaviors for a given domain, onlya small subset is relevant and desirable for achieving theagents' goals.3.2 Communication and CooperationCommunication and cooperation have become populartopics in both abstract and applied multi{agent work(Yanco & Stein 1993, Dudek et al. 1993, Altenburg 1994).Communication is the most common means of interac-tion among intelligent agents. Since any observable be-havior and its consequences can be interpreted as a formof communication, we propose a stricter classi�cation.Direct communication is a purely communicative act,one with the sole purpose of transmitting information,such as a speech act, or a transmission of a radio mes-sage. More speci�cally, directed communication is di-rect communication aimed at a particular receiver. Suchcommunication can be one{to{one or one{to{many, in allcases to identi�ed receivers. In contrast, indirect commu-nication is based on the observed behavior, not commu-nication, of other agents. This type of communicationis referred to as stigmergic in biological literature, whereit refers to communication based on modi�cations of theenvironment rather than direct message passing.Cooperation is a form of interaction, usually based onsome form of communication. Certain types of coopera-tive behavior depend on directed communication. Specif-ically, any cooperative behaviors that require negotiationbetween agents depend on directed communication in or-der to assign particular tasks to the participants. Analo-gously to communication, explicit cooperation is de�nedas a set of interactions which involve exchanging infor-mation or performing actions in order to bene�t anotheragent. In contrast, implicit cooperation consists of ac-tions that are a part of the agent's own goal{achievingbehavior repertoire, but have e�ects in the world thathelp other agents achieve their goals.3



3.3 Interference and Con
ictAll approaches to multi{agent control must deal withinterference, any in
uence that opposes or blocks anagents' goal{driven behavior. In societies consisting ofagents with identical goals, interference manifests itselfas competition for shared resources. In diverse societies,where agents' goals di�er, more complex con
icts canarise, including goal clobbering, deadlocks, and oscilla-tions.Two functionally distinct types of interference are rel-evant to this work: interference caused by multiplicity,called resource competition, and interference caused bygoal{related con
ict, called goal competition.Resource competition includes any interference result-ing from multiple agents competing for common re-sources, such as space, information, or objects. As thesize of the group grows, this type of interference in-creases, causing the decline in global performance, andpresenting an impetus for social rules.Resource competition manifests itself in homogeneousand heterogeneous groups of coexisting agents. In con-trast, goal competition arises between agents with dif-ferent goals. Such agents may have identical high{levelgoals (such as, for example, a family has), but individualsmay pursue di�erent and potentially interfering subgoalsi.e., they can be \functionally heterogeneous." Such het-erogeneity does not arise in SIMD{style groups of func-tionally identical agents in which all are executing ex-actly the same program at each point in time.Goal competition is studied primarily by the Dis-tributed AI community (Gasser & Huhns 1989). It usu-ally involves predicting other agents' goals and inten-tions, thus requiring agents to maintain models of eachother (e.g., Huber & Durfee (1993) and Miceli & Cesta(1993)). However, such prediction abilities require com-putational resources that do not scale well with increasedgroup sizes.One means of simplifying prediction is through the useof social rules which attempt to eliminate or at least min-imize both resource and goal competition. In particular,their purpose is to direct behavior away from individualgreediness and toward global e�ciency. In certain groupsand tasks, agents must give up individual optimality infavor of collective e�ciency. In those cases, greedy indi-vidualistic strategies perform poorly in group situationsbecause resource competition grows with the size of thegroup.Since social rules are designed for optimizing global re-sources, it is in the interest of each of the individuals toobey them. However, since the connection between in-dividual and collective bene�t is rarely direct, societiescan harbor deserters who disobey social rules in favor ofindividual bene�t. Game theory o�ers elaborate studiesof the e�ects of deserters on individual optimality (Axel-rod 1984), but domains treated in game theory are much

more cleanly constrained than those treated here. In par-ticular, game theory deals with rational agents capableof evaluating the utility of their actions and strategies.In contrast, our work is concerned with situated domainswhere the agents cannot be assumed to be rational dueto incomplete or nonexistent world models and models ofother agents, inconsistent reinforcement, and noise anduncertainty.The goal of our work is to provide methodologies for�nding e�cient approaches to a variety of related prob-lems. Optimality criteria for agents situated in physi-cal worlds and maintaining long{term achievement andmaintenance goals are di�cult to characterize and evenmore di�cult to achieve. While in game theory interfer-ence is a part of a competing agent's predictable strat-egy, in the embodied multi{agent domain interference islargely a result of direct resource competition, which canbe moderated with relatively simple social rules.4 Approaches to Multi{Agent ControlThe problem of multi{agent control can be viewed atthe individual agent level and at the collective level.The two levels are interdependent and the design ofone is, or should be, strongly in
uenced by the other.However, multi{agent control has grown out of individ-ual agent control, and this history is often re
ected inthe control strategies at the collective level. Individualagent control strategies can be classi�ed into reactive,behavior{based, planner{based, and hybrid approaches(see Matari�c (1994a) and Matari�c (1992) for detailedcomparisons and discussion).Extending the planning paradigm from single{agentto multi{agent domains requires expanding the globalstate space to include the state of each of the agents.Such a global state space is exponential in the numberof agents. Speci�cally, the size of the global state spaceG is: jGj = sa where s is the size of the state space ofeach agent, here assumed to be equal for all agents, or atworst the maximumfor all agents, and a is the number ofagents. Exponential growth of the state space makes theproblem of global on{line planning intractable for all butthe smallest group sizes, unless control is synchronizedand has SIMD form, i.e. all agents perform the same be-havior at the same time. Furthermore, since global plan-ning requires communication between the agents and thecontroller, the bandwidth can grow with the number ofagents. Additionally, the uncertainty in perceiving stategrows with the increased complexity of the environment.Consequently, global planner{based approaches to con-trol do not appear well suited for problems involvingmultiple agents acting in real{time based on uncertainsensory information.Since hybrid systems typically employ a planner at thehigh level, in terms of multi{agent extensions they canbe classi�ed into the planner{based category. The col-4



lective behavior of a hybrid system would generally be aresult of a plan produced by a global controller and dis-tributed over independent possibly partially autonomousmodules.At the other end of the control spectrum, extendingthe reactive and behavior{based approaches to multi{agent domain results in completely distributed systemswith no centralized controller. The systems are identicalat the local and global levels: at the global level the sys-tems are a collection of reactive agents each executingtask{related rules relying only on local sensing and com-munication. Since all control in such distributed systemsis local, it scales well with the number of agents, doesnot require global communication, and is more robust tosensor and e�ector errors. However, global consequencesof local interactions between agents are di�cult to pre-dict. Thus, centralized approaches have the advantageof potential theoretical analysis while parallel distributedsystems typically do not lend themselves to traditionalanalytical procedure.4.1 Analysis of BehaviorMulti{agent systems are typically complex, either be-cause they are composed of a large number of elements,or because the inter{element interactions are not simple.Systems of several situated agents with uncertain sensorsand e�ectors display both types of complexity. This sec-tion addresses how these properties a�ect their behaviorand its analysis.The exact behavior of an agent situated in a nondeter-ministic world, subject to real error and noise, and usingeven the simplest of algorithms, is impossible to predictexactly. By induction, the exact behavior of each partof a multi{agent system of such nature is also unpre-dictable. A group of interacting agents is a dynamicalsystem whose behavior is determined by the local in-teractions between individuals. In natural systems, suchinteractions result in the evolution of complex and stablebehaviors that are di�cult to analyze using traditional,top{down approaches. We postulate that in order toreach that level of complexity synthetically, such behav-iors must be generated through a similar, interaction{driven, incrementally re�ned process.Precise analysis and prediction of the behavior of asingle situated agent, speci�cally, a mobile robot in thephysical world, is an unsolved problem in robotics andAI. Previous work has shown that synthesis and analy-sis of correct plans in the presence of uncertainty can beintractable even in highly constrained domains (Lozano-P�erez, Mason & Taylor 1984, Canny 1988, Erdmann1989) and even on the simplest of systems (Smithers1994). Physical environments pose a great challenge asthey usually do not contain the structure, determinism,and thus predictability usually required for formal anal-ysis (Brooks 1991). Predicting the behavior of a multi{

agent system is more complex than the single{agent case.The di�culty in analyzing comes from two properties in-trinsic to complex systems:1. the actions of an agent depend on the states/actionsof other agents,2. the behavior of the system as a whole is determinedby the interactions between the agents rather thanby individual behavior.In general, no mathematical tools are available for pre-dicting the behavior of a system with several, but notnumerous, relatively complex interacting components,namely a collection of situated agents. In contrast tophysical particle systems, which consist of large numbersof simple elements, multi{agent systems in nature and AIare de�ned by comparatively small groups of much morecomplex agents. Statistical methods used for analyzingparticle systems do not directly apply as they requireminimal interactions between the components (Weisbuch1991, Wiggins 1990).The di�culty in analyzing complex multi{agent sys-tems lies in the level of system description. Descriptionsused for control are usually low level, detailed, and con-tinuous. In contrast, planning and analysis are usuallydone at a high level, often using an abstract, discretemodel. A more desirable and manageable level may liein between those two.Instead of attempting to analyze arbitrary complex be-haviors, our work focuses on providing a set of behaviorprimitives that can be used for synthesizing and analyz-ing a particular type of complex multi{agent systems.The primitives provide a programming language for de-signing analyzable control programs and resulting groupbehaviors. We describe the approach in the next section.5 The Basis Behavior ApproachOur work is based on the belief that intelligent col-lective behavior in a decentralized system results fromlocal interactions based on simple rules. Basic behav-iors are proposed as a methodology for structuring thoserules through a principled process of synthesis and eval-uation. A behavior is a control law that achieves andmaintains some goal.We postulate that, for each domain, a set of behaviorscan be found that are basic in that they are required forgenerating other behaviors, as well as being a minimal setthe agent needs to reach its goal repertoire. The processof choosing the set of basic behaviors for a domain isdually constrained. From the bottom up, the processis constrained by the agent and environment dynamics.From the top down, the process is constrained by therepertoire of the agent's goals.An e�ective set of basic behaviors in the spatial do-main should enable the agents to employ a variety of 
ex-5



Figure 1: The mobile robots used to demonstrate andverify our group behavior and learning work. Theserobots demonstrated group avoidance, following, aggre-gation, dispersion, 
ocking, wandering, foraging, dock-ing, and learning to forage.ible strategies for puck manipulation, collection, and dis-tribution. The e�ectiveness of such strategies depends onmaximizing synergy between agents: achieving the nec-essary goals while minimizing inter{agent interference.The following set of basic behaviors is proposed: avoid-ance, following, aggregation, dispersion, homing, andwandering. According to our de�nition, the above be-havior set is minimal or basic in that its members arenot further reducible to each other, and they are su�-cient for achieving our set of pre{speci�ed goals. A num-ber of other utility behaviors can be a part of an agent'srepertoire, such as grasping and dropping, the only otherbehaviors used in this work.The basic behavior set is evaluated by giving a formalspeci�cation of each of the behaviors, and comparing thecollection of those speci�cations to a formal speci�cationof the set of global tasks required for the group. We haveprovided detailed speci�cations and algorithms for eachof the basic behaviors, implemented and evaluated thembased on the following criteria: repeatability, stability,robustness, and scalability.We applied the above criteria to the data obtained byrunning a large number of trials (at least 50) of each basicbehavior on a collection of over 20 physical mobile robotsequipped with local sensors and local control (Figure 1).Each of the robots is equipped with a suite of infra{redsensors for collision avoidance and puck detection, microswitches and bump sensors for contact detection, and ra-dios and sonars for triangulating their position relativeto two stationary beacons, and broadcasting word{sizedmessages within a limited radius. The basic behaviors,each consisting of one rule or a small set of simple rules,generated robust group behaviors that met the prespeci-�ed evaluation criteria. The top row of Figure 2 shows asmall subset of the robot data. The robots, physically 12

inches long, are scaled down and plotted as black rectan-gles, with white arrows indicating their heading. The therow of rectangles at the bottom shows the robots thatwere used in the experiment. Boxes on the lower rightindicate frame numbers and the elapsed time in secondsfor each of the runs.Basic behaviors are intended as building blocks forachieving higher{level goals and can be embedded inan architecture that allows two types of combination:direct (by summation) and temporal (by switching).Direct combination execute multiple behaviors concur-rently and combine their outputs. In contrast, temporalcombinations execute only one behavior at a time. Thearchitecture allows for multiple applications of the twooperators to basic behavior subsets. To demonstrate thecombination operators, we implemented two higher{levelbehaviors, 
ocking and foraging, as illustrated in the bot-tom row of Figure 2.We generated simple and robust 
ocking behavior bysumming the outputs of avoidance, aggregation and wan-dering. When homing was added, the 
ock could directitself toward a particular goal location. In all cases, the
ocks had no �xed leaders, and were not vulnerable tofailures of individual robots.A more complex example of a high{level behavior wedemonstrated is foraging. It was implemented by apply-ing a temporal combination operator to switch betweenavoidance, dispersion, following, homing, and wander-ing under appropriate sensory conditions. Those basicbehaviors and the rudimentary abilities to pick up anddrop pucks were su�cient to produce a robust and 
exi-ble collective foraging behavior that consisted of collect-ing all of the pucks in the area and depositing them inthe home region while avoiding collisions and minimizinginterference between the robots.In addition to empirical testing of the behaviors andtheir combinations, we compared our methodology to acentralized, \total knowledge" approach. The experi-mental results showed that the simple, fully distributedstrategies, applied to dispersion and aggregation tasks,converged only a constant factor slower than the central-ized approach. A detailed description of the basic behav-ior approach as well as all of the related experiments anddata can be found in Matari�c (1994a).6 Learning in Complex Group Environ-mentsIn the previous section we described our theoretical andexperimental demonstration of basic behavior selectionand combination into a large repertoire of higher{levelcompetencies. This section brie
y overviews our exten-sion of the basic behavior approach to include a method-ology for automatically generating higher{level behav-iors. Such behaviors can be generated by having theagents learn through their interactions with the world6



and with other agents, i.e. though unsupervised rein-forcement learning (RL).RL has been successfully applied to a variety of do-mains where the agent{environment interaction can bedescribed as a Markov Decision Process (MDP). How-ever, that assumption does not directly apply to thestochastic, noisy, and uncertain multi{agent environ-ments addressed in this work. We implemented a re-formulation of the traditional RL model consisting ofstates, actions, and reinforcement in order to make itapplicable to our domain. Instead of using actions, oursystem learns at the level of basic behaviors that hidelow{level control details, and are more general and ro-bust. After actions are replaced with behaviors, statescan be replaced with conditions, the necessary and su�-cient subsets of state required for triggering the behaviorset. Conditions are many fewer than states, so their usediminishes the agent's learning space and speeds up anyRL algorithm (Matari�c 1994c).In addition to the use of behaviors and conditions, weintroduced two ways of shaping the reinforcement func-tion to aid the agent{learner in the nondeterministic,noisy, and dynamic environment. We used heterogeneousreward functions, which partition the task into subgoals,thus providing more immediate reinforcement. Within asingle behavior (i.e., a single goal), progress estimatorswe introduced as functions associated with particularconditions that provided some metric of the learner's per-formance. Progress estimators decrease the learner's sen-sitivity to noise, minimize thrashing, and minimize for-tuitous rewards by correlating some domain knowledgeabout progress with appropriate behaviors the agent hastaken in the past.The proposed RL formulation was validated on thetask of learning to forage. The behavior space includedthe foraging subset of basic behaviors described above,augmented with grasping, dropping, and resting (an op-portunity for the robots to recharge). The state spacewas e�ectively reduced to the power set of the follow-ing conditions: have-puck?, at-home?, night-time?, andnear-intruder?.We implemented di�erent versions of learning algo-rithms in our domain and compared their performanceover a large number of trials. The popular standard RLQ-learning was implemented and used as a control case,and compared to an algorithm using heterogeneous re-ward functions, and to one using them in addition toprogress estimators. Our approach outperformed the al-ternatives, and the analysis of the data yielded cleanintuition about the varying di�culty levels even withinthe lifetime of a single foraging task. The use of progressestimators was found to be necessary, and only two suchestimators were su�cient for the learning system to con-sistently converge within 15 minutes. For a detaileddescription of the learning algorithms and the data see
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Matari�c (1994c).7 SummaryThis paper has reviewed the key terms, issues, and ap-proaches in multi{robot and situated multi{agent con-trol. We described the challenges of principled synthe-sis and analysis of collective behavior. Furthermore, weproposed a methodology for structuring the process ofdesigning group behaviors for multi{robot systems.The basic behavior approach is general and biologi-cally rooted (Matari�c 1994a). Thus we believe that itis applicable to various domains of multi{agent interac-tion featuring complex dynamics, unpredictability, anduncertainly in sensing and action. The methodology isinvariant to group size and interaction type. We have sofar demonstrated it on up to 20 agents situated in thespatial domain, and have also applied it to smaller groupsof more heterogeneous agents (Matari�c 1994b, Matari�c,Nilsson & Simsarian 1994), and intend to test it on evenlarger group sizes and more abstract domains.This work is intended as a foundation in a contin-uing e�ort toward studying and synthesizing increas-ingly more complex behavior. The work on basic behav-iors distills a general approach to control, planning, andlearning. The work also empirically demonstrates somechallenging problems and o�ers some e�ective solutionsto group behavior and learning.AcknowledgementsThe research reported here was done at the MIT Arti-�cial Intelligence Laboratory, and supported in part bythe Jet Propulsion Laboratory contract 959333 and inpart by the Advanced Research Projects Agency underO�ce of Naval Research grant N00014{91{J{4038.ReferencesAltenburg, K. (1994), Adaptive Resource Allocation fora Multiple Mobile Robot System using Communi-cation, Technical Report NDSU{CSOR{TR{9404,North Dakota State Univeristy.Arkin, R. C. (1992), `Cooperation without Communica-tion: Multiagent Schema Based Robot Navigation',Journal of Robotic Systems.Arkin, R. C., Balch, T. & Nitz, E. (1993), Commu-nication of Behavioral State in Multi-agent Re-trieval Tasks, in `IEEE International Conference onRobotics and Automation', pp. 588{594.Assad, A. & Packard, N. (1992), Emergent Colonizationin an Arti�cial Ecology, in F. Varela & P. Bourgine,eds, `Toward A Practice of Autonomous Systems:Proceedings of the First European Conference onArti�cial Life', The MIT Press, pp. 143{152.
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