
Università degli studi di Udine
Laurea Magistrale: Informatica

Lectures for April/May 2014
La verifica del software: temporal logic

Lecture 06 CTL* Model Checking

Guest lecturer: Mark Reynolds,
The University of Western Australia

May 14, 2014

Lecture 06

CTL* model checking

CTL* Model Checking:

Not done in practice much as is quite computationally complex
and also CTL* is not as widely known as either LTL or CTL.

We look at an approach from first principles. It does not seem to
have been published anywhere, although the general idea is used as
part of a tableau approach to CTL* satisfiability checking in
[Rey11].

The algorithm can be used to do LTL and CTL model checking as
well. It is a reasonable algorithm for LTL but can be simplified if
used for CTL.

CTL* Syntax:

Set L of propositional atoms.

If p ∈ L then p is a wff.

If α and β are wff then so are ¬α, α ∧ β, Xα, αUβ and Aα.

Read as: not, and(conjunction), tomorrow (or next), until and all
paths.

CTL* Semantics:

Write M, σ |= α iff the formula α is true of the fullpath σ in the
structure M = (S ,R, g) defined recursively by:
M, σ |= p iff p ∈ g(σ0), for p ∈ L
M, σ |= ¬α iff M, σ 6|= α
M, σ |= α ∧ β iff M, σ |= α and M, σ |= β
M, σ |= Xα iff M, σ≥1 |= α
M, σ |= αUβ iff there is some i ≥ 0 such that M, σ≥i |= β

and for each j , if 0 ≤ j < i then M, σ≥j |= α
M, σ |= Aα iff for all fullpaths τ with τ0 = σ0, M, τ |= α

Abbreviations:

Classical and linear temporal abbreviations >, ⊥, ∨, →, ↔, F , G .

Also,
Eα ≡ ¬A¬α meaning that there is a path on which α holds.

CTL* examples:

XEXp → EXXp
AG (p → Ap)
AXFp → XAFp
E (pU(E (pUq)))→ E (pUq)
AG (p → q)→ (EFp → EFq)
AG (p → EXFp)→ (p → EGFp)

Model of a System:

We suppose that we can model the system as a finite state
machine: a set of states and a set of allowed transitions from some
states to other states.

In order to allow abstraction of observable basic, or atomic
properties, we also suppose that there are a set of atomic
properties, and that some properties are true at some states.

pq
����

�� ��

44

1

Example of Model Checking:

Does the following formula hold in the structure below?
AG (GFEXp → GFp)

pq
����

�� ��

44

1

Model Checking Task

We want to enter the description of the model as finite state
machine with labelling of atoms true at each state: i.e. as a
structure (S ,R, g).

Then enter the CTL* formula φ representing the property to check.

The algorithm should eventually halt and either say “yes” or “no”.

We want to find out whether the structure is a model of the
formula.
But what exactly does that mean?

Model Checking Task

We want to find out whether there is a fullpath making the formula
true or do we want to know if all fullpaths make the formula true?
A fullpath? Or all fullpaths? Or ones starting at some initial state?

In fact these are all similar inter-translatable problems. For the
CTL* algorithm that we meet first, it does not matter. The
algorithm produces a data structure from which all such questions
can be answered.

We will find out, for every state, whether there is a fullpath
starting there which makes φ true and whether there is one
starting there that makes φ false.

Induction on formulas:

We will try to determine truth (or otherwise) of all the subformulas
of φ and their negations along all fullpaths in the structure.

C(φ) = {ψ,¬ψ|ψ ≤ φ} where ψ ≤ φ means that ψ is a subformula
of φ.

The algorithm proceeds from simpler formulas to more complicated
ones so we order the subformulas of φ as α0, α1, α2, ..., αN = φ in
some way such that if αi ≤ αj then i ≤ j .

Ak :

So we work out truth at all fullpaths for α1 then α2 etc in that
order until we have done so for φ = αN .

Let Ak = {αi ,¬αi | i ≤ k}. At the kth stage we will know the
truth (or otherwise) of each formula in Ak along each fullpath.

Infinite numbers of fullpaths:

But there are an infinite number of fullpaths in general. How can
we consider them all?

What we do is group them together into equivalence classes at
each stage.

Two fullpaths σ and σ′ are equivalent at the kth stage iff they
start at the same state (σ0 = σ′0) and for every β ∈ Ak ,
(S ,R, g), σ |= β iff (S ,R, g), σ′ |= β.

An equivalence class is a maximal set of all fullpaths such that
each pair from the set are equivalent.

Formula sets:

We work out at each stage the equivalence classes at that stage.

Actually we just work out which classes are non-empty and for
each non-empty class, we work out the set of formulas from Ak

that are true on the fullpaths in that class.

At each stage k , we make a record Sk = (γk , δk) of the classes we
have found and some relationships between them.

Formula sets:

γk is a map from S to subsets of Ak . If a ⊆ Ak and a ∈ γk(s) then
we have determined that there is a non-empty equivalence class of
fullpaths which start at s and which make exactly the formulas in a
true (out of the formulas in Ak).

So each pair (s, a) such that a ∈ γk(s) will determine an
equivalence class being the equivalence class of fullpaths that start
at s and make exactly the formulas in a true.

δ:

To help us with the induction we also store a record of which
equivalence classes follow on from which other ones.
δk will be a set of pairs ((s, a), (s ′, a′)) where s, s ′ ∈ S , a ∈ γk(s)
and a′ ∈ γk(s ′).

We will put ((s, a), (s ′, a′)) ∈ δk iff (we have determined that)
there is at least one fullpath σ such that σ is in the equivalence
class determined by (s, a) and σ≥1 is in the equivalence class
determined by (s ′, a′).

Base Case:

Initial record is S−1 = (γ, δ) where γ and δ are as follows.

For each t ∈ S , γ(t) = {∅}. (Assume A−1 = ∅.)
For each t, t ′ ∈ S , if t ′ is a successor of t, i.e. (t, t ′) ∈ R then we
put (t, ∅)δ(t ′, ∅).

At the start all fullpaths through s are in the class determined by
(s, ∅).

Inductive Step:

Now we proceed by induction on k ≥ 0.
So suppose that Sk−1 = (γ, δ) has been built and we want to build
Sk = (γ′, δ′) by considering αk .

There are several cases depending on the form of αk .

Case of p:

αk = p ∈ L.
For each node t ∈ S , for each a ∈ γ(t), we define a new set
u(t, a) ⊆ Ak .
Just put u(t, a) = a ∪ {p} iff p ∈ g(t).
Otherwise put u(t, a) = a ∪ {¬p}.
Let γ′(t) = {u(t, a) | a ∈ γ(t)}.
As for δ′, δ′ is (practically) unchanged from δ. To be precise, if δ
related a pair of pairs then δ′ relates the corresponding pair of
updated pairs. That is,

((t, u(t, a)), (t ′, u(t ′, a′))) ∈ δ′ iff ((t, a), (t ′, a′)) ∈ δ

Case of ¬α:

αk = ¬α. For each node t ∈ S , for each a ∈ γ(t), we only need to
do something if α ∈ a. In that case put a′ = a ∪ {¬¬α}.
Otherwise we do not need to do anything as ¬α will already be in
a: put a′ = a. Let γ′(t) = {a′ | a ∈ γ(t)}. δ is unchanged (i.e. as
per atomic case).

Case of α ∧ β:

αk = α ∧ β. For each node t ∈ S , for each a ∈ γ(t), if α ∈ a and
β ∈ a, we put a′ = a ∪ {α ∧ β}. Otherwise put
a′ = a ∪ {¬(α ∧ β)}. Let γ′(t) = {a′ | a ∈ γ(t)}. δ is unchanged.

Case of Xα:

αk = Xα. In this case we may need to split a formula-set into two.
Let a+ = a ∪ {Xα} and a− = a ∪ {¬Xα}. For each t ∈ S in some
order, for each a ∈ γ(t), we will replace a in γ(t) by either a+ or
a− or both in γ′(t) and we will define δ′.

To decide which, consider the δ successors of (t, a) (it will always
have some).

Case of Xα (continued):

If (t, a)δ(t ′, b) and α ∈ b then we will put a+ in γ′(t) and put
(t, a+)δ′(t ′, b±). (Note that by this we mean that we put
(t, a+)δ′(t ′, b+) if b+ ∈ γ′(t ′) AND we put (t, a+)δ′(t ′, b−) if
b− ∈ γ′(t ′).)

Also, if (t, a)δ(t ′′, c) and ¬α ∈ c then we will put a− in γ′(t) and
put (t, a−)δ′(t ′′, c±).

We may need to do both or just one.

Case of αUβ (overview):

αk = α Uβ.

Again we may need to split formula-sets.

In this case we need to work on all the nodes together as δ′ will
connect up paths of new formula-sets. For each t ∈ S and each
a ∈ γ(t) we will put either a new formula-set a+ = a ∪ {α Uβ} or
a new formula-set a− = a ∪ {¬(α Uβ)} or both into γ′(t).

That’s all we have time for:

To be continued tomorrow.

And that’s all for the sixth lecture.

See you tomorrow for more model checking.

Reference:

Mark Reynolds.
A tableau-based decision procedure for CTL*.
Journal of Formal Aspects of Computing, pages 1–41, August
2011.

