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Background on finite model theory

Books

H.-D. Ebbinghaus and J. Flum
Finite Model Theory
Springer, 2nd edition, 2005

L. Libkin
Elements of Finite Model Theory
Springer, 2004



Why finite model theory?

Connections with computation - 1

• Verification
finite structures can be coded as

• words
• trees
• graphs

and thus can be objects of computations

finite structures can be used to describe finite runs of machines



Why finite model theory?

Connections with computation - 2

• Database theory
the relational model identifies a database with a finite
relational structure:

formulas of a formal language can be viewed as programs in
order to evaluate their meaning in a structure

vice versa, one can express queries of a certain computational
complexity in a given formal language

Genuinely finite queries, e.g.,
• Has the relation R even cardinality?



Why finite model theory?

Connections with computation - 3

• Computational complexity

a logical account of complexity classes

As an example, the problem P = NP amounts to the question
whether two fixed-point logics have the same expressive power
in finite structures

Descriptive complexity is a branch of computational complexity
theory and finite model theory that characterizes complexity classes
by the type of logic needed to express the languages in them
(decision problems as languages)



Most theorems fail, one method survives

We focus our attention on first-order (FO) logic

• Results of model theory often do not apply to the finite

• Gödel’s completeness theorem

• Compactness theorem

• Löwenheim-Skolem theorem

• Definability and interpolation results

• etc.

• Ehrenfeucht-Fraïssé games are an exception
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An application of the compactness theorem

Theorem (Compactness Theorem)

(i) if ψ is a consequence of Φ, then ψ is a consequence
of a finite subset of Φ

(ii) if every finite subset of Φ is satisfiable, then Φ is
satisfiable

• Connectivity is not FO-definable over the class of all graphs
G = (G,E)

• The proof is via compactness
• Assume φ defines connectivity
• ψn: “there is no path of length n+ 1 from c1 to c2”
• Let T = {ψn | n > 0 } ∪ {c1 6= c2,¬E(c1, c2),φ}
• Every finite subset of T is satisfiable, but T is not



Compactness fails in the finite

• γn: “there are at least n distinct elements”
• γn

def
= ∃x1 · · · ∃xn

∧
16i<j6n(xi 6= xj)

• Γ = {γn | n > 0 }

• General case: every finite subset of Γ is satisfiable and thus
(compactness theorem) Γ is satisfiable, that is, it has an
(infinite) model

• Finite structures: every finite subset of Γ is satisfiable (it has
a finite model), but Γ has no finite model

• Is connectivity definable over all finite graphs? We cannot
exploit the compactness theorem to answer the question



Isomorphic and elementarily equivalent structures

Definition (Isomorphic structures)
Two structures A, B, over the same finite vocabulary τ, are
isomorphic (A ∼= B) if there is an isomorphism from A to B, that
is, a bijection π : A 7→ B preserving relations and constants

Theorem
Every finite structure can be characterized in FO logic up to
isomorphism, that is, for every finite structure A there exists a FO
sentence ϕA such that, for every B, we have

B |= ϕA iff A ∼= B

Definition (Elementarily equivalent structures)
Two structures A, B are elementarily equivalent (A ≡ B) if they
satisfy the same FO sentences



Notation

• Vocabulary: finite set of relation symbols including = (for the
sake of simplicity, we restrict ourselves to a purely relational
vocabulary; however, all results extend to vocabularies that
have constant symbols)

• A and B structures on the same vocabulary

• #—a = a1, . . . ,ak ∈ dom(A)

• #—

b = b1, . . . ,bk ∈ dom(B)

• (A, #—a): expansion of structure A by k elements from its
universe

• (B,
#—

b ): expansion of structure B by k elements from its
universe

• Configuration: (A, #—a ,B,
#—

b ), with | #—a | = |
#—

b |

• It represents the relation { (ai,bi) | 1 6 i 6 | #—a | }



The notion of quantifier rank

Quantifier rank qr(φ) of a FO-formula φ = maximum number of
nested quantifiers in φ:
• if φ is atomic then qr(φ) = 0;
• qr(¬φ1) = qr(φ1); qr(φ1 ∨ φ2) = max(qr(φ1), qr(φ2));
• qr(∃xφ1) = qr(φ1) + 1

Example
φ = ∀x (P(x)→ ∃yQ(x,y)∨ ∃yR(y)) has qr(φ) = 2



A weakening of elementary equivalence: m-equivalent
structures

Definition (m-equivalent structures)
Two structures A and B are m-equivalent, denoted A ≡m B,
with m > 0, if they satisfy the same FO sentences of quantifier
rank up to m

The notion of m-equivalence can be easily generalized to expanded
structures: (A, #—a) ≡m (B,

#—

b ) if they satisfy the same FO formulas
of quantifier rank m with at most | #—a | free variables



A weakening of isomorphism: m-isomorphic structures - 1

Definition (partial isomorphisms)
(A, #—a ,B,

#—

b ) is a partial isomorphism if it is an isomorphism of the
substructures induced by #—a and

#—

b , respectively

Let I1, . . . , Im be sets of partial isomorphisms such that, for every
k, Ik contains partial isomorphisms which allow k-fold extensions

We can define a weakening of isomorphism: m-isomorphic
structures



A weakening of isomorphism: m-isomorphic structures - 2

Definition (m-isomorphic structures)
Two pairs (A, #—a) and (B,

#—

b ) are m-isomorphic, denoted (A, #—a)
∼=m (B,

#—

b ), if there are nonempty sets I0, I1, . . . , Im of partial
isomorphisms, each of them extending the partial isomorphism
(A, #—a ,B,

#—

b ), such that, for all k = 1, . . . ,m,
• (forth property)
∀p ∈ Ik∀a ∈ dom(A)∃b ∈ dom(B)(p ∪ {(a,b)} ∈ Ik−1)

• (back property)
∀p ∈ Ik∀b ∈ dom(B)∃a ∈ dom(A)(p ∪ {(a,b)} ∈ Ik−1)

Theorem (Fraïssé, 1954)
For m > 0, (A, #—a) ≡m (B,

#—

b ) iff (A, #—a) ∼=m (B,
#—

b )



Combinatorial Games

Ehrenfeucht-Fraïssé games are (logical) combinatorial games.

• Combinatorial games:
• Two opponents
• Alternate moves
• No chance
• No hidden information
• No loops
• The player who cannot move loses1

E. R. Berlekamp, J. H. Conway, and R. K. Guy
Winning Ways for your mathematical plays
A K Peters LTD, 2nd edition, 2001

1In Combinatorial Game Theory (CGT), this is called normal play (the
opposite rule: “the player who cannot move wins” is called misère play, and it
gives rise to quite a different theory)



Ehrenfeucht-Fraïssé games (EF-games)

• (Logical) combinatorial games
• The playground: two relational structures A and B (over the
same finite vocabulary)

• Two players: I (Spoiler) and II (Duplicator)
• Perfect information
• Move by I : select a structure and pick an element in it
• Move by II : pick an element in the opposite structure
• Round: a move by I followed by a move by II
• Game: sequence of rounds
• II tries to imitate I
• A player who cannot move loses



Winning strategies

• A play from (A, #—a ,B,
#—

b ) proceeds by extending the initial
configuration with the pair of elements chosen by the two
players, e.g.,

• if I picks c in A
• and II replies with d in B
• then the new configuration is (A, #—a , c,B,

#—

b ,d)

• Ending condition: a player repeats a move or the configuration
is not a partial isomorphism

Definition
II has a winning strategy from (A, #—a ,B,

#—

b ) if every configuration
of the game until an ending configuration is reached is a partial
isomorphism, no matter how I plays.



An example on graphs

b

a

b

b

b

b

b

b

b

a

G1 G2

• II must respect the adjacency relation. . .
• . . . and pick nodes with the same label as I does
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Bounded and unbounded games

How long does a game last?

• Bounded game: Gm(A, #—a ,B,
#—

b ) (Gm(A,B) if k = 0)
• the number of rounds is fixed: the game ends after m rounds

have been played

• Unbounded game: G(A, #—a ,B,
#—

b ) (G(A,B) if k = 0)
• the game goes on as long as either a player repeats a move or

the current configuration in not partial isomorphism

• II wins if and only if the ending configuration is a partial
isomorphism

Unbounded games turn out to be useful to compare (finite)
structures (comparison games): the remoteness (duration) of an
unbounded game as a measure of structure similarity (the notion of
remoteness will be formalized later)



Main result

First-order EF-games capture m-equivalence

Theorem (Ehrenfeucht, 1961)
II has a winning strategy in Gm(A, #—a ,B,

#—

b ) iff (A, #—a) ≡m (B,
#—

b )

Remarks.

• If two structures A and B are m-equivalent for every natural
number m, then they are elementarily equivalent

• In finite structures, A and B are elementarily equivalent if and
only if they are isomorphic (in general, this is not the case:
consider, for instance, N and the ordered sum N / Z)

Definition (EF-problem)
The EF-problem is the problem of determining whether II has a
winning strategy in Gm(A,B), given A, B and an integer m



Correspondence between games and formulas

EF-games have a natural logical counterpart which is based on the
following simple properties of II winning strategies

Given two structures A and B, a tuple #—a of elements of dom(A),
and a tuple

#—

b of elements of dom(B), with | #—a | = |
#—

b |, and m > 0,
we have that:

• II wins G0(A, #—a ,B,
#—

b ) iff (A, #—a ,B,
#—

b ) is a partial isomorphism

• for every m > 0, II wins Gm(A, #—a ,B,
#—

b ) iff
• for all a ∈ dom(A), there exists b ∈ dom(B) such that II wins

Gm−1(A, #—a ,a,B,
#—

b ,b)
• for all b ∈ dom(B), there exists a ∈ dom(A) such that II win

Gm−1(A, #—a ,a,B,
#—

b ,b)

• for every m > 0, if II wins the game Gm(A, #—a ,B,
#—

b ), then II
wins the game G ′m(A, #—a ,B,

#—

b ), for all m ′ < m



From games to formulas: Hintikka formulas

Definition (Hintikka formulas)
Given a structure A, a tuple #—a of elements of A, with | #—a | = k, and
a tuple #—x of variables x1, . . . , xk, let

ϕ0
(A, #—a)(

#—x )
def
=

∧
ϕ( #—x) atomic
(A, #—a)|=ϕ( #—x)

ϕ( #—x ) ∧
∧

ϕ( #—x) atomic
(A, #—a)|=¬ϕ( #—x)

¬ϕ( #—x )

and, for m > 0,

ϕm+1
(A, #—a)(

#—x )
def
=
∧
a∈A
∃xk+1ϕ

m
(A, #—a ,a)(

#—x , xk+1)∧

∀xk+1
∨
a∈A

ϕm(A, #—a ,a)(
#—x , xk+1).

For each m, ϕm(A, #—a)(
#—x ) is called the m-Hintikka formula.



From games to formulas: Hintikka formulas (cont.)

The Hintikka formula ϕ0
(A, #—a)(

#—x ) describes the isomorphism type
of the substructure of A induced by #—a .

In general, ϕm(A, #—a)(
#—x ) describes to which isomorphism types the

tuple #—a can be extended in m steps by adding one element in each
step. Since the vocabulary is finite, the above conjunctions and
disjunctions are finite even if the structure is infinite.

Theorem (Ehrenfeucht, 1961 - cont.)
For any given (A, #—a), (B,

#—

b ), and m > 0, we have

II has a winning strategy in Gm(A, #—a ,B,
#—

b ) ⇐⇒

(B,
#—

b ) |= ϕm(A, #—a)(
#—x ) ⇐⇒ (A, #—a) ≡m (B,

#—

b )



Distributive normal form

Hintikka formulas are the basis of a normal form for FO formulas:

• the class of structures which satisfies a given FO formula
ϕ( #—x ) of quantifier rank m must be a union of ≡m-classes

• each ≡m-class is defined by a Hintikka formula

• hence, ϕ( #—x ) is logically equivalent to the (finite) disjunction
of those Hintikka formulas which define these ≡m-classes
(distributive normal form for FO logic)



FO definability

A winning strategy for I in Gm(A,B) can be converted into a FO
sentence of quantifier rank at most m that is true in exactly one of
A and B (the Hintikka formula ϕm(A, #—a)(

#—x ) or the Hintikka formula
ϕm

(B,
#—
b)

( #—x )).

A characterization of FO-definable (FO-axiomatizable) classes

• A class K of structures (on the same finite vocabulary) is
FO-definable if and only if there is m ∈ N such that I has a
winning strategy whenever A ∈ K and B 6∈ K.

The same characterization holds in the finite case (classes of finite
structures) – the same argument applies.



FO undefinability

FO-undefinable classes of structures

• A class K of structures is not FO-definable if and only if, for
all m ∈ N, there are A ∈ K and B 6∈ K such that II has a
winning strategy in Gm(A,B).

Example
Let Lk

def
= ({1, . . . ,k},<). It is possible to show that

n,p > 2m − 1⇒ II wins Gm(Ln,Lp)

“The class of linear orderings of even cardinality is not
FO-definable”: given m, choose ñ = 2m and p̃ = 2m + 1;
II wins Gm(Lñ,Lp̃) (i.e., Lñ ≡m Lp̃).

Other applications will be given later (inexpressivity results for FO
logic).



From differentiating formulas to games

• Let A and B be fixed
• Let φ be a formula with quantifier rank m
• Let A |= φ but B 6|= φ
• Repeat m times:

1 If φ = ∀x1ψ, let φ← ¬φ and swap A and B

• So, φ holds in A but not in B and its first quantifier is ∃
2 Let ψ← ψ{x1/c̄1}, with c̄1 a fresh constant symbol
3 Let I pick a1 in A such that (A,a1) |= ψ[c̄1/a1] (since A |= φ,

such an a1 must exist)
4 Whatever b1 II chooses in B, (B,b1) 6|= ψ[c̄1/b1]

5 Let A← (A,a1), B← (B,b1) and φ← ψ

• Switching between models is encoded in φ as quantifier
alternations (step 1)



Example

Consider the formula for density:
φ = ∀x1∀x2∃x3 (x1 < x2 → x1 < x3 < x2),
which holds in (Q,<) but not in (Z,<).

(step 1) φ← ∃x1∃x2∀x3 (x1 < x2 ∧ ¬(x1 < x3 < x2))

(step 2) ψ← ∃x2∀x3 (x1 < x2 ∧ ¬(x1 < x3 < x2)){x1/c̄1} =
∃x2∀x3 (c̄1 < x2 ∧ ¬(c̄1 < x3 < x2))

(step 3) I chooses z in (Z,<) such that
(Z,<, z) |= ψ [c̄1/z]

(step 4) II replies q in (Q,<) such that
(Q,<,q) 6|= ψ [c̄1/q]

(step 2) ψ← ∀x3 (c̄1 < x2 ∧ ¬(c̄1 < x3 < x2)){x2/c̄2} =
∀x3 (c̄1 < c̄2 ∧ ¬(c̄1 < x3 < c̄2))



Example (cont.)

(step 3) I chooses z+ 1 in (Z,<, z) such that
(Z,<, z, z+ 1) |= ψ [c̄1/z, c̄2/z+1]

(step 4) II replies with q ′ > q in (Q,<,q) (otherwise it loses
immediately) such that
(Q,<,q,q ′) 6|= ψ [c̄1/q, c̄2/q ′]

(step 1) φ← ∃x3 (c̄1 < c̄2 → (c̄1 < x3 < c̄2))

(step 2) ψ← c̄1 < c̄2 → (c̄1 < x3 < c̄2){x3/c̄3} = c̄1 < c̄2 →
(c̄1 < c̄3 < c̄2)

(step 3) I chooses q+ q ′−q
2 in (Q,<,q) such that

(Q,<,q,q ′,q+ q ′−q
2 ) |= c̄1 < c̄2 → c̄1 < c̄3 <

c̄2 [c̄1/q, c̄2/q ′, c̄3/q+(q
′−q
2 )]



Example (cont.)

(step 4) Of course, whatever z ′ II chooses, we have
(Z,<, z, z+ 1, z ′) 6|= c̄1 < c̄2 → c̄1 < c̄3 <

c̄2 [c̄1/z, c̄2/z+1, c̄3/z ′]

(game over) The resulting mapping from Q to Z:

q 7→ z

q ′ 7→ z+ 1

q+
q ′ − q

2
7→ z ′

is not a partial isomorphism, so I wins



Labelled linear orders and congruence lemmas

A word w over an alphabet Σ = {a1, . . . ,ak} can be represented by
the structure w = ({1, . . . , |w|},<,Pw1 , . . . ,Pwk ), where P

w
i , for

i = 1, . . . ,k, are unary relations such that j ∈ Pwi if and only if the
j-th letter of w is ai

A formal language L ⊆ Σ+ is first-order definable if there exists a
first-order sentence ϕ in the signature {<,Pw1 , . . . ,Pwk } such that
L = {w ∈ Σ+ | w |= ϕ}

A formal language L ⊆ Σ+ is star-free if it can be obtained from
finite languages by applying Boolean operations and concatenation
(no Kleene star ∗)



McNaughton-Papert theorem

Theorem (McNaughton-Papert)
A formal language is first-order definable iff it is star-free

The difficult direction of the proof of McNaughton-Papert theorem
is from left to right

It can be proved by induction on the quantifier rank of the formula

The essential point in the induction step (dealing with the
existential quantifier) is the proof of the congruence lemma



The congruence lemma

Lemma (Congruence lemma)
If u ≡m u ′ and v ≡m v ′, then uv ≡m u ′v ′

In game-theoretic terms, we need to prove that if Duplicator has
winning strategies for games Gm(u,u ′) and Gm(v, v ′), then he/she
has a winning strategy for the game Gm(uv,u ′v ′)

To win the game Gm(uv,u ′v ′), it suffices to compose the two
strategies for Gm(u,u ′) and Gm(v, v ′) in the obvious way: on u
and u ′ use the strategy for Gm(u,u ′) and on v and v ′ use the
strategy for Gm(v, v ′)



Applications of EF-games

EF-games have been exploited to prove some basic results about
(the expressive power of) FO logic:
• Hanf’s theorem
• Sphere lemma
• Gaifman’s theorem

EF-games have been extensively used to prove negative expressivity
results (sufficient conditions that guarantee a winning strategy for
II suffice)

Gaifman’s theorem and normal forms for FO logic



Gaifman graph

• Gaifman graph G(A) of a structure A: undirected
graph (dom(A),E) where (a,b) ∈ E iff a and b occur in the
same tuple of some relation of A

• If A itself is a (directed) graph, then G(A) is (the undirected
version of) A itself, plus all self-loops

• The degree of a node a is the number of nodes b( 6= a) such
that (a,b) ∈ E (the degree of G is the maximum of the
degrees of its nodes)

• δ(a,b): length of the shortest path between a and b in G(A)
(if there is not such a path, δ(a,b) =∞)

Example
A = ({a,b, c,d},R,S), R = {(a,b)}, S = {(b, c,d)}
δ(a, c) = δ(a,d) = 2

a b

cd



r-sphere and r-neighbourhood
Definition (r-sphere)
Let A be a structure with domain A, a ∈ A, and r ∈ N. The
r-sphere of a (in A), denoted SAr (a), is defined as follows:

SAr (a)
def
= {b ∈ A | δ(a,b) 6 r }.

The notion of r-sphere can be extended to a vector #—a = a1 . . .as
(r-sphere SAr (

#—a)):

SAr (
#—a)

def
= {b ∈ A | δ( #—a ,b) 6 r } = SAr (a1) ∪ . . . ∪ SAr (as).

Definition (r-neighbourhood)
The r-neighbourhood NA

r (
#—a) is the substructure of A induced by

SAr (
#—a).

If we restrict ourselves to graphs of degree 6 d for some fixed d,
there are, for any r > 0, only finitely many possible isomorphism
types of r-spheres.



Hanf’s theorem

• A�r B: there is a bijection f : A→ B such that
NA
r (a)

∼= NB
r (f(a)) for every a ∈ A

The relation A�r B states that locally A and B look the same.

Theorem (Hanf, 1965)
Let A and B be two structures such that, for any r ∈ N, each
r-sphere in A or B contains finitely many elements. Then, A
and B are elementarily equivalent if A�r B for every r ∈ N.

• Hanf’s result does not hold if the Gaifman graph of (at least)
one structure has infinite degree, e.g., the usual ordering
relation on natural numbers



From the infinite case to the finite one

• Hanf’s theorem is of interest only for infinite structures:
as we already pointed out, two finite structures are
elementarily equivalent if and only if they are isomorphic

• A weakened version of Hanf’s theorem, called sphere theorem,
provides a sufficient condition for m-equivalence (instead of a
sufficient condition for elementary equivalence) and it turns
out to be of interest for finite structures

• The proofs of both Hanf’s theorem and sphere theorem use
Fraïssé’s theorem



Sphere theorem

• A�tr B: isomorphic r-neighbourhoods occur the same
number of times in both structures (that is, they have the
same multiplicity) or they occur more than t times in both
structures

Theorem (Sphere theorem)
Given A and B with degree at most d and m ∈ N, if A�tr B for
r = 3m+1 and t = m · d3m+1

, then A ≡m B

• For all m there are r and t such that �tr is finer than ≡m
with respect to the class of structures with degree 6 d

• Strong hypotheses (it is a sufficient condition)
• isomorphic neighbourhoods
• uniform threshold for all neighbourhood sizes
• scattering of neighbourhoods is not taken into account



Sphere theorem: a proof

Thanks to Fraïssé’s theorem, it suffices to show that
(A, #—a) ∼=m (B,

#—

b ).

The required sequence of sets I0, . . . , Im of partial isomorphisms is
defined as follows: p = { (a1,b1), . . . , (am−k,bm−k) } ∈ Ik iff

NA
3k(a1, . . . ,am−k) ∼= NB

3k(b1, . . . ,bm−k)

To prove the forth property (a similar argument holds for the back
property), we assume that such a condition holds for p and we
show that, for every possible choice of a(= am−(k−1)) ∈ A, we
can find b(= bm−(k−1)) ∈ B such that:

NA
3k−1(a1, . . . ,am−(k−1)) ∼= NB

3k−1(b1, . . . ,bm−(k−1))



Sphere theorem: a proof (cont.)
We must distinguish two cases:

• if a ∈ SA2/3·3k(ai) for some ai, then we may choose a

corresponding b from SB2/3·3k(bi) (S
A
3k−1(a) is contained in

SA3k(ai) and S
B
3k−1(b) is contained in SB3k(bi), and thus

NA
3k−1(a) ∼= NB

3k−1(b))

• otherwise, SA3k−1(a) (of some isomorphism type σ) is disjoint
from SA3k−1(ai), for i = 1, . . . ,m− k. From A�tr B, with
r = 3m+1 and t = m · d3m+1

, it follows that the number of
occurrences of spheres of type σ in B is large enough to
guarantee that we may find one which is disjoint from
SB3k−1(bi), for i = 1, . . . ,m− k

By sphere lemma and distributive normal form, any FO formula is
equivalent (over graphs of degree 6 d) to a Boolean combination of
statements of the form “there exist > k occurrences of spheres of types
σ”: FO logic can only express local properties of graphs.
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Inexpressivity results for first-order logic

Normal forms for first-order logic

Algorithms and complexity for specific classes of structures

General complexity bounds



Preliminaries

• From now on, we focus on (finite) structures over finite
relational vocabularies

• σ-structure: (finite) structure over the vocabulary σ
• Every vocabulary implicitly contains =
• σ-formula: formula using extra-logical symbols from σ

• STRUCT[σ]: set of all finite σ-structures
• All classes of structures we consider are assumed to be closed
under isomorphism, that is, if h : A→ B is an isomorphism
between A and B, then A belongs to a class of structures K if
and only if B ∈ K

L. Libkin
Elements of Finite Model Theory, Springer, 2004

K. Doets
Introduction to Ehrenfeucht’s Game, 2002



Theories

Definition
Let σ be a vocabulary. A (first-order) (σ-)theory T is a set of
σ-sentences closed w.r.t. entailment (logical consequence), that is,
T is a theory if and only if, for every σ-sentence φ,

T |= φ ⇔ φ ∈ T.

• The minimal σ-theory is the set of all valid sentences
• The maximal theory (in any language) is set of all sentences:
it is the only inconsistent theory



Theories of classes of models

Definition
Let K be a class of σ-structures. The theory of K is the set

ThK def
= {φ | ∀A ∈ K.A |= φ }.

We will write ThA for Th {A} when A is a single structure.

Lemma
ThK is a theory.

• For a set of σ-sentences Γ , let Mod(Γ) denote the set of all
(finite and infinite) models of Γ

• Then, ThMod(Γ) is the set of sentences that are true in every
model of Γ

• Cn Γ def
= {φ | Γ |= φ } = ThMod(Γ)

• A set of sentences Γ is a theory if and only if Γ = Cn Γ



Complete theories

Definition
A theory T is complete if, for every sentence φ, either φ ∈ T
or ¬φ ∈ T.

• For every σ-structure A, the theory ThA is always complete
• In general, a theory ThK of a class K of models is complete if
and only if A ≡ B for any A,B ∈ K, that is, a theory T is
complete if and only if any two of models of T are elementarily
equivalent



Axiomatizable theories
Definition
A theory T is (recursively) axiomatizable if there is a decidable set
of sentences Γ such that T = Cn Γ . A theory T is finitely
axiomatizable if there is a finite set of sentences Γ0 such
that T = Cn Γ0.

Lemma
A theory is axiomatizable if and only if it is r.e. If a theory is
axiomatizable and complete, then it is decidable.

Definition
A theory T is countably categorical if any two countable models
of T are isomorphic.

• If T is countably categorical, then, by the Löwenheim-Skolem
theorem, any two models of T are elementarily equivalent,
hence T is complete

• So, a countably categorical theory which is axiomatizable is
decidable



Definability of relations
Definition
Let A be a σ-structure. A σ-formula φ with n > 0 free variables
x1, . . . , xn defines the n-ary relation

RAφ = { (a1, . . . ,an) | A |= φ {x1/a1, . . . , xn/an} }.

• A relation S is definable in a σ-structure A if there is a
σ-formula φ such that RAφ = S

• This form of definability is relative to a given structure

Example
The successor relation S = { (n,n+ 1) | n ∈ N } is definable
in (N,<)

• Let φ(x,y) def
= (x < y)∧ ¬∃z (x < z∧ z < y)

• Then S = R
(N,<)
φ(x,y)



Definability (of relations) in (N,<)

Lemma
A set is definable in (N,<) iff it is finite or co-finite
(⇐)
• πn(x) (“x has exactly n predecessors”) is definable

• π0(x)
def
= ¬∃y (y < x), π1(x)

def
= ∃z (π0(z)∧ s(z, x)) (where s

is a <-formula defining the successor), . . .

• A ⊆fin N can be defined by φA(x)
def
=
∨
n∈A πn(x)

• N \A can be defined by ¬φA(x)



Definability (of relations) in (N,<) (cont.)

(⇒)
• Let φ(x) define a set which is neither finite nor co-finite
• (N,<) |= ∀x∃y (x < y∧ φ(y))∧ ∀x∃y (x < y∧ ¬φ(y))

• But N ≡ N / Z
• Hence, there is a in the Z-part of N /Z that satisfies φ(x) and
there is b in the Z-part of N / Z that satisfies ¬φ(x)

• But there is an automorphism of N / Z mapping a onto b
• A contradiction arises

Corollary
The set of even/odd natural numbers is not FO-definable in (N,<)



Definability of σ-structures

Definition
A σ-sentence ψ defines the class Cψ of models in which it is true,
that is,

Cψ = { A | A ∈ STRUCT[σ]∧A |= ψ }

• A given class of structures D is definable if there is a
σ-sentence ψ such that D = Cψ

Definition
A σ-sentence ψ defines the class P relative to a class K of
σ-structures if (and only if)

K ∩ Cψ = P



Queries

Definition
Let m > 0. An m-ary query on a class K ⊆ STRUCT[σ] is a
mapping Q that associates any σ-structure A ∈ K with an m-ary
relation over its universe A such that Q is closed under
isomorphism, that is, if h : A→ B is an isomorphism between A

and B and Q is an m-ary query, then (a1, . . . ,am) ∈ Q(A) if and
only if (h(a1), . . . ,h(am)) ∈ Q(B)

Definition
A Boolean query on K is a mapping (closed under isomorphism)
which assigns a value in {true, false} to any given σ-structure A ∈ K

• Uniform definability over a class of structures
• Binary query 6= Boolean query
• A Boolean query is a statement of a property of a class

• E.g., connectivity of graphs



Queries: examples

Example
Let G be the class of finite graphs and let G = (V ,E) ∈ G be a
finite graph. The following are queries on G:

1 “transitive closure of a graph” (binary query):

TC(G) = { (s, t) ∈ V × V | there is a path from s to t };

2 “elements of degree m” (unary query):

Dm(G) = { v ∈ V | v has degree m };

3 “connectivity” (Boolean query):

CONN(G) =

{
true G is connected;
false otherwise.



Definability of queries

Definition
Let m > 0, L be a logic, and K be a class of σ-structures. An
m-ary query Q on K is L-definable if there is a σ-formula φ of L
with m free variables such that for every A ∈ K

Q(A) = RAφ

Definition
Let L be a logic and K be a class of σ-structures. A Boolean
query Q on K is L-definable if there is a σ-sentence ψ of L such
that

{ A | A ∈ K∧Q(A) = true } = Cψ ∩K



First-order logic is too strong
• Any finite structure can be defined by a single sentence (up to
isomorphism)

Example
Given a finite graph G = (V,E), with |V | = n,

∃x1 · · · ∃xn
(∧
i 6=j

¬(xi = xj)∧ (∀y
∨
i

(xi = y))

∧ (
∧

(vi,vj)∈E

E(xi, xj))∧
∧

(vi,vj) 6∈E

¬E(xi, xj)
)

defines G.

• Every class of finite structures can be characterized by a set of
sentences (up to isomorphism)

• Elementary equivalence is the same as isomorphism in the
finite



First-logic is too strong (cont.)

Lemma
Let σ be a finite vocabulary. Every class K of finite σ-structures is
definable by a set of σ-sentences.

• For every fixed n > 0, there is a only finite number of pairwise
non-isomorphic σ-structures with n elements in K (because σ
is finite)

• Let {A1, . . . ,Ak} be a maximal set of such structures
• Let φAi be the sentence that defines Ai
• Let φ=n be a σ-sentence that expresses the property “there
are exactly n elements” in the domain

• Let ψn
def
= φ=n → (φA1 ∨ · · ·∨ φAk)

• Then, K is precisely the class of models of {ψn | n > 0 }



First-order logic is too weak

• Natural properties cannot be expressed (such as, for instance,
“the domain has even cardinality”)

• “Weak” does not necessarily mean “bad”

“[. . . ] weak expressive power can also be a good thing, as
it implies transfer of properties across different situations.
In non-standard arithmetic, one computes in the structure
N / Z using the infinite numbers to simplify calculations,
and then transfers the outcome back to N, provided it is a
first-order statement about <.”

(van Benthem’s course on logical games, Ch. 2, Model Comparison Games)

Example (Transfer of properties)
Assume that II has a winning strategy in G3((A,R), (B,R ′)) and R
is dense. Then, R ′ is also dense.



Definability and EF-games

Let K be a class of σ-structures and let Q be a Boolean query on K

The following are equivalent (corollary of Ehrenfeucht theorem):

• Q is FO-definable on K

• there is m ∈ N such that, for all A,B ∈ K such that A has
property Q and B does not, I has a winning strategy in
Gm(A,B)

How to prove an inexpressivity result?

• For every m ∈ N, find A,B ∈ K such that
1 A has property Q
2 B has not property Q
3 II has a winning strategy in Gm(A,B)

Soundness: the method above proves that Q is not definable
Completeness: if Q is not definable, the method above can (in
principle) be used to prove it



Definability and EF-games (cont.)
Let K be a class of σ-structures and Q be an m-ary query on K

The following are equivalent (corollary of Ehrenfeucht theorem):

• Q is FO-definable on K

• there is m ∈ N such that, for every A,B ∈ K and m-tuples
#—a ,

#—

b such that #—a ∈ Q(A) and
#—

b 6∈ Q(B), I has a winning
strategy in Gm(A, #—a ,B,

#—

b )

How to prove an inexpressivity result?

• For every m ∈ N, find A,B ∈ K and m-tuples #—a ,
#—

b such that
1 #—a ∈ Q(A)

2
#—

b 6∈ Q(B)

3 II has a winning strategy in Gm(A, #—a ,B,
#—

b )

Soundness: the method above proves that Q is not definable
Completeness: if Q is not definable, the method above can (in
principle) be used to prove it



Games on sets

• Let A and B be two sets
• Empty vocabulary (only equality)

Lemma
If |A|, |B| > m, then A ≡m B

• Assume that, after i rounds (i < m), the mapping A→ B

(a1, . . . ,ai) 7→ (b1, . . . ,bi)

is a partial isomorphism
• At round i+ 1, assume that I picks ai+1

• W.l.o.g, ai+1 6∈ {a1, . . . ,ai}
• II responds with bi+1 ∈ B \ {b1, . . . ,bi}
• B \ {b1, . . . ,bi} is non-empty by hypothesis
• Dual reasoning for I playing in B



Games on sets: applications

Even Cardinality:

EC(A) =

{
true A has even cardinality
false otherwise

Lemma
EC is not FO-definable over sets

• {a1, . . . ,am} ≡m {b1, . . . ,bm+1} (see previous slide)



Games on sets: applications (cont.)

Finiteness:

FIN(A) =

{
true A has finite cardinality
false otherwise

Lemma
FIN is not FO-definable over sets

• {a1, . . . ,am} ≡m N

Does A ≡m B imply |A|, |B| > m?

Of course not! A ≡m B⇔ |A|, |B| > m∨ |A| = |B|



Games on sets: applications (cont.)

Finiteness:

FIN(A) =

{
true A has finite cardinality
false otherwise

Lemma
FIN is not FO-definable over sets

• {a1, . . . ,am} ≡m N

Does A ≡m B imply |A|, |B| > m?

Of course not! A ≡m B⇔ |A|, |B| > m∨ |A| = |B|



Games on sets: applications (cont.)

Finiteness:

FIN(A) =

{
true A has finite cardinality
false otherwise

Lemma
FIN is not FO-definable over sets

• {a1, . . . ,am} ≡m N

Does A ≡m B imply |A|, |B| > m?

Of course not! A ≡m B⇔ |A|, |B| > m∨ |A| = |B|



Games on linear orderings
• Ln = ({1, . . . ,n},<)
• L<kn = ({1, . . . ,k− 1},<) and
L>kn = ({k+ 1, . . . ,n},<) ∼= ({1, . . . ,n− k},<)

• For m,n, t ∈ N, m =t n iff m = n or m,n > t

Lemma
If n,p > 2m − 1, then Ln ≡m Lp

• Direct proof by induction on m maintaining the following
invariant: if (a1 . . . ,ak) 7→ (b1, . . . ,bk) is the mapping after
k rounds, then, for every 1 6 i, j 6 k and t = 2m−k − 1,

1 ai < aj iff bi < bj
2 |ai − aj| =t |bi − bj|, ai =t bi, and n− ai =t p− bi

• Proof using the congruence of linear orderings:
• Ln ≡m+1 Lp iff for every i ∈ Ln, there is j ∈ Lp such that

L<in ≡m L<jp ∧L>in ≡m L>jp

and for every j ∈ Lp, there is i ∈ Ln such that

L<in ≡m L<jp ∧L>in ≡m L>jp



Games on linear orderings: remarks

Lemma
EC is not FO-definable on the class of (finite) linear orderings.

• For every m, L2m−1 ≡m L2m

Lemma
FIN is not FO-definable on the class of linear orderings.

• For all m, L2m−1 ≡m N /NR (NR is like a reversed copy of N)
• Note that the class of finite linear orderings is axiomatizable,
that is, a sentence is true on the class of linear orderings if and
only if it is a logical consequence of the following axioms:

• transitivity
• trichotomy (exactly one among a < b, b < a, and a = b

holds)
• existence of endpoints
• discreteness (existence of successor/predecessor)



A game-theoretic proof of undefinability in (N,<)

Lemma
The set of even natural numbers is not FO-definable in (N,<)

• “The set of even natural numbers” is a unary query
• Let A be (N,<) and let B be (N,<)
• Fix m
• Let a be any even number in A > 2m

• Let b be any odd number in B > 2m − 1
• Then, II has a winning strategy in Gm(A,a,B,b)

• ({0, . . . ,a− 1},<) ≡m ({0, . . . ,b− 1},<)
• ({a+ 1, . . .},<) ≡ ({b+ 1, . . .},<) (they are both ≡ (N,<))
• Just compose the strategies



Undefinability on graphs

Lemma
The class of all (finite or infinite) connected graphs is not
FO-definable.

• Compactness argument (first lesson)

Lemma
CONN is not FO-definable on the class of finite graphs.

• Given m, let r = 3m+1

• Let d > 2r+ 1
• Let G1 consist of a cycle of length 2d
• Let G2 consist of two disjoint cycles of length d
• Every r-neighbourhood is a path of length 2r
• By the Sphere theorem, G1 ≡m G2



Games on trees

• The class of finite trees is not FO-definable over the class of
finite graphs

• compare a path with a cycle
• E.g., see Libkin 2004

K. Doets
On n-Equivalence of Binary Trees
Notre Dame Journal of Formal Logic, 1987
This note presents a simple characterization of the class of all
trees which are n-elementary equivalent with Bm: the binary
tree with one root all of whose branches have length m (for
each pair of positive integers n and m). [. . . ] Section 2
introduces the class Q(n) of binary trees and proves that every
tree in it is n-equivalent with Bm whenever m > 2n − 1.
Section 3 shows that, conversely, each n-equivalent of a Bm
with m > 2n − 1 belongs to Q(n). Finally, all n-equivalents
of Bm for m < 2n − 1 are isomorphic to Bm.



Notions of locality

• Hanf’s theorem (seen) and Gaifman’s theorem (to be seen) are
results about the locality of FO

• They have inspired a slightly different methodology to prove
inexpressivity results

How to prove that query Q is not definable in logic L?

1 Provide a definition of locality for queries
2 Prove that every L-definable query is local according to the

given definition
3 Prove that Q is not local according to the same definition



Hanf-locality
• Recall that A�r B means that there is a bijection f : A→ B

such that NA
r (a)

∼= NB
r (f(a)) for every a ∈ A

Definition
A Boolean query Q on a class K of σ-structures is Hanf-local if,
and only if, there is r ∈ N such that, for every A,B ∈ K,

if A�r B then (Q(A)⇔ Q(B))

Example
CONN is not Hanf-local

• By contradiction, let CONN be Hanf-local for a given r
• Let d > 2r+ 1
• Let G1 consist of a cycle of length 2d
• Let G2 consist of two disjoint cycles of length d
• Let f an arbitrary bijection between G1 and G2
• Every r-neighbourhood is a path of length 2r
• Then, A�r B; but, G1 is connected and G2 is not



Gaifman-locality
Definition
An m-ary query Q on a class K of σ-structures is Gaifman-local if,
and only if, there is r ∈ N such that, for every A ∈ K and m-tuples
#—a1, #—a2 ∈ Am,

if NA
r (

#—a1) ∼= NA
r (

#—a2) then ( #—a1 ∈ Q(A)⇔ #—a2 ∈ Q(A)).

Example
Transitive Closure (TC) is not Gaifman-local

• E.g., consider (Z, succ)
• Given r, take a,b such that b− a > 2r+ 1
• Then, NA

r (a)
∼= NA

r (b)

• Since the neighbourhoods are not adjacent, then
NA
r (a,b) ∼= NA

r (b,a)
• However, (a,b) ∈ TC but (b,a) 6∈ TC



Locality and first-order logic

• Hanf-locality can be applied only when |A| = |B|

• (The version of) Hanf-locality (generalized to m-queries)
implies Gaifman-locality

• Every FO-definable query is Hanf-local
• Hence, every FO-definable query is Gaifman-local
• Exponential lower bounds on the locality ranks (the minimum
integer such that the locality property holds) can be proved



Explicit definability
• Let σ be a purely relational vocabulary
• Let R be a relation symbol in σ
• Let σ0 be σ \ {R}

• Let T be a set of σ-sentences (closed under entailment)

Definition
T explicitly defines R iff there is a σ0-formula φ such that

T |= ∀ #—x (R( #—x )↔ φ( #—x )).

Or, for a complete logic (as FO),

T ` ∀ #—x (R( #—x )↔ φ( #—x )).

• Equivalently, φ explicitly defines R relative to T
• Syntactic notion of definability
• Obviously implies that any two models of T that agree on the
interpretation of σ0 must also agree on the interpretation of R



Explicit definability in FO: an example

• Let σ = {<, s} and σ0 = {<}

• Let T be the theory of linear orderings plus the following:
1 ∀x∀y∀y ′ ((s(x,y)∧ s(x,y ′))→ y = y ′)

2 ∀x∀y (s(x,y)→ x < y)

3 ∀x∀y (x < y→ ∃y ′ (y ′ 6 y∧ s(x,y ′))

• Then, s is explicitly definable relative to T:

T |= ∀x∀y
(
s(x,y)↔ φ(x,y)

)
where

φ(x,y) ≡ x < y∧ ¬∃w (x < w < y)



Explicit definability in FO: an example (cont.)

(→) s(x,y) holds by hypothesis

• By (2), s(x,y) implies x < y
• We need to prove that s(x,y) implies ¬∃w (x < w < y)

• For the sake of contradiction, assume that w exists such that
x < w < y

• Then, by (3), s(x,w ′) holds for some w ′ 6 w
• But then, by (1), y = w ′ 6 w, which contradicts w < y

(←) x < y∧ ¬∃w (x < w < y) holds by hypothesis

• By (3), there is y ′ 6 y such that s(x,y ′) holds
• By (2), x < y ′ 6 y
• By hypothesis, no w exists such that x < w < y
• Hence, y ′ = y and s(x,y) holds



Implicit definability
• Let σ be a purely relational vocabulary
• Let R be a relation symbol in σ
• Let σ0 be σ \ {R}

• Let T be a set of σ-sentences (closed under entailment)
• Let S be a fresh relation symbol with the same arity as R
• Let T ′ be like T with occurrences of R replaced by S

Definition
T implicitly defines R iff any σ0-structure has at most one
expansion to a model of T, i.e.,

T ∪ T ′ |= ∀ #—x (R( #—x )↔ S( #—x )).

• I.e., every pair of models of T that agree on the interpretation
of σ0 also agree on the interpretation of R

• R can be characterized uniquely
• Semantic notion of definability



Beth theorem

• Explicit definability entails implicit definability
• What about the converse?

Definition (Beth Property)
A logic has the Beth property iff for every relation symbol R ∈ σ
and for every set of σ-sentences T, if T implicitly defines R then T
explicitly defines R.

Theorem (Beth theorem)
First-order logic has the Beth property.

• A model-theoretic notion of definability coincides with a
proof-theoretic notion of definability

• Good balance between syntax and semantics
• Unfortunately, FO interpreted over finite structures does not
have the Beth property



Beth theorem fails in the finite
• Let σ = {<,P} with P unary predicate
• Let T be the theory of linear orderings plus

1 ∃x (P(x)∧ ∀y (x 6 y))
2 ∀x∀y (s(x,y)→ (P(x)↔ ¬P(y)), where s(x,y) is a shorthand

for “y is an immediate successor of x”

Lemma
T implicitly defines P on finite models

• Let M be a finite model of T
• M = {m1, . . . ,mk} with m1 < m2 < · · · < mk
• According to T, mi ∈ PM iff i is odd
• Hence, the interpretation of P is uniquely determined
• Note that, on infinite models, this does not need to be the
case

• E.g., on R+ with < interpreted as usual, any P containing 0
yields a model of T



Beth theorem fails in the finite (cont.)

Lemma
There is no explicit definition for P relative to T.

• For the sake of contradiction, suppose that a {<}-formula φ(x)
that defines P exists (φ(x) means “x has odd index”)

• Let k be the quantifier rank of φ
• Consider the formula

ψ ≡ ∃x (φ(x)∧ ∀y (y 6 x))

• ψ must be true in every finite model of T iff its cardinality is
odd

• ψ has quantifier rank k+ 1
• We know that L2k+1−1 ≡k+1 L2k+1

• Hence, L2k+1−1 |= ψ and L2k+1 6|= ψ is a contradiction



Explicit and implicit definability of queries

Definition
A m-ary query Q is explicitly definable iff there is a σ-formula
φ(x1, . . . , xm) such that, for every A, RAφ = Q(A)

Definition
Let P be an m-ary relation symbol not occurring in σ. An m-ary
query Q is implicitly definable iff there is a (σ ∪ {P})-sentence ψ
such that every σ-structure A has a unique expansion to a
(σ ∪ {P})-structure that satisfies ψ, namely (A,Q(A))

• Let Q be “the set of even elements of a finite linear ordering”
• Q is implicitly definable

• See two slides before
• ψ ≡ ∃x (P(x)∧∀y (x 6 y))∧∀x∀y (s(x,y)→ (P(x)↔ ¬P(y))

• There is no explicit definition for Q
• See the previous slide



Explicit and implicit definability: exercise

• Let σ = {s} (interpreted as the successor relation)
• Let Q be binary query: “the transitive closure of s” (<
relation)

1 Using EF-games, prove that Q is not explicitly definable over
the class of successor structures

2 Is Q implicitly definable?



A library of sufficient conditions

• Sufficient conditions allow us to prove negative expressivity
results

R. Fagin and L. J. Stockmeyer and M. Y. Vardi
On monadic NP vs monadic co-NP
Information and Computation, 1995

T. Schwentick
On winning Ehrenfeucht games and monadic NP
Annals of Pure and Applied Logic, 1996

S. Arora and R. Fagin
On winning strategies in Ehrenfeucht-Fraïssé games
Theoretical Computer Science, 1997



Arora and Fagin’s condition

• “Approximately” isomorphic neighbourhoods
• Still based on a multiplicity argument
• Neighborhoods must be tree-like structures

Definition (simplified for directed graphs)

• The (m, 0)-color of an element a is its label plus a description
of whether it is a constant and whether it has a self-loop

• the (m, r+ 1)-color of a is its (m, r)-color plus a list of triples,
one for each possible (m, r)-color τ:

1 the number of elements b with (m, r)-color τ such that
E(a,b) but not E(b,a), counted up to m

2 the number of elements b with (m, r)-color τ such that
E(b,a) but not E(a,b), counted up to m

3 the number of elements b with (m, r)-color τ such that
E(a,b) and E(b,a), counted up to m



Arora and Fagin’s condition (cont.)

Let the color of a directed edge be the ordered pair of colors of its
nodes.

Theorem
Let A = (A,E) and B = (B,E) be two structures of degree at
most d, and let m ∈ N. If
• there is a bijection f : A→ B such that a and f(a) have the
same (m, r)-color, with r = 32m, for all a ∈ A,

• A and B do not have (undirected) cycles of length less than r,
• whenever EA(a,b) holds but EB(f(a), f(b)) does not hold, or
vice versa, then there are at least dr edges in both structures
having the same (m, r)-color as (a,b), (resp., (f(a), f(b))),

then II has a winning strategy in Gm(A,B).



Applications of Arora and Fagin’s condition

• Directed reachability is not in monadic Σ11 (a simpler proof of
Ajtai and Fagin’s result)

• Graph connectivity is not in monadic Σ11
• Both results can be shown to hold even if the vocabulary is
expanded with particular built-in relations of degree no(1),
where n is the size of the structure

• The requirement of the absence of small cycles can be relaxed
at the expense of adding further hypotheses



Schwentick’s extension theorem

Schwentick’s work moves from the following question: Under which
conditions can a “local” strategy be extended?

He develops a method that allows, under certain conditions, the
extension of a winning strategy for II on some small parts of two
finite structures to a global winning strategy.

• The structures must be isomorphic except for some small
parts, for which local winning strategies exist by hypothesis

• The advantage is that there are no further constraints, either
on the degree or on the internal characteristics of the
substructures.



Schwentick’s extension theorem (cont.)

• Let C and D be subtructures of A and B, respectively
• Suppose that II has a winning strategy in Gm(C,D) for
some m

• II has a winning strategy in Gm(A,B) if
1 II’s strategy for Gm(C,D) can be extended to a winning

strategy in Gm(NA
2m(C),NB

2m(D)), so that, at every round the
two chosen elements have the same distance from C and D,
respectively

2 there is an isomorphism α : (A \ C)→ (B \D) such that
δ(x,C) = δ(α(x),D) for all x ∈ NA

2m(C) \ C



Proof’s idea

• Divide the domains of the structures into three regions:
• inner area: I = C ∪D
• outer area: O = (A \ NA

2m(C)) ∪ (B \ NB
2m(D))

• the area in between
• At each round, the inner or outer areas may grow, according to
the played moves

• Separation invariant: after round i the distance from every
element in the inner area and every element in the outer area
is greater than 2m−i

• So, the winning strategy for II is guaranteed by the
isomorphism α in the outer area, and by the extended winning
strategy in the inner area and the area in between



Extensions

• different distance functions can be used
• winning strategies for several pairs of substructures can be
combined

• The separation invariant may be required for some relations,
but not for others (e.g., linear ordering), by adding a kind of
homogeneity condition that guarantees that elements in the
inner and outer areas behave in the same way with respect to
the relations that do not satisfy the separation invariant



Applications of Schwentick’s extension theorem

• Connectivity of finite graphs is not expressible in monadic Σ11
in the presence of built-in relations of degree no(1) (the same
result as Arora and Fagin’s) or even in the presence of a
built-in linear ordering

• Monadic Σ11 with a built-in linear ordering is more expressive
than monadic Σ11 with a built-in successor relation



Introduction to EF-games

Inexpressivity results for first-order logic

Normal forms for first-order logic

Algorithms and complexity for specific classes of structures

General complexity bounds



Gaifman’s theorem (for sentences)
• r-local formula (around #—x ): has “bounded” quantifiers:

∃y (δ( #—x ,y) 6 r∧ φ)
∀y (δ( #—x ,y) 6 r→ φ)

where φ is either quantifier-free or r-local (around #—x )
• δ( #—x ,y) 6 r is FO-definable
• existentially r-local sentence:

∃x1 · · · ∃xs
( ∧
16i<j6s

δ(xi, xj) > 2r∧
∧

16i6s

φ
(i)
r (xi)

)

where φ(i)
r are r-local formulas around xi

Theorem (Gaifman’s theorem)
Every first-order sentence is logically equivalent to a boolean
combination of existentially local sentences.



Gaifman’s theorem: preliminary technicalities

To prove the theorem, we need the following results

Lemma
Let Φ be a set of first-order σ-sentences. If all the σ-structures
that agree on Φ are elementarily equivalent, then any first-order
σ-sentence is equivalent to a boolean combination of sentences
of Φ.

Lemma (Relativization lemma)
Let σ be a purely relational vocabulary. For every r ∈ N and
σ-formula φ( #—x , #—y ), with | #—x | = n and | #—y | = p, there is an r-local
formula φSr(

#—x)( #—x , #—y ) such that, for any σ-structure A, #—a ∈ An
and

#—

b ∈
(
SAr (

#—a)
)p,

A |= φSr(
#—x) {

#—x/#—a, #—y/#—
b} ⇐⇒ NA

r (
#—a) |= φ {

#—x/#—a, #—y/#—
b} .

For the proofs, see Ebbinghaus and Flum’s Finite Model Theory



Gaifman’s theorem: the idea of the proof

• We only prove the theorem for sentences, but it can be
extended to arbitrary formulas

• We show that A ≡ B iff they agree on all existentially local
sentences

• The theorem then follows from the first lemma of the previous
slide

• One direction is trivial
• We prove the non-trivial direction by showing that II has a
winning strategy in an m-round EF-game for every m



Gaifman’s theorem: invariant for the proof
• Let f : N→ N be some function (to be defined)

• constraints on f will emerge during the proof
• in particular, it will turn out that f will be monotonically

non-increasing

• Let a1, . . . ,ai and b1, . . . ,bi be the elements chosen in the
first i rounds

• After i rounds, II will maintain

NA
7m−i−1(a1 · · ·ai) ≡f(i) N

B
7m−i−1(b1 · · ·bi)

• This invariant ensures that a1 · · ·ai 7→ b1 · · ·bi is a partial
isomorphism

• Notation: ri
def
= 7m−i − 1

• So, the invariant after i rounds is

NA
ri
(a1 · · ·ai) ≡f(i) NB

ri
(b1 · · ·bi)



Relativized Hintikka formulas
• Let Hf(i)#—a ( #—x ) denote the f(i)-Hintikka formula for NA

ri
( #—a)

• By the definition of Hintikka formulas,

NA
ri
( #—a) |= H

f(i)
#—a (x) { #—x/#—a}

• Let
Ĥi#—a(

#—x )
def
=
(
H
f(i)
#—a ( #—x )

)Sri( #—a)

that is, Ĥi#—a(
#—x ) is the relativized version (as in the

relativization lemma) of Hf(i)#—a (x) with respect to Sri(
#—a)

• By the relativization lemma,

A |= Ĥi#—a(
#—x ) { #—x/#—a}

• By the relativization lemma and Ehrenfeucht theorem, for
every structure B and

#—

b ∈ Bn

B |= Ĥi#—a(
#—x ) { #—x/#—

b} ⇐⇒ NB
ri
(

#—

b ) ≡f(i) NA
ri
( #—a)



The first round

• W.l.o.g, assume that I plays in A

• Let I choose a1 ∈ A
• NA

r1
(a1) is characterized, up to f(1)-equivalence, by H

f(1)
a1 (x)

• Since the relativized version Ĥ1
a1
(x) is r1-local, then

∃x Ĥ1
a1
(x) is an existentially local sentence that holds in A

• By the hypothesis, ∃x Ĥ1
a1
(x) must hold in B as well

• That is, there is b1 ∈ B such that B |= Ĥ1
a1
(x) {x/b1}

• Hence, NB
r1
(b1) ≡f(1) NA

r1
(a1)

• But this is exactly the invariant after one round
• Therefore, b1 is a suitable reply for II



The inductive step: first case

• Suppose that after i rounds, with i < m, the invariant holds
• Let I choose ai+1 ∈ A
• Two possibilities: either δ(ai+1, #—a) 6 2ri+1 + 1 or not
• Suppose that δ(ai+1, #—a) 6 2ri+1 + 1
• Recall that ri+1 = 7m−(i+1) − 1
• Then, the SAri+1

(ai+1) ⊆ SAri(
#—a)

• Therefore,
NA
ri
( #—a) |= Θ {

#—x/#—a}

where Θ is

∃xi+1
(
δ(xi+1, #—x ) 6 2ri+1 + 1∧ Ĥi+1

#—a ,ai+1
( #—x , xi+1)

)



The inductive step: first case (cont.)

• First constraint on f: impose f(i) > qr(Θ)
• Then, by the invariant and the inductive hypothesis,

NB
ri
(

#—

b ) |= Θ {
#—x/#—
b}

• That is, there is bi+1 ∈ B (with bi+1 6 2ri+1 + 1) such that
(after applying the relativization lemma)

NB
ri+1

(
#—

b ,bi+1) |= H
f(i+1)
#—a ,ai+1

( #—x , xi+1) {
#—x/#—
b, xi+1/bi+1}

• Which implies

NA
ri+1

( #—a ,ai+1) ≡f(i+1) N
B
ri+1

(
#—

b ,bi+1)

• Therefore, the invariant is preserved after round i+ 1



Inductive step: second case

• Suppose that δ(ai+1, #—a) > 2ri+1 + 1
• Then, NA

ri+1
( #—a) and NA

ri+1
(ai+1) are not adjacent (i.e., there

is no tuple in any relation of A which connects the two
neighbourhoods)

• Hence, the disjoint union of NA
ri+1

( #—a) and NA
ri+1

(ai+1) is
isomorphic to NA

ri+1
( #—a ,ai+1) (this will be used later)

• We will show that II is able to find an element bi+1 with the
same f(i+ 1)-isomorphism type as ai+1 and such that
δ(bi+1,

#—

b ) > 2ri+1 + 1
• Since A and B agree on all existentially local sentences, the
existence of a suitable bi+1 will be guaranteed by the
properties they express on the scattering of small
neighbourhoods



Maximal sets of scattered neighbourhoods
• For n ∈ N, let

θ(x1, . . . , xn)
def
=

∧
16j<k6n

δ(xj, xk) > 4ri+1+2∧
∧

16j6n

Ĥi+1
ai+1

(xj)

• “{x1, . . . , xn} is a (4ri+1 + 2)-scattered set of n elements
whose ri+1-neighbourhoods have the same
f(i+ 1)-isomorphism type as ai+1”

• Let t be the cardinality of a maximal subset of elements of A
with the above property, that is, let t be such that

A |= ∃x1 · · · ∃xt θ(x1, . . . , xt)

but
A 6|= ∃x1 · · · ∃xt+1 θ(x1, . . . , xt+1)

• Note that ∃ #—x θ( #—x ) is an existentially local sentence
• Hence, B agrees with A on the above sentences



Maximal sets of scattered neighbourhoods (cont.)
• Let

Λ(n)
def
= ∃x1 · · · ∃xn

( ∧
16j6n

δ(xj, #—a) 6 2ri+1 + 1∧

∧ θ(x1, . . . , xn)
)

• “There is a (4ri+1 + 2)-scattered set of n elements
of SA2ri+1+1(

#—a) whose ri+1-neighbourhoods have the same
f(i+ 1)-isomorphism type as ai+1”

• Let s be the cardinality of a maximal subset of elements with
the above property, that is, let s be such that

NA
ri
( #—a) |= Λ(s)

but
NA
ri
( #—a) 6|= Λ(s+ 1)

• Note that Λ(n) is not an existentially local sentence



Inductive step: second case (cont.)
• There are no two (4ri+1 + 2)-scattered points in a sphere of
radius 2ri+1 + 1

• It is possible to choose at most one element for each
SA2ri+1+1(aj), with 1 6 j 6 i

• Therefore, s 6 i
• Clearly, s 6 t, too (t may be ∞)
• By hypothesis,

B |= ∃x1 · · · ∃xt θ(x1, . . . , xt)

and
B 6|= ∃x1 · · · ∃xt+1 θ(x1, . . . , xt+1)

• Second constraint on f: impose f(i) > qr(Λ(s))
• Then, by the invariant,

NB
ri
(

#—

b ) |= Λ(s)

and
NB
ri
(

#—

b ) 6|= Λ(s+ 1)



First sub-case: s = t
• Suppose that s = t
• Then, any element e ∈ A with the same f(i+ 1)-Hintikka type
of ai+1 is such that

δ(e, #—a) 6 (2ri+1 + 1) + (4ri+1 + 2) = 6ri+1 + 3 <
< 7ri+1 + 3 = 7 · 7m−(i+1) − 4 < 7m−i − 1 = ri

• In particular, the above implies that SAri+1
(e) ⊆ SAri(

#—a)

• This holds for ai+1, too
• Therefore:

NA
ri
( #—a) |= Π {

#—x/#—a}

where Π is

∃z (2ri+1 + 1 < δ( #—x , z) 6 6ri+1 + 3∧ Ĥi+1
ai+1

(z)∧ Ĥi+1
#—a ( #—x ))

• Third constraint on f: impose f(i) > qr(Π)
• Then, by the invariant,

NB
ri
(

#—

b ) |= Π {
#—x/#—
b}



First sub-case: s = t (cont.)

• So, there is bi+1 ∈ B such that

2ri+1 + 1 < δ( #—x , z) 6 6ri+1 + 3

and
NA
ri+1

(ai+1) ≡f(i+1) N
B
ri+1

(bi+1)

• Last constraint on f: impose f(i) > f(i+ 1)
• Then, the invariant implies

NA
ri+1

( #—a) ≡f(i+1) N
B
ri+1

(
#—

b )

• As the neighbourhood around ai+1 (resp., bi+1) is not
adjacent to the neighbourhood around #—a (resp.,

#—

b ) we may
take their disjoint union and conclude that

NA
ri+1

( #—a ,ai+1) ≡f(i+1) N
B
ri+1

(
#—

b ,bi+1)



Second sub-case: s < t

• Suppose that s < t
• Remember that s < t holds in B, too
• Then, there is an element bi+1 ∈ B such that

1 NB
ri+1

(bi+1) is not adjacent to NB
ri+1

(
#—

b ), and
2 B, {x/bi+1} |= Ĥi+1

ai+1
(x)

• Again, by applying the relativization lemma and the
Ehrenfeucht theorem,

NA
ri+1

(ai+1) ≡f(i+1) N
B
ri+1

(bi+1)

• The thesis is then obtained as in the preceding case



Remarks on Gaifman’s theorem

• First-order logic can only talk of scattered small substructures
• First-order logic can only express local properties
• Gaifman’s normal form is effective
• Gaifman’s proof uses EF-games to prove the invariant

NA
7m−i−1(a1 · · ·ai) ≡f(i) N

B
7m−i−1(b1 · · ·bi)

• r-local formulas with r 6 7qr(φ)

• f(i)-equivalence instead of isomorphism as in the Sphere
theorem

• Notion of scattered substructures
• No counting up to a threshold as in the Sphere theorem



Schwentick and Bartelmann’s normal form

Theorem
Every first-order formula is logically equivalent to a formula of the
form ∃x1 · · · ∃xn∀yφ, where φ is r-local around y for some r.

• Consider a differentiating formula ψ
• By the theorem, ψ⇔ ∃x1 · · · ∃xn∀yφ, with qr(φ) = k
• In game-theoretic terms, there is winning strategy for I such
that I plays n rounds by choosing elements in the same
structure (the one that satifies ψ)

• Then, I plays a round in the opposite structure
• Finally, I plays k “local” rounds

T. Schwentick and K. Barthelmann
Local Normal Forms for First-Order Logic with Applications to
Games and Automata
Discrete Mathematics and Theoretical Computer Science, 1999



Shrinking games

• Similar to Schwentick’s extension theorem, but it works in the
opposite direction, by shrinking the playground according to a
sequence of “scattering parameters”

• The authors use Ehrenfeucht–Fraïssé type games with a
shrinking horizon between structures to obtain a spectrum of
normal form theorems of the Gaifman type

• They improve the bound in the proof of Gaifman’s theorem
from 7qr(φ) to 4qr(φ) and they provide bounds for other
normal form theorems

H. J. Keisler and W. B. Lotfallah
Shrinking games and local formulas
Annals of Pure and Applied Logic, 2004



Shrinking games: preliminary definitions

• Let #—s = s0, s1, . . . a possibly infinite sequence of natural
numbers, called scattering parameters

• The sequence of local radii associated with #—s is defined as
follows:

r0 = 1
rn+1 = 2rn + sn

• A set C is s-scattered if δ(a,b) > s for all distinct a,b ∈ C
• A sequence #—s shrinks rapidly (towards s0) if si > 2ri for all i
• Given #—s = s0, s1, . . . that shrinks rapidly, if C is si-scattered
then the ri-neighbourhood around any c ∈ C does not contain
any other element of C



Shrinking games: local rounds

• Let #—s = s0, s1, . . . be a sequence that shrinks rapidly
• For a given m, let S

#—s
m(A, #—a ,B,

#—

b ) denote the current
configuration of an #—s -shrinking game

Definition ( #—s -shrinking game)
A round from S

#—s
m(A, #—a ,B,

#—

b ) is played as follows: I chooses a
structure and 1 6 k < m, and plays either a local or a scattered
move

A local round is played as follows (assuming that I plays in A):
1 I chooses a ∈ NA

rk+sk
( #—a)

2 II replies with b ∈ NB
rk+sk

(
#—

b )

• Note that rk + sk < rk+1 6 rm (by the definition of the ri’s)
• Besides, the rk-neighbourhood around I’s choice is
inside NA

rm
( #—a) (by the definition of the ri’s)



Shrinking games: scattered rounds

A scattered round is played as follows:

1 I chooses a non-empty finite set of sk-scattered elements
C ⊆ NA

rk
( #—a) such that II has a winning strategy in

S
#—s
k (A, c,A,d) for all c,d ∈ C (if | #—a | = 0 then I chooses at

most m− k sk-scattered elements in A)
2 II replies with a non empty set of sk-scattered elements
D ⊆ NB

rk
(

#—

b ) such that |C| = |D|

3 I chooses d ∈ D
4 II chooses c ∈ C
5 The game proceeds from S

#—s
k (A, #—a , c,B,

#—

b ,d)

The ending and winning conditions are as in standard EF-game



Properties of II’s winning strategies

• I has the freedom to shorten the game by choosing k < i− 1
at round i

• Hence, m is an upper-bound to the number of rounds
• This ensures that the set of scattered moves available to I
increases as m increases

Lemma (Lemma 3.2 in the paper)

1 If II has a winning strategy in S
#—s
m(A, #—a ,B,

#—

b ) then II has a
winning strategy in S

#—s
k (A, #—a ,B,

#—

b ) for every k 6 m
2 “Having a winning strategy for II” is an equivalence relation



The role of the local radii

Local radii allow us to establish the following congruence property:

Lemma (Lemma 3.3 in the paper)
If
• II wins S

#—s
m(A, #—a ,B,

#—

b )

• II wins S
#—s
m(A, #—c ,B,

#—

d)

• δ( #—a , #—c ) > rm

• δ(
#—

b ,
#—

d) > rm

then II wins S
#—s
m(A, #—a , #—c ,B,

#—

b ,
#—

d)

Proof.
(Sketch) By induction on m, using the fact that ri + si 6 rm for
all i < m.
Note: the lemma holds even if #—s does not shrink rapidly



Shrinking games: main result

Shrinking games provide a sufficient condition for the existence of a
winning strategy for II in a standard EF-game

Theorem (Corollary 4.3 in the paper)
Let m ∈ N and let #—s = s0, s1, . . . be a sequence that shrinks
rapidly. For every (A, #—a) and (B,

#—

b ), if
• II has a winning strategy in S

#—s
m(A, #—a ,B,

#—

b )

then
• II has a winning strategy in Gm(A, #—a ,B,

#—

b ).



Proof
• We write Sm(· · · ) instead of S

#—s
m(· · · ), assuming that #—s has

been fixed
• We will show that Sm(A,B) implies Gm(A,B)

• Proof by induction on the number m of rounds of the EF-game
• Idea: maintain the following invariant after i rounds of the
EF-game have been played and elements a1, . . . ,ai
and b1, . . . ,bi have been chosen:

II has a winning strategy in
Sm−i(A,a1, . . . ,ai,B,b1, . . . ,bi)

Induction base (i = 1):
• Suppose that I chooses a1 in A in the first round of the
EF-game

• This is always a local move in Sm(A,B)

• Hence, the winning strategy in Sm(A,B), which exists by
hypothesis permits to find b1 in B such that the invariant
holds for i = 1



Proof (cont.)

Induction step (i > 1):

• Suppose that I chooses ai+1 in A at round i+ 1 of the
EF-game

• Let #—a = a1, . . . ,ai and
#—

b = b1, . . . ,bi be the elements
chosen so far

• By the inductive hypothesis, II wins Sp(A, #—a ,B,
#—

b ), where
p = m− i

• We distinguish two cases

Case 1: ai+1 ∈ NA
rp−1+sp−1

( #—a)

• I’s move is a local move in Sp(A, #—a ,B,
#—

b )

• By the inductive hypothesis, II can find bi+1 ∈ NB
rp−1+sp−1

(
#—

b )
such that the invariant still holds for i+ 1



Proof (cont.)

Case 2: ai+1 6∈ NA
rp−1+sp−1

( #—a)

• We will show that II is able to find d 6∈ NB
rp−1

(
#—

b ) such that

II has a winning strategy in Sp−1(A,ai+1,B,d) (1)

• Let II choose bi+1 = d

• Then, the invariant after round i+ 1 is obtained by
Lemma 3.2 and Lemma 3.3 (congruence)

• For the sake of contradiction, assume that such d does not
exist

• Then, any d satisfying (1) must be inside NB
rp−1

(
#—

b )

• At least one d satisfying (1) exists (otherwise, I would win by
choosing k = p− 1 and ai+1 in the first round)



Proof (cont.)

• Let D be a maximal sp−1-scattered set of elements
in NB

rp−1
(

#—

b ) such that (1) holds for every d ∈ D
• Note that D cannot be empty (see previous slide)
• Since #—s shrinks rapidly, that is, sp−1 > 2rp−1, the set D
contains at most one element for each NB

rp−1
(bj), hence

|D| 6 |
#—

b | = i

• Let I play a scattered round in the shrinking game as follows: I
chooses k = p− 1 and the set D above

• Let II reply with a set C according to her winning strategy
• C consists of |D| elements with disjoint rp−1-neighbourhoods
all “equivalent” to ai+1, chosen from NB

rp−1
(

#—

b )

• Note that C does not contain ai+1



Proof (cont.)

• Now, consider another play of the shrinking game starting
from Sm(A,B) (which II wins by hypothesis)

• In the first round, I sets k = p− 1 and plays a scattered move
by choosing the set C ∪ {ai+1}

• C ∪ {ai+1} is sp−1-scattered (because C is sp−1-scattered by
construction, and ai+1 is “far” from C by hypothesis)

• This is a legal move because |C ∪ {ai+1}| 6 i+ 1 = m− k

• By hypothesis, II can find an sp−1-scattered set in B with the
same cardinality

• All such elements have disjoint rp−1-neighbourhoods
• They are all “equivalent” to ai+1

• They are all inside NB
rp−1

(
#—

b )

• But this contradicts the maximality of D



Shrinking formulas
• Hierarchy of FO formulas corresponding to shrinking games
• Hierarchy that depends on a given sequence #—s

Definition
The set SFm( #—x ) of shrinking formulas with free variables in #—x of
rank at most m is defined inductively as follows:
• SF0( #—x ) is the set of all quantifier-free formulas in #—x

• for each k<m, SFk+1(
#—x ) is the set of all finite Boolean

combinations of formulas in SFk( #—x ) and formulas of the form:

∃y (δ(y, #—x ) 6 rk + sk ∧ψ(
#—x ,y))

and

∃y1 · · · ∃yn
( ∧
16i<j6n

δ(yi,yj) > sk∧
∧

16i6n

(δ(yi, #—x ) 6 rk∧θ(yi))
)

where ψ( #—x ,y) ∈ SFk( #—x ,y), θ(y) ∈ SFk(y).



Shrinking sentences

Definition
The set SFm of shrinking sentences of rank at most m is defined
inductively as follows:
• for each k < m, SFk+1 is the set of all finite Boolean
combinations of sentences in SFk and sentences of the form:
∃y1 · · · ∃yn

( ∧
16i<j6n

δ(yi,yj) > sk ∧
∧

16i6n

θ(yi)
)

where θ(y) ∈ SFk(y) and n 6 m− k.

Theorem (Lemma 5.3 in the paper)
If (A, #—a) and (B,

#—

b ) agree on all shrinking formulas of rank at
most m, then (A, #—a) ≡m (B,

#—

b ).

Theorem (Theorem 5.4 in the paper)
If A and B agree on all shrinking sentences of rank at most m,
then A ≡m B.



Normal forms of the Gaifman type

Definition
An s-scattered r-local sentence of width k is a sentence of the form

∃x1 · · · xk
( ∧
16i<j6k

δ(xi, xj) > s∧
∧

16i6k

φ(xi)
)

where φ(x) is r-local.

Theorem
Fix a scattering sequence #—s shrinking rapidly. Then each
FO-sentence ψ with qr(ψ) 6 m is logically equivalent to a finite
Boolean combination of sentences each of which is sk-scattered
and (rk − 1)-local of width at most m− k, for some k < m.

Corollary
ψ is logically equivalent to a finite Boolean combination of
sentences each of which is 2 · 4m-scattered and (4m − 1)-local of
width at most m− k, for some k < m.



Introduction to EF-games

Inexpressivity results for first-order logic

Normal forms for first-order logic

Algorithms and complexity for specific classes of structures

General complexity bounds



Sufficient vs. “iff” conditions

Lk
def
= ({1, . . . ,k},<)

We know that

n,p > 2m − 1⇒ II wins Gm(Ln,Lp).

• Given L5 and L6, does II win G3(L5,L6)?

No!
In fact,

n = p or n,p > 2m − 1⇔ II wins Gm(Ln,Lp)

• Complete characterizations are needed to exploit games
algorithmically
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Winning vs. optimal strategies

Winning strategy 6= Optimal strategy

The distinction between winning and optimal strategies is essential
in unbounded games:

• In unbounded EF-games on finite structures, I wins
unless A ∼= B

• “Play randomly” is a winning strategy for I
• But, how far actually is the end of a game?
• What are the best moves for I (and II )?



Remoteness

Optimal strategies (in combinatorial games G) can be characterized
in terms of remoteness (rem(G)):

• Current player has no legal moves from (the current
configuration of) G ⇒ rem(G) = 0

• Current player can move to a configuration with even
remoteness ⇒ rem(G) = 1+ least even remoteness

Win Quickly!

• Current player can only move to configurations with odd
remoteness ⇒ rem(G) = 1+ greatest odd remoteness

Lose Slowly!

• The parity of the remoteness tells the winner



Win quickly, lose slowly!

Remoteness in EF-games:

• For EF-games, remoteness in terms of rounds, not moves

• Remoteness of G: the minimum m such that I wins Gm
(simplified definition under the hypothesis A 6∼= B)

• Optimal I ’s move: given a configuration G, a move by I is
optimal if and only if, whatever II replies, the remoteness of
the resulting configuration is less than or equal to rem(G) − 1.

• Optimal II ’s move: given a configuration G and a move by I ,
a reply by II is optimal if and only if the remoteness of the
resulting position is

• rem(G) − 1, if I ’s move is optimal
• rem(G), otherwise



Solving Games

Example

n = p or n,p > 2m − 1⇔ II wins Gm(Ln,Lp)

How many rounds are needed to I to win?
Assume n < p. Then:

1 The remoteness can be computed as:

rem(G(Ln,Lp)) = blog2(n+ 1)c+ 1

2 A move of I from G(Ln,Lp) is optimal if and only if I chooses
• an element in [n− 2blog2(n+1)c + 2, 2blog2(n+1)c − 1] in Ln, or
• an element in [n− 2blog2(n+1)c + 2,p−n+ 2blog2(n+1)c − 1] in
Lp

3 Similarly, the set of II’s optimal replies can be computed



Algorithmic and complexity results
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EF-games on specific classes

• Equivalence relations (with/without colors)
• Embedded equivalence relations
• Trees (with level predicates)
• Labelled successor structures
• Labelled linear structures with a bounded ordering

Remark: equivalence relation(s) and the Gaifman graph



Equivalence relations: local strategy
Definition
Structures A = (A,E), where E is an equivalence relation on A.

Definition

• For m,n, t ∈ N, m =t n iff m = n or both m,n > t
• (A, #—a ,B,

#—

b ) is t-locally safe iff
1 #—a → #—

b is a partial isomorphism, and
2 if t > 0, then |[ai] \ {a1, . . . ,ak}| =t |[bi] \ {b1, . . . ,bk}| for
i = 1, . . . ,k.

When a position is t-locally safe, there is not incentive for I to play
in a class that has already been chosen, in a game with at most t
rounds.

1-locally safe, but not 2-locally safe



Equivalence relations: “small disparity”
• q(A, #—a)

t : number of classes of size t in A not containing any ai
(free classes)

• Let ∆(A, #—a)

(B,
#—
b)

= { t | q
(A, #—a)
t 6= q(B,

#—
b)

t }

• Let qt = min{q(A, #—a)
t ,q(B,

#—
b)

t }

Lemma
Given (A, #—a ,B,

#—

b ) and t ∈ ∆(A, #—a)

(B,
#—
b)

, I can reach a position that is
not t-locally safe after qt + 1 rounds.

Corollary
I has a winning strategy in 6 qt + 1+ t rounds, with t ∈ ∆(A, #—a)

(B,
#—
b)

.

• I selects qt distinct classes of size t (“global” moves)
• Then, he plays one more “global” move in a class of size t to
which II cannot reply “appropriately”

• Then, he plays 6 t rounds in the same class (“local” moves)



Example

• 2-locally safe, but not 3-locally safe

t q
(A,a)
t q

(B,b)
t

1 0 2
2 2 1
3 1 1
4 0 0
5 1 0

• ∆(A,a)
(B,b) = {1, 2, 5}

A B

a

b



Example (cont.)

• ∆(A,a)
(B,b) = {1, 2, 5}

• q1 = 0, q2 = 1, q5 = 0

• 1 ∈ ∆(A,a)
(B,b) ⇒ I can reach a not

1-locally safe configuration in
q1 + 1 = 1 round

• 2 ∈ ∆(A,a)
(B,b) ⇒ I can reach a not

2-locally safe configuration in
q2 + 1 = 2 rounds

• 5 ∈ ∆(A,a)
(B,b) ⇒ I can reach a not

5-locally safe configuration in
q5 + 1 = 1 round

A B

a

b
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Equivalence relations: “large disparity”
• q(A, #—a)

>t : number of free classes of size > t

• Let Γ (A, #—a)

(B,
#—
b)

= { t | q
(A, #—a)
>t 6= q(B,

#—
b)

>t }

• Let q>t = min{q(A, #—a)
>t ,q(B,

#—
b)

>t }

Lemma
Given (A, #—a ,B,

#—

b ) and t ∈ Γ (A, #—a)

(B,
#—
b)

, I can reach a position that is

not (t− 1)-locally safe after q>t + 1 rounds.

Corollary
I has a winning strategy in at most q>t + t rounds,
with t ∈ Γ (A, #—a)

(B,
#—
b)

.

• I selects q>t distinct free classes of size > t (“global” moves)
• Then, only one structure remains with a free class of size > t
• I plays t rounds in that class (“local” moves)



Example

• Initially, empty configuration
• Let t = 3
• Then q>t = 1
• let I pick a free class with > t
elements

• II replies accordingly
• Now there is a free class of size > t
only in A

• II replies with a “small” class
• I starts to play locally
• II must reply locally
• I wins
• q>t + t rounds needed

A B
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Equivalence relations: characterization
Definition
Given (A, #—a ,B,

#—

b ) and m ∈ N, (A, #—a ,B,
#—

b ) is m-globally safe iff

• qt > m− t− 1 for all t ∈ ∆(A, #—a)

(B,
#—
b)

• q>t > m− t for all t ∈ Γ (A, #—a)

(B,
#—
b)

Theorem
II wins Gm(A, #—a ,B,

#—

b ) iff (A, #—a ,B,
#—

b ) is m-locally safe
and m-globally safe.

Corollary
The remoteness of G(A, #—a ,B,

#—

b ) is the minimum between the
minimum m such that (A, #—a ,B,

#—

b ) is not m-locally safe and

min
{
min { t+ q>t | t ∈ Γ

(A, #—a)

(B,
#—
b)

}, 1+min { t+ qt | t ∈ ∆(A, #—a)

(B,
#—
b)

}
}
.

The remoteness can be computed in O(|A|+ |B|) time and space.



Sketch of the proof

Theorem
II wins Gm(A, #—a ,B,

#—

b ) iff (A, #—a ,B,
#—

b ) is m-locally safe
and m-globally safe.

• If a position is m-locally safe and I play a local move, then II
can reach a position (m− 1)-locally safe

• If a position is m-globally safe, then II can reach a position
(m− 1)-globally safe

• The only tricky case is when I chooses an element in a free
class of size t ∈ ∆(A, #—a )

(B,
#—
b )

or t ∈ Γ (A, #—a )

(B,
#—
b )

• But, m-global safety allows II to reply properly

The result easily extends to structures colored homogeneously, i.e.,
if E(x,y) then x ∈ P ⇔ y ∈ P, for all x,y ∈ A and unary predicate
P



Equivalence structures with one color

Definition
Structures A = (A,E,P), where E is an equivalence relation on A
and P is a unary predicate.

Definition

• Let P[ai] be the set of elements aj ∈ [ai] such that P(aj)
holds (“aj is colored”)

• Let P̄[ai] be the set of elements aj ∈ [ai] such that ¬P(aj)
holds (“aj is non-colored”)

• Type of an equivalence class X of A: tp(X) = (i, j), where i is
the number of elements e in X such that P(e) holds and j is
the number of elements e in X such that ¬P(e) holds



Colored and non-colored equivalences
Remind: for m,n, t ∈ N, m =t n iff m = n or both m,n > t

Definition
Two types (i, j) and (i ′, j ′) are colored n-equivalent, denoted by
(i, j) ≡Cn (i ′, j ′) if, and only if,

1 i =n i
′

2 j =n−1 j
′

Definition
Two types (i, j) and (i ′, j ′) are non-colored n-equivalent, denoted
by (i, j) ≡Nn (i ′, j ′) if, and only if,

1 i =n−1 i
′

2 j =n j
′

Lemma
If either (i, j) ≡Cn (i ′, j ′) or (i, j) ≡Nn (i ′, j ′), then
(i, j) ≡Cn−1 (i

′, j ′) and (i, j) ≡Nn−1 (i
′, j ′)



Counting up to colored equivalence

• For structures A and B, type (i, j), and k > 1,

CA
(i,j),k

def
= {X | X is an equivalence class of A and

tp(X) ≡Ck (i, j) }

• Let qA,C
(i,j),k

def
= |CA

(i,j),k|

• Let qC(i,j),k
def
= min(qA,C

(i,j),k,q
B,C
(i,j),k)

• Let AC((i, j),k) be the structure obtained from A by
removing qC(i,j),k equivalence classes in CA

(i,j),k

• NA
(i,j),k, q

A,N
(i,j),k, q

N
(i,j),k and AN((i, j),k) are defined

similarly w.r.t. ≡Nk



Colored and non-colored disparity

Definition
We say that a colored disparity occurs in a game Gn(A,B) if there
exists a type (i, j) and n > k > 0 such that the following holds:

1 k = qC(i,j),n−k

2 In one of AC((i, j),n− k) and BC((i, j),n− k), there is an
equivalence class whose type is colored (n− k)-equivalent to
(i, j), and no such equivalence class exists in the other
structure

Non-colored disparity is defined in a similar way.

Theorem
II has a winning strategy in Gn(A,B) if and only if neither colored
disparity nor non-colored disparity occurs.



Proof’s idea

(⇒)

• Assume that colored disparity occurs for some (i, j) and k
• W.l.o.g, suppose that in AC((i, j),n− k) there is an
equivalence class whose type is colored (n− k)-equivalent
to (i, j), and no such class exists in BC((i, j),n− k)

• First, I chooses k = qC(i,j),n−k mutually non-equivalent
elements in CA

(i,j),n−k

• Then, I selects a colored element in a class X with
tp(X) ≡Cn−k (i, j) and he plays the rest of the game inside it
(n− k− 1 rounds suffice to spot the difference)



Proof’s idea (contn’d)

(⇐)

• We describe a winning strategy for II that maintains the
invariant below.

Let (a1,b1), . . . , (ak,bk) be the result of the played k-round
game and, for 1 6 l 6 k, let (il, jl) and (i ′l, j

′
l) be respectively

the types of al and bl.

We show that the following invariant is preserved:

1 for 1 6 l 6 k, al is colored iff bl is colored

2 for 1 6 l,m 6 k, E(al,am) iff E(bl,bm)

3 for 1 6 l 6 k, (il, jl) ≡Cn−l (i ′l, j ′l) and (il, jl) ≡Nn−l (i ′l, j ′l)

4 Gn−k has neither colored disparity nor non-colored disparity



Proof’s idea (contn’d)

• Assume that I selects an element ak+1 ∈ A.

• If E(ak+1,al), for some 1 6 l 6 k, then II chooses a new
bk+1 ∈ B such that E(bk+1,bl) and bk+1 is colored iff ak+1
is colored (the existence of such a bk+1 is guaranteed by item
(3) above

• If ak+1 is a colored (resp. non-colored) element belonging to a
class X, which differs from [a1], . . . , [ak], then item (4) above
guarantees that there exists a colored (resp, non-colored)
element bk+1 ∈ B belonging to a class Y such that Y differs
from [b1], . . . , [bk] and tp(X) ≡Cn−k tp(Y) (resp.,
tp(X) ≡Nn−k tp(Y))



Proof’s idea (contn’d)

• It can easily shown that both item (1) and item (2) hold for
(a1,b1), . . . , (ak+1,bk+1)

• As for item (3), let (ik+1, jk+1) and (i ′k+1, j
′
k+1) be the types

of [ak+1] and [bk+1], respectively. The above strategy
guarantees that one of (ik+1, jk+1) ≡Cn−k (i ′k+1, j

′
k+1) and

(ik+1, jk+1) ≡Nn−k (i ′k+1, j
′
k+1) holds and thus (ik+1, jk+1)

≡Cn−k−1 (i
′
k+1, j

′
k+1) and (ik+1, jk+1) ≡Nn−k−1 (i

′
k+1, j

′
k+1).

• The fact that item (4) is preserved as well can be easily proved
by contradiction.

Hence, by item (1) and item (2), the strategy is a winning strategy
for II.



Embedded equivalence structures: local strategy

Definition
Structures A = (A,E1, . . . ,Eh), where each Ei is an equivalence
relation on A and Ei ⊆ Ej for i < j.

• We consider the case h = 2
• Let A = (A,E1,E2) and B = (B,E1,E2)

Definition
A local game on (A, #—a ,B,

#—

b ) is a game played only within non-free
equivalence classes, i.e., classes containing some ai ∈ #—a or bi ∈

#—

b .

Definition
(A, #—a ,B,

#—

b ) is t-locally safe iff II has a winning strategy in the
t-round local game on (A, #—a ,B,

#—

b ).

• t-round local games are characterized as in “flat” equivalence
games



Embedded equivalence structures: global strategy
Definition

• Type of an E2-class X of A: tp(X) = (q1, . . . ,qt), if the
largest E1-equivalence class in X has size t and, for all
1 6 i 6 t, qi is the number of E1-classes of size i in X

• tp(X) ≡t tp(Y) iff II wins Gt((X,E1 � X), (Y,E1 � Y))
• (Free) t-multiplicity of type σ in (A, #—a):

q
(A, #—a)
σ,t

def
=
∣∣ { Y | Y is a free E2-class of (A, #—a)∧ tp(Y) ≡t σ }

∣∣
• ∆(A, #—a)

(B,
#—
b)

= { (σ, t) | q(A, #—a)
σ,t 6= q(B,

#—
b)

σ,t }

Lemma
Given (A, #—a ,B,

#—

b ) and (σ, t) ∈ ∆(A, #—a)

(B,
#—
b)

, I has a winning strategy

in min{q(A, #—a)
σ,t ,q(B,

#—
b)

σ,t }+ 1+ t rounds.

• A complete characterization can be given



Trees with height h

Definition
A tree T is a pair (T ,�) where

1 � is a partial ordering with a unique minimum
2 for all x ∈ T , {y | y � x } is finite and linearly ordered
3 maximal elements are leaves
4 Level of a node: distance from the root
5 Height of T: number of levels −1

• Kh: class of trees of height h
• x � y iff x is an ancestor of y
• The idea of Khoussainov and Liu’s paper is to map Kh into
the class of embedded equivalence relations of height h

• Sounds nice!
• Unfortunately, it does not work (without a level predicate)



Mapping trees onto embedded equivalences

• T ′ def= T ∪ {ax | x is a leaf of T }

• E1: minimal equivalence containing { (x,ax) | x is a leaf of T }

• Ei+1: minimal equivalence containing
Ei ∪ (T1 × T1) ∪ · · · ∪ (Tk × Tk), where T1, . . . , Tk are the
subtrees rooted at nodes of level h− i+ 1

• Ei ⊆ Ei+1 (Ei is finer than Ei+1)
• Embedded equivalence structure induced by T:

A(T)
def
= (T ′,E1, . . . ,Eh)

Claim

1 T1 ∼= T2 iff A(T1) ∼= A(T2) (ok!)
2 II wins Gm(T1,T2) iff II wins Gm(A(T1),A(T2)) (wrong!)



Why it does not work

Claim (wrong)
II wins Gm(T1,T2) iff II wins
Gm(A(T1),A(T2)).

• Observe that x � y iff x has level t,
y has level s > t and Eh−t+1(x,y)

• Every winning strategy for II in
Gm(A(T1),A(T2)) must map
elements at level k in A(T1) to
elements at level k in A(T2)

• How to fix the correspondence?
Enrich the tree structure with a
level predicate

H

5
4
3
2
1
0

a

b c

T1

K

4
3
2
1
0

a ′

b ′ c ′

T2



Labelled successor structures (LSS)

• Let Σ be a finite alphabet
• Let u ∈ Σ∗ be a word on Σ
• Let u[i] be the ith letter of u

Definition
A (labelled) successor structure is a pair (u,

#—

i ), where the
elements of

#—

i are distinguished indices of u.
Successor structures (u,

#—

i ) interpret FO-formulas φ( #—x ) in the
vocabulary (=, s, (Pa)a∈Σ) according to the following rules:

(u,
#—

i ) |= xh = xl if ih = il;

(u,
#—

i ) |= s(xh, xl) if il = ih + 1;

(u,
#—

i ) |= Pa(xh) if u[ih] = a.



Warm up example

(u, i) (v, j) u, v ∈ {a,b}∗

. . . b a b a b . . .

. . . b a b a a b . . .

i

j

u

v



Warm up example

(u, i) (v, j) u, v ∈ {a,b}∗

. . . b a b a b . . .

. . . b a b a a b . . .

i

j

u

v



Warm up example

(u, i) (v, j) u, v ∈ {a,b}∗

. . . b a b a b . . .

. . . b a b a a b . . .

i

j

u

v



Warm up example

(u, i) (v, j) u, v ∈ {a,b}∗

. . . b a b a b . . .

. . . b a b a a b . . .

i

j

u

v



Local strategy

u
i

2q−1 − 1 2q−1 − 12q + 1

a

1

b

2

b

3

a

4

a

5

b

6

b

7

a

8

b

9

b

10

a

11

b

12

b

13

b

14

a

15

b

16

a

17

a

18

a

1

b

2

b

3

a

4

a

5

b

6

b

7

a

8

b

9

b

10

a

11

b

12

b

13

b

14

a

15

b

16

a

17

a

18

a

1

b

2

b

3

a

4

a

5

b

6

b

7

a

8

b

9

b

10

a

11

b

12

b

13

b

14

a

15

b

16

a

17

a

18

• The number of remaining rounds q determines a q-entailing
region (dashed lines) where II’s strategy is “rigid”:

• the prefix and suffix of length 2q−1 − 1
• the factors of radius 2q−1 centered at distinguished indices

• q-free region: the complement of the entailing region



Local conditions

ηd(i, j) =

{
j− i if |i− j| 6 d;∞ otherwise.

Definition
A configuration (u,

#—

i , v,
#—

j ) is t-locally safe iff, for all ih, il ∈
#—

i ,
1 η2t(ih, il) = η2t(jh, jl)
2 Nu2t−1(ih) = Nv2t−1(jh)

• If a configuration is not t-locally safe, I has a “local” winning
strategy in t rounds

• II can turn a t-locally safe configuration into a (t− 1)-locally
safe configuration if I plays “locally”



Local safety: an example

Not 2-locally safe:

a

1

b

2

b

3

b

4

a

5

b

6

b

7

a

8

b

9

a

10

a

11

b

12

u

a

1

b

2

b

3

b

4

a

5

b

6

b

7

a

8

b

9

b

10

b

11

a

12

b

13

a

14

a

15

b

16

v

2-locally safe:

a

1

b

2

b

3

b

4

b

5

a

6

b

7

b

8

a

9

a

10

b

11

a

12

a

13

b

14

b

15

a

16

b

17

u

a

1

b

2

b

3

b

4

a

5

b

6

b

7

a

8

b

9

b

10

b

11

a

12

a

13

b

14

a

15

a

16

b

17

b

18

a

19

b

20

v



Free factors

Definition

• Let α be a word of length 2t − 1
• An occurrence of α centered at index k in (u,

#—

i ) is free iff
|k−

#—

i | > 2t−1, that is, k falls inside the t-free region of (u,
#—

i )

• (Free) multiplicity of α in (u,
#—

i ): number of free occurrences
of α in (u,

#—

i )

• Scattering of α in (u,
#—

i ): cardinality of a maximal
2t-scattered subset of the free occurrences of α in (u,

#—

i )

• (A set X ∈ N is d-scattered iff |x− y| > d for all x,y ∈ X)



Multiplicity and scattering: an example

a

1

b

2

a

3

b

4

a

5

b

6

a

7

b

8

b

9

a

10

b

11

a

12

b

13

a

14

a

15

b

16

a

17

u

α = aba qα = 2

aba

aba

aba aba

aba

aba

2
qα 2

qα

• Let α = aba (t = 2)
• Centers of free occurrences of aba in (u, 9): {2, 4, 6, 13, 16}
• Multiplicity: 5
• Scattering: 2 ({2, 4, 6}, {13, 16})
• Note that the scattering is the cardinality of a coarsest
partition of the free occurrences in which each class contains
elements at mutual distance 6 2t



An instance of the global strategy

v
j1

α α

u
i1

α α
α

2
q

• Let |α| = 2q − 1
• Let the thick lines denote the q-entailing region
• α has the same scattering (2) but different multiplicity (resp, 3
and 2) in u and v



An instance of the global strategy (cont.)

v
j1 j2

α α

u
i1 i2

α α
α

2q

Reachq(i2)

Reachq(j2)

• I chooses i2, causing two α-occurrences to fall inside the
2q-entailing region

• II replies with j2, “capturing” only one α-occurence
• In the new configuration, II has obtained that the multiplicity
and scattering of α are the same

• But the position is necessarily not q-locally safe



Global safety

• Let p(u,
#—
i )

α denote the free multiplicity

• Let q(u,
#—
i )

α denote the scattering

• Let ∆(u,
#—
i )

(v,
#—
j )

= {α | p
(u,

#—
i )

α 6= p(v,
#—
j )

α ∨ q
(u,

#—
i )

α 6= q(v,
#—
j )

α }

• ∆(u,
#—
i )

(v,
#—
j )

is the set of words that I can potentially exploit in
order to win

• All words α ∈ ∆(u,
#—
i )

(v,
#—
j )

have length 2t − 1 for some t

• Let qα = min{q(u,
#—
i )

α ,q(v,
#—
j )

α }

Definition
A configuration (u,

#—

i , v,
#—

j ) is m-globally safe iff

qα > m− log2(|α|+ 1) for all words α ∈ ∆(u,
#—
i )

(v,
#—
j )

.

Intuition: there are enough scattered free occurrences of α in both
structures for each α that I might use to win



LSS: Characterization
Lemma
Given (u,

#—

i , v,
#—

j ) and α ∈ ∆(u,
#—
i )

(v,
#—
j )

, I can reach a position not

(tα − 1)-locally safe after qα + 1 rounds, with tα = log2(|α|+ 1).

Corollary
I has a winning strategy in 6 qα + tα rounds, with α ∈ ∆(u,

#—
i )

(v,
#—
j )

.

• I plays qα rounds with the goal of decreasing the scattering
of α by 1 in each round

• After that, if the position is not tα-locally safe, I plays locally
• Otherwise, the scattering of α must be 0 in u and positive in v
(or vice versa)

• I plays to decrease the scattering of α where it is positive
• After that, the position is certainly not (tα − 1)-locally safe

Theorem
II has a winning strategy in G = Gm(u,

#—

i , v,
#—

j ) iff G is m-locally
safe and m-globally safe.



Example 1

a

1

b

2

b

3

b

4

b

5

a

6

b

7

b

8

a

9

a

10

b

11

a

12

a

13

b

14

b

15

a

16

b

17

u

a

1

b

2

b

3

b

4

a

5

b

6

b

7

a

8

b

9

b

10

b

11

a

12

a

13

b

14

a

15

a

16

b

17

b

18

a

19

b

20

v

α p
(u,6,11)
α p

(v,5,14)
α q

(u,6,11)
α q

(v,5,14)
α

q = 1 a 4 5 4 5
b 7 9 4 5

q = 2 abb 2 3 2 3
bab 1 2 1 2
bba 1 2 1 2
bbb 1 1 1 1

It is also 2-globally safe!



Example 2
Who wins the 2-round game between
u = abbfbfbbbaydddddaba and
v = abayddddabbbbbbbfbfbba?

α puα pvα quα qvα

q = 1 a 4 4 3 3
b 7 9 4 5
d 5 4 2 2
f 2 2 1 1
y 1 1 1 1

q = 2 aba, abb, ayd,
bay, bba, bbf,
dab, dda, fbb,
fbf, ydd

1 1 1 1

bbb 1 5 1 2
bfb 2 2 1 1
ddd 3 2 1 1



Definability and m-equivalence

L Definable class m-equivalence

FO(s) threshold locally testable Previous theorem

• From FO(s) to FO(<):

FO(<p), where x <p y⇔ 0 < y− x 6 p.

L Definable class m-equivalence

FO(<) ∗-free <p, with p→∞



Suffix trees

AGATAGATTAgames2007.1
!

AT A

!
AT

TA
G

!

!
AT

AGATTA!
!

AT

AGATTA! !
AT

AGATTA!

T

GAT

!

A

TA
GT

!
q = 1

q = 2

q = 3

|α| = 1

|α| = 3

|α| = 7



Features of suffix trees

“Miryad virtues” (Apostolico)
• Space ∝ sequence size
• Build time ∝ sequence size
• Fast motif search
• Fast repeat detection
• Longest common prefix queries
• etc. . .

One defect
• No approximate queries



Testing ≡m with generalized suffix trees

b

$ a

b

$ a

b

ab

b a

a
b b

b

a
a
b
b
a
b$

$

aabb
ab$

bab$

ba
bb

a
a
ba

a
bba

b$

a

a
ba

a
bba

b$

b

a
a
b

ba
b$

ba
b$

$ b a b

bba

a
ba

a
bba

b$

$ b a

ba
a

ba
a
bba

b$

a
ba

a
bba

b$

b

ba
b

ba
a
ba

a
bba

b$

a

a
ba

a
bba

b$

bbba
a
ba

a
bba

b$

a
ba

a
ba

a
bba

b$

a
b

a
a
bba

b$

bb
ba

a
ba

a
bba

b$

$

bb
a
a
ba

a
bba

b$

bb
a
bbba

a
ba

a
bba

b$

a
b

a
a
bba

b$

a
b
a
a
b
b
a
b$

b
b
b
a
a
b
a
a
b
b
a
b$

u,17

v,20

u,2

u,3 v,2

v,9

u,7

v,10

u,14

v,17

u,4 v,3

v,6

u,8

v,11

u,11

v,14

u,15

v,18

u,5 v,4

v,7 u,6

u,13

v,16

v,5 v,1 v,8

u,10

v,13

u,16

v,19

u,9

v,12

u,12

v,15

u,18

v,21

u,1

q = 1; ℓ = 1

q = 2; ℓ = 3

• Let n = |u|+ |v|
• Remoteness of G(u, v): O(n logn) time and space
• I’s optimal moves: O(n2 logn) time, O(n logn) space
• II’s optimal moves: O(n) time and space (if the remoteness is
known)



An emerging pattern

Let A and B arbitrary structures.

Definition
A t-round local game on (A, #—a ,B,

#—

b ) is a game played on
NA
2t−1(

#—a) and NB
2t−1(

#—

b ) such that, at round t− k+ 1,
with 1 6 k 6 t, I must choose an element at distance at
most 2k−1 from #—a or from

#—

b .

Definition
A configuration (A, #—a ,B,

#—

b ) is t-locally safe if II has a winning
strategy in the t-round local game on (A, #—a ,B,

#—

b ).

• We write (A, #—a) ≡loc
t (B,

#—

b )

• II can play t rounds provided that I plays “near” distinguished
elements (nearer and nearer after each round)



How to count neighbourhoods?

• The analysis of equivalence structures shows that we need to
count up to isomorphism and up to ≡loc

t -equivalence (in
equivalence structures, neighbourhoods coincide with
equivalence classes; two equivalence classes are isomorphic iff
they have the same number of elements and they are
≡loc
t -equivalent iff they both have at least t elements)

• The analysis of labelled successor structures shows that we
need to count both the (free) multiplicity and the scattering of
neighbourhoods (for equivalence structures, the two notions
collapse into one)

Conjecture
Counting the multiplicity and scattering of “small” neighbourhoods
up to isomorphism and up to ≡loc

t -equivalence is enough for
characterizing the “global” winning strategy for arbitrary structures.



Strings with a bounded ordering

• Let Σ be a finite alphabet
• Let u ∈ Σ∗ be a word on Σ
• For a given p, let <p be a bounded ordering on N, that is,
i <p j iff 0 < j− i < p

• Every word u induces a relational structure

U = ({1, . . . , |u|},=,<p, (Pa)a∈Σ)

such that, for
#—

i = i1, . . . , ik,

(U,
#—

i ) |= xh = xl if ih = il;

(U,
#—

i ) |= xh <p xl if il <p ih;

(U,
#—

i ) |= Pa(xh) if u[ih] = a.



A few conventions

• In what follows, we assume that p is fixed (we omit it in the
notation)

• We write (u,
#—

i ) for (U,
#—

i )

• To be able to treat prefixes and suffixes of word u uniformly,
we assume that u is extended infinitely on both sides with a
symbol $ 6∈ Σ:

· · · $$$u $$$ · · ·

• Besides, we assume that in every (u,
#—

i ) positions −p and
|u|+ p+ 1 are always distinguished elements

• Therefore, every partial isomorphism between words u and v
maps −p to −p and |u|+ p+ 1 to |v|+ p+ 1

Note: For the time being, we ignore the unary predicates and focus
only on <p



Games on strings with a bounded ordering
Let ηd be the difference up to a threshold between two positions:

ηd(i, j) =

{
j− i if |i− j| 6 d∞ otherwise

Let πd be the oriented distance up to a threshold in the Gaifman
graph of U:

πd(i, j) = sgn(j− i) ·
⌈
|ηd(i, j)|
p

⌉
Example: For p = 2,
• π4(1, 2) = π4(1, 3) = 1 and π4(2, 1) = π4(3, 1) = −1
• π4(1, 4) = π4(1, 5) = 2 and π4(4, 1) = π4(5, 1) = −2
• π4(1, 6) = π4(6, 1) =∞
• π4(−p, 1) = p

Remarks:
• For every p and d > p, πd(−p, 1) = d(1+ p)/pe = 2
• Similarly, πd(|u|, |u|+ p+ 1) = 2



Local strategy: first approximation
• For a given q, the q-entailing region of (u,

#—

i ) is defined as for
LSSs (using the distance in the Gaifman graph)

• That is, a position k is in the q-entailing region of (u,
#—

i ) iff
the number of “<p-steps” between k and some i ∈ #—

i is 6 2q

• Equivalently, |k− i| 6 p · 2q for some i ∈ #—

i (where i may be
one of the two “spurious“ indexes)

Definition
A configuration (u,

#—

i , v,
#—

j ) is t-step safe iff
πp·2t(ih, il) = πp·2t(jh, jl) for all ih, il ∈

#—

i

Lemma
If (u,

#—

i , v,
#—

j ) is not t-step safe, I wins in t rounds.

• I can spot a difference in the number of “<p-steps” between
two pairs of distinguished elements

• II can turn a t-step safe configuration into a (t− 1)-step safe
configuration if I plays in the t-entailing region



Example



Very local strategy

• t-step safety is essentially a necessary condition for
(generalized) successor structures

• But <p shares some features of <, too
• In particular, if ih and il are “very close” to each other, that
is, |ih − il| 6 2q − 1 for some q, then I wins in q rounds if
il − ih 6= jl − jh

• This is the same property as for < on linear orderings
• In fact, it does not depend on p

Definition
A configuration (u,

#—

i , v,
#—

j ) is ηd-safe iff ηd(ih, il) = ηd(jh, jl)
for all ih, il ∈

#—

i

Lemma
If (u,

#—

i , v,
#—

j ) is not η2t−1-safe, I wins in t rounds.



Rigid and elastic intervals

• Let q > 1
• Let r0 = 2q−1 − 1
• For k > 0, let

rk = 1+
q−2∑

r=dlog2 ke

(2r−1) = 2q−1−2dlog2 ke−q+ dlog2 ke+2

Definition
Let i be a distinguished index in (u,

#—

i ) and let q > 1. The 0th
q-rigid interval induced by i is [i− r0, i+ r0]. For 0 < k 6 2q−2,
the kth right q-rigid interval induced by i is

(i+ kp− rk, i+ kp+ rk]

The kth right q-elastic interval is the interval between the (k− 1)th
and the kth q-rigid interval. Left intervals are defined similarly.



Rigid and elastic intervals: intuition

Rigid (black) and elastic (gray) right intervals for q = 5 induced
by i:

• If I chooses i inside a rigid interval induced by some
distinguished element ih then II must reply with j such that
j− jh = i− ih (i.e., at the same relative position)

• If I plays in the kth elastic interval instead, II must reply in the
corresponding kth elastic interval in the opposite structure,
but not necessarily at exactly the same relative position

• Elastic intervals exist only when p is large wrt q



Local strategy: characterization
Definition
A configuration (u,

#—

i , v,
#—

j ) is t-distance safe iff, for all ih, il ∈
#—

i :
1 (u,

#—

i , v,
#—

j ) is t-step safe
2 whenever ih is in some t-rigid interval induced by il or jh is in

some t-rigid interval induced by jl then ih − il = jh − jl

• Condition 1 captures the requirement that II must reply within
a specific elastic interval when I chooses an element inside an
elastic interval

• Condition 2 adds the stronger constraint for rigid intervals
• Condition 2 subsumes η2t−1-safety

Theorem
If (u,

#—

i , v,
#—

j ) is not t-distance safe, I wins in t rounds.
Vice versa, if (u,

#—

i , v,
#—

j ) is t-distance safe and I plays in the
t-entailing region, then II can reach a configuration that is
(t− 1)-distance safe



What if we add labels?

• Starting configuration is (w, i1,w ′, j1) and p = 10
• We play a 2-round game
• I plays i2, which is inside the first 2-rigid interval induced by i1
• II is forced to reply in a way that does not respect 2-distance
safety

• I wins by playing j3, because j1 6p j3 6<p j2 and there no i3
in w such that i1 6p i3 6<p i2



What if we add labels?

• Starting configuration is (w, i1,w ′, j1) and p = 10
• We play a 2-round game
• I chooses i2, which is inside a 2-elastic interval induced by i1
• But the corresponding elastic interval in w ′ contains only b’s
• Hence, II is forced to play elsewhere (j2), violating 2-distance
safety

• I wins by choosing i3, so that i1 6<p i3 and i3 <p i2
• There is no j3 in w ′ such that j1 6<p j3 and j3 <p j2



q-colors
• To characterize local strategies in the presence of labels, we
need to describe the “type” of each element in terms of how
such element is labelled and what there is around it

• We call this description the “q-color” of an element
• The 0-color of index i is w[i]
• The (q+ 1)-color of i is a triple (w[i],σ, τ) where each σ is a
list that describes the q-colors in the interval (i, i+ p · 2q],
which can be built from left to right as follows:

• if position k is q-rigid wrt i, add the q-color of k
• if positions k, . . . ,k+ n are q-elastic wrt i, add the set of
q-colors of k, . . . ,k+ n

• τ is built similarly for the interval [i− p · 2q, i)

Lemma
Given a configuration (u,

#—

i , v,
#—

j ), if ih and jh do not have the
same q-color for some h, then I wins in q rounds



Example (revised)

• Starting configuration is (w, i1,w ′, j1) and p = 10
• We play a 2-round game
• The 0-color of i1 is a, and it is the same as the 0-color of j1
• The 1-color of i1 is (a,σ, ∅), where σ = 〈{a,b}〉, and it is the
same as the 1-color of j1



Example (revised)

• To define the 2-color of i1 we need to know:
• the 1-color of position 1 (because 1 is 2-rigid wrt i1)
• the set of 1-colors occurring in positions from 2 to 9 (because
they are 2-elastic wrt i1)

• the 1-color of position 10 (because 10 is 2-rigid wrt i1)
• the 1-color of position 11 (because 10 is 2-rigid wrt i1)
• Go on till position p · 2q = 40. . .



Games on labelled bounded orderings: a characterization

Theorem
(u,

#—

i ) ≡loc
q (v,

#—

j ) if and only if (u,
#—

i , v,
#—

j ) is q-distance safe and
ih and jh have the same q-color for all h.

• By counting the free multiplicity and scattering of suitable
substructures, it is possible to provide a characterization of the
full game (in which I can play non-local moves), in a similar
way as we have done for LSSs

• The remoteness can be computed in O(p2n3 logn) where
n = min(|u|, |v|)



Introduction to EF-games

Inexpressivity results for first-order logic

Normal forms for first-order logic

Algorithms and complexity for specific classes of structures

General complexity bounds



Complexity theory: PSPACE-completeness

In computational complexity theory, a decision problem is
PSPACE-complete if
• it can be solved using an amount of memory that is
polynomial in the input length (polynomial space) and

• every other problem that can be solved in polynomial space
can be transformed to it in polynomial time

The problems that are PSPACE-complete can be thought of as the
hardest problems in PSPACE, because a solution to any one such
problem could easily be used to solve any other problem in PSPACE



Complexity theory: PSPACE-completeness (contn’d)

The PSPACE-complete problems are widely suspected to be outside
of the well-known complexity classes P and NP, but that is not
known

It is known that they lie outside of the class NC (a class of
problems with highly efficient parallel algorithms):

problems in NC can be solved in an amount of space polynomial in
the logarithm of the input size, and the class of problems solvable
in such a small amount of space is strictly contained in PSPACE by
the space hierarchy theorem



The complexity class NC

In complexity theory, the class NC (for Nick’s Class) is the set of
decision problems decidable in polylogarithmic time on a parallel
computer with a polynomial number of processors:

a problem is in NC if there exist constants c and k such that it can
be solved in time O(logcn) using O(nk) parallel processors

Cook coined the name "Nick’s class" after Nick Pippenger, who
had done extensive research on circuits with polylogarithmic depth
and polynomial size



The complexity class NC (contn’d)

Just as the class P can be thought of as the tractable problems
(Cobham’s thesis), so NC can be thought of as the problems that
can be efficiently solved on a parallel computer

NC is a subset of P because polylogarithmic parallel computations
can be simulated by polynomial-time sequential ones

It is unknown whether NC = P, but most researchers suspect this
to be false, meaning that there are probably some tractable
problems that are ”inherently sequential” and cannot significantly
be sped up by using parallelism

(just as the class NP-complete can be thought of as "probably
intractable", so the class P-complete, when using NC reductions,
can be thought of as "probably not parallelizable" or "probably
inherently sequential")



Examples of PSPACE-complete problems

Some well-known examples of PSPACE-complete problems:
• universality problem for regular expressions: given a
regular expression R, to determine whether it generates every
string over its alphabet

• the word problem for deterministic context-sensitive
grammars: given a set of grammatical transformations which
can increase, but cannot decrease, the length of a sentence, to
determine if a given sentence could be produced by these
transformations (since PSPACE is closed under
nondeterminism, non-deterministic context-sensitive grammars
are in PSPACE as well)

• Quantified Boolean Formulas



Complexity of the EF-Problem

As for the the EF-Problem,
• It is easy to prove that the problem is in PSPACE
• The difficult part is proving hardness for PSPACE
• The problem is in fact PSPACE-complete
• It is proved by reducing QBF (Quantified Boolean Formulas) to
the problem of determining whether II has a winning strategy

• QBF formulas have the form

∃x1∀x2∃x3 · · ·Qxk (C1 ∧ · · ·∧ Cn)

where each Cj is a disjunction of literals



QBF is in PSPACE

x1 = F x1 = T

x2 = F x2 = T x2 = F x2 = T

x3 = F x3 = T x3 = F x3 = T x3 = F x3 = T x3 = F x3 = T

∃ ∃ ∃ ∃

∀ ∀

∃

φ(0, 0, 0) φ(0, 0, 1) φ(0, 1, 0) φ(0, 1, 1) φ(1, 0, 0) φ(1, 0, 1) φ(1, 1, 0) φ(1, 1, 1)

• Exhaustive search of the evaluation tree
• For each node, only one bit of information (true/false)
• ∀-nodes are true iff both children are true
• ∃-nodes are true iff at least one child is true
• Space proportional to the tree height (recursion depth)



QBF is in PSPACE

On input φ:
• If φ has no quantifiers, then evaluate φ and accept iff it is
true.

• If φ = ∃xφ, then recursively evaluate φ ′[x = 0] and φ ′[x = 1]
and accept iff either computation accepts.

• If φ = ∀xφ ′, then recursively evaluate φ ′[x = 0] and
φ ′[x = 1] and accept iff both computations accept.

• Recursion depth = number of variables of φ and each level
stores values of formula for one variable, so total space used
for recursion is linear. Evaluating φ at each level also requires
linear space, but this can be shared between calls.



The EF-problem is PSPACE-complete

Theorem (Pezzoli)
The EF-problem for finite structures over any fixed signature that
contains at least one binary and one ternary relation is
PSPACE-complete.

• The proof for hardness goes by reducing QBF to the
EF-problem

• Given a QBF formula φ of the form

∃x1∀x2 · · · ∃x2r−1∀x2r (C1 ∧ · · ·∧ Cn),

we build two structures A and B over Σ = {E,H}, where E is
binary and H is ternary, such that I wins G2r+1(A,B) iff φ is
satisfiable



Sketch of the proof

• I’s moves correspond to existential quantifiers
• II’s moves correspond to universal quantifiers
• Structures A and B consist of r blocks
• Each block is made of a certain number of subgraphs, called
“gadgets”, which are of three types: J, L, and I

• Some elements of the domains are labelled by truth values or
pairs of truth values

• Some elements in the last block (block r) are labelled by
clauses of φ

• A pair of consecutive rounds i, i+ 1 is played within
block di/2e and corresponds to instantiate a pair of
consecutive variables ∃xi∀xi+1



Sketch of the proof (cont.)

• At round i, I assigns the truth value T (resp., F) to variable xi
by choosing an element in block di/2e of one of the structures
(say, A) “labelled” by T (resp., F)

• II is forced to reply by choosing an element “labelled” by a pair
of truth values TT or TF (resp., FT or FF) in B, which
corresponds to recording I’s assignment (the first truth value)
and to assign a truth value to variable xi+1 (the second truth
value)

• At round i+ 1, I chooses an “unlabelled” element in B

• II is forced to reply by recording the truth value of xi+1 in A

by choosing an element “labelled” the same as the second
truth value chosen at round i



Sketch of the proof (cont.)

E.g., the pair of rounds may go like this:

round i round i+ 1
s : T(xi) d : F(xi+1) A

d : TF(xixi+1) s : r B

• The “labelling” is encoded by a ternary relation H such that
H(u, v,w) holds iff

• u and v are adjacent in the same block
• w is in the last block and is labelled by clause Cj
• Clause Cj is made true by the truth values that label u

and/or v



Gadgets Jk, Lk
Circled node are special neighbours

z

t t ′
k

k

k

k

k− 1
k− 1
k− 1
k− 1

Gadget Jk
• four nodes in the middle
have k special neighbours
and target t

• four nodes in the middle
have k− 1 special
neighbours and target t ′

z

t t ′
k

k− 1
k

k− 1

k

k− 1
k

k− 1

Gadget Lk
• four nodes in the middle
have k special neighbours
(two with target t and two
with target t ′)

• four nodes in the middle
have k− 1 special
neighbours (two with
target t and two with
target t ′)



Gadget Ik

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

• x and x ′ are linked to 16 nodes each (nodes in the middle)
• Each node in the middle is the source of a gadget Jk−1 or
Lk−1

• All gadgets share the same two targets t and t ′

• Each node in the middle has either k or k− 1 special
neighbours

• Ik is symmetric if Ik’s special neighbours are removed



Forcing pairs
Lemma (Forcing lemma)
In the (k+ 1)-moves EF-game on (Ik, x, Ik, x ′), I can force the pair
(t, t ′) (that is, I can play t, resp., t ′, and II must reply by t ′, resp.,
t, not to lose the game), but II has a winning strategy in the
k-moves EF-game that allows him to reply t to t and t ′ to t ′.

• Notation: let kxG denote a node adjacent to x, with k
special neighbours, and which is the source of a gadget of
type Gk−1, with G ∈ {J,L}

• In the (k+ 1)-moves game I starts by playing v = kxJ
• II must answer with w = kx ′L

• otherwise, I wins by moving into the special neighbours
• I chooses w(k− 1)t ′ in Lk−1 (a vertex in the middle of Lk−1,
connected to w and t ′, and with k− 1 special neighbours)

• II must answer v(k− 1)t in Jk−1

Remark
The above lemma says nothing about who has a winning strategy.



Forcing pairs (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x ′

t t ′

(Ik, x) (Ik, x ′)

v

t t ′
k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

xk

w

t t ′
k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

x ′ k



Forcing pairs (cont.)
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Forcing pairs (cont.)
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Forcing pairs (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
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Forcing pairs (cont.)
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The whole structure

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
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• The game will proceed by choosing two vertices in each block,
from top to bottom, according to the strategy of the forcing
lemma

• The two vertices in each block are the source of a gadget Jh
or Lh and a vertex in the middle in the same gadget

• The pairs of vertices connecting two blocks are never chosen
by the players



The whole structure (cont.)
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• Up to now, A and B are (2r+ 1)-equivalent
• A “meta-labelling” of the vertices is introduced
• The last block of each structure is slightly changed
• The “meta-labelling” induces a ternary relation H
• H relates a winning strategy for I to the satisfiability of a
formula φ



The truth-value labelling

• Same labelling no matter what φ is
• Just a convenience for defining H
• There are no unary predicates in the vocabulary
• Of the four vertices kxJ, two are labelled T and the other two F
• For each group of four vertices kxL, (k− 1)xJ, (k− 1)xL,
(k− 1)x ′J (two groups of four vertices),(k− 1)x ′L and kx ′L,
one is labelled TT , one TF, one FT , one FF

• Of the four vertices in the middle of any gadget Jk−1 with
k− 1 special neighbours, or k− 2 special neighbours, two are
labelled T and two F

• In gadget Lk−1 the two vertices (k− 1)zt ′ and the two
vertices (k− 2)zt are not labelled

• Of the two remaining vertices (k− 1)zt and the two
(k− 2)zt ′, one is labelled T and the other F



The truth-value labelling (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1

k k k kk k k k

T T F F
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x x ′

t t ′

z

t t ′
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k− 1
k− 1
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k− 2
k− 2
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T T T TF F F F

Gadget Jk−1

z

t t ′
k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

T F T F

Gadget Lk−1

• Only the sources of the gadgets Jk−1 and Lk−1, the vertices in
the middle of Jk−1 and half of the vertices in the middle of
Lk−1 are labelled by (pairs of) truth values



Labelling vertices by clauses

• The last block is labelled in a way that depends on φ
• In the last block, t and t ′ are replaced by two sets of elements
labelled by clauses of φ

• t ′ is replaced by 2r+ 1 vertices labelled C1, 2r+ 1 vertices
labelled C2, . . . , 2r+ 1 vertices labelled Cn

• t is replaced by 2r+ 1 vertices labelled C1, . . . , 2r+ 1 vertices
labelled Cn, plus an unlabelled vertex

• The new vertices are not mutually adjacent, but they are
adjacent to all the vertices previously connected to t ′ or t,
respectively

• The labelling of vertices with (pairs of) truth values and
clauses is used to define the ternary relation H



The ternary relation H

Definition (Ternary relation H)
H(u, v,w) holds if, and only iff, u and v are consecutive in the
same block di/2e, w is in the last block, w is labelled by a clause C
and one of the following holds:
• u is labelled a ∈ {T , F}, v is labelled b ∈ {T , F}, or
• u is labelled ab, with a,b ∈ {T , F}, v is not labelled, or
• u is labelled ac, v is labelled b, with a,b, c ∈ {T , F},

and assigning a to xi and b to xi+1 makes C true



Lawful strategies
• I starts playing in A

• Then, I will play in A at every odd round and in B at every
even round

• Besides, I plays on the “left” of A in odd rounds and on the
“right” of B in even rounds

• At each odd round, II is forced to record I’s choice in B, i.e., if
I picks an element labelled T in A then II must reply with TT
or TF, but not with FF or FT (otherwise, she is bound to lose
in less than 2r+ 1 rounds)

• Similarly, II is forced to record its choice in A at the next
round, i.e., if she has chosen TF in B then she will pick an
element labelled by F in A

• If II fails to play like that, at some following round I may pick
an element labelled by a clause C that appears in some triple
of H, but II would not be able to do so in the opposite
structure



What if II does not record I’s choices?
Example

φ
def
= ∃x1∀x2∃x3∀x4 ((x̄3 ∨ x2)∧ x̄1 ∧ (x1 ∨ x̄3)∧ (x̄3 ∨ x4))

Suppose that during a game the following labelling is determined:

round 1 round 2 round 3 round 4

s : F(x1) d : F(x2) s : F(x3) d : F(x4) A

d : FF(x1x2) s : r d : TF(x3x4) s : r ′ B

• II does not record the move made by I at round 3
• At round 5, I jumps to an element labelled by clause x̄3 ∨ x4
in A, which determines a triple in H

• II, however, cannot find a corresponding element in B (no
clause is satisfied when x4 is false, but x3 is true)



What if II does not record I’s choices?
Example

φ
def
= ∃x1∀x2∃x3∀x4 ((x̄3 ∨ x2)∧ x̄1 ∧ (x2 ∨ x3)∧ (x3 ∨ x4))

Suppose that during a game the following labelling is determined:

round 1 round 2

s : F(x1) d : F(x2) A

d : TF(x1x2) s : r B

• II does not record the move made by I at round 1
• At round 3, I may choose an element labelled by x̄1 in A,
which determines a triple in H

• II, however, cannot find a corresponding element in B (no
clause is satisfied when x1 is true and x2 is false)



How I wins if φ is satisfiable
• Suppose that φ is satisfiable
• Assuming that I follows a lawful strategy and II correctly
records the truth values, the choices of the players will
determine the same truth assignment for the variables of φ,
both in A and B

• At the last round, I chooses the only vertex w not labelled by
any clause at the bottom of A

• But, by the forcing lemma, II is bound to choose a vertex w ′

at the bottom of B labelled by some clause C, or to choose a
vertex not adjacent to the choice I has made in B in the
previous round

• In the latter case, II loses immediately
• In the former case, since I has played in such a way to build a
satisfying assignment and II has recorded such assignment
in B, the last choice by II will determine a triple (u ′, v ′,w ′) of
HB, for some previously chosen vertices u ′ and v ′

• But (u, v,w) 6∈ HA for corresponding u, v in A



Complexity results for pebble games

• Pebble games are a variant of EF-games in which each player
has a limited number of pebbles and re-uses them

• They correspond to formulas with a bounded number of
variables

Theorem
Given a positive integer k and structures A and B the problem of
determining whether II has a winning strategy in the existential
k-pebble game on A and B is EXPTIME-complete.

Corollary
All algorithms for determining whether k-strong consistency can be
established are inherently exponential.

P. G. Kolaitis, J. Panttaja
On the Complexity of Existential Pebble Games
CSL 2003



The proof of EXPTIME-completeness is not that easy. . .
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Fig. 2. I Gadget based on the one from [7]. is on the left and is on the right.

3.2 Single Input One-Way Switches

The Single Input One-Way Switches are used to restrict the ways in which the Spoiler

can win the game. The basic intuition is that the Spoiler can only make progress in one

particular direction; moreover, to do so he must use all of his pebbles.

This lemma is similar to Lemma 14 from [7], adapted to the -pebble game.

Lemma 1. For every there exists a pair of graphs and with ,

, and distinguished pairs of vertices, and

, such that:

y
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D

Fig. 3. Single Input One-Way Switch

1. The Spoiler can reach from in the -pebble game on .

2. There exist two disjoint sets of positions of the -pebble game on ,

called Pretrapped and Trapped positions such that:

(a) Pretrapped and Trapped positions are partial homomorphisms

(b) The Duplicator can avoid positions that are not Trapped and not Pretrapped

from Pretrapped positions
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Lemma 7. For every , in the -pebble game on , from a position

, , the Duplicator can choose any , and avoid for

.

4.2 Multiple Input One-Way Switches for the -pebble game

The idea of the Multiple Input One-Way Switch is to restrict the Spoiler’s potential

winning strategies. We simulate each node in the KAI game by using three nodes

in the Duplicator’s graph, . These correspond to not having pebble on in

the simulated game, having a pebble on in the simulated game, and no information

about , respectively. In the Multiple Input One-Way Switch, the Spoiler can only

make progress if he has information about each node in the simulated game. Also, if

the Spoiler attempts to play backwards through the Switch, he will end up with no

information about any nodes in the simulated game.

Lemma 8. For every , there exists a pair of graphs , and such that

and the following properties hold:

x x x x

y y y y

0 1 10

1y y

xxx x

y y

1 2 2 2

1 2
1 2

1 2 1 1

1 1 2 2
100

Fig. 7. A subgraph of

1. From a position , the Spoiler can reach the

position in the -pebble game on and

.

2. There exist two disjoint sets of positions of the -pebble game on ,

called Pretrapped and Trapped positions such that:

(a) Pretrapped and Trapped positions are partial homomorphisms

(b) The Duplicator can avoid positions that are not Pretrapped and not Trapped

from Pretrapped positions

(c) The Duplicator can avoid positions that are not Trapped from Trapped posi-

tions

(d) From any position where

, the Duplicator can avoid for all .

(e) All positions that are subsets of positions of the form

, are PreTrapped.

(f) If is Pretrapped and , then is Pretrapped for all

(g) Any position in which all of the Spoiler’s pebbles are on nodes , is Trapped.

(h) If is Trapped and , then is Trapped for all

Moreover, is and is .

4.3 The Rule Gadget

The Rule gadgets are used to simulate a move of the KAI game. One rule gadget causes

the Spoiler to lose if the rule gadget corresponds to a rule that cannot be applied, and

another causes the Duplicator to lose if the rule cannot be applied.

By combining this lemmawith the properties of theMultiple Input One-Way Switch,

we obtain a sufficient condition for the Duplicator to win the -pebble game.

4.5 Reduction from KAI Game to -pebble game
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Fig. 10. This is component decomposition of the Duplicator’s graph for the reduction

Theorem 12. Determining the winner of the -pebble game with part of the

input is EXPTIME-Complete.

Proof. (Outline)We will give a polynomial-time reduction from the KAI Game to the

-pebble game. Given an instance of the KAI game, we form an in-

stance of the -pebble game as follows.

The Duplicator’s graph and the Spoiler’s graph each have two sides. One side rep-

resents Player I’s turn in the KAI game, while the other side represents Player II’s turn.

First, we build Player I’s side of the graph. For each , we form three nodes

in , called . These three nodes correspond to specific information about

the simulated KAI game. If there is a pebble on , then there is a pebble on in the

KAI game, and corresponds to no pebble on . A pebble on in the Duplicator’s

graph means that the Spoiler has made a mistake. For each , construct a



Conclusions

• EF-games not explored much algorithmically
• What is the complexity of the EF-problem for (labelled)

arbitrary trees?
• What is complexity of the EF-problem for signature containing

only a binary relations E (i.e., graphs)?
• The question for the complexity of first-order equivalence for

finite structures, that is, isomorphism, is open (strictly related
to the graph isomorphism problem)

• Simpler proofs?
• May notions from Combinatorial Game Theory help?

• Berlekamp’s et al. Winning Ways
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