Issues and Approaches in Design of Collective Autonomous Agents

Maja J Matari¢
Volen Center for Complex Systems
Computer Science Department

Brandeis University

Waltham, MA 02254

tel: (617) 736-2708, fax: (617) 736-2741
maja@cs.brandeis.edu
http://www.ai.mit.edu/people/maja/maja.html

November 30, 1994

Abstract

The problem of synthesizing and analyzing col-
lective autonomous agents has only recently be-
gun to be practically studied by the robotics com-
munity. This paper overviews the most promi-
nent directions of research, defines key terms, and
summarizes the main issues. Finally, it briefly de-
scribes our approach to controlling group behav-
ior and 1its relation to the field as a whole.

1 Introduction

The problem of synthesizing and analyzing collective au-
tonomous behavior has only recently begun to be prac-
tically studied by the robotics community. This paper
overviews the most prominent directions of research, de-
fines key terms, and summarizes the main issues. Finally,
it briefly describes our approach to controlling group be-
havior and its relation to the field as a whole.

2 Overview of Work in the Field
2.1  Physical Multi-Robot Systems

The last decade has witnessed a shift in research em-
phasis toward physical implementations of robotics in
general and mobile robotics in particular. Most of the
work in robotics so far has focused on control of a single
agent, but a few efforts have begun to address multi—
robot systems. Fukuda, Nadagawa, Kawauchi & Buss
(1989) and subsequent work describe an approach to
coordinating multiple homogeneous and heterogeneous
mobile robotic units, and demonstrate it on a docking
task. Caloud, Choi, Latombe, LePape & Yim (1990) and
Noreils (1993) remain faithful to the state-based frame-
work, and apply a traditional planner—based control ar-
chitecture to a box-moving task implemented with two
robots in a master—slave configuration. Kube, Zhang &

Wang (1993) and Kube & Zhang (1992) describe a series
of simulations of robots performing a collection of sim-
ple behaviors that are being incrementally transferred
to physical robots. Barman, Kingdon, Mackworth, Pai,
Sahota, Wilkinson & Zhang (1993) report on a prelimi-
nary testbed for studying control of multiple robots in a
soccer—playing task. Parker (19935) and Parker (1993q)
describe a behavior-based task—sharing architecture for
controlling groups of heterogeneous robots, and demon-
strates it on a group of four physical robots performing
toxic waste cleanup and box pushing. Donald, Jennings
& Rus (1993) report on the theoretical grounding for im-
plementing a cooperative manipulation task with a pair
of mobile robots. Perhaps closest in philosophy as well
as the choice of task is work by Altenburg (1994), de-
scribing a variant of the foraging task using a group of
LEGO robots controlled in reactive, distributed style,
and Beckers, Holland & Deneubourg (1994), demonstrat-
ing a group of four robots clustering initially randomly
distributed pucks into a single cluster through purely
stigmergic communication.

In terms of cooperation and communication, most of
the above work has fallen along the two ends of the
spectrum: 1t either uses extensive explicit communica-
tion and cooperation, or almost none at all. In systems
that are cooperative by design, the robots are aware of
each other’s existence, and can sense and recognize each
other directly or through communication. This type of
research explores explicit cooperation, usually through
the use of directed communication, and is represented
by the work of Caloud et al. (1990), Noreils (1993), and
Parker (19934q).

The other category includes work on implicit coop-
eration, in which the robots usually do not recognize
each other but merely coexist and indirectly cooperate
by having identical or at least compatible goals. Such

work includes Dallas (1990) and Kube et al. (1993). Our



work, described at the end of the paper, falls nearer this
end of the spectrum, but is focused on agents that can
discriminate each other from the rest of the world, and
can use this ability as a basis for social behavior.

2.2 Simulations of Multi—Agent Systems

With the exception of the work described above, the
problem of multi-agent control has been treated mostly
in simulation and under two major categories:
lations of situated systems and simulations of abstract
agents.

slmu-

Simulations of situated systems involve some degree of
faithfulness to the physical world, to the extent of em-
ploying simple models of sensors, effectors, and physical
laws. A number of simulations of behavior—style con-
trolled systems have been implemented. For instance,
Steels (1989) describes a simulation of simple robots us-
ing the principles of self-organization to perform a gath-
ering task. Brooks, Maes, Matari¢ & Moore (1990) re-
port on a set of simulationsin a similar task domain, with
a fully decentralized collection of non—communicating
robots. Arkin (1992) describes a schema-based approach
to designing simple navigation behaviors, used for pro-
gramming multiple agents working in a simulated en-
vironment with future extensions to physical agents;
Arkin, Balch & Nitz (1993) apply the approach to a
multi-agent retrieval task. Brock, Montana & Ceranow-
icz (1992) describe SIMNET simulations of large num-
bers of tank—like robots performing avoidance and forma-
tion following. Kube et al. (1993) propose a behavior—
arbitration scheme that will be tested on physical robots.
Simulations tend to simplify both sensing and actua-
tion. Physically-based simulations, however, using re-
alistic physics models of the agent, allow for generat-
ing and testing more realistic behavior. For example,
Hodgins & Brogan (1994) describe experiments with
fully physically-based simulations of groups of hopping
robots.

In contrast to simulations of multiple robots, “swarm
intelligence” refers to simulations of abstract agents deal-
ing with more theoretical problems of communication
protocols, the design of social rules, and strategies for
avoiding conflict and deadlock often in societies with
with large numbers of simple agents. Representative
work includes Fukuda, Sekiyama, Ueyama & Arai (1993),
Dario & Rucci (1993), Dudek, Jenkin, Milios & Wilkes
(1993), Huang & Beni (1993), Sandini, Lucarini & Varoli
(1993), Kurosu, Furuya & Soeda (1993), Beni & Hack-
wood (1992), Dario, Ribechini, Genovese & Sandini
(1991), and many others. Swarm intelligence work is
also related to DAI (see below) but deals with agents of
comparatively low cognitive complexity.

2.3 Artificial Life

The field of Artificial Life (Alife) focuses on bottom-
up modeling of various complex systems, including sim-
ulations of colonies of ant-like agents, as described by
Corbara, Drogoul, Fresneau & Lalande (1993), Colorni,
Dorigo & Maniezzo (1992), Drogous, Ferber, Corbara
& Fresneau (1992), Travers (1988), and many others.
Deneubourg, Goss, Franks, Sendova-Franks, Detrain &
Chretien (1990) and related work have experimented
with real and simulated ant colonies and examined the
role of simple control rules and limited communication in
producing trail formation and task sharing. Deneubourg,
Theraulax & Beckers (1992) define some key terms in
swarm intelligence and discuss issues of relating local
and global behavior of a distributed system. Assad &
Packard (1992), Hogeweg & Hesper (1985) and other
related work also report on a variety of simulations of
simple organisms producing complex behaviors emerg-
ing from simple interactions. Schmieder (1993) reports
on an experiment in which the amount of “knowledge”
agents have about each other is increased and decreased
based on local encounters. Werner & Dyer (1990) and
MacLennan (1990) describe systems that evolve simple
communication strategies. On the more theoretical end,
Keshet (1993) describes a model of trail formation that
fits biological data.

Our work is related to Artificial Life in that both are
concerned with exploiting the dynamics of local inter-
actions between agents and the world in order to cre-
ate complex global behaviors. However, work in Alife
does not typically concern itself with agents situated in
physically realistic worlds. Additionally, it usually deals
with much larger populations sizes that the work pre-
sented here. Finally, it most commonly employs genetic
techniques for evolving the agents’ comparatively simple
control systems.

2.4 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAT) also deals with
multi-agent interactions (see Gasser & Huhns (1989)
for an overview). DAI focuses on negotiation and co-
ordination of multi—agent environments in which agents
can vary from knowledge-based systems to sorting algo-
rithms, and approaches can vary from heuristic search
to decision theory. In general, DAI deals with cogni-
tively complex agents compared to those considered by
the research areas described so far. However, the types of
environments it deals with are relatively simple and low
complexity in that they feature no noise or uncertainty
and can be accurately characterized.

DAI can be divided into two subfields: Distributed
Problem Solving (DPS) and Multi-Agent Systems
(MAS) (Rosenschein 1993). DPS deals with centrally de-

signed systems solving global problems and using built—



in cooperation strategies. In contrast, MAS work deals
with heterogeneous, not necessarily centrally designed
agents faced with the goal of utility-maximizing coexis-
tence.

Examples of DPS work include Decker & Lesser
(1993), addressing the task of fast coordination and re-
organization of agents on a distributed sensor network,
and Hogg & Williams (1993) showing how parallel search
performs better with distributed cooperative agents than
with independent agents. Examples of MAS work in-
clude Ephrati (1992), describing a master—slave scenario
between two agents with essentially the same goals, and
Miceli & Cesta (1993), using estimates of usefulness of
social interactions for agents to select whom to interact
with. Along similar lines; Kraus (1993) studies negoti-
ations and contracts between selfish agents and Durfee,
Lee & Gmytrasiewicz (1993) discuss game-theoretic and
AT approaches to deals among rational agents.

Certain aspects of DAI work are purely theoretical
and deal with the difficulty of multi-agent planning and
control in abstract environments (e.g. Shoham & Ten-
nenholtz (1992)). Some DAI work draws heavily from
mathematical results in the field of parallel distributed
systems (e.g. Huberman (1990), Clearwater, Huberman
& Hogg (1991), and many others). DAT and Alife merge
in the experimental mathematics field that studies com-
putational ecosystems, using simulations of populations
of agents with well defined interactions. The research is
focused on global effects and the changes in the system
as a whole over time. This process of global changes is
usually referred to as “co—evolution” (Kephart, Hogg &
Huberman 1990). Co—evolution experiments are usually
used to find improved search-based optimization tech-
niques (Hillis 1990). Often the systems studied have
some similarities to the global effects found in biological
ecosystems, but the complex details of biological systems
cannot be reasonably addressed.

3 Key Terms and Definitions

Previous section offered a glimpse at the highly varied
directions and approaches to studying multi-robot and
multi—agent systems. One of the main hurdles in the way
of cross—fertilization between research directions is incon-
sistent vocabulary. This section defines and overviews
some of the key terms in order to make the described
research accessible.

3.1 Behaviors and Goals

In the last few years the notion of “behavior” as a fun-
damental building block has been popularized in the Al,
control, and learning communities. We define behavior
to be a control law for reaching and/or maintaining a
particular goal. For example, in the robot domain, fol-
lowing is a control law that takes inputs from an agent’s

sensors and uses them to generate actions which will keep
the agent moving within a fixed region behind another
moving object. This definition specifies that a behav-
ior is a type of an operator that guarantees a particular
goal, whatever its type. Attainment goals are terminal
states; having reached a goal, the agent is finished. Such
goals include reaching a home region and picking up an
object. Maintenance goals persist in time, and are not al-
ways representable with terminal states, but rather with
dynamic equilibria to be maintained. Examples include
avoiding obstacles and minimizing interference. Situated
agents can have multiple concurrent goals, including at
least one attainment goal, and one or more maintenance
goals.

In the scope of our work, interaction is mutual in-
fluence on behavior, and ensemble, collective or group
behavior 1s an observer—defined temporal pattern of in-
teractions between multiple agents. Of the innumerably
many possible such behaviors for a given domain, only
a small subset is relevant and desirable for achieving the
agents’ goals.

3.2  Communication and Cooperation

Communication and cooperation have become popular
topics in both abstract and applied multi-agent work
(Yanco & Stein 1993, Dudek et al. 1993, Altenburg 1994).
Communication is the most common means of interac-
tion among intelligent agents. Since any observable be-
havior and its consequences can be interpreted as a form
of communication, we propose a stricter classification.

Direct communication is a purely communicative act,
one with the sole purpose of transmitting information,
such as a speech act, or a transmission of a radio mes-
sage. More specifically, directed communication 1s di-
rect communication aimed at a particular receiver. Such
communication can be one—to—one or one—to—many, in all
cases to identified receivers. In contrast, indirect commu-
nication 1s based on the observed behavior, not commu-
nication, of other agents. This type of communication
is referred to as stigmergic in biological literature, where
it refers to communication based on modifications of the
environment rather than direct message passing.

Cooperation 1s a form of interaction, usually based on
some form of communication. Certain types of coopera-
tive behavior depend on directed communication. Specif-
ically, any cooperative behaviors that require negotiation
between agents depend on directed communication in or-
der to assign particular tasks to the participants. Analo-
gously to communication, explicit cooperation is defined
as a set of interactions which involve exchanging infor-
mation or performing actions in order to benefit another
agent. In contrast, implicit cooperation consists of ac-
tions that are a part of the agent’s own goal-achieving
behavior repertoire, but have effects in the world that
help other agents achieve their goals.



3.3  Interference and Conflict

All approaches to multi—agent control must deal with
interference, any influence that opposes or blocks an
agents’ goal-driven behavior. In societies consisting of
agents with identical goals, interference manifests itself
as competition for shared resources. In diverse societies,
where agents’ goals differ, more complex conflicts can
arise, including goal clobbering, deadlocks, and oscilla-
tions.

Two functionally distinct types of interference are rel-
evant to this work: interference caused by multiplicity,
called resource competition, and interference caused by
goal-related conflict, called goal competition.

Resource competition includes any interference result-
ing from multiple agents competing for common re-
sources, such as space, information, or objects. As the
size of the group grows, this type of interference in-
creases, causing the decline in global performance, and
presenting an impetus for social rules.

Resource competition manifests itself in homogeneous
and heterogeneous groups of coexisting agents. In con-
trast, goal competition arises between agents with dif-
ferent goals. Such agents may have identical high—level
goals (such as, for example, a family has), but individuals
may pursue different and potentially interfering subgoals
i.e., they can be “functionally heterogeneous.” Such het-
erogeneity does not arise in SIMD-style groups of func-
tionally identical agents in which all are executing ex-
actly the same program at each point in time.

Goal competition is studied primarily by the Dis-
tributed AT community (Gasser & Huhns 1989). Tt usu-
ally involves predicting other agents’ goals and inten-
tions, thus requiring agents to maintain models of each
other (e.g., Huber & Durfee (1993) and Miceli & Cesta
(1993)). However, such prediction abilities require com-
putational resources that do not scale well with increased
group sizes.

One means of simplifying prediction is through the use
of social rules which attempt to eliminate or at least min-
imize both resource and goal competition. In particular,
their purpose is to direct behavior away from individual
greediness and toward global efficiency. In certain groups
and tasks, agents must give up individual optimality in
favor of collective efficiency. In those cases, greedy indi-
vidualistic strategies perform poorly in group situations
because resource competition grows with the size of the
group.

Since social rules are designed for optimizing global re-
sources, it 1s in the interest of each of the individuals to
obey them. However, since the connection between in-
dividual and collective benefit is rarely direct, societies
can harbor deserters who disobey social rules in favor of
individual benefit. Game theory offers elaborate studies
of the effects of deserters on individual optimality (Axel-
rod 1984), but domains treated in game theory are much

more cleanly constrained than those treated here. In par-
ticular, game theory deals with rational agents capable
of evaluating the utility of their actions and strategies.
In contrast, our work is concerned with situated domains
where the agents cannot be assumed to be rational due
to incomplete or nonexistent world models and models of
other agents, inconsistent reinforcement, and noise and
uncertainty.

The goal of our work is to provide methodologies for
finding efficient approaches to a variety of related prob-
lems. Optimality criteria for agents situated in physi-
cal worlds and maintaining long—term achievement and
maintenance goals are difficult to characterize and even
more difficult to achieve. While in game theory interfer-
ence is a part of a competing agent’s predictable strat-
egy, in the embodied multi-agent domain interference is
largely a result of direct resource competition, which can
be moderated with relatively simple social rules.

4 Approaches to Multi-Agent Control

The problem of multi—agent control can be viewed at
the individual agent level and at the collective level.
The two levels are interdependent and the design of
one is, or should be, strongly influenced by the other.
However, multi—agent control has grown out of individ-
ual agent control, and this history is often reflected in
the control strategies at the collective level. Individual
agent control strategies can be classified into reactive,
behavior—based, planner—based, and hybrid approaches
(see Matari¢ (1994«¢) and Matarié¢ (1992) for detailed
comparisons and discussion).

Extending the planning paradigm from single-agent
to multi-agent domains requires expanding the global
state space to include the state of each of the agents.
Such a global state space is exponential in the number
of agents. Specifically, the size of the global state space
G is: |G| = s® where s is the size of the state space of
each agent, here assumed to be equal for all agents, or at
worst the maximum for all agents, and a is the number of
agents. Exponential growth of the state space makes the
problem of global on-line planning intractable for all but
the smallest group sizes, unless control is synchronized
and has SIMD form, 1.e. all agents perform the same be-
havior at the same time. Furthermore, since global plan-
ning requires communication between the agents and the
controller; the bandwidth can grow with the number of
agents. Additionally, the uncertainty in perceiving state
grows with the increased complexity of the environment.
Consequently, global planner—based approaches to con-
trol do not appear well suited for problems involving
multiple agents acting in real-time based on uncertain
sensory information.

Since hybrid systems typically employ a planner at the
high level, in terms of multi-agent extensions they can
be classified into the planner—based category. The col-



lective behavior of a hybrid system would generally be a
result of a plan produced by a global controller and dis-
tributed over independent possibly partially autonomous
modules.

At the other end of the control spectrum, extending
the reactive and behavior—-based approaches to multi—
agent domain results in completely distributed systems
with no centralized controller. The systems are identical
at the local and global levels: at the global level the sys-
tems are a collection of reactive agents each executing
task—related rules relying only on local sensing and com-
munication. Since all control in such distributed systems
is local, it scales well with the number of agents, does
not require global communication, and is more robust to
sensor and effector errors. However, global consequences
of local interactions between agents are difficult to pre-
dict. Thus, centralized approaches have the advantage
of potential theoretical analysis while parallel distributed
systems typically do not lend themselves to traditional
analytical procedure.

4.1 Analysis of Behavior

Multi-agent systems are typically complex, either be-
cause they are composed of a large number of elements,
or because the inter—element interactions are not simple.
Systems of several situated agents with uncertain sensors
and effectors display both types of complexity. This sec-
tion addresses how these properties affect their behavior
and its analysis.

The exact behavior of an agent situated in a nondeter-
ministic world, subject to real error and noise, and using
even the simplest of algorithms, 1s impossible to predict
exactly. By induction, the exact behavior of each part
of a multi-agent system of such nature is also unpre-
dictable. A group of interacting agents 1s a dynamical
system whose behavior is determined by the local in-
teractions between individuals. In natural systems, such
interactions result in the evolution of complex and stable
behaviors that are difficult to analyze using traditional,
top—down approaches. We postulate that in order to
reach that level of complexity synthetically, such behav-
iors must be generated through a similar, interaction—
driven, incrementally refined process.

Precise analysis and prediction of the behavior of a
single situated agent, specifically, a mobile robot in the
physical world, i1s an unsolved problem in robotics and
Al Previous work has shown that synthesis and analy-
sis of correct plans in the presence of uncertainty can be
intractable even in highly constrained domains (Lozano-
Pérez, Mason & Taylor 1984, Canny 1988, Erdmann
1989) and even on the simplest of systems (Smithers
1994). Physical environments pose a great challenge as
they usually do not contain the structure, determinism,
and thus predictability usually required for formal anal-
ysis (Brooks 1991). Predicting the behavior of a multi-

agent system is more complex than the single—agent case.
The difficulty in analyzing comes from two properties in-
trinsic to complex systems:

1. the actions of an agent depend on the states/actions
of other agents,

2. the behavior of the system as a whole is determined
by the interactions between the agents rather than
by individual behavior.

In general, no mathematical tools are available for pre-
dicting the behavior of a system with several, but not
numerous, relatively complex interacting components,
namely a collection of situated agents. In contrast to
physical particle systems,; which consist of large numbers
of simple elements, multi-agent systems in nature and Al
are defined by comparatively small groups of much more
complex agents. Statistical methods used for analyzing
particle systems do not directly apply as they require
minimal interactions between the components (Weisbuch
1991, Wiggins 1990).

The difficulty in analyzing complex multi—agent sys-
tems lies in the level of system description. Descriptions
used for control are usually low level, detailed, and con-
tinuous. In contrast, planning and analysis are usually
done at a high level, often using an abstract, discrete
model. A more desirable and manageable level may lie
in between those two.

Instead of attempting to analyze arbitrary complex be-
haviors, our work focuses on providing a set of behavior
primitives that can be used for synthesizing and analyz-
ing a particular type of complex multi-agent systems.
The primitives provide a programming language for de-
signing analyzable control programs and resulting group
behaviors. We describe the approach in the next section.

5 The Basis Behavior Approach

Our work is based on the belief that intelligent col-
lective behavior in a decentralized system results from
local interactions based on simple rules. Basic behav-
iors are proposed as a methodology for structuring those
rules through a principled process of synthesis and eval-
uation. A behavior is a control law that achieves and
maintains some goal.

We postulate that, for each domain, a set of behaviors
can be found that are basic in that they are required for
generating other behaviors, as well as being a minimal set
the agent needs to reach its goal repertoire. The process
of choosing the set of basic behaviors for a domain is
dually constrained. From the bottom up, the process
is constrained by the agent and environment dynamics.
From the top down, the process i1s constrained by the
repertoire of the agent’s goals.

An effective set of basic behaviors in the spatial do-
main should enable the agents to employ a variety of flex-



Figure 1: The mobile robots used to demonstrate and
verify our group behavior and learning work. These
robots demonstrated group avoidance, following, aggre-
gation, dispersion, flocking, wandering, foraging, dock-
ing, and learning to forage.

ible strategies for puck manipulation, collection, and dis-
tribution. The effectiveness of such strategies depends on
maximizing synergy between agents: achieving the nec-
essary goals while minimizing inter—agent interference.

The following set of basic behaviors is proposed: avoud-
ance, following, aggregation, dispersion, homing, and
wandering. According to our definition, the above be-
havior set is minimal or basic in that its members are
not further reducible to each other, and they are suffi-
cient for achieving our set of pre—specified goals. A num-
ber of other utility behaviors can be a part of an agent’s
repertoire, such as grasping and dropping, the only other
behaviors used in this work.

The basic behavior set 1s evaluated by giving a formal
specification of each of the behaviors, and comparing the
collection of those specifications to a formal specification
of the set of global tasks required for the group. We have
provided detailed specifications and algorithms for each
of the basic behaviors, implemented and evaluated them
based on the following criteria: repeatability, stability,
robustness, and scalability.

We applied the above criteria to the data obtained by
running a large number of trials (at least 50) of each basic
behavior on a collection of over 20 physical mobile robots
equipped with local sensors and local control (Figure 1).
Each of the robots is equipped with a suite of infra—red
sensors for collision avoidance and puck detection, micro
switches and bump sensors for contact detection, and ra-
dios and sonars for triangulating their position relative
to two stationary beacons, and broadcasting word—sized
messages within a limited radius. The basic behaviors,
each consisting of one rule or a small set of simple rules,
generated robust group behaviors that met the prespeci-
fied evaluation criteria. The top row of Figure 2 shows a
small subset of the robot data. The robots, physically 12

inches long, are scaled down and plotted as black rectan-
gles, with white arrows indicating their heading. The the
row of rectangles at the bottom shows the robots that
were used in the experiment. Boxes on the lower right
indicate frame numbers and the elapsed time in seconds
for each of the runs.

Basic behaviors are intended as building blocks for
achieving higher—level goals and can be embedded in
an architecture that allows two types of combination:
direct (by summation) and temporal (by switching).
Direct combination execute multiple behaviors concur-
rently and combine their outputs. In contrast, temporal
combinations execute only one behavior at a time. The
architecture allows for multiple applications of the two
operators to basic behavior subsets. To demonstrate the
combination operators, we implemented two higher—level
behaviors, flocking and foraging, as illustrated in the bot-
tom row of Figure 2.

We generated simple and robust flocking behavior by
summing the outputs of avoidance, aggregation and wan-
dering. When homing was added, the flock could direct
itself toward a particular goal location. In all cases, the
flocks had no fixed leaders, and were not vulnerable to
failures of individual robots.

A more complex example of a high-level behavior we
demonstrated is foraging. It was implemented by apply-
ing a temporal combination operator to switch between
avordance, dispersion, following, homing, and wander-
ing under appropriate sensory conditions. Those basic
behaviors and the rudimentary abilities to pick up and
drop pucks were sufficient to produce a robust and flexi-
ble collective foraging behavior that consisted of collect-
ing all of the pucks in the area and depositing them in
the home region while avoiding collisions and minimizing
interference between the robots.

In addition to empirical testing of the behaviors and
their combinations, we compared our methodology to a
centralized, “total knowledge” approach. The experi-
mental results showed that the simple, fully distributed
strategies, applied to dispersion and aggregation tasks,
converged only a constant factor slower than the central-
1zed approach. A detailed description of the basic behav-
ior approach as well as all of the related experiments and
data can be found in Matari¢ (19944).

6 Learning in Complex Group Environ-
ments

In the previous section we described our theoretical and
experimental demonstration of basic behavior selection
and combination into a large repertoire of higher—level
competencies. This section briefly overviews our exten-
sion of the basic behavior approach to include a method-
ology for automatically generating higher—level behav-
iors. Such behaviors can be generated by having the
agents learn through their interactions with the world



and with other agents, i.e. though unsupervised rein-
forcement learning (RL).

RL has been successfully applied to a variety of do-
mains where the agent—environment interaction can be
described as a Markov Decision Process (MDP). How-
ever, that assumption does not directly apply to the
stochastic, noisy, and uncertain multi-agent environ-
ments addressed in this work. We implemented a re-
formulation of the traditional RL model consisting of
states, actions, and reinforcement in order to make it
applicable to our domain. Instead of using actions, our
system learns at the level of basic behaviors that hide
low—level control details, and are more general and ro-
bust. After actions are replaced with behaviors, states
can be replaced with conditions, the necessary and suffi-
cient subsets of state required for triggering the behavior
set. Conditions are many fewer than states, so their use
diminishes the agent’s learning space and speeds up any
RL algorithm (Matari¢ 1994¢).

In addition to the use of behaviors and conditions, we
introduced two ways of shaping the reinforcement func-
tion to aid the agent—learner in the nondeterministic,
noisy, and dynamic environment. We used heterogeneous
reward functions, which partition the task into subgoals,
thus providing more immediate reinforcement. Within a
single behavior (i.e., a single goal), progress estimators
we introduced as functions associated with particular
conditions that provided some metric of the learner’s per-
formance. Progress estimators decrease the learner’s sen-
sitivity to noise, minimize thrashing, and minimize for-
tuitous rewards by correlating some domain knowledge
about progress with appropriate behaviors the agent has
taken in the past.

The proposed RL formulation was validated on the
task of learning to forage. The behavior space included
the foraging subset of basic behaviors described above,
augmented with grasping, dropping, and resting (an op-
portunity for the robots to recharge). The state space
was effectively reduced to the power set of the follow-
ing conditions: have-puck? at-home? night-time? and
near-intruder?.

We implemented different versions of learning algo-
rithms in our domain and compared their performance
over a large number of trials. The popular standard RL
Q-learning was implemented and used as a control case,
and compared to an algorithm using heterogeneous re-
ward functions, and to one using them in addition to
progress estimators. Our approach outperformed the al-
ternatives, and the analysis of the data yielded clean
intuition about the varying difficulty levels even within
the lifetime of a single foraging task. The use of progress
estimators was found to be necessary, and only two such
estimators were sufficient for the learning system to con-
sistently converge within 15 minutes. For a detailed
description of the learning algorithms and the data see
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Figure 2: This figure shows real robot data for basic and
composite behaviors. Small boxes on the right indicate
the elapsed time in seconds for each of the runs. The top
row shows following and homing data. The second row
shows robot data for the composite behaviors: flocking
and foraging. The foraging behavior of 7 robots is shown
after 13.7 minutes of running; collected pucks are in the
box.



Matarié¢ (1994¢).

7 Summary

This paper has reviewed the key terms, issues, and ap-
proaches in multi-robot and situated multi-agent con-
trol. We described the challenges of principled synthe-
sis and analysis of collective behavior. Furthermore, we
proposed a methodology for structuring the process of
designing group behaviors for multi-robot systems.

The basic behavior approach is general and biologi-
cally rooted (Matari¢ 19944). Thus we believe that it
is applicable to various domains of multi-agent interac-
tion featuring complex dynamics, unpredictability, and
uncertainly in sensing and action. The methodology is
invariant to group size and interaction type. We have so
far demonstrated it on up to 20 agents situated in the
spatial domain, and have also applied it to smaller groups
of more heterogeneous agents (Matari¢ 19945, Matarié,
Nilsson & Simsarian 1994), and intend to test it on even
larger group sizes and more abstract domains.

This work is intended as a foundation in a contin-
uing effort toward studying and synthesizing increas-
ingly more complex behavior. The work on basic behav-
iors distills a general approach to control, planning, and
learning. The work also empirically demonstrates some
challenging problems and offers some effective solutions
to group behavior and learning.
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