
Lecture 11 : Discrete
Cosine Transform

Moving into the Frequency Domain
Frequency domains can be obtained through the
transformation from one (time or spatial) domain to the
other (frequency) via

Fourier Transform (FT) (see Lecture 3) —
MPEG Audio.

Discrete Cosine Transform (DCT) (new) — Heart of
JPEG and
MPEG Video, MPEG Audio.

Note We mention some image (and video) examples in this
section with DCT (in particular) but also the FT is commonly
applied to filter multimedia data.

External Link: MIT OCW 8.03 Lecture 11 Fourier Analysis Video

:

Recap: Fourier Transform

The tool which converts a spatial (real space) description of
audio/image data into one in terms of its frequency
components is called the Fourier transform.

The new version is usually referred to as the Fourier space
description of the data.
We then essentially process the data:

E.g . for filtering basically this means attenuating or
setting certain frequencies to zero

We then need to convert data back to real audio/imagery to
use in our applications.

The corresponding inverse transformation which turns a
Fourier space description back into a real space one is called
the inverse Fourier transform.

What do Frequencies Mean in an Image?

Large values at high frequency components mean the
data is changing rapidly on a short distance scale.
E.g .: a page of small font text, brick wall, vegetation.
Large low frequency components then the large scale
features of the picture are more important.
E.g . a single fairly simple object which occupies most of
the image.

The Road to Compression

How do we achieve compression?

Low pass filter — ignore high frequency noise
components

Only store lower frequency components

High pass filter — spot gradual changes
If changes are too low/slow — eye does not respond so
ignore?

Low Pass Image Compression Example

MATLAB demo, dctdemo.m, (uses DCT) to
Load an image
Low pass filter in frequency (DCT) space
Tune compression via a single slider value n to select
coefficients

Inverse DCT, subtract input and filtered image to
see compression artefacts.

The Discrete Cosine Transform (DCT)

Relationship between DCT and FFT

DCT (Discrete Cosine Transform) is similar to the DFT since
it decomposes a signal into a series of harmonic cosine
functions. DCT is actually a cut-down version of the Fourier
Transform or the Fast Fourier Transform (FFT):

Only the real part of FFT (less data overheads).

Computationally simpler than FFT.

DCT— effective for multimedia compression (energy
compaction).

DCT much more commonly used (than FFT) in
multimedia image/vi deo compression — more later.

Cheap MPEG Audio variant — more later.

FT captures more frequency “fidelity” (e.g . phase).

DCT vs FT

(a) Fourier transform, (b) Sine transform, (c) Cosine
transform.

DCT Example

Let’s consider a DC signal that is a constant 100,
i.e f(i) = 100 for i = 0 ...7 (DCT1Deg.m):

So the domain is [0,7] for both i and u

We therefore have N=8 samples and will need to work
8 values for u=0. .. 7.

We can now see how we work out: F(u)

As u varies we can work for each u, a component or
a basis F(u).

Within each F(u), we can work out the value for each
Fi(u) to define a basis function

Basis function can be pre-computed and simply looked
up in DCT computation.

1D DCT

For N data items 1D DCT is defined by:

and the corresponding inverse 1D DCT transform is simply
F-1(u), i.e.:

where

F (u)=(
2
N

)
1
2 ∑
i=0

N −1

Λ(u)cos[
π u
2N

(2i+1)] f (i)

f (i) = F−1
(u)

= (
2
N

)
1
2 ∑
u=0

N−1

Λ(u)cos[
π u
2N

(2i+1)] f (u)

Λ(ξ)={
1
√2

for ξ=0

1 otherwise}

Plots of f(I) and F(U)

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

f(i) = 100 for i=0. . .7 F(u): F(0)≈283, F(1...7)=0

DCT Example: F(0)

So for u = 0:

Note: Λ(0) = and cos(0) = 1

So F(0) is computed as:

F(0) = (1·100 + 1·100 + 1×100 + 1·100 + 1·100
 + 1·100 + 1·100 + 1·100)

 ≈ 283

Here the values Fi(0) = (i = 0. .. 7).

These are bases of Fi(0)

1

2√2

1

2√2

1

2√2

1

2√2

F(0) Basis Function Plot

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F(0) basis function

DCT Example: F(1 . . .7)

So for u = 1:
Note: Λ(1) = 1 and we have cos to work out: so F(1) is
computed as:

(since etc.)

Here the values

form the basis function
F(2...7) similarly = 0

cos (π
16

)=−cos(
15π

16
) ,cos(

3π

16
)=−cos(

13π

16
)

F i(1)={
1
2

cos (π
16

) ,
1
2

cos (
3π

16
) ,

1
2

cos (
5π

16
) , ... ,

1
2

cos(
11 π

16
) ,

1
2

cos(
13π

16
) ,

1
2

cos (
15π

16
)}

F (1) =
1
2

(cos π
16

⋅100+cos
3π

16
⋅100+cos

5π

16
⋅100+cos

7 π

16
⋅100

+ cos
9π

16
⋅100+cos

11π

16
⋅100+cos

13π

16
⋅100+cos

15π

16
⋅100)

= 0

F(1) Basis Function Plot

1 2 3 4 5 6 7 8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

F(1) basis function
Note:

Bases are reflected about centre and negated since

 etc.

only as our example function is a constant is F(1) zero.

cos (π
16

)=−cos(
15π

16
) ,cos(

3π

16
)=−cos(

13π

16
)

DCT Matlab Example

DCT1Deg.m explained:
 i = 1:8% dimension of vector
 f(i) = 100 % set function
 figure(1) % plotf
 stem(f);
 %compute DCT
 D =dct(f);
 figure(2) % plotD
 stem(D);

Create our function f, and plot it.
Use MATLAB 1D dct function to compute DCT of f and
plot it.

17

DCT Matlab Example

% Illustrate DCT bases compute DCT bases
% with dctmtx

bases =dctmtx(8);
% Plot bases:each row(j) of bases is the jth
%DCT Basis Function

for j= 1:8
figure %increment figure
stem(bases(j,:)); %plot rows
end

MATLAB dctmtx function computes DCT basis
functions.
Each row j of bases is the basis function F(j).
Plot each row.

18

DCT Matlab Example

% construct DCT from Basis Functions Simply
% multiply f’ (column vector) by bases

D1 =bases*f’;

figure(1) % plot D1
stem(D1);

Here we show how to compute the DCT from the
basis functions.

bases is an 8×8 matrix, f an 1×8 vector. Need column
8×1 form to do matrix multiplication so transpose f.

2D DCT

For a 2D N by M image 2D DCT is defined:

and the corresponding inverse 2D DCT transform is simply
F-1(u,v), i.e.:

F (u , v)= (2
N)

1
2⋅(2
M)

1
2 ∑
i=0

N−1

∑
j=0

M−1

Λ(u)⋅Λ(v)×

cos
π u
2N

(2i+1)cos
π v
2M

(2j+1)⋅ f (i , j)

f (i , j)= F−1
(u , v)

=(2
N)

1
2⋅(2
M)

1
2 ∑
i=0

N−1

∑
j=0

M−1

Λ(u)⋅Λ(v)×

cos
π u
2N

(2i+1)cos
π v
2M

(2j+1)⋅F (u , v)

Applying The DCT

Similar to the discrete Fourier transform:
It transforms a signal or image from the spatial domain
to the frequency domain.
DCT can approximate lines well with fewer coefficients.

Helps separate the image into parts (or spectral
sub-bands) of differing importance (with respect to the
image’s visual quality).

Performing DCT Computations

The basic operation of the DCT is as follows:

The input image is N by M;

f (i j) is the intensity of the pixel in row i and column j.,

F(u,v) is the DCT coefficient in row ui and column vj of
the DCT matrix.
For JPEG image (and MPEG video), the DCT input is
usually an 8 by 8 (or 16 by 16) array of integers.
This array contains each image window’s respective
colour band pixel levels.

Compression with DCT

For most images, much of the signal energy lies at low
frequencies;

These appear in the upper left corner of the DCT.

Compression is achieved since the lower right values
represent higher frequencies, and are often small

Small enough to be neglected with little visible
distortion.

Separability

One of the properties of the 2-D DCT is that it is
separable meaning that it can be separated into a pair
of 1-D DCTs.

To obtain the 2-D DCT of a block a 1-D DCT is first
performed on the rows of the block then a 1-D DCT
is performed on the columns of the resulting block.

The same applies to the IDCT.

Separability

Factoring reduces problem to a series of 1D DCTs
(No need to apply 2D form directly):

As with 2D Fourier Transform.
Apply 1D DCT (vertically) to columns.
Apply 1D DCT (horizontally) to resultant vertical DCT.
Or alternatively horizontal to vertical.

Computational Issues

The equations are given by:

Most software implementations use fixed point arithmetic.
Some fast implementations approximate coefficients so
all multiplies are shifts and adds.

G (i , v)=
1
2 ∑

j

Λ(v)⋅cos
π v
16

(2j+1)⋅ f (i , j)

F (u , v)=
1
2
∑
i

Λ(u)⋅cos
π v
16

(2i+1)⋅G(i , v)

2D DCT on an Image Block

Image is partitioned into 8 x8 regions (See JPEG)—
The DCT input is an 8 x 8 array of integers.
So in N = M = 8, substitute these in DCT formula.
An 8 point DCT is then:

where

The output array of DCT coefficients contains integers;
these can range from −1024 to 1023.

Λ(ξ)={
1
√2

for ξ=0

1 otherwise }

F (u ,v)=
1
4

Λ(u) Λ(v)∑
i=0

7

∑
j=0

7

cos
π u
16

(2i+1)×

cos
π v
16

(2j+1)⋅ f (i , j)

2D DCT Basis Functions

From the above formula, extending what we have seen with
the 1D DCT we can derive basis functions for the 2D DCT:

We have a basis for a 1D DCT (see bases = dctmtx(8)
example above).

We discussed above that we can compute a DCT by
first doing a 1D DCT in one direction (e.g. horizontally)
followed by a 1DCT on the intermediate DCT result.

This is equivalent to performing matrix pre-multiplication
by bases and matrix post-multiplication the transpose of
bases.

take each row i in bases and you get 8 basis matrices
for each j.
there are 8 rows so we get 64 basis matrices.

Visualisation of DCT 2D Basis Functions

Computationally easier to implement and more efficient
to regard the DCT as a set of basis functions.

Given a known input array size (8 x 8) they can be
precomputed and stored.
The values as simply calculated from DCT formula.

See MATLAB demo,
dctbasis.m, to see how
to produce these bases.

DCT Basis Functions

A =dctmtx(8);
A =A’;

Offset =5;

basisim =ones(N*(N+offset))*0.5;

Basically just set up a few things A := 1D DCT basis
functions

basisim will be used to create the plot of all 64 basis
functions.

DCT Basis Functions

B=zeros(N,N,N,N);
for i=1:N
for j=1:N

B(:,:,i,j)=A(:,i)*A(:,j)’;
%max(max(B(:,:,i,j)))-min(min(B(:,:,i,j)))

end;
end;

B= computation of 64 2D bases.
Create a 4D array: first two dimensions store a 2D image
 for each i,j.

3rd and 4th dimension i and j store the 64 basis
functions.

DCT Basis Functions

for i=1:N
for j=1:N
minb = min(min(B(:,:,i,j)));
maxb = max(max(B(:,:,i,j)));
rangeb =maxb -minb;

if rangeb ==0
minb =0;
rangeb =maxb;

end;

imb = B(:,:,i,j) - minb;
imb =imb/rangeb;

DCT Basis Functions

iindex1 =(i-1)*N + i*offset-1;
iindex2 =iindex1 + N -1;

jindex1 =(j-1)*N + j*offset -1;
jindex2 =jindex1 + N -1;

basisim(iindex1: iindex2, jindex1:jindex2) = imb;
end;
end;

Basically just put up 64 2D bases in basisim as
image data.

DCT Basis Functions

figure(1)
imshow(basisim)

figure(2)
dispbasisim = imresize(basisim,4,’bilinear’);
imshow(dispbasisim);

Plot normal size image and one 4 times up sampled.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

