# Model Checking the Logic of Allen's Relations Meets and Started-by is P<sup>NP</sup>-Complete

GandALF 2016, Catania, Italy

Laura Bozzelli, <u>Alberto Molinari</u>, Angelo Montanari, Adriano Peron, Pietro Sala September 14–16, 2016

- Model checking: the desired properties of a system are checked against a model of the system
  - the model is a (finite) state-transition graph
  - system properties are specified by a temporal logic (e.g., LTL, CTL, CTL\*, ...)
- Distinctive features of model checking:
  - exhaustive verification of all the possible behaviours
  - fully automatic process
  - a counterexample is produced for a violated property

## Point-based vs. interval-based model checking

- Model checking is usually point-based:
  - properties express requirements over points (snapshots) of a computation (states of the state-transition system)
  - they are specified by means of point-based temporal logics such as LTL and CTL
- Interval-based model checking:
  - Interval-based properties express conditions on computation stretches: accomplishments, actions with duration, and temporal aggregations
  - $\cdot\,$  they are specified by means of interval temporal logics, e.g., HS

HS features a modality for any Allen ordering relation between pairs of intervals (except for equality)

| Allen rel.  | HS                  | Definition                                                      | Example |
|-------------|---------------------|-----------------------------------------------------------------|---------|
|             |                     |                                                                 | x••y    |
| meets       | $\langle A \rangle$ | $[X, Y] \mathcal{R}_{A}[V, Z] \iff Y = V$                       | V ● → Z |
| before      | $\langle L \rangle$ | $[X, Y] \mathcal{R}_{L}[V, Z] \iff Y < V$                       | V ●●Z   |
| started-by  | $\langle B \rangle$ | $[X, Y] \mathcal{R}_{\mathcal{B}}[V, Z] \iff X = V \land Z < Y$ | V ●● Z  |
| finished-by | $\langle E \rangle$ | $[X, Y] \mathcal{R}_{\mathcal{E}}[V, Z] \iff Y = Z \land X < V$ | V ●● Z  |
| contains    | $\langle D \rangle$ | $[X, Y] \mathcal{R}_{\mathcal{D}}[V, Z] \iff X < V \land Z < Y$ | V●─●Z   |
| overlaps    | $\langle 0 \rangle$ | $[X, Y] \mathcal{R}_{\mathcal{O}}[V, Z] \iff X < V < Y < Z$     | V ● ● Z |

All modalities can be expressed by means of  $\langle A\rangle,\,\langle B\rangle,\,\langle E\rangle$  and their transposed modalities only

## Kripke structures



An example of Kripke structure

- HS formulas are interpreted over (finite) state-transition systems whose states are labelled with sets of proposition letters (Kripke structures)
- An interval is a track (finite path) in a Kripke structure

## HS semantics and model checking

Truth of a formula  $\psi$  over a track  $\rho$  of a Kripke structure  $\mathcal{K}$ :

- $\mathcal{K}, \rho \models p \text{ iff } p \in \bigcap_{w \in \text{states}(\rho)} \mu(w), \text{ for any letter } p \in \mathcal{AP}$ (homogeneity assumption);
- negation, disjunction, and conjunction are standard;
- $\mathcal{K}, \rho \models \langle \mathsf{A} \rangle \psi$  iff there is a track  $\rho'$  s.t.  $\mathsf{lst}(\rho) = \mathsf{fst}(\rho')$  and  $\mathcal{K}, \rho' \models \psi$ ;
- $\cdot \ {\mathcal K}, \rho \models \langle \mathsf{B} \rangle \, \psi \text{ iff there is a prefix } \rho' \text{ of } \rho \text{ s.t. } {\mathcal K}, \rho' \models \psi;$
- $\mathcal{K}, \rho \models \langle \mathsf{E} \rangle \psi$  iff there is a suffix  $\rho'$  of  $\rho$  s.t.  $\mathcal{K}, \rho' \models \psi$ ;
- + the semantic clauses for  $\langle \overline{A} \rangle, \langle \overline{B} \rangle,$  and  $\langle \overline{E} \rangle$  are similar

### Model Checking

 $\mathfrak{K}\models\psi\iff \text{for all initial tracks }\rho\text{ of }\mathfrak{K}\text{, it holds that }\mathfrak{K},\rho\models\psi$ 

### Possibly infinitely many tracks!

## **BE-descriptors**



 $BE_2$ -descriptor for the track  $\rho = v_0 v_1 v_0^4 v_1$ (only the part for prefixes is shown)



## **BE-descriptors**



 $BE_2$ -descriptor for the track  $\rho = v_0 v_1 v_0^4 v_1$ (only the part for prefixes is shown)



- FACT 1: For any Kripke structure  $\mathcal{K}$  the number of different descriptors of bounded depth k is finite
- FACT 2: Two tracks  $\rho$  and  $\rho'$  of a Kripke structure  $\mathcal{K}$  described by the same  $BE_k$ -descriptor are k-equivalent

# Decidability of HS model checking

#### Theorem

The model checking problem for full HS on Kripke structures is decidable (non-elementary algorithm)

#### Reference

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval properties of computations.

Acta Informatica, 2016

# Decidability of HS model checking

#### Theorem

The model checking problem for full HS on Kripke structures is decidable (non-elementary algorithm)

#### Reference

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval properties of computations.

### Acta Informatica, 2016

#### Theorem

The model checking problem for BE on Kripke structures is EXPSPACE-hard

#### Reference

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval Temporal Logic MC: the Border Between Good and Bad HS Fragments.

In IJCAR, LNAI 9706, pages 389-405. Springer, 2016



- + Branching semantics of  $\langle A \rangle / \langle \overline{A} \rangle$
- MC for AAB is complete for  ${\bf P}^{\sf NP}=\Delta_2^p$

# $P^{NP}$ MC algorithm for $A\overline{A}B$ formulas

### Algorithm 1 MC( $\mathcal{K}, \psi$ , DIRECTION)

- 1: for all  $\langle \mathsf{A} \rangle \phi \in \mathsf{ModSubf}_{\mathsf{A}\overline{\mathsf{A}}}(\psi)$  do
- 2:  $MC(\mathcal{K}, \phi, FORWARD)$
- 3: for all  $\langle \overline{A} \rangle \phi \in \mathsf{ModSubf}_{A\overline{A}}(\psi)$  do
- 4:  $MC(\mathcal{K}, \phi, BACKWARD)$
- 5: for all  $v \in \text{states}(\mathcal{K})$  do
- 6: if direction is forward then
- 7:  $V_{A}(\psi, v) \leftarrow Success(Oracle(\mathcal{K}, \psi, v, FORWARD, V_{A} \cup V_{\overline{A}}))$
- 8: else if direction is backward then
- 9:  $V_{\overline{A}}(\psi, v) \leftarrow Success(Oracle(\mathcal{K}, \psi, v, BACKWARD, V_A \cup V_{\overline{A}}))$

+ ModSubf\_{A\overline{\mathsf{A}}}(\psi): A\overline{\mathsf{A}}\text{-modal-subformulas of }\psi

# $P^{NP}$ MC algorithm for $A\overline{A}B$ formulas

### Algorithm 2 MC( $\mathcal{K}, \psi$ , DIRECTION)

- 1: for all  $\langle \mathsf{A} \rangle \phi \in \mathsf{ModSubf}_{\mathsf{A}\overline{\mathsf{A}}}(\psi)$  do
- 2:  $MC(\mathcal{K}, \phi, FORWARD)$
- 3: for all  $\langle \overline{A} \rangle \phi \in \mathsf{ModSubf}_{A\overline{A}}(\psi)$  do
- 4:  $\mathsf{MC}(\mathcal{K}, \phi, \mathsf{BACKWARD})$
- 5: for all  $v \in \text{states}(\mathcal{K})$  do
- 6: **if** DIRECTION is FORWARD **then**
- 7:  $V_{A}(\psi, v) \leftarrow Success(Oracle(\mathcal{K}, \psi, v, FORWARD, V_{A} \cup V_{\overline{A}}))$
- 8: else if direction is backward then
- 9:  $V_{\overline{A}}(\psi, v) \leftarrow Success(Oracle(\mathcal{K}, \psi, v, BACKWARD, V_A \cup V_{\overline{A}}))$ 
  - **Oracle**( $\mathcal{K}, \psi, v, \text{DIRECTION}, V_A \cup V_{\overline{A}}$ ) is called for all  $v \in \text{states}(\mathcal{K})$
  - $\cdot \ V_{\mathsf{A}}(\phi,\mathsf{v}) = \top \iff \exists \text{ a track } \rho \in \mathsf{Trk}_{\mathcal{K}} \text{ starting from v s.t. } \mathcal{K}, \rho \models \phi$
  - direction = forward / backward (for  $\langle A \rangle$  /  $\langle \overline{A} \rangle)$

## NP oracle



The oracle:

- generates  $\tilde{\rho}$  by non-deterministically visiting the unravelling of the Kripke structure.
- performs a bottom-up deterministic verification of  $\Psi$  against  $\tilde{\rho}$  (for all the subformulas / for all the prefixes).

## NP oracle



• "polynomial-size model-track property": if  $\rho$  is a track of  $\mathcal{K}$ ,  $\phi$  is an AAB formula, and  $\mathcal{K}$ ,  $\rho \models \phi \Rightarrow \exists \rho'$  such that  $|\rho'| \leq |W| \cdot (2|\phi| + 1)^2$  and  $\mathcal{K}$ ,  $\rho' \models \phi$ .

### Theorem

Let  $\mathcal{K}$  be a finite Kripke structure,  $w_0$  be its initial state, and  $\psi$  an AAB formula. If MC( $\mathcal{K}, \neg \psi$ , FORWARD) is executed, then

$$V_{\mathsf{A}}(\neg\psi,\mathsf{W}_{\mathsf{0}})=\bot\iff \mathcal{K}\models\psi.$$

#### Corollary

The model checking problem for  $A\overline{A}B$  formulas over finite Kripke structures is in  $P^{NP}$ .

# $P^{NP}$ -hardness of MC for AB formulas

Definition (SNSAT: a P<sup>NP</sup>-complete problem)

An instance  ${\cal I}$  of SNSAT:

- a set of Boolean variables  $X = \{x_1, \dots, x_n\}$
- a set of Boolean formulas  $\{F_1(Z_1), F_2(x_1, Z_2), \dots, F_n(x_1, \dots, x_{n-1}, Z_n)\}$ (where  $Z_i$  are private variables)

# P<sup>NP</sup>-hardness of MC for AB formulas

Definition (SNSAT: a P<sup>NP</sup>-complete problem)

An instance  ${\cal I}$  of SNSAT:

- a set of Boolean variables  $X = \{x_1, \dots, x_n\}$
- a set of Boolean formulas  $\{F_1(Z_1), F_2(x_1, Z_2), \dots, F_n(x_1, \dots, x_{n-1}, Z_n)\}$ (where  $Z_i$  are private variables)

 $v_{\mathcal{I}}$  is the valuation of the variables in X defined as:

 $v_{\mathcal{I}}(x_i) = \top \iff F_i(v_{\mathcal{I}}(x_1), \cdots, v_{\mathcal{I}}(x_{i-1}), Z_i)$  is satisfiable.

SNSAT: to decide whether  $v_{\mathcal{I}}(x_n) = \top$ .

# P<sup>NP</sup>-hardness of MC for AB formulas

Definition (SNSAT: a P<sup>NP</sup>-complete problem)

An instance  ${\cal I}$  of SNSAT:

- a set of Boolean variables  $X = \{x_1, \dots, x_n\}$
- a set of Boolean formulas  $\{F_1(Z_1), F_2(x_1, Z_2), \dots, F_n(x_1, \dots, x_{n-1}, Z_n)\}$ (where  $Z_i$  are private variables)

 $v_{\mathcal{I}}$  is the valuation of the variables in X defined as:

$$v_{\mathcal{I}}(x_i) = \top \iff F_i(v_{\mathcal{I}}(x_1), \cdots, v_{\mathcal{I}}(x_{i-1}), Z_i)$$
 is satisfiable.

SNSAT: to decide whether  $v_{\mathcal{I}}(x_n) = \top$ .

Given  $\mathcal I$  , we build a Kripke structure  $\mathscr K_{\mathcal I}$  and an AB formula  $\Phi_{\mathcal I}$  s.t.

$$V_{\mathcal{I}}(X_n) = \top \iff \mathscr{K}_{\mathcal{I}} \models \Phi_{\mathcal{I}}.$$

## P<sup>NP</sup>-hardness of MC for AB formulas



 $\psi_n = (1) \bigwedge_i x_i \Rightarrow F_i(x_1, \cdots, x_{i-1}, Z_i) \text{ is true}$   $(2) \bigwedge_i \neg x_i \Rightarrow F_i(x_1, \cdots, x_{i-1}, Z_i) \text{ is unsat for any choice of } Z_i$   $(3) \text{ the track reaches the last state } s_0$ 

### Theorem

$$\mathsf{V}_{\mathcal{I}}(\mathsf{X}_n) = \top \iff \mathscr{K}_{\mathcal{I}} \models [B] \bot \to \psi_n.$$

### Corollary

The model checking problem for AB formulas over finite Kripke structures is P<sup>NP</sup>-hard (under LOGSPACE reductions).

Therefore AB,  $\overline{AB}$ ,  $\overline{AE}$ ,  $\overline{AE}$  are  $P^{NP}$ -complete.

- AB allows one to impose specific constraints on the branches departing from a state occurring in a given path...  $\langle B \rangle \langle A \rangle \theta$  $\Rightarrow P^{NP}$ -hardness of AB.
- ĀB...

- AB allows one to impose specific constraints on the branches departing from a state occurring in a given path...  $\langle B \rangle \langle A \rangle \theta$  $\Rightarrow P^{NP}$ -hardness of AB.
- AB... can't express constraints of this form: pairing ⟨A⟩ and ⟨B⟩ does not give any advantage in terms of expressiveness
  ⇒ MC for AB in P<sup>NP[O(log<sup>2</sup> n)]</sup>.

Membership to  $\mathbf{P}^{\mathsf{NP}[O(\log^2 n)]}$  is proved by means of Boolean circuits with SAT oracles



## The fragment $\overline{A}B$ : tree of blocks



## The fragment $\overline{A}B$ : tree of blocks



### Theorem

TB(SAT) is **P**<sup>NP</sup>-complete.

 $TB(SAT)_{1 \times M}$  (*i.e.*,  $F_i$  can use only one bit from each input vector of B) is  $\mathbf{P}^{NP[O(\log^2 n)]}$ -complete.

### Reference

P. Schnoebelen. Oracle circuits for branching-time model checking.

In ICALP, pages 790-801, 2003

## The fragment $\overline{A}B$ : from a formula to a tree of blocks

 $\psi = \left( \left( \left< \overline{\mathsf{A}} \right> r \, \land \, \left< \overline{\mathsf{A}} \right> \left< \overline{\mathsf{A}} \right> q \right) \rightarrow \left< \overline{\mathsf{A}} \right> \left< \mathsf{B} \right> p \right)$ 



Every formula  $F_i$  of a block B:

- 1. is a translation of the oracle algorithm;
- 2. is built starting from the  $\overline{A}B$  formula associated with B

## The fragment $\overline{A}B$ : complexity

### Theorem

 $B_{root}(Z_1) = \bot \iff \mathcal{K} \models \psi.$ 

### Corollary

The model checking problem for  $\overline{AB}$  formulas, over finite Kripke structures, is in  $\mathbf{P}^{\mathbf{NP}[O(\log^2 n)]}$ .

## The fragment $\overline{A}B$ : complexity

### Theorem

 $B_{root}(Z_1) = \bot \iff \mathcal{K} \models \psi.$ 

### Corollary

The model checking problem for  $\overline{A}B$  formulas, over finite Kripke structures, is in  $\mathbf{P}^{\mathbf{NP}[O(\log^2 n)]}$ .

 $P^{NP[O(\log n)]}$ -hardness follows immediately from that of  $\overline{A}$ 

### Reference

A. Molinari, A. Montanari, A. Peron, and P. Sala. Model Checking Well-Behaved Fragments of HS: the (Almost) Final Picture.

In KR, pages 473-483, 2016

## Complexity picture



• Determining the precise complexity of full HS

- Determining the precise complexity of full HS
- Relaxing the homogeneity assumption

## Current/future work

- Determining the precise complexity of full HS
- Relaxing the homogeneity assumption
- Comparison of HS model checking with LTL, CTL, and CTL\* one (two new semantic variants of the problem introduced, respectively based on the linear-past semantics and the linear semantics) - DONE

- Determining the precise complexity of full HS
- Relaxing the homogeneity assumption
- Comparison of HS model checking with LTL, CTL, and CTL\* one (two new semantic variants of the problem introduced, respectively based on the linear-past semantics and the linear semantics) - DONE
- Application: Planning as Model Checking in Interval Temporal Logic - IN PROGRESS

## Expressiveness comparison



## **References** I

- L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala.
  Interval Temporal Logic MC: the Border Between Good and Bad HS Fragments.
   In IJCAR, LNAI 9706, pages 389–405. Springer, 2016.
- A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron.
  Checking interval properties of computations.
  Acta Informatica, 2016.
- A. Molinari, A. Montanari, and A. Peron.
  Complexity of ITL model checking: some well-behaved fragments of the interval logic HS.
   In *TIME*, pages 90–100, 2015.

## **References II**

 A. Molinari, A. Montanari, and A. Peron.
 A model checking procedure for interval temporal logics based on track representatives.

In CSL, pages 193–210, 2015.

A. Molinari, A. Montanari, A. Peron, and P. Sala.
 Model Checking Well-Behaved Fragments of HS: the (Almost)
 Final Picture.

In KR, pages 473–483, 2016.

P. S

P. Schnoebelen.

Oracle circuits for branching-time model checking.

In ICALP, pages 790-801, 2003.