
Università degli studi di Udine
Laurea Magistrale: Informatica

Lectures for April/May 2014
La verifica del software: temporal logic

Lecture 03 LTL tableau continued

Guest lecturer: Mark Reynolds,
The University of Western Australia

May 7, 2014

Lecture 03

Tableau for checking satisfiability in LTL continued.

Lecture 3 LTL satisfiability

We started a detailed look at an algorithm to decide the
satisfiability of LTL formulas.
The first slides are repeated from the last lecture so it is easy to
look back.

We want to invent an algorithm which solves the LTL-SAT
problem. Input should be a formula from LTL. Output is “yes” or
“no” depending on whether the formula is satisfiable or not.

LTL Syntax:

If p ∈ L then p is a wff.

If α and β are wff then so are ¬α, α ∧ β, Xα, and αUβ.

LTL Semantics:

Write M, σ |= α iff the formula α is true of the fullpath σ in the
structure M = (S ,R, g) defined recursively by:

M, σ |= p iff p ∈ g(σ0), for p ∈ L
M, σ |= ¬α iff M, σ 6|= α
M, σ |= α ∧ β iff M, σ |= α and M, σ |= β
M, σ |= Xα iff M, σ≥1 |= α
M, σ |= αUβ iff there is some i ≥ 0 such that M, σ≥i |= β

and for each j , if 0 ≤ j < i then M, σ≥j |= α

Satisfiability:

A formula α is satisfiable iff there is some structure (S ,R, g) with
some fullpath σ through it such that σ |= α.

Eg, >, p, Fp, p ∧ Xp ∧ F¬p, Gp are each satisfiable.

Eg, ⊥, p ∧ ¬p, Fp ∧ G¬p, p ∧ G (p → Xp) ∧ F¬p are each not
satisfiable.

Can we invent an algorithm for deciding whether an input formula
(of LTL) is satisfiable or not?

Build a model:

To test satisfiability of a formula, what about trying to build a
model of it?
Eg, suppose that we ask about the satisfiability of
¬p ∧ X¬p ∧ (qUp)

s0 s1 s2 s3 s4 ...// // // // //

1

Let’s make ¬p ∧ X¬p ∧ (qUp) true at s0.

By propositional reasoning we need to make ¬p, X¬p and qUp
true at s0 as well.

Build a model of ¬p ∧ X¬p ∧ (qUp):

So {¬p ∧ X¬p ∧ (qUp),¬p,X¬p, qUp} are to hold at s0.

s0 s1 s2 s3 s4 ...// // // // //

1

Easy to make ¬p hold there.
Easy to see that we should also make ¬p true at s1.
But what about qUp?

qUp:

There are two alternative ways to make αUβ true at a state s.
You can make β true there.
OR
You can make α true there and make αUβ true at a next state.

In our case, with qUp we can not do the former in s0 so we need
to make q true at s0 and postpone qUp until s1.
And again at s1 we have to make q true there and postpone qUp
until s2.
At s2 we can use the first case.
Thus we show the formula is satisfiable and we have built a model.

From tableau labels to labelling:

s0 s1 s2 s3 s4 ...// // // // //

1

{¬p ∧ X¬p ∧ (qUp),¬p,X¬p, qUp, q} are to hold at s0.
{¬p, qUp, q} are to hold at s1.
{qUp, p} are to hold at s2.

Answer: {q}, {q}, {p}, {}, {}, ...

Can this be generalised?:

Labelling nodes with formulas is good. Starting from s0 and
working forwards in time is good.

However, some problems:
How to deal with choices (that are not immediately obvious).
What if we need to go on forever building the model?
What if we go on forever making something that is not going to be
a model?

The following is a new (unpublished) simpler tableau for LTL. It
builds on work by Sistla and Clarke (1985) and is influenced by
LTL tableaux by Wolper (1982) and Schwendimann (1998).

Reminder of Tableau for classical propositional logic:

Possibilities branch into a tree as we work down the page ...

p ∧ (q ∨ ¬r)

��
p, (q ∨ ¬r)

|| ""
p, q p,¬r

1

Same rules for LTL:

Same things can happen for LTL within a state ...

Xp ∧ ((qUr) ∨ ¬Xp)

��
Xp, ((qUr) ∨ ¬Xp)

|| ""
Xp, qUr Xp,¬Xp

��×

1

Rules:

[EMP]: If a node is labelled {} then this node can be ticked.
[X]: If a node is labelled Γ with some α and ¬α in Γ then this
node can be crossed.
[DNEG]: If a node is labelled Γ with some ¬¬α in Γ then this node
can have one child labelled Γ ∪ {α} (provided this is not Γ itself).
[CON]: If a node is labelled Γ with some α ∧ β in Γ then this node
can have one child labelled Γ∪{α, β} (provided this is not Γ itself).
[DIS]: If a node is labelled Γ with some ¬(α ∧ β) in Γ then this
node can have two children labelled Γ ∪ {¬α} and Γ ∪ {¬β}
respectively (provided neither is Γ itself).

Until also gives us choices:

pUq

zz $$
q p,X(pUq)

¬(pUq)

zz $$
¬q,¬p ¬q,X¬(pUq)

1

Rules for Until:

[UNT]: If a node is labelled Γ with some αUβ in Γ then this node
can have two children labelled Γ ∪ {α,X (αUβ)} and Γ ∪ {β}
***provided that you have not already used this rule on αUβ since
the last use of the rule STEP (see below)***.

[NUN]: If a node is labelled Γ with some ¬(αUβ) in Γ then this
node can have two children labelled Γ ∪ {¬β,X¬(αUβ)} and
Γ ∪ {¬α,¬β} (provided neither is Γ itself).

But what to do when we want to move forwards in time?:

¬p ∧X¬p ∧ qUp

��
¬p,X¬p ∧ qUp

��

¬p,X¬p, qUp

zz $$

¬p,X¬p, p
��×

¬p,X¬p, q,X(qUp)

��
?

1

Introduce a new type of step:

¬p ∧X¬p ∧ qUp

��
¬p,X¬p ∧ qUp

��

¬p,X¬p, qUp

zz $$

¬p,X¬p, p
��×

¬p,X¬p, q,X(qUp)

��
=

¬p, qUp

1

Step Children:

If none of the above (static) rules are applicable to a node then we
say that the node is propositionally complete and then, and only
then, is the following rule applicable.

[STEP]: The node, labelled by propositionally complete Γ say, can
have one child, called a step-child, whose label ∆ is defined as
follows.
∆ = {α|Xα ∈ Γ} ∪ {¬α|¬Xα ∈ Γ}.

Note that ∆ may be empty. After a step rule then try to use the
static rules again.

Homework: ¬p ∧ X¬p ∧ (qUp) example.

¬p ∧X¬p ∧ qUp

¬p,X¬p ∧ qUp

¬p,X¬p, qUp
ss ++

¬p,X¬p, p

×

¬p,X¬p, q,X(qUp)
=

¬p, qUp
ss ++

¬p, p ¬p, q,X(qUp)
=

× qUp

ss ''
p

=
q,X(qUp)

=

{} qUp

√
...

1

Notation for tableaux:

Note that we do not always write the full set of formulas at every
stage.
Eg, ¬p ∧ X¬p ∧ qUp should be {¬p ∧ X¬p ∧ qUp} and it should
be followed by {¬p,X¬p ∧ qUp,¬p ∧ X¬p ∧ qUp} instead of just
¬p,X¬p ∧ qUp.
In fact, you may notice that each formula only has one rule which
is able to act on it. Once it has been used, the formula becomes
uninteresting.
This is traditional for tableaux and does not matter much.
However, for our “looping” rules coming up we need to remember
that we are officially using the whole set of formulas. The
displayed set may only lose formulas at temporal steps.

General Idea of the LTL Tableau:

The tableau for φ is a tree of nodes (going down the page from a
root) each labelled by a set of formulas.
The root is labelled {φ}.
Some of the child relations are step-children (indicated by −−//→).
Some of the branches end in crossed leaves and some in ticked
leaves.
The whole tableau is successful (if there is a ticked branch), failed
(if all branches are crossed) and otherwise unfinished. Note that
you can stop the algorithm if you tick a branch!
In what follows we will sometimes denote by Γ(u), the tableau
label on a node u.

Before we continue, some shortcuts:

You can show that certain common formulas always lead to a
similar sequence of steps. Thus we can instead use some shortcuts.

For example, > can be ignored in a list of formulas and ⊥ crosses
a branch.

Also, Gα generates α,XGα while Fα leads to two branches, one
with α and the other with XFα.

Useful for manual tableaux and implementations to take note of.

Infinite behaviour:

Still some work to do.

We will try these examples in the next few slides ...
Gp
G (p ∧ q) ∧ F¬p
p ∧ G (p ↔ X¬p) ∧ G (q → ¬p) ∧ GF¬q ∧ GF¬p
p ∧ G (p → Xp) ∧ F¬p

Example: Gp

Gp gives rise to a very repetitive infinite tableau.

Gp

p,XGp
=

Gp

p,XGp
=

Gp

p,XGp

...

1

Notice that the infinite fullpath that it suggests is a model for Gp
as would a fullpath just consisting of the one state with a self-loop
(a transition from itself to itself).

Example: G (p ∧ q) ∧ F¬p

But G (p ∧ q) ∧ F¬p shows that we can not just accept infinite
loops as demonstrating satisfiability....

G(p ∧ q) ∧ F¬p

G(p ∧ q), F¬p

p ∧ q,XG(p ∧ q), F¬p

p, q,XG(p ∧ q), F¬p
qq ��

p, q,XG(p ∧ q),¬p p, q,XG(p ∧ q), XF¬p
× =

G(p ∧ q), F¬p
...

XG(p ∧ q), XF¬p
=

G(p ∧ q), F¬p
...

XG(p ∧ q), XF¬p

...

1

G (p ∧ q) ∧ F¬p continued

Notice that the infinite fullpath that the tableau suggests is this
time not a model for G (p ∧ q) ∧ F¬p.

Constant repeating of p, q being made true does not satisfy the
conjunct F¬p.

We have postponed the eventuality forever.

This is not acceptable.

Eventualities:

An eventuality is just a formula of the form αUβ.

(This includes Fγ ≡ >Uγ).

If αUβ appears in the tableau label of a node u then we want β to
appear in the label of some later (or equal node) v . In that case
we say that the eventuality is satisfied by v .

Eventualities are eventually satisfied in any (actual) model of a
formula: by the semantics of until.

Loops:

If a label is repeated along a branch and all eventualities are
satisfied in between then we can build a model by looping states.
In fact, the ancestor can have a superset and it will work.

[LOOP]: If a node n has a proper ancestor (i.e. not itself) m such
that Γ(m) ⊇ Γ(n), m has a STEP-child, and all eventualities in
Γ(m) are satisfied by labels between m and n (including m itself)
then n can be ticked.

Nice example to try:

p ∧ G (p ↔ X¬p) ∧ G (q → ¬p) ∧ G (r → ¬p) ∧ G (q →
¬r) ∧ GFq ∧ GFr

Are we done yet?

No.

Examples like G (p ∧ q) ∧ F¬p may have branches that go on
forever without a tick. We need to stop and fail branches so that
we can answer “no” correctly and terminate and so that we do not
get distracted when another branch may be successful. In fact, no
infinite branches should be allowed.

Try also: p ∧ G (p → Xp) ∧ F¬p

Can’t we see that these infinite branches are just getting repetitive
without making a model?

Closure set:

As we construct the tableau model we only need to record, in the
labels, which formulas we want to be true at that time from a
finite set of interesting formulas.
The closure set for a formula φ is as follows:

{ψ,¬ψ|ψ ≤ φ} ∪ {X (αUβ),¬X (αUβ)|αUβ ≤ φ}

(Where ψ ≤ φ means that ψ is a subformula of φ.)

Size of closure set is ≤ 4n where n is the length of the initial
formula.

This shows that only formulas from a finite set will appear in labels.

...and only ≤ 24n possible labels.

Don’t go on further than you need to:

This gives us my idea of useless intervals on branches in the
tableau.

If a node at the end of a branch (of a partially complete tableau)
has a label which has appeared already twice above, and between
the second and third appearance there are no new eventualities
satisfied then that whole interval of states has been useless!

The REPetition rule:

[REP]:
Suppose that u = u0, u1, ..., uj−1, uj = v , uj+1, ..., uk = w is a
sequence of consecutive descendants in order.
Suppose that Γ(u) = Γ(v) = Γ(w), u and v have STEP-children
and w is propositionally complete.
Suppose also that for all eventualities αUβ ∈ Γ(u), if β is satisfied
between v and w then β is satisfied between u and v anyway.
Then w can be crossed.

(We assume that there are some unsatisfied eventualities from
Γ(u) left. Otherwise use the LOOP rule to tick the branch.)

Examples:

Now try G (p ∧ q) ∧ F¬p and p ∧ G (p → Xp) ∧ F¬p.

LTL Tableau Summary:

Is a finite tree of nodes labelled by subsets of the closure set of φ
such that:

the root is labelled with {φ}
the labels of children of each node are according to one of the
tableau rules

Successful if some leaf is ticked.

Failed if all leaves are crossed.

(Not really a proper description of an algorithm but we will see
that the further details of which formula to consider at each step
in building the tableau are unimportant).

Proof of Correctness:

This will consist of three parts.

Proof of soundness. If a formula has a successful tableau then it
has a model.

Proof of completeness: If a formula has a model then building a
tableau will be successful.

Proof of termination. Show that the tableau building algorithm
will always terminate.

First, the Proof of Termination:

(Sketch only)

Any reasonable tableau search algorithm will always terminate
because there can be no infinitely long branches.

We know this because the REP rule will cross any that go on too
long.

Thus there will either be at least one tick or all crosses.

Termination is also why we require that other rules are not used
repeatedly in between STEP rules.

Proof of Soundness:

(Overview first)
Use a successful tableau to make a model of the formula, thus
showing that it is satisfiable.

Use a successful branch. Each STEP tells us that we are moving
from one state to the next.

Within a particular state we can make all the formulas listed true
there (as evaluated along the rest of the fullpath). Atomic
propositions listed tell us that they are true at that state.

An induction deals with most of the rest of the formulas.

Eventualities either get satisfied and disappear in a terminating
branch or have to be satisfied if the branch is ticked by the LOOP
rule.

And that’s all for the third lecture.

See you tomorrow.

