
Università degli studi di Udine
Laurea Magistrale: Informatica

Lectures for April/May 2014
La verifica del software: temporal logic

Lecture 04 LTL tableau correctness

Guest lecturer: Mark Reynolds,
The University of Western Australia

May 8, 2014

Lecture 04

Tableau for checking satisfiability in LTL continued.

The soundness proof.

The completeness proof

complexity

Proof of Soundness:

(Overview first)
Use a successful tableau to make a model of the formula, thus
showing that it is satisfiable.

Use a successful branch. Each STEP tells us that we are moving
from one state to the next.

Within a particular state we can make all the formulas listed true
there (as evaluated along the rest of the fullpath). Atomic
propositions listed tell us that they are true at that state.

An induction deals with most of the rest of the formulas.

Eventualities either get satisfied and disappear in a terminating
branch or have to be satisfied if the branch is ticked by the LOOP
rule.

Soundness

Suppose that T is a successful tableau for φ.
Say that the branch b = 〈x0, x1, x2, ..., xn〉 of nodes of T ends in a
tick.
We build (S ,R, g) from b and its tableau labels.
In fact, there are only a few xi that matter: each time when we are
about to use STEP and when we are about to use EMP or LOOP
to finish (at xn).
Let j0, j1, j2, ..., jk−1 be the indices of nodes from b at which the
STEP rule is used. That is, the STEP rule is used to get from xji
to xji+1.

Soundness continued:

Γ(x0) = {φ}
...

Γ(xj0)

=

Γ(xj0+1)
...

Γ(xj1)

=

Γ(xj1+1)

...

Γ(xjk−1
)

=

Γ(xjk−1+1)
...

Γ(xn)

√

1

Soundness continued:

If b ends in a tick from EMP then let S = {0, 1, 2, ..., k}: so it
contains k + 1 states. These will correspond to xj0 , xj1 , ..., xjk−1

, xn.

x0 xj0 xj1 xj2 xjk−1 {} √

...

0 1 2 k − 1 k

1

Soundness continued:

If b ends in a tick from LOOP then let S = {0, 1, 2, ..., k − 1}: so
it contains k states. These will correspond to xj0 , xj1 , ..., xjk−1

.

x0 xj0 xj1 xj2 ... xjl−1 ... xjl ... xjk−1 xn
√

... ...

0 1 22 l − 1 l k − 1

Γ(xjl) ⊇ Γ(xn)

�� ''

1

Soundness continued:

Let R contain each (i , i + 1) for i < k − 1.
We will also add extra pairs to R to make a fullpath.
If b ends in a tick from EMP then just put (k − 1, k) and a
self-loop (k , k) in R as well.

x0 xj0 xj1 xj2 xjk−1 {} √

...// // // // //
}}

0 1 2 k − 1 k

1

Soundness continued:

If b ends in a tick from LOOP then just put (k − 1, l) in R as well
where l is as follows.
Say that xm is the state that “matches” xn. So look at the
application of the LOOP rule that ended b in a tick. There is a
proper ancestor xm of xn in the tableau with Γ(xm) ⊇ Γ(xn) and all
eventualities in Γ(xm) are cured between xm and xn.
The rule requires xm to be just before a STEP rule. So say that
m = jl . Put (k − 1, l) ∈ R.

x0 xj0 xj1 xj2 ... xjl−1 ... xjl ... xjk−1 xn
√

... ...

0 1 22 l − 1 l k − 1

Γ(xjl) ⊇ Γ(xn)

�� ''

// // // // // // //
��

1

A model with a line and one loop back is sometimes called a lasso.

Soundness continued:

Now let us define the labelling g of states by atoms in (S ,R, g).
Let g(i) = {p ∈ L|p ∈ Γ(xji)} where, in the case of an EMP tick,
g(k) = {}.

Finally our proposed model of φ is along the only fullpath σ of
(S ,R, g) that starts at 0.
That is, if b ends in a tick from EMP then
σ = 〈0, 1, 2, ..., k − 1, k, k , k , k , ...〉 while if b ends in a tick from
LOOP then
σ = 〈0, 1, 2, ..., k−2, k−1, l , l + 1, l + 2, ..., k−2, k−1, l , l + 1, ...〉.

Change notation to deal with the two cases:

Hopefully this makes the rest of the proof easier?

Let N be the length of the first (non-repeating) part of the model:
in the EMP case N = k − 1 and in the LOOP case N = l .

Let M be the length of the repeating part: in the EMP case
M = 1 and in the LOOP case N = k − l .

So in either case the model has N + M states {0, 1, ...,N + M − 1}
with state N coming (again) after state N + M − 1 etc.
In particular, σi = i for i < N and σi = (i − N)modM + N
otherwise.

....new notation continued

For each i = 0, 1, 2, ...,N + M − 1, let ∆i = Γ(xji) where we
consider Γ(xjk) = {} in the EMP case.

For all i ≥ N + M, put ∆i = ∆i−M .

Thus, for i ≥ N, ∆i = Γ(xj(i−N)modM+N
).

Helpful Lemma One

Lemma

Each ∆i is closed under the static tableau rules (i.e. the rules
except STEP, LOOP and REP).

Each ∆i is empty or is the pre-STEP label Γ(xj(i−N)modM+N
).

Helpful Lemma Two

Lemma

If Xα ∈ ∆i for some i, then α ∈ ∆i+1.
Also, if ¬Xα ∈ ∆i for some i, then ¬α ∈ ∆i+1.

Just consider the Xα case: the ¬Xα case is similar.
Each ∆i is empty (so not relevant here) or is the pre-STEP label
Γ(xj(i−N)modM+N

).
After the STEP rule we will have α ∈ Γ(xj(i−N)modM+N+1).
Usually, α will stay in the Γ labels until the next pre-STEP rule at
∆i+1 = Γ(xj(i+1−N)modM+N

).
However, ...

Helpful Lemma Two continued ...

However, when we are near the end of the branch and about to use
the LOOP rule then there may be no next STEP rule.
In that case, α will stay in the labels until the end of the branch
α ∈ Γ(xn).
It will then also be in Γ(xjl) ⊇ Γ(xn),
So α ∈ Γ(xjl) = ∆l = ∆N .
But as ∆i was just before the last STEP rule before a LOOP,
i = N + M − 1 or some multiple of M after that.
So (i − N)modM = M − 1 and ((i + 1)modM = 0.
Thus ∆i+1 = ∆N 3 α as required.

Helpful Lemma Three

Lemma

Suppose αUβ ∈ ∆i .
Then there is some d ≥ i such that β ∈ ∆d and for all f , if
i ≤ f < d then {α, αUβ,X (αUβ)} ⊆ ∆f .

As each ∆i is closed under static rules like UNT, whenever
αUβ ∈ ∆i then either β will also be there or both α and X (αUβ)
will be.
By helpful lemma 2, if X (αUβ) ∈ ∆i then αUβ ∈ ∆i+1.
Thus, by a simple induction, αUβ, and so also the other two
formulas, will be in all ∆f for f ≥ i unless f ≥ d ≥ i with β ∈ ∆d .
It remains to show that β does appear in some ∆d .

Helpful Lemma Three Proof continued:

If the branch ended with EMP, then we know this must happen as
the ∆f become empty.

So suppose that the branch ended with a LOOP up to tableau
node xjl but that αUβ ∈ ∆f for all f ≥ i .
Sometime after i , we have (f − N)modM = 0, so we know
αUβ ∈ ∆f = Γ(xjl).
Thus αUβ is one of the eventualities in Γ(xjl) that have to be
satisfied between xjl and xn.
Say that β ∈ Γ(xh) and it will also be in the next pre-STEP label
xjq after xh.
So eventually we find a d ≥ i such that (d − N)modM + N = q
and β ∈ ∆d as required.

Helpful Lemma Four

Lemma

Suppose ¬(αUβ) ∈ ∆i .
Then either 1) or 2) below hold.
1) There is some d ≥ i such that ¬α,¬β ∈ ∆d and for all f , if
i ≤ f < d then {¬β,¬(αUβ),X¬(αUβ)} ⊆ ∆f .
2) For all d ≥ i , {¬β,¬(αUβ),X¬(αUβ)} ⊆ ∆d .

This is similar to the last helpful lemma.

Soundness continued:

Now we need to show that (S ,R, g), σ |= φ.
To do so we prove a stronger result. This sort of result is
traditionally called a truth lemma.

Our lemma just says that

Lemma (truth lemma)

for all α, for all i ≥ 0, if α ∈ ∆i then (S ,R, g), σ≥i |= α.

Check that this is stronger.

Proof by induction:

This is proved by induction on the construction of α.
However, we do cases for α and ¬α together.
For all i ≥ 0:
if α ∈ ∆i then (S ,R, g), σ≥i |= α.
AND
if ¬α ∈ ∆i then (S ,R, g), σ≥i |= ¬α.

Proof Lemma Case p:

Fix i ≥ 0. If i < N let i ′ = i and otherwise let
i ′ = (i − N)modM + N. Thus σi = i ′.

If p ∈ ∆i = Γ(xji′) then, by definition of g , p ∈ g(i ′). So
p ∈ g(σi) and (S ,R, g), σ≥i |= p as required.

If ¬p ∈ ∆i then (S ,R, g), σ≥i |= ¬p because p will not be in ∆i

(by rule X) and so we did not put p in g(i ′).

Proof Lemma Case ¬¬α:

Fix i ≥ 0.
If ¬¬α ∈ ∆i then (S ,R, g), σ≥i |= ¬¬α because α will also have
been put in ∆i (by rule DNEG) and so by induction
(S ,R, g), σ≥i |= α.

¬¬¬α is similar.

Proof Lemma Case α ∧ β:

Fix i ≥ 0.
If α ∧ β ∈ ∆i then (S ,R, g), σ≥i |= α ∧ β because α and β will
also have been put in ∆i (by rule CON) and so by induction
(S ,R, g), σ≥i |= α and (S ,R, g), σ≥i |= β.

If ¬(α ∧ β) ∈ ∆i then (S ,R, g), σ≥i |= ¬(α ∧ β) because by rule
DIS we will have put ¬α ∈ ∆i or ¬β ∈ ∆i (or one or both of them
are already there) and so by induction (S ,R, g), σ≥i |= ¬α or
(S ,R, g), σ≥i |= ¬β.

Proof Lemma Case αUβ:

If αUβ ∈ ∆i then by rule UNT we will have either put both
α ∈ ∆i and X (αUβ) ∈ ∆i or we will have β ∈ ∆i .

Consider the second case. (S ,R, g), σ≥i |= β so
(S ,R, g), σ≥i |= αUβ and we are done.

Proof Lemma Case αUβ continued:

Now consider the first case: αUβ ∈ ∆i as well as α ∈ ∆i and
X (αUβ) ∈ ∆i .

By the helpful lemma above this keeps being true for later i ′ ≥ i
until β ∈ ∆i ′ .

By induction, for each i ′ ≥ i until then, (S ,R, g), σ≥i ′ |= α.

Clearly if we get to a l > i with β ∈ ∆l then (S ,R, g), σ≥l |= β
and (S ,R, g), σ≥i |= αUβ as required.

Proof Lemma Case ¬(αUβ):

If ¬(αUβ) ∈ ∆i then rule NUN means that ¬β,¬α ∈ ∆i or
¬β,X¬(αUβ) ∈ ∆i .

In the first case, (S ,R, g), σ≥i |= ¬α and (S ,R, g), σ≥i |= ¬β so
(S ,R, g), σ≥i |= ¬(αUβ) as required.

In the second case we can use helpful lemma four which uses an
induction to show that ¬β,¬(αUβ),X¬(αUβ) keep appearing in
the ∆i ′ labels forever or until ¬α also appears.

In either case (S ,R, g), σ≥i |= ¬(αUβ) as required.

Proof Lemma Case Xα:

If Xα ∈ ∆i then, by helpful lemma two, α ∈ ∆i+1 so by induction
(S ,R, g), σ≥i+1 |= α and (S ,R, g), σ≥i |= Xα as required.

¬Xα is similar...
If ¬Xα ∈ ∆i then, by helpful lemma two, ¬α ∈ ∆i+1 so by
induction (because we did ¬α first) (S ,R, g), σ≥i+1 |= ¬α and
(S ,R, g), σ≥i |= ¬Xα as required.

Soundness Done:

And thus ends the soundness proof.

If we have a successful tableau then the formula is satisfiable.

One last question; where is the REP rule in the soundness proof?

Proof of Completeness:

We have to show that if a formula has a model then it has a
successful tableau.

This time we will use the model to find the tableau.

Proof of Completeness:

The basic idea is to use a model (of the satisfiable formula) to
show that in any tableau there will be a branch (i.e. a leaf) with a
tick.

A weaker result is to show that there is some tableau with a leaf
with a tick.

Such a weaker result may actually be ok to establish correctness
and complexity of the tableau technique.
However, it raises questions about whether a “no” answer from a
tableau is correct and it does not give clear guidance for the
implementer.

Completeness Proof:

Suppose that φ is a satisfiable formula of LTL.
It will have a model. Choose one, say (S ,R, g), σ |= φ. In what
follows we (use standard practice when the model is fixed and)
write σ≥i |= α when we mean (S ,R, g), σ≥i |= α.
Also, build a tableau T for φ in any manner as long as the rules
are followed. Let Γ(x) be the formula set label on the node x in T .
We will show that T has a ticked leaf.
To do this we first construct a sequence x0, x1, x2, of nodes,
with x0 being the root. This sequence may terminate at a tick
(and then we have succeeded) or it may hypothetically go on
forever (and more on that later).
In general the sequence will head downwards from a parent to a
child node but occasionally it may jump back up to an ancestor.

Invariant

As we go we will also make sure that each node xi is associated
with a state σj(i) in S .
We will ensure that for each i , for each α ∈ Γ(xi), σ≥j(i) |= α.
Start by putting j(0) = 0 when x0 is the tableau root node.
Note that the only formula in Γ(x0) is φ and that σ≥0 |= φ.
Good start.

Now suppose that we have identified the x sequence up until xi .

Consider the rule that is used in T to extend a tableau branch
from xi to some children.

[EMP] If Γ(xi) = {} then we are done. T is a successful tableau as
required.

[X] Consider if it is possible for the branch to stop at xi with a
cross because of a contradiction. So there is some α with α and
¬α in Γ(xi). But this can not happen as then σ≥j(i) |= α and
σ≥j(i) |= ¬α.

[DNEG]

So ¬¬α is in Γ(xi) and there is one child, which we will make
x(i + 1) and we will put j(i + 1) = j(i). Because σ≥j(i) |= ¬¬α we
also have σ≥j(i+1) |= α. Also for every other
β ∈ Γ(xi+1) = Γ(xi) ∪ {α}, we still have σ≥j(i+1) |= β. So we have
the invariant holding.

[CON]

So α ∧ β is in Γ(xi) and there is one child, which we will make
x(i + 1) and we will put j(i + 1) = j(i). Because σ≥j(i) |= α ∧ β
we also have σ≥j(i+1) |= α and σ≥j(i+1) |= β. Also for every other
γ ∈ Γ(xi+1) = Γ(xi) ∪ {α, β}, we still have σ≥j(i+1) |= γ.
So we have the invariant holding.

[DIS]

So ¬(α ∧ β) is in Γ(xi) and there are two children. One y is
labelled Γ(xi) ∪ {¬α} and the other, z , is labelled Γ(xi) ∪ {¬β}.
We know σ≥j(i) |= ¬(α ∧ β). Thus, σ≥j(i) 6|= α ∧ β and it is not
the case that both σ≥j(i) |= α and σ≥j(i) |= β. So either
σ≥j(i) |= ¬α or σ≥j(i) |= ¬β.
If the former, i.e. that σ≥j(i) |= ¬α we will make xi+1 = y and
otherwise we will make xi+1 = z . In either case put j(i + 1) = j(i).
Let us check the invariant. Consider the first case. The other is
exactly analogous.
We already know that we have σ≥j(i+1) |= ¬α. Also for every other
γ ∈ Γ(xi+1) = Γ(y) = Γ(xi) ∪ {¬α}, we still have σ≥j(i+1) |= γ.
So we have the invariant holding.

[UNT]

So αUβ is in Γ(xi) and there are two children. One y is labelled
Γ(xi) ∪ {β} and the other, z , is labelled Γ(xi) ∪ {α,X (αUβ)}.
We know σ≥j(i) |= αUβ. Thus, there is some k ≥ j(i) such that
σ≥k |= β and for all l , if 0 ≤ l < k then σ≥j(i)+l |= α.
If σ≥j(i) |= β then we can choose k = j(i) (even if other choices as
possible) and otherwise choose any such k > j(i). Again there are
two cases, either k = j(i) or k > j(i).
In the first case, when σ≥j(i) |= β, we put xi+1 = y and otherwise
we will make xi+1 = z . In either case put j(i + 1) = j(i).
Let us check the invariant. Consider the first case.
We know that we have σ≥j(i+1) |= β.
In the second case, we know that we have σ≥j(i+1) |= α and
σ≥j(i+1)+1 |= αUβ. Thus σ≥j(i+1) |= X (αUβ).
Also, in either case, for every other γ ∈ Γ(xi+1) we still have
σ≥j(i+1) |= γ.
So we have the invariant holding.

[NUN]

So ¬(αUβ) is in Γ(xi) and there are two children. One y is
labelled Γ(xi) ∪ {¬α,¬β} and the other, z , is labelled
Γ(xi) ∪ {¬β,X¬(αUβ)}.
We know σ≥j(i) |= ¬(αUβ).
So for sure σ≥j(i) |= ¬β.
Furthermore, possibly σ≥j(i) |= ¬α as well, but otherwise if
σ≥j(i) |= α then we can show that we can not have
σ≥j(i)+1 |= αUβ. Suppose for contradiction that σ≥j(i) |= α and
σ≥j(i)+1 |= αUβ.

[NUN] continued

We have supposed that σ≥j(i) |= α and σ≥j(i)+1 |= αUβ while also
σ≥j(i) 6|= αUβ.
Then there is some k ≥ 0 such that σ≥j(i)+1+k |= β and for all l , if
0 ≤ l < k then σ≥j(i)+1+l |= α.
But then for all l , if 0 ≤ l < k + 1 then σ≥j(i)+l |= α.
Thus σ≥j(i) |= αUβ.
Contradiction.

[NUN] continued

So we can conclude that there are two cases when the NUN rule is
used.
CASE 1: σ≥j(i) |= ¬β and σ≥j(i) |= ¬α.
CASE 2: σ≥j(i) |= ¬β and σ≥j(i)+1 |= ¬(αUβ).
In the first case, when σ≥j(i) |= ¬β, we put xi+1 = y and otherwise
we will make xi+1 = z . In either case put j(i + 1) = j(i).
Let us check the invariant. In both cases we know that we have
σ≥j(i+1) |= ¬β.
Now consider the first case. We also have σ≥j(i) |= ¬α.
In the second case, we know that we have σ≥j(i)+1 |= ¬(αUβ).
Thus σ≥j(i+1) |= X¬(αUβ).
Also, in either case, for every other γ ∈ Γ(xi+1) we still have
σ≥j(i+1) |= γ.
So we have the invariant holding.

[STEP]

So Γ(xi) is propositionally complete and there is one child, which
we will make xi+1 and we will put j(i + 1) = j(i) + 1.
Consider a formula
γ ∈ Γ(xi+1) = {α|Xα ∈ Γ(xi)} ∪ {¬α|¬Xα ∈ Γ(xi)}.
CASE 1: Say that Xγ ∈ Γ(xi). Thus, by the invariant,
σ≥j(i) |= Xγ. Hence, σ≥j(i)+1 |= γ. But this is just σ≥j(i+1) |= γ
as required.
CASE 2: Say that γ = ¬δ and ¬X δ ∈ Γ(xi). Thus, by the
invariant, σ≥j(i) |= ¬X δ. Hence, σ≥j(i)+1 6|= δ. But this is just
σ≥j(i+1) |= γ as required.
So we have the invariant holding.

[LOOP]

If, in T , the node xi is a leaf just getting a tick via the LOOP rule
then we are done.

T is a successful tableau as required.

[REP]

Now the tricky case.
Suppose that xi is a node which gets a cross in T via the REP rule.
So there is a sequence
u = xh, xh+1, ..., xh+a = v , xh+a+1, ..., xh+a+b = xi = w such that
Γ(u) = Γ(v) = Γ(w) and no extra eventualities of u are satisfied
between v and w that were not already satisfied between u and v .
What we do now is to choose some such u, v and w , there may be
more than one triple, and proceed with the construction as if xi
was v instead of w .
That is we move on to look at the rule (as above, and the rule will
not be REP) that is used to get from v to its children.
However, we use σ≥i to make the choice of child xi+1 (if there is a
choice).
All the reasoning above works because Γ(v) = Γ(xi) and so the
invariant holds for v instead of xi as well.
Thus we keep going.

The above construction may end finitely with us finding a ticked
leaf and succeeding.
However, at least in theory, it may seem possible that the
construction keeps going forever even though the tableau will be
finite.
The rest of the proof is to show that this actually can not happen.
The construction can not go on forever. It must stop and the only
way that we have shown that that can happen is by finding a tick.

Suppose for contradiction that the construction does go on forever.
Thus, because there are only a finite number of nodes in the
tableau, we must meet the REP rule and jump back up the tableau
infinitely often.
When we do apply the REP rule with triple (u, v ,w) call that a
jump triple.
There are only a finite number of jump triples so there must be
some that cause us to jump infinitely often.
Say that (u0, v0,w0) is one such.
We can choose u0 so that for no other infinite jump triple
(u1, v1,w1) do we have u1 being a proper ancestor of u0.

As we proceed through the construction of x0, x1, .. and see a jump
every so often, eventually all the jump triples who only cause a
jump a finite number of times stop causing jumps.
After that time, (u0, v0,w0) will still cause a jump every so often.
Thus after that time u0 will never appear again as the xi that we
choose and all the xi s that we choose will be descendants of u0.
This is because we will never jump up to u0 or above it (closer to
the root).
Say that xN is the very last xi that is equal to u0.

Now consider any αUβ that appears in Γ(u0). (There must be at
least one eventuality in Γ(u0) as it is used to apply rule REP).
A simple induction shows that αUβ will appear in every Γ(xi) from
i = N up until at least when β appears in some Γ(xi) after that (if
that ever happens).
This is because if αUβ is in Γ(xi) and β is not there and does not
get put there then X (αUβ) will also be put in before the next
temporal step rule.
Each temporal step rule will thus put αUβ into the new label.

Now j(i) just increases by 0 or 1 with each increment of i , We also
know that σ≥j(i) |= αUβ from i = N onwards until (and if) β gets
put in Γ(xi).
Since σ is a fullpath we will eventually get to some i with
σ≥j(i) |= β.
In that case our construction makes us put β in the label.
Thus we do eventually get to some i ≥ N with β ∈ Γ(xi).
Let Nβ be the first such i ≥ N.
Note that all the nodes between u0 and xNβ

in the tableau also
appear as xi for N < i < Nβ so that they all have αUβ and not β
in their labels Γ(xi).

Now let us consider if we ever jump up above xNβ
at any step of

our construction (after Nβ).
In that case there would be tableau nodes u, v and w arranged
according to the jump situation.
Since u is not above u0 and v is above xNβ

, we must have
Γ(u) = Γ(v) with αUβ in them and not satisfied in between.
But w will be below xNβ

at the first such jump, meaning that β is
satisfied between v and w .
Contradiction.

The above reasoning applies to all eventualities in Γ(u0).
Thus, after they are all satisfied, the construction xi does not jump
up above any of them.
When the next supposed jump involving u0 with some v and w
happens after that it is clear that all of the eventualities in Γ(u0)
are satisfied above v .
This is a contradiction to such a jump ever happening.
Thus we can conclude that there are not an infinite number of
jumps after all.
The construction must finish with a tick.
END of completeness proof.

You might like to read up on other approaches to deciding
satisfiability in LTL.
Wolper [Wol85]
Schwendiman [Sch98]
Sistla and Clarke [SC85]
Schmitt and Goubault-Larrecq [SGL97]
Automata-based approaches
Resolution-based approaches.
Others, e.g. Small model theorems with axiom systems.
Implementation races, and benchmarking: [GKS10]

What about complexity?
Deciding LTL satisfiability is in PSPACE [SC85].
In fact our tableau approach can be used to show that.
Easiest to use the tableau search to directly show that the problem
is in NPSPACE and then Savitch tells us also in PSPACE.
We are allowed to guess the right choices and need to show that
“yes” answers can be guessed and checked using memory space
bounded by a polynomial in the size of the input. To do this, just
guess the right branch and remember at each step: the label here,
the previous label (to check you do the STEP rule properly), the
label back at an ancestor that you want to LOOP to, and the
eventualities that you still have to satisfy from that. (Size of
memory usage just linear in size of input even though branch
length may be exponential).

And that’s all for the fourth lecture.

See you tomorrow.

Valentin Goranko, Angelo Kyrilov, and Dmitry Shkatov.
Tableau tool for testing satisfiability in ltl: Implementation and
experimental analysis.
Electronic Notes in Theoretical Computer Science, 262(0):113
– 125, 2010.
Proceedings of the 6th Workshop on Methods for Modalities
(M4M-6 2009).

A. Sistla and E. Clarke.
Complexity of propositional linear temporal logics.
J. ACM, 32:733–749, 1985.

S. Schwendimann.
A new one-pass tableau calculus for PLTL.
In Harrie C. M. de Swart, editor, Proceedings of International
Conference, TABLEAUX 1998, Oisterwijk, LNAI 1397, pages
277–291. Springer, 1998.

P. Schmitt and J. Goubault-Larrecq.

A tableau system for linear-time temporal logic.
In TACAS 1997, pages 130–144, 1997.

P. Wolper.
The tableau method for temporal logic: an overview.
Logique et Analyse, 28:110–111, June–Sept 1985.

