Lecture 11 : Discrete Cosine Transform

Moving into the Frequency Domain

Frequency domains can be obtained through the transformation from one (time or spatial) domain to the other (frequency) via

Fourier Transform (FT) (see Lecture 3) — MPEG Audio.

Discrete Cosine Transform (DCT) (new) — Heart of JPEG and MPEG Video, MPEG Audio.

Note: We mention some image (and video) examples in this section with DCT (in particular) but also the FT is commonly applied to filter multimedia data.

External Link: MIT OCW 8.03 Lecture 11 Fourier Analysis Video

Recap: Fourier Transform

The tool which converts a spatial (real space) description of audio/image data into one in terms of its frequency components is called the **Fourier transform**.

The new version is usually referred to as the **Fourier space description** of the data.

We then essentially process the data:

E.g. for filtering basically this means attenuating or setting certain frequencies to zero

We then need to convert data back to real audio/imagery to use in our applications.

The corresponding **inverse** transformation which turns a Fourier space description back into a real space one is called the **inverse Fourier transform**.

What do Frequencies Mean in an Image?

- Large values at high frequency components mean the data is changing rapidly on a short distance scale.
 E.g.: a page of small font text, brick wall, vegetation.
- Large low frequency components then the large scale features of the picture are more important. *E.g*. a single fairly simple object which occupies most of the image.

How do we achieve compression?

- Low pass filter ignore high frequency noise components
 - Only store lower frequency components
- High pass filter spot gradual changes
 - If changes are too low/slow eye does not respond so ignore?

Low Pass Image Compression Example

MATLAB demo, dctdemo.m, (uses DCT) to

- Load an image
- Low pass filter in frequency (DCT) space
- Tune compression via a single slider value n to select coefficients

Inverse DCT, subtract input and filtered image to see compression artefacts.

The Discrete Cosine Transform (DCT)

Relationship between DCT and FFT

DCT (Discrete Cosine Transform) is similar to the DFT since it decomposes a signal into a series of harmonic cosine functions. DCT is actually a **cut-down** version of the Fourier Transform or the Fast Fourier Transform (FFT):

- Only the real part of FFT (less data overheads).
- Computationally simpler than FFT.
- DCT— effective for multimedia compression (energy compaction).
- DCT much more commonly used (than FFT) in multimedia image/vi deo compression — more later.
- Cheap MPEG Audio variant more later.
- FT captures more frequency "fidelity" (e.g . phase).

DCT vs FT

(a) Fourier transform, (b) Sine transform, (c) Cosine transform.

DCT Example

Let's consider a DC signal that is a constant 100, *i.e* f(i) = 100 for $i = 0 \dots 7$ (DCT1Deg.m):

- So the domain is [0,7] for both i and u
 - We therefore have N=8 samples and will need to work 8 values for u=0. .. 7.
- We can now see how we work out: F(u)
 - As u varies we can work for each u, a component or a basis F(u).
 - Within each F(u), we can work out the value for each F_i(u) to define a *basis function*
 - Basis function can be pre-computed and simply looked up in DCT computation.

1D DCT

For N data items 1D DCT is defined by:

$$F(u) = \left(\frac{2}{N}\right)^{\frac{1}{2}} \sum_{i=0}^{N-1} \Lambda(u) \cos\left[\frac{\pi u}{2N}(2i+1)\right] f(i)$$

and the corresponding **inverse** 1D DCT transform is simply $F^{-1}(u)$, i.e.:

$$f(i) = F^{-1}(u) = \left(\frac{2}{N}\right)^{\frac{1}{2}} \sum_{u=0}^{N-1} \Lambda(u) \cos\left[\frac{\pi u}{2N}(2i+1)\right] f(u)$$

where

$$\Lambda(\xi) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \text{for } \xi = 0 \\ 1 & \text{otherwise} \end{pmatrix}$$

Plots of f(I) and F(U)

DCT Example: F(0)

So for u = 0:

• Note:
$$\Lambda(0) = \frac{1}{2\sqrt{2}}$$
 and $\cos(0) = 1$

So F(0) is computed as:

F(0) =
$$\frac{1}{2\sqrt{2}}$$
 (1.100 + 1.100 + 1.100 + 1.100 + 1.100 + 1.100 + 1.100 + 1.100)
+ 1.100 + 1.100 + 1.100) ≈ 283

• Here the values $F_i(0) = \frac{1}{2\sqrt{2}}$ (i = 0. .. 7). These are bases of $F_i(0)$

F(0) Basis Function Plot

F(0) basis function

DCT Example: F(1 . . .7)

So for u = 1: Note: $\Lambda(1) = 1$ and we have cos to work out: so F(1) is computed as:

$$F(1) = \frac{1}{2} \left(\cos \frac{\pi}{16} \cdot 100 + \cos \frac{3\pi}{16} \cdot 100 + \cos \frac{5\pi}{16} \cdot 100 + \cos \frac{7\pi}{16} \cdot 100 + \cos \frac{9\pi}{16} \cdot 100 + \cos \frac{11\pi}{16} \cdot 100 + \cos \frac{13\pi}{16} \cdot 100 + \cos \frac{15\pi}{16} \cdot 100 \right)$$

= 0

(since $\cos(\frac{\pi}{16}) = -\cos(\frac{15\pi}{16}), \cos(\frac{3\pi}{16}) = -\cos(\frac{13\pi}{16})$ etc.) Here the values

$$F_i(1) = \{\frac{1}{2}\cos(\frac{\pi}{16}), \frac{1}{2}\cos(\frac{3\pi}{16}), \frac{1}{2}\cos(\frac{5\pi}{16}), \dots, \frac{1}{2}\cos(\frac{11\pi}{16}), \frac{1}{2}\cos(\frac{13\pi}{16}), \frac{1}{2}\cos(\frac{15\pi}{16})\}$$

form the basis function F(2...7) similarly = 0

F(1) Basis Function Plot

Note:

Bases are *reflected about centre* and *negated* since cos(π/16)=-cos(15π/16), cos(3π/16)=-cos(13π/16) etc.
 only as our example function is a constant is F(1) zero.

DCT Matlab Example

DCT1Deg.m explained: i = 1:8% dimension of vector f(i) = 100 % set function figure(1) % plotf stem(f); %compute DCT D =dct(f); figure(2) % plotD stem(D);

- Create our function f, and plot it.
- Use MATLAB 1D dct function to compute DCT of f and plot it.

DCT Matlab Example

% Illustrate DCT bases compute DCT bases % with dctmtx

```
bases =dctmtx(8);
% Plot bases:each row(j) of bases is the jth
%DCT Basis Function
```

```
for j= 1:8
figure %increment figure
stem(bases(j,:)); %plot rows
end
```

- MATLAB dctmtx function computes DCT basis functions.
- Each row j of bases is the basis function F(j).
- Plot each row.

% construct DCT from Basis Functions Simply % multiply f' (column vector) by bases

```
D1 =bases*f';
```

figure(1) % plot D1 stem(D1);

- Here we show how to compute the DCT from the basis functions.
- bases is an 8×8 matrix, f an 1×8 vector. Need column 8×1 form to do matrix multiplication so transpose f.

2D DCT

For a 2D N by M image 2D DCT is defined:

$$F(u,v) = \left(\frac{2}{N}\right)^{\frac{1}{2}} \cdot \left(\frac{2}{M}\right)^{\frac{1}{2}} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \Lambda(u) \cdot \Lambda(v) \times \cos\frac{\pi u}{2N} (2i+1) \cos\frac{\pi v}{2M} (2j+1) \cdot f(i,j)$$

and the corresponding **inverse** 2D DCT transform is simply $F^{-1}(u,v)$, i.e.:

$$f(i, j) = F^{-1}(u, v)$$

= $\left(\frac{2}{N}\right)^{\frac{1}{2}} \cdot \left(\frac{2}{M}\right)^{\frac{1}{2}} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \Lambda(u) \cdot \Lambda(v) \times$
 $\cos \frac{\pi u}{2N} (2i+1) \cos \frac{\pi v}{2M} (2j+1) \cdot F(u, v)$

Applying The DCT

Similar to the discrete Fourier transform:

- It transforms a signal or image from the spatial domain to the frequency domain.
- DCT can approximate lines well with fewer coefficients.

Helps separate the image into parts (or spectral sub-bands) of differing importance (with respect to the image's visual quality).

Performing DCT Computations

The basic operation of the DCT is as follows:

- The input image is N by M;
- f (i, j) is the intensity of the pixel in row i and column j.
- F(u,v) is the DCT coefficient in row u_i and column v_j of the DCT matrix.
- For JPEG image (and MPEG video), the DCT input is usually an 8 by 8 (or 16 by 16) array of integers. This array contains each image window's respective colour band pixel levels.

- For most images, much of the signal energy lies at low frequencies;
 - These appear in the upper left corner of the DCT.
- Compression is achieved since the lower right values represent higher frequencies, and are often small
 - Small enough to be neglected with little visible distortion.

- One of the properties of the 2-D DCT is that it is separable meaning that it can be separated into a pair of 1-D DCTs.
- To obtain the 2-D DCT of a block a 1-D DCT is first performed on the rows of the block then a 1-D DCT is performed on the columns of the resulting block.
- The same applies to the IDCT.

Separability

- Factoring reduces problem to a series of 1D DCTs (No need to apply 2D form directly):
 - As with 2D Fourier Transform.
 - Apply 1D DCT (vertically) to columns.
 - Apply 1D DCT (horizontally) to resultant vertical DCT.
 - Or alternatively horizontal to vertical.

The equations are given by:

$$G(i,v) = \frac{1}{2} \sum_{j} \Lambda(v) \cdot \cos \frac{\pi v}{16} (2j+1) \cdot f(i,j)$$

$$F(u,v) = \frac{1}{2} \sum_{i} \Lambda(u) \cdot \cos \frac{\pi v}{16} (2i+1) \cdot G(i,v)$$

Most software implementations use fixed point arithmetic. Some fast implementations approximate coefficients so all multiplies are shifts and adds.

2D DCT on an Image Block

- Image is partitioned into 8 x8 regions (See JPEG)— The DCT input is an 8 x 8 array of integers.
- So in N = M = 8, substitute these in DCT formula.
 An 8 point DCT is then:

An 8 point DCT is then:

$$F(u,v) = \frac{1}{4}\Lambda(u)\Lambda(v)\sum_{i=0}^{7}\sum_{j=0}^{7}\cos\frac{\pi u}{16}(2i+1)\times \cos\frac{\pi v}{16}(2j+1)\cdot f(i,j)$$

where

$$\Lambda(\xi) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \text{for } \xi = 0 \\ 1 & \text{otherwise} \end{pmatrix}$$

The output array of DCT coefficients contains integers; these can range from -1024 to 1023. From the above formula, extending what we have seen with the 1D DCT we can derive basis functions for the 2D DCT:

- We have a basis for a 1D DCT (see bases = dctmtx(8) example above).
- We discussed above that we can compute a DCT by first doing a 1D DCT in one direction (e.g. horizontally) followed by a 1DCT on the intermediate DCT result.
- This is equivalent to performing matrix pre-multiplication by bases and matrix post-multiplication the transpose of bases.
 - take each row i in bases and you get 8 basis matrices for each j.
 - there are 8 rows so we get 64 basis matrices.

Visualisation of DCT 2D Basis Functions

- Computationally easier to implement and more efficient to regard the DCT as a set of **basis functions**.
 - Given a known input array size (8 x 8) they can be precomputed and stored.
 - The values as simply calculated from DCT formula.

See MATLAB demo, dctbasis.m, to see how to produce these bases.

```
A = dctmtx(8);
 A = A';
```

Offset =5;

basisim =ones(N*(N+offset))*0.5;

- Basically just set up a few things A := 1D DCT basis functions
- basisim will be used to create the plot of all 64 basis functions.

```
B=zeros(N,N,N,N);
for i=1:N
  for j=1:N
    B(:,:,i,j)=A(:,i)*A(:,j)';
    %max(max(B(:,:,i,j)))-min(min(B(:,:,i,j)))
  end;
end;
```

- B = computation of 64 2D bases.
- Create a 4D array: first two dimensions store a 2D image for each i,j.
- 3rd and 4th dimension i and j store the 64 basis functions.

DCT Basis Functions

```
for i=1:N
for j=1:N
minb = min(min(B(:,:,i,j)));
maxb = max(max(B(:,:,i,j)));
rangeb =maxb -minb;
```

```
if rangeb ==0
    minb =0;
    rangeb =maxb;
end;
```

```
imb = B(:,:,i,j) - minb;
imb =imb/rangeb;
```

```
iindex1 =(i-1)*N + i*offset-1;
iindex2 =iindex1 + N -1;
jindex1 =(j-1)*N + j*offset -1;
jindex2 =jindex1 + N -1;
basisim(iindex1: iindex2, jindex1:jindex2) = imb;
end;
end;
```

Basically just put up 64 2D bases in basisim as image data.

```
figure(1)
imshow(basisim)
```

```
figure(2)
dispbasisim = imresize(basisim,4,'bilinear');
imshow(dispbasisim);
```

Plot normal size image and one 4 times up sampled.