
Verification of infinite state systems

(preliminary version)

Angelo Montanari and Gabriele Puppis

Department of Mathematics and Computer Science
University of Udine, Italy

{montana,puppis}@dimi.uniud.it

1 Introduction

These lecture notes are devoted to the analysis of formal methods for the specification and verification
of infinite state systems. More precisely, we aim at providing a description of the classes of infinite
structures with a decidable model checking problem, that is, of those infinite structures whose verifi-
cation problem can be solved by automatic procedures. We first provide background knowledge about
logic, automata theory, and the model checking problem. Then, we describe the various approaches
to the problem of automatically verifying relevant properties of transition systems having an infinite
number of states that have been proposed in the literature. Throughout the exposition, we focus our
attention on three main topics: (i) logical formalisms for the specification of relevant computational
properties, (ii) finite representations of meaningful classes of transitions systems, and (iii) verification
problems and their solutions. As for the first topic, we introduce some of the most widespread logics,
e.g., first-order and monadic second-order, transitive closure and reachability logics, used to specify
properties of infinite state systems and we compare their expressiveness. As for the second topic, we
describe some frameworks to finitely represent transition systems with infinite state spaces, distin-
guishing between extrinsic and intrinsic representations. In particular, we analyze in detail alternative
(equivalent) characterizations of meaningful classes of transition systems, including pushdown transi-
tion graphs, prefix-recognizable graphs, rational graphs, and graphs in the so-called Caucal hierarchy.
As for the third topic, we introduce some paradigmatic problems in the area of automatic verification,
e.g., reachability and model checking problems, and we present a variety of methods to cope with
them, including logical, symbolic, transformational, and automaton-based methods.

2 Background

In this section, we revise some basic notation and terminology about words, languages, graphs, tran-
sition systems, and logics.

2.1 Words and languages

A finite word over an alphabet A is a mapping w from a set {1, ..., n}, where n ∈ N, to A. The
parameter n is said to be the length of the word w, shortly denoted |w|, and for every index 1 ≤ i ≤ n,
w[i] denotes the i-th character of w. The symbol ε denotes the empty word (hence, |ε| = 0). An infinite
word (or ω-word) over A is a mapping w from N to A and we assume that its length |w| is ω. The
concatenation operation · maps a pair of finite words u, v to the finite word u ·v having length |u|+ |v|
and such that (u · v)[i] = u[i] for every i ∈ |u| and (u · v)[i+ |u|] = v[i] for every i ∈ |v|.

A language (resp., an ω-language) over the alphabet A is a set of finite (resp., infinite) words over
A. If L1 and L2 are two languages, then we denote by L1 · L2 the language {u · v : u ∈ L1, v ∈ L2}.
Accordingly, if L is a language, then we denote by Lk the set of all finite words of the form u1 · ... ·uk,
where each ui is a word from L (note that L0 = {ε}). We further denote by L∗ the language

⋃
k∈N

Lk

and by Lω the ω-language {v1 · v2 · ... : ∀ i > 0. vi ∈ L \ {ε}}.

2.2 Graphs and trees

We use the term label (resp., color) to mean a symbol, usually taken from a finite set A (resp.,
C), marking an edge (resp., a vertex) of a graph. An A-labeled (directed simple1) graph is a tuple
G = (V, (Ea)a∈A), where V , also denoted Dom(G), is a set of vertices and (Ea)a∈A are binary relations
defining the edges and their labels.

Given an edge e = (v, v′) ∈ Ea, v is called the source of e and v′ is called the target of e. A vertex
v′ is said to be adjacent to v if (v, v′) ∈ Ea or (v′, v) ∈ Ea for some a ∈ A (namely, if v and v′ are ends
of the same edge). A vertex v is an a-predecessor of v′ (or, equivalently, v′ is an a-successor of v) in G
if G contains an a-labeled edge from v to v′. We say that d is the out-degree of a vertex v ∈ Dom(G)
if there are exactly d successors of v in G. Furthermore, we say that the graph is deterministic if, for
every v ∈ Dom(G) and for every a ∈ A, there is at most one a-successor of v in G. Clearly, under the
proviso that the set of labels is finite, the vertices in any deterministic graph have uniformly bounded
out-degree, namely, there is k (= |A|) such that for every vertex v ∈ Dom(G), the out-degree of v
does not exceed k.

Given a graph G = (V, (Ea)a∈A) and a set W ⊆ V of vertices, the subgraph of G induced by W is
the graph G|W = (W, (E′

a)a∈A), where, for each a ∈ A, E′
a = Ea ∩ (W ×W). An expanded graph is a

graph equipped with a tuple V̄ of unary predicates, namely, a structure of the form (V, (Ea)a∈A, P̄),
where P̄ = (P1, ..., Pm) and Pi ⊆ V for all 1 ≤ i ≤ m. Any expanded graph (G, P̄) is canonically
represented by a C-colored graph GP̄ = (G,Ω), called the canonical representation of (G, P̄), where
C = P({1, ...,m}) and Ω : Dom(G) → C is a coloring function that maps a vertex v ∈ Dom(G) to
the set of all indices i ∈ {1, ...,m} such that v ∈ Pi. Hereafter, we shortly denote the color of a vertex
v in GP̄ by GP̄ (v).

A finite path in G from v to v′ is a finite sequence π = e1e2...en of edges such that (i) the source
of e1 is v, (ii) the target of en is v′, and (iii) for all 1 ≤ i ≤ n, the target of ei is the source of ei+1.
The length |π| of the path π is the number of its edges. We similarly define infinite paths, namely,
infinite sequences of edges the form π = e1e2e3... (in such a case, we assume that |π| = ω). Given a
finite (resp., infinite) path π, we say that w ∈ A∗ (resp., w ∈ Aω) is the sequence of labels along π
(or, equivalently, that π is labeled by w) if |w| = |π| and, for all 1 ≤ i ≤ |π| (resp., for all i ≥ 1), w[i]
is the label of the i-th edge π[i] in π. Notice that, if the graph G is deterministic, then the path π is
uniquely determined by the sequence of its labels.

Given two graphs G and G′, an isomorphism from G to G′ is a bijection f from Dom(G) to
Dom(G′) such that (v, v′) is an a-labeled edge of G iff (f(v), f(v′)) is an a-labeled edge of G′. If G
and G′ are colored graphs, we further require that v is a c-colored vertex of G iff f(v) is a c-colored
vertex of G′. Intuitively, an isomorphism is simply a renaming of the vertices of a graph. If there
exists an isomorphism from a (colored) graph G to a (colored) graph G′, then we say that G and G′

isomorphic. Note that the relation of isomorphism is an equivalence, namely, it is transitive, reflexive,
and symmetrical. Unless strictly necessary, we shall not distinguish between isomorphic graphs. We
now recall the notion of bisimilarity, which gives rise to another equivalence relation over graphs.
Two graphs G and G′ are said to be bisimilar if there is a relation ∼ ⊆ Dom(G) × Dom(G′), called
bisimulation, such that for every pair of vertices v ∈ Dom(G) and v′ ∈ Dom(G′) and for every label
a ∈ A, if v ∼ v′, then for every a-successor w of v in G, there is an a-successor w′ of v′ in G′ (and
vice versa, for every a-successor w′ of v′, there is an a-successor w of v) such that w ∼ w′. If G
and G′ are colored graphs, we further require that v ∼ v′ implies that G(v) = G′(v′). Note that the
bisimilarity relation is coarser than the isomorphism relation, since there exist some non-isomorphic
bisimilar graphs, but isomorphic graphs are always bisimilar.

We shall also consider (rooted) trees, namely, graphs such that for every vertex v, there exists a
unique path, called access path, from a distinguished source vertex (called root) to v. We say that v

1 A directed graph is said to be simple if distinct edges cannot have the same source vertex, the same target
vertex, and the same label.

is an ancestor of v′ (or, equivalently, v′ is a descendant of v) in a tree if there is a (possibly empty)
path from v to v′. The leaves of a tree T are all and only the vertices v ∈ Dom(T) such that for every
a ∈ A, v ·a 6∈ Dom(T); the other vertices are called internal vertices. The frontier of a tree T , denoted
Fr(T), is the set of all leaves of T .

Notice that the ancestor relation induces a partial left-linear order in the domain of the tree.
Hence, we can identify each vertex in a tree (resp., in a deterministic tree) with its unique access
path (resp., with the unique sequence of labels along its access path). In particular, we can view any
deterministic A-labeled C-colored tree as a partial function T from A∗ to C, whose domain Dom(T)

is a prefix-closed language over the set A of edge labels (a language L is prefix-closed if for every u ∈ L
and for every prefix v of u, v ∈ L). In this perspective, we shall denote the color of a vertex v in T by
T (v) and, whenever T is well understood, the a-successor of v in T by v · a. Sometimes, if there is a
well understood ordering of the labels in the set A, we can also use (unranked) terms to denote trees;
for instance, if A = {a1 < a2 < a3}, then ∅ denotes the empty tree and c〈d, d, ∅〉 denotes the ternary
tree consisting of a c-colored root and two d-colored leaves, which are targets of two edges labeled
respectively by a1 and a2.

A full tree is a deterministic tree such that, whenever (u, u · a) ∈ Ea holds for some a ∈ A, then
(u, u · a′) ∈ Ea′ holds for every a′ ∈ A. An infinite complete tree is a deterministic tree T such that
for every word w ∈ A∗, there is an access path from the root of T labeled with w. A tree T is said to
be regular if T contains only finitely many non-isomorphic subtrees.

We now recall the notion of unfolding of a graph. Given a (colored) graph G and a source vertex
v0 ∈ Dom(G), the unfolding of G from v0, denoted Unf (G, v0) is the (colored) tree whose domain
consists of all and only the finite paths from v0 to a vertex v ∈ Dom(G), and where the a-labeled
edges are all and only the pairs of paths (π, π′) such that π′ extends π with an a-labeled edge of G.
Note that, if every vertex of G is reachable from v0, then the unfolding Unf (G, v0) is a tree bisimilar
to G. Moreover, if G is deterministic, then Unf (G, v0) is deterministic as well and this implies that
Unf (G, v0) is the unique tree (up to isomorphisms) which is bisimilar to G (to see this, simply notice
that bisimilar deterministic trees are isomorphic). Finally, it is well known that the unfolding of a
finite graph yields a regular tree having finite out-degree.

2.3 Transition systems and their configuration graphs

With the term transition system we refer to any (abstract) machine that has a set of possible con-
figurations and some rules that tell the machine how to switch from one configuration to another
configuration (possibly in a non-deterministic way). A transition of the system is defined as a single
pair consisting of a source configuration and a target configuration. One can assign to each transition
a label, which can be interpreted either as the event (from an hypothetical external environment) that
made the system change configuration or as the action that the system undertook when it changed
configuration. If transitions are equipped with labels, then the system is said to be a labeled transition
system. Similarly, one can sometimes assign markings to the configurations of a transition system, thus
making it possible to distinguish between different types of configurations (e.g., good configurations or
dangerous ones). For the sake of clearness, in order to differentiate the markings on the configurations
from those on the transitions, we call the former ones colors.

Formally, a (labeled) transition system can be defined as a tuple M = (Q,A, δ), where Q is a
(possibily infinite and uncountable) set of configurations, A is a set of labels (usually A is assumed to

be finite), and δ ⊆ Q× A × Q is a transition relation. We use p
a

−−→
M

q to mean that the system M

can go from the configuration p ∈ Q to the configuration q ∈ Q on event a ∈ A. A labeled transition
system M = (Q,A, δ) is often represented by an A-labeled graphG = (Q, (Ea)a∈A), where the vertices
represent system configurations and the edges Ea represent a-labeled transitions, namely, (p, q) ∈ Ea
iff p

a
−−→
M

q. Such a graph G is called the transition graph, or configuration graph, of the system M.

Labeled transition systems (in particular automata, which are special forms of transition systems)

are often extended with ε-moves, namely, with transitions of the form p
ε

−−→ q which allow them to

go from a configuration p to another configuration q with no event occurrence. When the transition
systems are used as acceptors of languages, it is often the case (see, for instance, finite-state automata,
Büchi automata, pushdown automata) that any given transition system M with ε-moves can be
transformed into an ε-free transition system that recognizes the same language. Thus, we can say that,
with respect to trace equivalence (i.e., the equivalence that pairs acceptors of the same language), ε-
free systems are as expressive as systems with ε-moves. However, one can exploit ε-moves of transition
systems to define richer graph structures. For any given labeled transition system M with ε-moves, we
assume the following property: if p

ε
−−→
M

q, then there exist no symbol a 6= ε and no state q′ such that

p
a

−−→
M

q′. This intuitively means that, at any given configuration, the transition system can either

perform ε-moves only or perform A-labeled moves only. Our interest is in the collapsed transition
graph of M, where every source of an ε-labeled edge is identified with the corresponding target. More
formally, given the A∪{ε}-labeled transition graph G of M, we define the ε-closure of G as the graph
obtained from G by first adding an a-labeled edge between vertices p and q whenever there is an
a-labeled path from p to q and secondly by removing all vertices with outgoing ε-transitions.

A transition system may have infinitely many possible configurations and in such a case it is
commonly called an infinite transition system or an infinite state system. Infinite transition systems
are well-suited to model (concrete) dynamical systems, such as computer programs and devices. In
such a case, their configurations usually arise from a finite control part that operates on an infinite
data domain. In order to effectively manipulate infinite transition systems, one should provide them
with finite presentations, namely, finite objects representing them. We can distinguish between two
kinds of presentations: internal and external ones. In the case of internal presentations, infinite state
systems are defined as the transition graphs of suitable automata or rewriting systems. In the case
of external presentations, infinite state systems are described (up to isomorphisms) as the graphs
resulting from applications of suitable transformations, starting from well-known structures (e.g.,
the infinite binary complete tree). Several classes of infinite transitions systems enjoy a number of
alternative characterizations based on both internal and external presentations.

Automata. In the following, we consider particular forms of transition systems, namely, (finite-
state, Büchi, pushdown, Rabin, Muller, parity, ...) automata over finite and infinite words and over
trees. Automata can be viewed as transition systems equipped with some initial configurations and
some acceptance conditions. They are usually used as devices that recognize languages consisting of
finite/infinite words/trees. In the following, we recall the basic definitions and some well-known results
from automata theory (for a complete discussion on sequential and tree automata, we refer to [48, 70]).

Definition 1. A sequential automaton is a tuple A = (S,A, δ, I,F), where
• S is a finite set of states (here the terms configuration and state are interchangable),
• A is a finite alphabet,
• δ ⊆ S ×A× S is a transition relation,
• I ⊆ S is a set of initial states,
• F ⊆ S is a set of final states.

A run of A over a finite (resp., infinite) word w ∈ A∗ (resp., w ∈ Aω) is a finite (resp., infinite)
sequence of states ρ such that
• |ρ| = |w| + 1 (|ρ| = |w| = ω if w is infinite),
• for every 1 ≤ i < |ρ|, (ρ[i], w[i], ρ[i+ 1]) ∈ δ.

Acceptance conditions can be defined for both finite and infinite words.
If w is a finite word and ρ is a run of A on w such that ρ[1] ∈ I and ρ[|ρ|] ∈ F , then we say that

ρ is a successful run on w. The finite word w is accepted by A iff there exists a successful run of A

on w. The language recognized by A, denoted L (A), is the set of all and only the finite words that
are accepted by A. The languages recognized by a finite-state sequential automaton are called regular
(or rational) languages.

It can be easily showed (see for instance [48]) that regular languages are effectively closed under
union, intersection, and complementation, namely, given two finite-state automata A1 and A2, one
can compute a finite-state automaton A1 ∪ A2 (resp., A1 ∩ A2, Ā1) that recognizes the language
L (A1) ∪ L (A2) (resp., L (A1) ∩ L (A2), A

∗ \ L (A1)).
When considering languages of infinite words, the automaton A is called (sequential) Büchi au-

tomaton and a different kind of acceptance condition is adopted (here we only consider Büchi accep-
tance conditions, even though different, but equivalent, acceptance conditions can be found in the
literature). Given a run ρ of A on an infinite word w, we say that ρ is successful iff ρ[1] ∈ I and there
is at least one final state s ∈ F that occurs infinitely often in ρ. In such a case w is accepted by A.
The ω-language recognized by a Büchi automaton A, denoted L ω(A), is the set of all and only the
infinite words that are accepted by A. The Büchi-recognizable languages are also called regular (or
rational) ω-languages.

In [6] Büchi showed that regular ω-languages are effectively closed under union, intersection, and
complementation, namely, given two Büchi automata A1 and A2, one can compute a Büchi automaton
A1 ∪ A2 (resp., A1 ∩ A2, Ā1) that recognizes the ω-language L ω(A1) ∪ L ω(A2) (resp., L ω(A1) ∩
L ω(A2), A

ω \ L ω(A1)).

We now introduce tree automata, namely, automata recognizing sets of (possibly infinite) colored
trees.

Definition 2. A tree automaton is a tuple A = (S,A,C, δ, I,Acc), where
• S is a finite set of states,
• A is a finite set of edge labels,
• C is a finite set of vertex colors,
• δ ⊆ S × C × SA is a transition relation,
• I ⊆ S is a set of initial states,
• Acc ⊆ Sω is an acceptance condition, namely, a set consisting of infinite sequences of states.

Given an infinite complete A-labeled C-colored tree T , a run of the automaton A on T is any infinite
complete A-labeled S-colored tree R such that for every v ∈ Dom(R),

(R(v), T (v), (R(v · a))a∈A) ∈ δ

where v · a denotes the a-successor of v in R. We say that R is successful, and hence T is accepted
by A, if R(ε) ∈ I and for every infinite path π in R, R|π (i.e., the sequence of colors of R along π)
belongs to Acc. The language L (A) recognized by A is the set of all and only the (infinite complete)
trees accepted by A.

Like Büchi automata, one can use different, but equivalent, acceptance conditions, usually envis-
aging the occurrences of states in an infinite sequence. Given an infinite sequence α ∈ Sω, we denote
by Inf (α) the set of all elements that occur infinitely often in α. We further denote by Img(α) the set
of all elements that occur at least once in a (finite or infinite) sequence α. The following acceptance
conditions are often used when dealing with tree automata:
• Rabin acceptance conditions are of the form

Acc = {α ∈ Sω : ∃ 1 ≤ i ≤ n. Inf (α) ∩Ei = ∅ ∧ Inf (α) ∩ Fi 6= ∅}

where (Ei, Fi)1≤i≤n is a finite set of acceptance pairs,
• Rabin chain acceptance conditions are Rabin acceptance conditions where the acceptance pairs

satisfy
E1 (F1 (E2 (F2 (... (En (Fn

• parity acceptance conditions are of the form

Acc = {α ∈ Sω : max (Inf (Ω(α))) is even}

where Ω is a function that maps states to integers and Ω(α) is its natural extension to an infinite
sequence α of states,

• Muller acceptance conditions are of the form

Acc = {α ∈ Sω : Inf (α) ∈ F}

where F ⊆ P(S) is a family of sets of states.
It should be noted that Rabin chain acceptance conditions and parity acceptance conditions are
equivalent. Indeed, given a set of acceptance pairs (Ei, Fi)1≤i≤n, with Ei (Fi for all 1 ≤ i ≤ n and
Fi (Ei+1 for all 1 ≤ i < n, one can set Ω(s) = 2i − 1 for all s ∈ Ei \ Fi−1 and Ω(s) = 2i for all
s ∈ Fi\Ei. Conversely, given a function Ω : S → {1, ..., 2n} such that ∀ 1 ≤ i ≤ 2n. ∃ s ∈ S. Ω(s) = i
(if this is not the case, one can extend the automaton with new states and possibly shift the values
of Ω), one can set Ei = {s ∈ S : Ω(s) ≤ 2i− 1} and Fi = {s ∈ S : Ω(s) ≤ 2i}. In fact, it can be
proved that Rabin tree automata, Rabin chain tree automata, parity tree automata, and Muller tree
automata are all equivalent notions of automata in the sense that, given any such automaton, one
can compute a Rabin, Rabin chain, parity, and Muller tree automaton recognizing the same language
[45, 70, 61, 7].

In [64] Rabin generalizes the results of Büchi for infinite words to the case of infinite complete
colored trees. He proved that the languages recognized by Rabin tree automata are effectively closed
under union, intersection, and complementation.

We can further modify the notion of tree automaton in order to allow computations over non-

complete trees. To do that, it is sufficient to extend the input alphabet C of an automaton A with a
fresh symbol ⊥ 6∈ C and assume that, whenever v 6∈ Dom(T), A reads ⊥ on the fictitious vertex v.

Finally, we define pushdown automata, which are sequential automata equipped with a stack (i.e.,
a ‘first-in-last-out’ list) and working over finite words.

Definition 3. An ε-free pushdown automaton is a tuple P = (S,A, Γ, δ, s0, γ0,F), where
• S is a finite set of control states,
• A is a finite alphabet of input letters,
• Γ is a finite alphabet of stack symbols,
• δ ⊆ S ×A× Γ × Γ ∗ × S is a transition relation,
• (s0, γ0) ∈ S × Γ is an initial configuration,
• F ⊆ S is a set of final control states.

A configuration of P is given by a pair consisting of a control state s ∈ S and a stack content w ∈ Γ ∗.
The automaton P can read a symbol a ∈ A and move from configuration (s, w) to configuration

(s′, w′), and we shortly write (s, w)
a

−−→
P

(s′, w′), iff there exist γ ∈ Γ and u, v ∈ Γ ∗ such that (i)

w = γ · v, (ii) (s, a, γ, u, s′) ∈ δ, and (iii) w′ = u · v (notice that no transition is enabled when the
stack is empty). A run of P over a finite word w ∈ A∗ is a finite sequence of configurations ρ such
that
• |ρ| = |w| + 1,

• for every 1 ≤ i < |ρ|, ρ[i]
w[i]
−−→
P

ρ[i+ 1].

In analogy to finite-state automata, we use acceptance by final states (acceptance by empty stack
can used as an alternative, but equivalent, choice): we say that the run ρ on w is successful and w is
accepted by P if ρ ends in a configuration where the control state belongs to F .

The languages recognized by pushdown automata are called context-free languages and they are
effectively closed under union, but not under intersection and complementation (however, they are

closed under intersection with regular languages). We refer to [48] for other properties and equivalent
characterizations of context-free languages in terms of grammars.

As regards the expressiveness (w.r.t. recognizable languages) of the deterministic versions of the
automata introduced so far, it is known that, while deterministic sequential finite-state automata are
expressively equivalent to non-deterministic sequential finite-state automata (cf. [48]), this is not the
case for sequential Büchi automata, Rabin (Muller, etc.) tree automata, and pushdown automata (cf.
[48, 70]).

In the sequel, we shall use the terms finite-state system and pushdown system to refer to finite-state
automata and pushdown automata, respectively, devoid of their initial and final states. An input-free
automaton is an automaton that does not read any symbol (it simply activates transitions).

Rewriting systems. Another interesting family of transition systems is given by the so-called rewrit-
ing systems. These are systems whose configurations are represented by terms (e.g., words or trees)
and whose transitions are specified by suitable rules for term rewriting. A natural type of rewriting
system is the word rewriting system, defined below.

Definition 4. A word rewriting system is specified by a tuple R = (Γ,A, P), where
• Γ is a finite alphabet for the words that encode configurations,
• A is a finite alphabet for the input letters,
• P ⊆ Γ ∗ ×A× Γ ∗ is a finite set of rewrite rules of the form (U, a, V).

In order to finitely represent a rewriting system, the sets U and V in each rewriting rule are usually
assumed to be regular sets. A rewriting of a word w ∈ Γ ∗ can be constrained to occur at the beginning
(i.e., prefix-rewriting), at the end (i.e., suffix-rewriting), or at a generic position (i.e., infix-rewriting).
For instance, in a prefix-rewriting system R = (Γ,A, P) a word u ·w is rewritten to v ·w if there is a
rule (U, a, V) ∈ P satisfying u ∈ U and v ∈ V . Similarly, in an infix-rewriting system R = (Γ,A, P)
a word w · u · w′ is rewritten to w · v · w′ if there is a rule (U, a, V) ∈ P satisfying u ∈ U and v ∈ V .
Another variant of rewriting system is the so-called parallel-rewriting system, where words are viewed
as multi-sets and rewritings may occur for sub-sequences covering non-contiguous positions.

The configuration graph of a rewriting system R = (Γ,A, P) is defined as the graph G =
(V, (Ea)a∈A), where V consists of all finite words over Γ and each relation Ea consists of all pairs of
words (u, v) such that u is rewritten to v by an a-labeled rule of R. Transition graphs of prefix-rewriting
systems are called prefix-recognizable graphs [9]. It should be clear that the notion of prefix-rewriting
system generalizes that of pushdown system: indeed, a pushdown system P = (S,A, Γ, δ, s0, γ0,F) is
simply a prefix-rewriting system over the alphabet S ∪ Γ with rules of the form (U, a, V), where U is
a singleton contained in S · Γ and V is a singleton contained in S · Γ ∗. In Section 4 we show that the
prefix-recognizable graphs are exactly the ε-closures of transition graphs of pushdown automata with
ε-moves.

Other interesting examples of rewriting systems are the ground tree rewriting systems [55], where
trees, instead of words, are used.

2.4 Logics for specifying and verifying infinite state systems

A natural approach to verification problems for infinite state systems is to model a system as a directed
graph (i.e., the transition graph), whose vertices (resp., edges) represent system configurations (resp.,
transitions). Properties of the system can then be expressed by logical formulas, which can be satisfied
or not by the corresponding graph, thought of as a relational structure. Thus, verification problems for
infinite state systems are often reduced to the model-checking problem (i.e., checking that a formula
without free variables holds in a given structure) or to the satisfiability problem (i.e., checking that a
formula with free variables is satisfiable in a given structure).

In the sequel, we review some logics which are commonly used to express properties of infinite
state systems and discuss related decision problems. We start by giving some preliminary definitions.
A signature is a tuple Σ = (R, k) which consists of a finite set R of relational symbols and a ranking
function k from R to N+. A relational structure in the signature Σ, or simply a Σ-relational structure,
is a tuple S = (V, (rS)r∈R), where V , also denoted Dom(S), is a (possibly infinite) set of elements
and each rS ⊆ V k(r) is an interpretation of the relational symbol r ∈ R. Unless otherwise stated,
we assume that a signature Σ contains at least the relational symbol =, which is interpreted, in any
relational structure S, by the equality relation {(v, v) : v ∈ Dom(S)}. Moreover, by a slight abuse
of notation, sometimes we shall not distinguish between the relational symbols in a signature Σ and
the corresponding interpretations in a Σ-relational structure S. Finally, notice that transition systems
and graphs structures can be thought of as special cases of relational structures. This allows us to use
logics to specify and check properties of infinite state systems.

First-order logic. First-order (shortly, FO) logic is one the most simple classical logics for expressing
properties of systems. Let fix a signature Σ = (R, k). FO-formulas in the signature Σ are built up
starting from atoms of the form r(x1, ..., xk(r)), where r ∈ R and each xi is a variable from a countable
set X . Atomic formulas can be combined by means of the Boolean connectives ∨ and ¬ and the
existential quantifier ∃.

We say that a variable that occurs in a formula ψ is free if it is not bounded by any existential
quantifier and we write ψ(x1, ..., xn) to mean that the free variables in ψ are only x1, ..., xn.
In order to define the semantics of an FO-formula, we need to introduce assignments for first-order
variables. Given a relational structure S in the signature Σ, an assignment for a FO-formula ψ is a
function θ that maps each variable to a corresponding element in Dom(S). We say that ψ holds in the
expanded relational structure (S, θ), and we shortly write (S, θ) � ψ, if one of the following conditions
holds:
• ψ is of the form r(x1, ..., xn) and (θ(x1), ..., θ(xn)) ∈ rS ,
• ψ is of the form ψ1 ∨ ψ2 and (S, θ) � ψ1 or (S, θ) � ψ2 holds,
• ψ is of the form ¬ψ′ and (S, θ) 6� ψ′,
• ψ is of the form ∃ x. ψ′ and there is v ∈ Dom(S) such that (S, θ[v/x]) � ψ′, where θ[v/x] is the

extension of θ with the assignment v for x.
In the following, we shall use ψ1 ∧ ψ2, ψ1 → ψ2, and ∀ x. ψ as a shorthands for ¬(¬ψ1 ∨ ¬ψ2),
¬ψ1 ∨ ψ2, and ¬∃ x. ¬ψ, respectively.

Monadic second-order logic. Monadic second-order (shortly, MSO) logic is an extension of FO logic
with second-order variables (namely, variables that are instanciated by sets of elements rather than
single elements) and quantification over second-order variables. Formally, the atoms of MSO-formulas
are of the form x = y, x ∈ Y , and r(x1, ..., xk(r)), for each relational symbol r in the signature
Σ. Atomic formulas can then be combined by means of the Boolean connectives and the existential
quantifications over first-order and second-order variables ∃x and ∃X . In order to distinguish between
first-order and second-order variables, we conventionally denote the former ones by lowercase letters
and the latter ones by uppercase letters.
Let S be a relational structure S in the signature Σ and let θ be an assignment that maps each
first-order variable (resp. second-order variable) to an element in Dom(S) (resp. a subset of Dom(S)).
We say that an MSO-formula ψ holds in (S, θ) and we shortly write (S, θ) � ψ, if one of the following
conditions holds:
• ψ is of the form xi = xj and θ(xi) = θ(xj);
• ψ is of the form xi ∈ Xj and θ(xi) ∈ θ(Xj);
• ψ is of the form r(xi1 , ..., xik(r)

) and (θ(xi1), ..., θ(xik(r)
)) ∈ rS ;

• ψ is of the form ψ1 ∨ ψ2 and (S, θ) � ψ1 or (S, θ) � ψ2 holds;
• ψ is of the form ¬ψ′ and (S, θ) 6� ψ′;

• ψ is of the form ∃ x. ψ′ and there is v ∈ Dom(S) such that (S, θ[v/x]) � ψ′, where θ[v/x] is the
extension of θ with the assignment v for x;

• ψ is of the form ∃ X. ψ′ and there is P ⊆ Dom(S) such that (S, θ[P/X]) � ψ′, where θ[P/X] is
the extension of θ with the assignment P for X .

When writing MSO formulas, we shall use some natural shorthands like X ⊆ Y for ∀ z. (z ∈ X →
z ∈ Y), X = Y for X ⊆ Y ∧ Y ⊆ X , X = ∅ for ∀ Y . X ⊆ Y , etc. Moreover, when considering
MSO logic, one can restrict to an equivalent setup where only second-order variables are used. In
such a case, first-order variables are represented by second-order variables which are restricted, via
suitable formulas like Sing(X) = ∀ Y . (Y = ∅ ∨ X = Y ∨ X ⊆ Y), to be instanciated by singletons.
In this framework, any assignment θ for the free variables X1, ..., Xm can be encoded by the tuple
of predicates (θ(X1), ..., θ(Xm)) and any graph structure G expanded with the assignment θ can be
viewed as a P({1, ...,m})-colored graph.

MSO logic is powerful enough to express several non-trivial properties of relational structures, like,
for instance, planarity of graphs. A simple example is given by the reflexive and transitive closure r∗

of a binary relation r, which can be expressed by the following MSO-formula:

ψ(x, y) = ∀ X. (∀ z, w. (z ∈ X ∧ r(z, w) → w ∈ X) ∧ ∀ z. (r(x, z) → z ∈ X)) → y ∈ X.

Moreover, suitable fragments of MSO logics have been defined in the literature. For instance, when
considering graphs structures, one can define the path (resp. the chain) fragment of MSO logic by
restricting the second-order variables in a formula to be instanciated (via assignments) by paths (resp.
subsets of paths). These frameworks are usually less expressive than plain MSO logic, but they still
allow one to express interesting graph properties like reachability.

Transitive closure logic. Transitive closure logic (shortly, FO(TC) logic) is obtained by adding the
transitive closure operator (TC) to FO logic: if ψ(x̄, ȳ, z̄) is an FO[TC]-formula, x̄, ȳ, z̄ are disjoint
tuples of free variables, x̄, ȳ are of the same length k > 0, and s̄, t̄ are k-tuples of variables, then the
formula

φ(s̄, t̄, z̄) = [TCx̄,ȳψ(x̄, ȳ, z̄)](s̄, t̄)

is an FO[TC]-formula as well. Notice that the variables x̄ and ȳ inside the formula φ(s̄, t̄, z̄) are bound
by the TC-operator, while the variables z̄ (if any) are free.
Given a relational structure S in the signature Σ and an assignment θ for the free variables s̄, t̄, z̄, the
formula φ(s̄, t̄, z̄) holds in (S, θ) iff the tuple (θ(s̄), θ(t̄)) belongs to E∗(θ(z̄)), where E is the function
that map a tuple w̄ of elements to the set {(ā, b̄) : (S, θ[ā/x̄, b̄/ȳ, w̄/z̄]) � ψ} and E∗ is its reflexive and
transitive closure, namely, (ū, v̄) ∈ E∗(w̄) iff there exists a finite (possibly empty) sequence v̄0, ..., v̄n
of tuples of elements such that v̄0 = ū, v̄n = v̄, and (v̄i, v̄i+1) ∈ E(w̄) for all 0 ≤ i < n.

It easy to prove that FO(TC) logic is even more expressive than MSO logic. As an example,
consider the equi-level relation that holds between two vertices in the infinite binary complete tree iff
they are at the same distance from the root. It is easy to see that such a relation is not expressible
by any MSO-formula. However, it can be expressed by the following FO(TC)-formula:

φ(s, t) = [TCx̄,ȳψ(x̄, ȳ)](ε, ε, s, t)

where ε denotes the root of the tree (it can be easily defined by a suitable FO-formula), x̄ = (x1, x2),
ȳ = (y1, y2), and ψ(x1, x2, y1, y2) = (succ1(x1, y1) ∨ succ2(x1, y1)) ∧ (succ1(x2, y2) ∨ succ2(x2, y2))
(intuitively, the formula ψ states that y1 is one level below x1 and y2 is one level below x2).

We can define fragments of FO(TC) logic by constraining the number of variables that are bounded
by the TC-operator. Precisely, we denote by FO(TC)(k) the fragment of FO(TC) such that for every
(sub-)formula [TCx̄,ȳψ(x̄, ȳ, z̄)](s̄, t̄), we have |x̄| = |ȳ| ≤ k. As an example, in FP(TC)(1) logic only
binary relations (i.e., edges in a graph) can be defined using the TC-operator. This implies that

FP(TC)(1) logic over graph structures is subsumed by MSO logic; indeed, the following equivalence
holds for every graph G, for every assignment θ, and for every FO-formula ψ(x, y, z̄):

(G, θ) � [TCx,yψ(x, y, z̄)](s, t)

iff (G, θ) � ∃ Z. (θ(Z, s, t, z̄) ∧ y ∈ Z ∧ ∀W. (θ(W, s, t, z̄) → Z ⊆W))

where θ(Z, s, t, z̄) = s ∈ Z ∧ ∀ x, y. (x ∈ Z ∧ ψ(x, y, z̄)) → y ∈ Z.

Reachability logics. A common feature of MSO logic and FO(TC) logic is that they both allow one
to express reachability properties like ‘vertex y is reachable from vertex x through a path with labels
over A′ ⊆ A’. Indeed, the latter property can be expressed by the following FO(TC)-formula:

ReachA′(x, y) = [TCx,y(x = y ∨
∨

a∈A′

Ea(x, y))](x, y).

The reachability logic (shortly FO(R) logic) is the restriction of FO(TC) logic where transitive closure
formulas are allowed to be of the form ReachA′(x, y) only. Such a logic is clearly less expressive than
FO(TC)(1) and MSO logics, but more expressive than pure FO logic. Sometimes, suitable extensions of
FO(R) logic are used, such as, for instance, the FO(Reg) logic, which allows one to express properties
like ‘vertex y is reachable from vertex x through a path labeled by a word in L’, where L is a regular
language. In this case, the expressiveness of FO(Reg) logic is in between FO(R) and MSO logics.

Modal logics. Here we briefly describe a basic modal logic. We denote by A a finite set of labels and
by P a countable set of propositional letters. The basic modal logic is an extension of propositional
logic where formulas are build up starting from single propositional letters P ∈ P , via the Boolean
connectives ∨ ,¬ and the modality 〈a〉, for each a ∈ A. Intuitively, the meaning of a formula 〈A〉ψ
is the following one: ‘there is an a-labeled transition that brings the system in a configuration where
ψ holds’. More formally, formulas are evaluated over a certain A-labeled transition system and with
respect to a specified assignment θ for propositional letters and a specified initial configuration. We say
that a formula ψ holds in the transition system M = (Q,A, δ) with the assignment θ : P → P(Q)
and at the configuration q ∈ Q, and we denote it by (M, θ, q) � ψ, if one of the following conditions
holds:
• ψ is a single propositional letter P and q ∈ θ(P);
• ψ is of the form 〈a〉ψ′ and there is a configuration q′ ∈ Q such that (q, a, q′) ∈ δ and (M, θ, q′) � ψ′;
• ψ is of the form ψ1 ∨ ψ2 and (M, θ, q) � ψ1 or (M, θ, q) � ψ2 holds;
• ψ is of the form ¬ψ′ and (M, θ, q) 6� ψ′.

We use [a]ψ as a shorthand for ¬〈a〉¬ψ, meaning that ‘every a-labeled transition (if any) brings the
system in a configuration where ψ holds’. The expressive power of such a modal logic is quite weak:
obviously any formula can only make statements about a given finite number of steps in the future.
Indeed, any formula written in this basic modal logic can be easily translated into an equivalent
FO-formula with one free variable. For instance, given a transition system M = (Q,A, δ), an assign-
ment θ, an initial configuration q ∈ Q, and a formula ψ = 〈a〉P , (M, θ, q) � ψ iff the FO-formula
∃ y. (Ea(x, y) ∧ p) holds in the transition graph G = (V, (Ea)a∈A) of M expanded with the assign-
ment θ(P) for for predicate P and the assignment q for the free variable x. It should be noted that
different, and more expressive, variants of this basic modal logic (e.g., propositional dynamic logic,
computation tree logic, etc.) have been introduced in the literature. As an example, the modal logic
CTL∗ (see [37] for formal definitions) allows one to express properties like ‘for every computation, ψ
holds until a certain point in the future, where φ holds’.

The modal µ-calculus. We now focus on modal µ-calculus (sometimes called propositional µ-
calculus), which is a modal logic that subsumes most other commonly used modal logics. For further

details we refer the reader to [54, 13]. The distinctive feature of µ-calculus is the use of monadic
second-order variables bound by least and greatest fixed points of definable monotonic functions. An
atomic formula in the modal µ-calculus can be a propositional letter P ∈ P , its negation ¬P , or a
monadic variable X ∈ X . Atomic formulas can be then combined to form more complex formulas
via the Boolean connectives ∨ , ∧ (note that negation is allowed on propositional letters only),
the modalities 〈a〉 and [a], with a ∈ A, and the fixpoint operators µX and νX , with X ∈ X . As
usual, formulas are evaluated over a A-labeled transition system M = (Q,A, δ) expanded with an
assignment θ : (P ∪ X) → P(Q) for propositional letters and a distinguished initial configuration
q ∈ Q. For the sake of simplicity, we define the semantics of a formula ψ by specifying the set JψKM,θ

of all configurations where ψ holds. Formally, q belongs to JψKM,θ iff (M, θ, q) � ψ. The set JψKM,θ is
defined by induction on the structure of ψ as follows:
• JP KM,θ = θ(P);
• J¬P KM,θ = Q \ θ(P);
• JXKM,θ = θ(X);
• J〈a〉ψKM,θ = {q ∈ Q : ∃ q′ ∈ Q. (q, a, q′) ∈ δ ∧ q′ ∈ JψKM,θ};
• J[a]ψKM,θ = {q ∈ Q : ∀ q′ ∈ Q. (q, a, q′) 6∈ δ ∨ q′ ∈ JψKM,θ};
• Jψ1 ∨ ψ2KM,θ = Jψ1KM,θ ∪ Jψ2KM,θ;
• Jψ1 ∧ ψ2KM,θ = Jψ1KM,θ ∩ Jψ2KM,θ;

• JµX. ψKM,θ is the least fixpoint of the monotone2 function that maps a set P ⊆ Q to the set
JψKM,θ[P/X], where θ[P/X] is the extension of θ with the assignment P for X ;

• JνX. ψKM,θ is the greatest fixpoint of the monotone function that maps a set P ⊆ Q to the set
JψKM,θ[P/X], where θ[P/X] is the extension of θ with the assignment P for X .

As regards the definition of the semantics of µX. ψ (resp. νX. ψ), it should be noted that JµX. ψKM,θ

(resp. JνX. ψKM,θ) can be equivalently defined as the intersection (resp. the union) of all sets P ⊆ Q
such that P ⊇ JψKM,θ[P/X] (resp. P ⊆ JψKM,θ[P/X]). Notice that the existence of these fixpoints is
guaranteed by the well-known Tarsky’s Theorem.

As regards the expressiveness of µ-calculus, it is worth to do the following remarks. First of all, as a
modal logic, the µ-calculus distinguishes between graph structures up to bisimulation equivalence, that
is, given two bisimilar structures M and M′ (both expanded with a valuation for the propositional
letters and the monadic variables and with a marking for the initial configuration), for every formula
ψ in the µ-calculus, M � ψ iff M′

� ψ. In particular, this implies that a formula ψ holds in a graph
structure M iff it holds in the unfolding of M from its initial vertex (recall that the unfolding of a
graph is a tree bisimilar to the graph itself). Moreover, in [49], Janin and Walukiewicz proved that
the µ-calculus is as expressive as the bisimulation invariant fragment of MSO logic, namely, every
MSO-formula that does not distinguish between bisimilar models is equivalent to a suitable formula
of the µ-calculus.

2.5 Decision problems

Here we introduce some fundamental decision problems involving infinite state systems and logics. In
particular, we define the model checking and the satisfiability problems for logics, and we describe
reachability problems. We only briefly mention other interesting decision problems, such as the family
of equivalence-checking problems, which consist in testing the existence of isomorphisms, bisimulations,
simulations, or trace equivalences between infinite state systems.

Model checking and satisfiability problems. Roughly speaking, a model checking problem con-
sists in establishing, given (a finite representation of) a system and (a logical formula expressing) a
desired property of the system, whether the system satisfies the given property.

2 Note that monotonicity follows from the fact that the variable X always occurs positively in the formula ψ.

Let Σ be a signature, L a logic, and S a relational structure in the signature Σ (for instance S can
be a transition graph possibly expanded with an assignment for free variables). The model checking
problem for L and S is the problem of deciding, given a formula ψ in the logic L, whether S � ψ. We
call L-theory of S the set of all L-formulas that hold in the structure S. Thus, we say that the L-theory
of S is recursive (or decidable) if the model checking problem for L and S is decidable. Relational
structures can be part of the input instances of the model-checking problem. In such a case, we say
that the L-theories of the relational structures belonging to a suitable class S are decidable if, for every
structure S ∈ S and for every L-formula ψ, one can decide whether S � ψ. The satisfiability problem
for a logic L and a structure S, instead, consists in deciding whether there exists an assignment θ
such that (S, θ) � ψ. Note that, in this case, no assignment is specified in the structure S. Despite of
the different definitions, the model checking and the satisfiability problems are somehow related. For
instance, it is easy to see that, in the case of FO and MSO logics, the latter problem is reducible to
the former one by existentially closing formulas with free variables.

When trying to establish the decidability of L-theories for a class S of relational structures, one
should carefully choose a trade-off between the expressiveness of the logic L and the number and the
complexity of the structures in S. For instance, let STuring be the class of the transition graphs of
Turing machines, viewed as transition systems. It is well known that the halting problem for Turing
machines is undecidable. Moreover, instances of the halting problem can be easily reduced to suitable
reachability problems over the corresponding transition graphs. This means that if we take a logic
L expressive enough to encode instances of reachability problems (e.g., FO(TC)(1)), then the class
STuring cannot enjoy decidable L-theories (in fact, due to the existence of a universal Turing machine,
there even exists a single graph in STuring with an undecidable L-theory).
As another negative example, one can prove that the FO(TC)(1)-theories of the transition graphs of
infix rewriting systems are undecidable. Indeed, given a Turing machine M working with a set Q of
control states and a set A of input letters, one can encode any configuration of M by a finite word
over Q ∪ A as follows: if the tape contents is a1 ... an � � � ..., and M lies at state q with its head
under the i-th letter, then we encode such a configuration by the finite word a1 ..., ai q ai+1 ... an. Since
M can only move its head by one position at a time, the transitions of M can be encoded by suitable
infix rewriting rules. This shows that the transition graphs of infix rewritings capture those of Turing
machines and, from the previous arguments, they cannot enjoy decidable FO(TC)(1)-theories.

Despite the expressive power of MSO logic, a number of positive results involving the decidability of
MSO-theories of linear and branching structures have been provided in the literature. Two fundamental
results in this field are Büchi’s and Rabin’s Theorems [6, 45], which show the decidability of the model-
checking problem for the linear order (N, <) and for the infinite binary complete tree T2, respectively.
Both results have been achieved by exploiting closures poperties of sequential Büchi automata (resp.
Rabin tree automata) under union, complementation, and projection to reduce the model-checking
problem to an acceptance problem for such automata. Precisely, given an MSO-formula ψ(X1, ..., Xm),
one can compute a Büchi automaton A (and, conversely, given a Büchi automaton A, one can compute
an MSO-formula ψ(X1, ..., Xm)) such that, for every assignment θ,

(N, <, θ) � ψ iff wθ ∈ L
ω(A)

where wθ is the characteristic word of (N, <, θ), defined by wθ[i + 1] = {j : 1 ≤ j ≤ m, i ∈ θ(Xj)}
for every element i ∈ N. We call acceptance problem of a word w the problem of deciding, for any
given Büchi automaton A, whether A accepts w. Similarly, the emptiness problem for Büchi automata
is the problem of deciding whether a given Büchi automaton recognizes a non-empty language. The
above correspondence between models of MSO-formulas and words accepted by Büchi automata,
immediately implies that the MSO-theory of (N, <, θ) is decidable iff the acceptance problem of wθ
for Büchi automata is decidable. Moreover, it easy to see that the satisfiability problem for MSO logic
interpreted over (N, <) reduces to the emptiness problem for Büchi automata.
These results can be extended to branching structures, and in particular to the infinite binary complete
tree T2 and to Rabin tree automata. Precisely, Rabin’s Theorem establishes a strong correspondence

between MSO-formulas satisfied by an expanded tree structure (T2, θ) and Rabin tree automata ac-
cepting its canonical representation Tθ: for every MSO-formula ψ(X1, ..., Xm), one can compute a
Rabin tree automaton A (and, conversely, for every Rabin tree automaton A, one can compute an
MSO-formula ψ(X1, ..., Xm)) such that, for every assignment θ,

(T2, θ) � ψ iff Tθ ∈ L (A)

where Tθ is the canonical representation of (T2, θ), defined by Tθ(v) = {j : 1 ≤ j ≤ m, v ∈ θ(Xj)} for
every vertex v of T2. In analogy to the linear case, it turns out that the MSO-theory of (T2, θ) is
decidable iff the acceptance problem of Tθ for Rabin tree automata is decidable. Such a result implies
that the satisfiability problem for MSO logic interpreted over the infinite binary complete tree T2 is
decidable. Furthermore, the results can be generalized to non-complete trees by introducing a dummy
symbol ⊥, which is read by the tree automaton whenever a vertex is missing (see Section 2.3).

In Sections 4, 5, and 6 we deal with model checking problems for FO and MSO logics interpreted
over more complex structures, possibly expanded with some predicates.

Reachability problems. In its most basic formulation, the reachability problem over a (labeled)
graph G = (V, (Ea)a∈A) consists in deciding, given two (possibly infinite) sets of vertices I, F ⊆ V ,
whether there exists a path π from a (source) vertex i ∈ I to a (target) vertex f ∈ F . During
reachability analysis, we clearly may need to represent infinite sets of vertices by means of suitable
symbolic expressions. As an example, an infinite set S ⊆ V of vertices could be represented by a logical
formula ψ (holding true exactly at the vertices contained in S) or by an automaton A (accepting all
and only the words that represent the vertices contained in S).

A number of variants of the plain reachability problem has been also introduced in the literature.
Among all, we mention:
• recurrent reachability: given I, F ⊆ V , to decide whether there exists an infinite path π from a

vertex i ∈ I that meets F infinitely often;
• constrained reachability: given I, C, F ⊆ V , to decide whether there exists a path π from a vertex
i ∈ I that remains in C until it eventually reaches a vertex f ∈ F ;

• universal reachability: given I, F ⊆ V , to decide whether any path π from any vertex i ∈ I
eventually reaches a vertex f ∈ F ;

• universal recurrent reachability: given I, F ⊆ V , to decide whether any infinite path π from any
vertex i ∈ I meets F infinitely often;

• universal constrained reachability: given I, C, F ⊆ V , to decide whether any path π from any
vertex i ∈ I remains in C until it eventually reaches a vertex f ∈ F .

Reachability problems can be intuitively expressed by suitable CTL∗-operators, as shown in Table
2.1.

Problem CTL∗-operator

plain reachability EF

recurrent reachability EGF

constrained reachability EU

universal reachability AF

universal recurrent reachability AGF

universal constrained reachability AU

Table 2.1. Overview of reachability problems.

As a matter of fact, several pragmatical problems in the context of verification of infinite state
systems can be reduced to a suitable reachability problem; notably, safety and invariant properties

(e.g. “does the system never reach a dangerous state”) can be verified by solving universal reachability
problems, while liveness properties (e.g. “does the system infinitely often reaches a certain good state”)
can be formulated as recurrent reachability problems. It is worth to remark that the universal variants
of the reachability problems are reducible to the corresponding existential variants, and vice versa
(for example, (I, F) is a positive instance of the universal reachability problem iff (I, V \ F) is a
negative instance of the plain reachability problem). Moreover, it should be noted that the (universal)
reachability problem is a special case of the (universal) recurrent and the (universal) constrained
reachability problems.

In Section 7 we describe in detail some methods to solve reachability problems over suitable classes
of transition graphs.

Equivalence-checking problems. In its most common formulation, the equivalence-checking prob-
lem for transition systems is the problem of deciding, given two (representations of) transition sys-
tems, whether these systems are equivalent up to a certain relation. According to such a definition,
the equivalence-checking problem is actually a family of problems, whose different instances are ob-
tained by specifying the relation that must hold between the transition systems. The relevance of
this kind of problems comes from the fact that the first of the two given systems can be viewed as
a concrete implementation while the second one can be viewed as a specification (i.e., the intended
behavior) of the system; in such a way, establishing the equivalence of the two systems ensures that
their behavior is comparable and hence the implementation is correct. Possible notions of system
equivalence are isomorphism, bisimilarity, trace equivalence3; moreover, also the simularity relation,
which is not a graph equivalence in the proper sense, is often used as a parameter to measure similar-
ities of systems behaviors. As happens for model-checking and reachability problems, the decidability
of equivalence-checking problems depend on the considered class of structures. For instance, it turns
out that the bisimilarity-checking problem for transition graphs of Petri nets and the isomorphism-
checking problem for automatic graphs are undecidable. In these lecture notes, we shall not consider
equivalence-checking problems, even though they have been recognized to play a fundamental role in
the verification of infinite state systems.

3 Basic techniques

In this section we introduce some basic techniques that have been proposed in the literature to solve
decision problems for suitable logics and meaningful classes of infinite state systems.

We first focus our attention on transformations of infinite state systems specified by logical interpre-
tations (and their possible variants). Then, we consider more powerful transformations, precisely, tree
iterations and unfoldings. Such transformations allows one to transfer definability, decidability, and
complexity results among different logical theories. In particular, one can show that MSO-definable
interpretations and unfoldings preserve the decidability of MSO-theories and thus they can be used to
define interesting classes of decidable relational structures, starting from some basic ones. Moreover,
these transformations can be used either in isolation or in combination. For instance, in [20], Caucal
exploits MSO-definable interpretations and unfoldings to generate, starting from the infinite binary
complete tree, a hierarchy of infinite graphs whose MSO-theories are decidable.

We preliminary recall the following definition, based on [31]. Given two signatures Σ and Σ′ and
two logical languages L and L′ over Σ and Σ′, respectively, we say that a transformation f from
Σ-relational structures to Σ′-relational structures is L-to-L′-compatible if, given any L′-sentence ψ,

one can effectively build an L-sentence
−�
ψ such that, for every Σ-relational structure S,

S �
−�
ψ iff f(S) � ψ.

3 Two graphs are said to be trace equivalent if the languages accepted by reading the labels along paths
between specified pairs of vertices coincide.

On the grounds of such a definition, it is clear that an L-to-L′-compatible transformation f allows one
to transfer the decidability of L-theories of a class S of Σ-relational structures to the L′-theories of the
class S′ = {f(S) : S ∈ S} of Σ′-relational structures. If both L and L′ are FO (resp. MSO, FO(TC),
etc.) logics (over possibly different signatures), we simply call the L-to-L′ compatible transformations
FO-compatible (resp. MSO-comptatible, FO(TC)-compatible, etc.).

3.1 Interpretations and transductions

Let fix two signatures Σ = (R, k) and Σ′ = (R′, k′), a Σ-relational structure S = (V, (rS)r∈R), and
a logic L in the signature Σ that uses (at least) first-order variables. For the sake of brevity, given a
formula ψ(x1, ..., xm), we write S � ψ[v1, ..., vm] to mean that ψ holds in S under the assignment vi
for xi, for each 1 ≤ i ≤ m. Formally, an L-definable interpretation of Σ′ into Σ is a tuple

I =
(
φ(x), (ψr(x1, ..., xk′(r)))r∈R′

)

consisting of one L-formula φ(x) plus one L-formula ψr(x1, ..., xk′(r)) for each relational symbol r of
Σ′. The interpretation I can be viewed as a transformation that maps a Σ-relational structure S to
a Σ′-relational structure S′, which is defined as follows. The domain of S′ is the set of all elements
v ∈ V such that S � φ[s]. For each relational symbol r ∈ R′, rS

′

is the set of all and only the k′(r)-
tuples of elements (v1, ..., vk′(r)) such that S � ψr[v1, ..., vk′(r)]. Intuitively, interpretations allows one
to describe a new relational structure within a given one, by exploiting suitable logical formulas with
free variables. Each relation rS

′

that results from the evaluation of an L-formula ψr(x1, ..., xk′(r)) over
S is said to be L-definable in S. For instance, the unary predicate P = {2n : n ∈ N} of even natural
numbers is MSO-definable in (N, <).

We now give two application examples of the notion of logical interpretation. In the first example,
we consider the set N of natural numbers expanded with their usual ordering < and the predicate
even of even numbers. We denote by L the relational structure (N, <, even) and we define a new
relational structure K = (Z,≺,neg), where ≺ denotes the standard ordering of the integers and
neg = {(n,−n) : n ∈ Z}, by means of a suitable FO-definable interpretation of L. Intuitively, positive
elements of K are represented by even numbers in L, while negative elements are represented by odd
numbers in L. We define the following FO-formulas:

ψ≺(x, y) = (even(x) ∧ even(y) ∧ x < y) ∨

(¬even(x) ∧ ¬even(y) ∧ y < x) ∨

(y < x ∧ ∀ z. z < x → z = y)

ψneg(x, y) = (x = y ∧ ¬∃ z. z < x) ∨

(even(x) ∧ y < x ∧ ¬∃ z. y < z < x) ∨

(¬even(x) ∧ x < y ∧ ¬∃ z. x < z < y)

φ(x) = true.

Clearly, the interpretation I =
(
φ(x), ψ≺(x, y), ψneg

)
maps L to (an isomorphic copy of) K.

In this second example, we show that infinite ternary complete tree T3 can be obtained from the
infinite binary complete tree T2 via a suitable MSO-definable interpretation. We denote by E1 and
E2 the left- and right-child relations of T2 and we define the following MSO-formulas

ψF1(x, y) = E1(x, y)

ψF2(x, y) = ∃ z. E2(x, z) ∧ E1(z, y)

ψF2(x, y) = ∃ z. E2(x, z) ∧ E2(z, y)

ψF (x, y) = ψF1(x, y) ∨ ψF2(x, y) ∨ ψF3(x, y)

φ(x) = ∃ X. x ∈ X ∧ ∃ y. (y ∈ X ∧ ¬∃ z. ψF (z, y)) ∧

∀ y, z. ((y ∈ X ∧ ψF (y, z)) → z ∈ X).

Intuitively, the formulas ψFi
, with i ∈ {1, 2, 3}, define the edge relations of T3 inside T2, the formula

ψF defines the successor relation F of T3, and the formula φ defines the domain of T3, which is
obtained as the closure of the root under the successor relation F . Thus, it is clear that the infinite
ternary complete tree T3 can be thought of as the image of T2 under the MSO-definable interpretation
I = (φ(x), (ψFi

(x, y))i∈{1,2,3})) (see Figure 3.1).

1 2

3

1 2
3

1 1 1

Fig. 3.1. The infinite ternary complete tree defined inside the binary one.

As regards decidability issues, it is easy to see that L-definable interpretations preserve the decid-
ability of L-theories, namely, for every L-interpretation I, if the L-theory of the relational structure
S is decidable, then the L-theory of the image of S under I is decidable as well. Such a result follows
from the L-to-L-compatibility of L-definable interpretations. Indeed, given an L-formula ψ in the

signature Σ′ and given a Σ-relational structure S, one can compute an equivalent formula
−�
ψ in the

signature Σ by
i) using φ(x) (resp. ∀ x. x ∈ X → φ(x)) to constrain each first-order variable x (resp. second-order

variable X) to be instanciated by an element in the resulting structure Dom(I(S)) (resp. a subset
of Dom(I(S)));

ii) substituting each atom of the form r(x1, ..., xk′(r)) with the formula ψr(x1, ..., xk′(r)).
As a matter of fact, from Büchi and Rabin theorems, we already know that the structure L = (N, <
, even) and the infinite binary complete tree T2 enjoy decidable MSO-theories (notice that the predicate
even can be defined by a suitable MSO-formula in (N, <)). Thus, from the previous observations and
examples, we immediately have that the structure K = (Z,≺,neg) and the infinite ternary complete
tree T3 enjoy decidable MSO-theories as well.

A noticeable limitation of logical interpretations (as defined above), is that, for every structure S
and for every interpretation I, I(S) is always a sub-structure of S. In order to overcome this clumsy
situation, one can preliminarily introduce n copies of the input structure S and then apply interpreta-
tion to their disjoint union. The resulting transformation is the so-called transduction. Transductions
were originally introduced in [27] for MSO-logics and transition graphs; here we adapt the definition
to the case of a generic logic L and a generic relational structure S. Let Σ = (R, k) and Σ′ = (R′, k′)
be two signatures and let [n] denote the set {1, ..., n}. An L-definable transduction from Σ to Σ′ is a
tuple

T =
(
n, (φi(x))i∈[n], (ψr,̄i(x1, ..., xk′(r)))r∈R′ ,̄i∈[n]k′(r)

)

where φi(x) and ψr,̄i(x1, ..., xk′(r)) are L-formulas. The application of T to a Σ-relational structure
S results in an Σ′-relational structure S′, which is defined as follows. The domain of S′ is the set
of all pairs (v, i) such that v ∈ Dom(S), 1 ≤ i ≤ n, and S � φi[v]. For each relational symbol
r ∈ R′, rS

′

is the set of all and only the k′(r)-tuples of elements ((v1, i1), ..., (vk′(r), ik′(r))) such that
S � ψr,i1,...,ik′(r)

[v1, ..., vk′(r)]. Roughly speaking, any L-definable transduction can be thought of as

an n-fold copy operation followed by an L-definable interpretation. Like L-definable interpretations,
L-definable transductions preserve the decidability of L-theories.

As an example, one can easily obtain the relational structure K = (Z,≺,neg) from (N, <) (rather
than (N, <, even)) via a stuiable FO-definable transduction.

The interested reader could also see [23], where an automaton-based characterization of bisimilarity-
preserving MSO-definable transductions is given. Precisely, a bisimilarity-preserving transduction is
defined as a transduction T such that
• T (G) is a deterministic rooted graph whenever G is a deterministic rooted graph,
• T (G) is bisimilar to T (G′) whenever the graph G is bisimilar to the graph G′.

In [23], it has been showed that bisimilarity-preserving MSO-definable transductions can be computed
by suitable forms of determistic tree transducers equipped with a rational look-ahead facility (see [38]
for formal definitions).

3.2 Inverse mappings and restrictions

Inverse mappings are an alternative way to define new relational structures inside given ones. They can
be applied when the input and the output signatures consist of binary relational symbols only. Thus,
inverse mappings can be viewed as suitable transformations of (labeled) transition graphs. Let A and
B be two alphabets for the edge labels of the input and the output graphs, respectively. We define a
disjoint copy Ā of the alphabet A and we denote its elements with ā for each a ∈ A. A mapping is a
function h that maps a label b from B to a language Lb of finite words over A∪ Ā. Given an A-labeled
graph G = (V, (Ea)a∈A), we expand it with the backward edge relation Eā = {(v, v′) : (v′, v) ∈ Ea}
for each a ∈ A, and we allow paths to traverse edges in both directions. Note that the sequence of
labels along any path in the (expanded) graph G is a word over the alphabet A ∪ Ā. A mapping
h : B → P((A ∪ Ā)∗) can be applied to an A-labeled graph G = (V, (Ea)a∈A) by its inverse, thus
obtaining the B-labeled graph h−1(G) = (V, (E′

b)b∈B), where E′
b is the set of all pairs (v, v′) of vertices

of G such that there is a path from v to v′ (traversing edges in both directions) labeled by a word
w ∈ h(b).

Mappings of the form h : B → P((A ∪ Ā)∗) can be classified on the grounds of the languages
h(b). For instance, if h(b) is a finite language for every b ∈ B, then the mapping h is said to be
finite. Similarly, if h(b) is a rational (resp. contex-free) language for every b ∈ B, then h is said to
be rational (resp. context-free). It should be also noted that inverse rational mappings are a special
case of MSO-definable interpretations. Indeed, the existence of a path in a graph labeled by a word in
a rational language can be expressed by a suitable MSO-formula. Thus, given any rational mapping
h : B → P((A ∪ Ā)∗), one can build an MSO-formula ψb(x, y), for each b ∈ B, that defines exactly
the b-labeled edges of h−1(G) inside G, for every A-labeled graph G.

One can further introduce suitable operations that restrict the domain of a graph structure. For
instance, vertices can be selected by specifying their access paths from a designated source vertex in a
given graph. LetG = (V, (Ea)a∈A) be a genericA-labeled graph,L be a language overA∪Ā, and v0 ∈ V
a distinguished source vertex of G. The L-restriction of G from v0 is the graph G|v0,L = (V ′, (Ea)a∈A),
where
• V ′ is the set of all vertices v ∈ V for which there is a path in the (expanded) graph G from v0 to
v labeled by a word w ∈ L,

• for each a ∈ A, E′
a = Ea ∩ (V ′ × V ′).

In analogy to inverse mappings, we define rational (resp. context-free, etc.) restrictions as restrictions
specified by rational (resp. context-free, etc.) languages. Notice that finite restrictions produce only
finite graphs and thus they are of no interest. It is clear that rational restrictions from MSO-definable
vertices are special cases of MSO-definable interpretations. Moreover, rational restrictions are usually
applied to deterministic labeled trees with their roots as source vertices. In these cases, we can use

the shorter notation T |L, instead of T |v0,L, which denotes the L-restriction from the root v0 of a tree
T .

We now give an example of inverse finite mapping and rational restriction. We apply these two
operations to the infinite binary complete tree T2. First, let assume that the edge labels of T2 are taken
from the set A = {1, 2} and let B = {a, b, c}. Then, we define the finite mapping h : B → P((A∪Ā)∗)
such that h(a) = {1}, h(b) = {2}, and h(c) = {2̄1̄2} and the rational restriction L = {1}∗ · {ε, 2}.
The construction of the resulting graph G = h−1(T2)|L is depicted in Figure 3.2. Since inverse finite
mappings and rational restrictions are special cases of MSO-definable interpretations and since T2

enjoys a decidable MSO-theory, we immediately have that G enjoys a decidable MSO-theory as well.

a

a

a

b

b

b

c

c

Fig. 3.2. A graph resulting from an inverse rational mapping followed by a rational restriction.

3.3 Tree iterations and unfoldings

The operation of unfolding (or unraveling), together with its variants, attracted a lot of interest in
the field of infinite state system verification, since the celebrated Muchnik’s Theorem was stated in
[67]. The unfolding of a graph, which we formally defined in Section 2.2, is the tree whose vertices are
all and only the finite paths originating from a specified source vertex and where the edge relations
are implicitly given by path prolongations. According to [28], the unfolding of a graph representing a
transition system is usually viewed as the behavior of the system. A noticeable implication of Muchnik’s
Theorem, whose first complete proof is due to Walukiewicz [74], is that the transformation that maps
a rooted graph to its unfolding is MSO-compatible. In other words, one can translate a given (MSO-
definable) property of the behavior of a system into an equi-satisfiable property of the system itself. In
[28], Courcelle proved a weaker form of Muchnik’s Theorem, from which it followed that the unfolding
of a deterministic graph is MSO-compatible. Subsequently, in [73, 74], the result has been extended
to a more powerful transformation (i.e., the tree iteration of a graph), thus producing the first formal
proof of Muchnik’s Theorem. Here, we recall the basic definitions and results.

Definition 5. Given a graph G = (V, (Ea)a∈A), the tree iteration of G is the relational structure
G∗ = (V ′, (E′

a)a∈A, son, clone), where
• V ′ is the set V ∗ of all finite (possibly empty) sequences of vertices of G,
• E′

a is the set of all pairs of the form (α · u, α · v), with α ∈ V ∗ and (u, v) ∈ Ea,
• son is the set of all pairs of the form (α, α · u), with α ∈ V ∗ and u ∈ V ,
• clone is the set of all elements of the form α · u · u, with α ∈ V ∗ and u ∈ V .

Note that the unary predicate clone can be thought of as a coloring of the graph (V ′, (E′
a)a∈A, son),

and hence G∗ as a colored graph. Figure 3.3 depicts the graphG = ({l, r}, {(l, r)}) and its tree iteration
G∗ (dashed arrows represent instances of the relation son and black vertices represent elements of the
predicate clone).

l r

ε

l r

ll lr rl rr

lll llr lrl lrr rll rlr rrl rrr

G
G∗

Fig. 3.3. The tree iteration of a graph.

Theorem 1 (Semenov-Muchnik [67]). The transformation that maps a graph G to its tree itera-
tion G∗ is MSO-compatible.

Proof. A complete proof can be found in [74]. 2

Corollary 1. The transformation that maps a rooted graph G to its unfolding Unf (G) is MSO-
compatible.

Proof. We prove that the unfolding of a rooted graph G can be obtained via an MSO-definable
interpretation of the tree iteration ofGA, whereGA is a suitable n-fold copy ofG. LetG = (V, (Ea)a∈A)
and let T be the MSO-definable transduction

(
(φa(x))a∈A, (ψa,b,c(x, y))a,b,c∈A)

)
, where

• φa(x) = true for all a ∈ A,
• ψa,b,c(x, y) = Ea(x, y) if c = a, otherwise ψa,b,c(x, y) = false.

We define GA = T (G). Intuitively, GA is obtained by making a copy (v, a) of each vertex v of G, for
each label a ∈ A, and then by connecting a vertex (u, b) to a vertex (u, c) with an a-labeled edge iff
(u, v) ∈ Ea and c = a. It is easy to see that the unfolding of G from a vertex v0 is isomorphic to the
unfolding of GA from the vertex (v0, a), for any choice of a ∈ A. Moreover, the target vertex of any
a-labeled edge in GA can only be of the form (v, a), with v ∈ V . This implies that each path in GA
originating from a vertex (v0, a0) is uniquely determined by the sequence of its vertices (recall that
graphs are assumed to be simple, namely, distinct edges have different labels or they have different
source or target vertices). We can exploit such a property to define the unfolding of GA from a vertex
(v0, a0) inside the tree iteration G∗

A of GA.
Let G∗

A = (V ∗(E′
a)a∈A, son , clone). Given two paths in GA represented by the sequences α, β ∈ V ′,

we have that β is an extension of α with an a-labeled edge (and hence (α, β) is a candidate a-labeled
edge in Unf (GA, (v0, a0))) iff there is a sequence γ ∈ V ∗ satisfying
i) γ ∈ clone,
ii) (α, γ) ∈ son ,
iii) (γ, β) ∈ E′

a.
The above conditions can be easily expressed by suitable MSO-formulas over the structure G∗

A. More-
over, one can build another MSO-formula overG∗

A that constrains a sequence α to represent a real path
in GA that originates from (v0, a0) (simply apply the closure of (v0, a0) under the previously defined
relations). Thus, there is an MSO-interpretation that generates (an isomorphic copy) of Unf (G, v0)
starting from G∗

A. In particular, from Theorem 1 and from the MSO-compatibility of MSO-definable
transductions and interpretations, we know that the unfolding operation is MSO-compatible. 2

It should be also noted that Theorem 1 generalizes Rabin’s Theorem, since the decidability of
the MSO-theory of the infinite binary complete tree T2 follows from the MSO-compatibility of the

unfolding operation and from the decidability of the MSO-theories of finite graphs (notice that T2

can be obtained as the unfolding of the finite graph G = (V,E1, E2), where V = {v} and E1 = E2 =
{(v, v)}). On the other hands, the proof of Muchnik’s Theorem strongly relies on the closure of Rabin
tree automata under union and complementation.

3.4 Caucal hierarchy

By alternating MSO-compatible transformations starting from some basic graph structures, it is possi-
ble to generate a number of interesting structures enjoying decidable MSO-theories. For instance, one
can start with finite graphs, which obviously enjoy decidable MSO-theories, and then apply unfoldings
to them, thus obtaining (decidable) regular trees of finite out-degree. In succession, one can apply in-
verse rational mappings followed by rational restrictions, thus obtaining other (decidable) graphs (the
so-called prefix-recognizable graphs [19, 21]), and so on. Such an alternation of unfoldings, inverse
rational mappings, and rational restrictions yields a hierarchy of decidable graphs and trees, called
Caucal hierarchy, or pushdown hierarchy [20]. We formally define such a hierarchy as follows:

G0 = {G : G is a finite graph}

Tn = {Unf (G, v0) : G ∈ Gn, v0 is an MSO-definable vertex of G}

Gn+1 = {h−1(T)|L : h is a rational mapping, L is a rational language}

From the MSO-compatibility of unfoldings, inverse rational mappings, and rational restrictions, it
immediately follows that every graph in the Caucal hierarchy has a decidable MSO-theory.

Equivalent characterizations of such a hierarchy have been provided. For instance, in [72] the same
hierarchy is obtained as an alternation MSO-definable interpretations and unfoldings from MSO-
definable vertices and in [14] it is obtained from MSO-definable transductions and the treegraph
operation (i.e., a suitable variant of the tree iteration). Moreover, always in [14], it is proved that,
for every n > 0, the level n Caucal graphs coincide with the transition graphs of level n higher-order
pushdown automata, which are automata working on level n stacks (a level 1, or simple, stack is a
finite word, a level n + 1 stack is a stack of level n stacks, see also [33, 34, 35] for further details).
From the above characterizations and from the strictness of the hierarchy of the languages recognized
by higher-order pushdown automata (see [32, 40]), it follows that the Caucal hierarchy is strictly
increasing as well.

Moreover, in [20] Caucal introduces a sub-hierarchy consisting of deterministic trees only. He
extends the notions of unfolding, rational mapping, and rational restriction to deal with colored
(ranked) trees and he defines the so-called term hierarchy by repeatedly applying rational markings
(i.e., a variant of the notion of rational restriction), inverse deterministic rational mappings, and
unfoldings, and then by restricting the resulting structures to be deterministic colored (ranked) trees.
He also shows that the term hierarchy coincides with the safe higher-order program schemes [33, 53, 52]
and with the hierarchy of trees obtained by iterating the evaluation of first-order substitutions starting
from regular trees [30].

3.5 Reductions

In the beginning of Section 3, we introduced the notion of L-to-L′-compatible transformation. Roughly
speaking, such a notion gives an effective and uniform method to reduce the L′-theory of the structure
f(S) to the L-theory of the structure S, where f is a specified transformation and S is an input
structure for f . However, the notion of reducibility between logical theories can be applied in a more
general setting, where transformations are not involved. Precisely, given two signatures Σ and Σ′, two
logics L and L′, and two relational structures S and S′, respectively in the signature Σ and in the
signature Σ′, we say that an L-formula ψ is equivalent to an L′-formula ψ′ whenever S � ψ iff S′

� ψ′

(if ψ has some free variables, then we assume that S is a structure expanded with an assignment and
the same for ψ′ and S′). We then say that the L′-theory of S′ is reducible to the L-theory of S if there is
an effective translation of L′-formulas interpreted over S′ into equivalent L-formulas interpreted over
S. Note that, in such a case, if the L-theory of S is decidable, then the L′-theory of S′ is decidable as
well. It should be also noted that, differently from the cases of interpretations and transductions, we
do not enforce any restriction on the form of the reduced formulas; in particular, the number and the
types of the free variables of L′-formulas may not coincide with the number and the types of the free
variables of reduced L-formulas.

We now give an example of reduction, taken from [69]. In particular, we reduce the chain fragment
of the MSO-theory (shortly, the CMSO-theory) of the infinite binary complete tree T2 expanded
with the equi-level predicate to the MSO-theory of the semi-infinite line (N, <). We assume that
the vertices of T2 are the finite words over the set A = {1, 2} and the edge relations are of the
form E1 = {(v, v · 1) : v ∈ A∗} and E2 = {(v, v · 2) : v ∈ A∗}. We further denote by L the equi-level
predicate of T2, which consists of all pairs of words v, v′ such that |v| = |v′|. Recall that CMSO logic
restricts second-order variables to be instanciated by chains, namely, subsets of paths consisting of
{1, 2}-labeled edges only. Without loss of generality, we can assume that quantifications in CMSO
logic are restricted to non-empty chains. We now show how to encode a generic non-empty chain C
with two subsets ZC ,WC of N. Let C be a non-empty chain. We say that P ⊆ A∗ is a cover of C if P
is a maximal path including C. We denote by PC the leftmost cover of C, that is, the (unique) cover
PC such that, if v is the longest word in C, then the path PC consists only of 1-labeled edges starting
from the vertex v downward. We then define ZC and WC in such a way that, for every i ∈ Z,
i) n ∈ ZC iff PC contains a word of the form v · 2, with |v| = n (the set ZC encodes the {2}-labeled

edges along the path PC),
ii) n ∈ WC iff C contains a word of length n (WC encodes the levels which intersected by the chain

C).

Notice that the pair (ZC ,WC) determines in an unambiguous way the non-empty chain C. Further-
more, we can map the above construction in the logic. Precisely, let ψ be a CMSO-formula. For every
chain variable X in ψ′, we introduce two set variables ZX and WX (to be instanciated by subsets of

N). Then, we translate ψ′ to an equivalent MSO-formula
−�
ψ as follows:

• if ψ is of the formX ⊆ Y , then we set
−�
ψ to be WX ⊆WY ∧

(
ZX = ZY ∨ ∃ w ∈ WX . (∀ w′ ∈WX .

w ≥ w′ ∧ ∀ z ≤ w. z ∈ ZX ↔ z ∈ ZY)
)

(read ‘WX is included in WY and either ZX = ZY holds
or WX has a maximum element w and ZX ∩ {z ≤ w} = ZY ∩ {z ≤ w}’);

• if ψ is of the form E1(X,Y), then we set
−�
ψ to be ∃ w. ZX = ZY ∧ WX = {w} ∧ WY = {w + 1};

• if ψ is of the form E2(X,Y), then we set
−�
ψ to be ∃ w. ZX ∪{w + 1} = ZY ∧ WX = {w} ∧ WY =

{w + 1};

• if ψ is of the form L(X,Y), then we set
−�
ψ to be ∃ w. WX = WY = {w};

• if ψ is of the form ψ1 ∨ ψ2, then we set
−�
ψ to be

−�
ψ1 ∨

−�
ψ2;

• if ψ is of the form ¬ψ′, then we set
−�
ψ to be ¬

−�
ψ ′;

• if ψ is of the form ∃ X. ψ′, then
−�
ψ is ∃ ZX . ∃WX .

−�
ψ ′ ∧ WX 6= ∅ ∧ ∀ w ∈ WX . (∀ w′ ∈WX . w ≥

w′) → (∀ z ∈ ZX . w ≥ z) (read ‘there are ZX and WX 6= ∅ satisfying
−�
ψ ′ and, whenever WX has

a maximum element w, then w is greater than or equal to every element of ZX ’, meaning that the
cover corresponding to the encoding of the chain X is the leftmost one).

It is routine to check that for every CMSO-sentence ψ, ψ holds in (A∗, E1, E2, L) iff
−�
ψ holds in (N, <).

From the decidability of the MSO-theory of (N, <), it follows that the CMSO-theory of (A∗, E1, E2, L)
is decidable as well.

In the literature (see, for instance, [21, 63]) one can find several examples of reductions between
different logics.

4 Context-free and prefix-recognizable graphs

In this section, we introduce the context-free graphs and the prefix-recognizable graphs and we study
their properties with a special emphasis on equivalent (internal and external) presentations and on
the decidability of the corresponding MSO-theories.

Context-free graphs and prefix-recognizable graphs are naturally represented as transition graphs
of pushdown automata and prefix-rewriting systems, respectively. However, alternative presentations
based on deterministic graph grammars, more precisely, least solutions of hyperedge-replacement equa-
tions [24] and vertex-replacement equations [25], have been provided in the literature. Both approaches
exploit suitable rewriting rules that transform a given hypergraph (i.e., a graph containing edges with
arbitrary arities) to another hypergraph. Intuitively, an hyperedge-replacement operation consists in
replacing a non-terminal hyperedge e in a hypergraph G by another hypergraphH and then gluing the
sources of H with the former attachment points of e in G. A vertex-replacement operation, instead,
consists in replacing a vertex v (and its incident hyperedges) in a hypergraph G by another hyper-
graph H and adding new hyperedges that connect H to the former neighbours of v in G. It is worth to
mention that the class of finite graphs generated by repeated applications of hyperedge-replacement
operations is strictly contained in the class of finite graphs generated by repeated applications of
vertex-replacement operations. However, in [42, 43] it has been showed that both approaches are
equally expressive for sets of simple hypergraphs of bounded in- and out-degree. Moreover, infinite
(hyper)graphs can be obtained as the least solutions of deterministic systems of hyperedge-/vertex-
replacement equations, or, equivalently, as the limits of hyperedge-/vertrex-replacement operations
specified by deterministic graph grammars. The reader can find comparisons of the hyperedge- and
vertex-replacement approaches in [29, 41].

In the following section, we formally define hyperedge-replacement grammars. We then prove
that the context-free graphs can be equivalently represented as the graphs generated by hyperedge-
replacement grammars. As for prefix-recognizable graphs, we only mention, without proving, that
the prefix-recognizable graphs coincide (up to isomorphisms) with the graphs generated by vertex-
replacement grammars.

Hyperedge-replacement grammars. Let fix a finite set A of edge labels and a finite set N of
(ranked) non-terminal symbols. To each symbol γ ∈ N we associate an arity kγ . Given a non-terminal
symbol γ ∈ N , a γ-labeled hyperedge is a tuple consisting of exactly kγ vertices v1, ..., vkγ

. An A∪N -
labeled hypergraph is a structure of the form G = (V, (Ea)a∈A∪N), where V is a set of vertices and
Ea is either a set of edges or a set of hyperedges, depending on whether a ∈ A or a ∈ N . Intuitively,
hypergraphs are natural generalizations of graphs, where edges can have arbitrary arities.

A (deterministic) graph grammar is a tuple G = (Hγ)γ∈N , where, for each γ ∈ N , Hγ is a finite
hypergraph. The graph grammar G is used as a description of rewriting rules for non-terminal (i.e.,
N -labeled) hyperedges. More precisely, each hypergraph Hγ has hyperedges labeled over A∪N and it
is equipped with a coloring function that associates to each vertex a color from the set {⊥}∪{1, ..., kγ}
and that satisfies the following condition: for each 1 ≤ i ≤ kγ , there is exactly one vertex v ∈ Dom(Hγ)
that is colored with i, every other vertex is colored with ⊥. The coloring associated to each graph Hγ

makes it possible to replace a γ-labeled hyperedge (v1, ..., vkγ
) in a hypergraph G with a copy of the

graph Hγ by ‘gluing’ each vertex vi with the corresponding copy of the i-colored vertrex in Hγ .

Before giving formal definitions of graph rewriting rules, we give an intuitive example of graph
grammar. In Figure 4.4, we represented a graph grammar consisting of two rules for the non-terminal
symbols γ0 and γ1 with arity 2 and 3, respectively. In the bottom part of the same figure, we depicted
(a portion of) the graph resulting from repeated applications of rewrite rules starting from an initial
γ0-labeled hyperedge.

Below, we formally define hypergraph rewriting rules.

1

2

γ0

a

c

γ1

1

2

2

γ1

b

b

a

a

c

γ0

γ0

a

c

b

b

a

a

c

a

c

b

b

a

c

b

b

a

a

c

a

a

c

Fig. 4.4. A graph grammar and the generated graph.

Definition 6. Given a graph grammar G = (Hγ)γ∈N , two A∪N -labeled hypergraphs G and G′, and a
γ-labeled hyperedge (v1, ..., vkγ

) from G, with γ ∈ N , we say that G′ is a rewriting of G on (v1, ..., vkγ
)

according to G, and we write G
(v1,...,vkγ)
−−→

G
G′,if there is an isomorphic copy H ′

γ of Hγ such that:

• Dom(G) ∩Dom(H ′
γ) = {v1, ..., vkγ

},
• for every 1 ≤ i ≤ kγ , vi is the (unique) i-colored vertex of H ′

γ ,
• Dom(G′) = Dom(G) ∪Dom(H ′

γ),
• for each a ∈ A ∪ N , the a-labeled hyperedges of G′ are the a-labeled hyperedges of G, except

(v1, .., vkγ
) if a = γ,plus all a-labeled hyperedges of Hγ .

Note that, even though G is a deterministic graph grammar, for each non-terminal symbol γ ∈ N ,
we can have different choices on which γ-labeled hyperedge has to be replaced (there may exist
distinct hyperedges labeled with the same symbol γ). However, the rewriting relation is confluent in
the following sense: if (v1, ..., vkγ

) and (w1, ..., wkγ′) are two hyperedges of G, then there is G1 such

that G
(v1,...,vkγ)
−−→

G
G1

(w1,...,wk
γ′

)

−−→
G

G′ iff there is G2 such that G
(w1,...,wk

γ′
)

−−→
G

G2

(v1,...,vkγ)
−−→

G
G′. Thus, it

makes sense to define the parallel rewriting of a hypergraph G, denoted G ⇒
G

G′, as the rewriting of

all non-terminal hyperedges (in any arbitrary order) of G. Such a notion is needed to guarantee that
every hyperedge in a given hypergraph is eventually replaced according to the rules in G. Moreover,
we have the following two properties:
i) if G ⇒

G
G′ and ⇒

G
G′′ hold, then G′ and G′′ are isomorphic graphs,

ii) if � is the preordering relation between graphs such that G � G′ iff every vertex and every
A-labeled edge of G also belongs to G′, then, whenever G ⇒

G
G′ holds, G � G′ follows.

These properties allows us to think of ⇒
G

as a monotone function, provided that we identify graphs

whose restrictions to A-labeled edges are isomorphic. Given an initial non-terminal symbol γ0 ∈ N ,
called axiom, we can denote by Gω(γ0) the least fixpoint of n-fold applications of ⇒

G
starting from a

hypergraph consisting of a single γ0-labeled hyperedge (note that such an A-labeled graph is unique
up to isomorphisms). We call the graph Gω(γ0) the pattern graph generated by G from γ0.

4.1 Context-free graphs

Roughly speaking, a context-free graph is a connected component of an ε-free pushdown automaton.
Hereafter, a connected component of a graph G is a maximal sub-graph G′ such that, for every pair of
vertices v, v′ in G′, v′ is reachable from v by a path that can traverse edges in both directions (note
that this is not the standard notion of connected component for directed graphs).

Definition 7. Given a pushdown automaton P = (S,A, Γ, δ, s0, γ0) (devoid of its final states), the
context-free graph (or accessible pushdown transition graph) corresponding to P is the graph G =
(V, (Ea)a∈A), where
• for each a ∈ A, Ea is the set of all pairs ((s, w), (s′, w′)) such that there are γ ∈ Γ and u, v ∈ Γ ∗

satisfying (i) w = γ · v, (ii) (s, a, γ, u, s′) ∈ δ, and (iii) w′ = u · v,
• V is the maximal set of configurations of P that contains the initial configuration (s0, γ0 and such

that, for every pair of vertices v, v′ ∈ V , there is a sequence v1, v2, ..., vn such that v1 = v, vn = v′,
and, for all 1 ≤ i < n, vi and vi+1 are adjacent vertices.

From the above definition, it should be clear that the context-free graphs are exactly the connected
components of the pushdown transition graphs, namely, the transition graphs of ε-free pushdown
systems (recall that a pushdown system is a pushdown automaton devoid of its initial configuration
and its final states).

As an example, consider the pushdown automaton P = (S,A, Γ, δ, s0, γ0), where S = {s0, s1}, A =
{a, b, c}, Γ = {γ0, γ}, and δ consists of the following transitions: (s0, a, γ0, γγ0, s0), (s0, a, γ, γγ, s0),
(s0, b, γ, ε, s0), (s0, c, γ0, γ0, s1), (s0, c, γ, γ, s1), (s1, d, γ, ε, s1) (see the left part of Figure 4.5). The
(initial fragment of the) context-free graph of P is reported in the right part of Figure 4.5.

s0 s1

a push(γ)

b pop(γ)
c

d pop(γ)

(s0, γ0) (s0, γγ0) (s0, γγγ0)

(s1, γ0) (s1, γγ0) (s1, γγγ0)

a a a

b b b

c c c

d d d

Fig. 4.5. A pushdown automaton and its context-free graph.

External presentations of context-free graphs. Context-free graphs are naturally represented
by their pushdown automata. However, alternative presentations of context-free graphs have been
proposed in the literature (see [24, 17, 18]). As an example, context-free graphs can be equivalently
represented as the pattern graphs of special forms of graph grammars. In the following, we define
special forms of pushdown automata and graph grammars.

Definition 8. A pushdown automaton P = (S,A, Γ, δ, s0, γ0) is said to be in normal form iff for
every (s, a, γ, w, s′) ∈ δ, either |w| ≤ 1 or w = γ′γ for some γ′ ∈ Γ .

Intuitively, a pushdown automaton in normal form can change state at any time but it can only
perform a push or a pop operation or change the symbol at the top of the stack. It is not difficult to
show (see, for instance, [18]) that for every pushdown automaton P , there is a pushdown automaton
P ′ in normal form such that the corresponding context-free graphs are isomorphic. Roughly speaking,
the construction of such a pushdown automaton P ′ is done by substituting the stack alphabet Γ of P
with a new stack alphabet

⋃
1≤i≤n Γ

i that encodes blocks of the former stack symbols having bounded
length; then, the transitions of P ′ simply mimic the transitions of P by pushing/popping at most one
block-symbol at a time.

In the following definition, given a graph grammar G = (Hγ)γ∈N and a vertex v of some hypergraph
Hγ , we say that v is an input vertex (resp. an output vertex) if v is colored with an index i ∈ {1, ..., kγ}
(resp. v is target of an non-terminal hyperedge).

Definition 9. A graph grammar G = (Hγ)γ∈N is said to be uniform if for every γ ∈ N the following
conditions hold:
• non-terminal hyperedges in Hγ have distinct vertices,
• there is no input vertex in Hγ which is target of a non-terminal hyperedge (namely, the set of

input vertices and the set of output vertices are disjoint),
• every output vertex is also a target of a terminal edge,
• every terminal edge in Hγ has at least one target which is an input vertex,
• for evrey γ ∈ N , the pattern graph of G from γ is a connected graph.

Intuitively, the above conditions enforce that the pattern graphs generated by a uniform graph gram-
mar are connected and have bounded in- and out-degree (note that the removal of any of such con-
ditions may yield unconnected pattern graphs or pattern graphs with unbounded degree). It can be
proved (see [18]) that for every graph grammar G and for every axiom γ ∈ N , if Gω(e) is a connected
graph of finite in- and out-degree, then there exists a uniform graph grammar H such that Hω(e) is
isomorphic to Gω(e).

The characterization of context-free graphs in terms of pattern graphs of uniform graph grammars
has been first proved (in a rather different, but equivalent, framework) by Muller and Schupp [62].
Later in [17, 18] Caucal proved the same result, but in a constructive way. Below, we sketch the proof
idea, by first showing that the context-free graphs are included in the pattern graphs of uniform graph
grammars (up to isomorphisms), and then the converse inclusion.

Theorem 2 (Muller and Schupp [62]). For every pushdown automaton P in normal form, there is
a (uniform) graph grammar G and an axiom γ0 ∈ N such that Gω(γ0) is isomorphic to the context-free
graph of P.

Proof (sketch). We can assume that P = (S,A, Γ, δ, s0, γ0) is in normal form and we denote by G the
context-free graph of P , where each vertex is identified with a word of the form s · w, with s ∈ S
and w ∈ Γ ∗. We build a graph grammar G that generates G by vertices of increasing length. Given a
vertex u in G, we denote by Gu the connected component of G that contains u and only the vertices
of length greater than or equal to |u|; we call the sub-graph Gu the end of G at vertex u (such a
notion reminds the one used in [62]). We further denote by Fu the (finite) set of all vertices of Gu
that have minimum length, namely, all vertices v ∈ Dom(Gu) such that |v| = |u|; the set Fu is
called the frontier of Gu. It is not difficult to see (cf., for instance, [18]) that, since P is in normal
form, all vertices of Gu have a common suffix suf u of length |u| − 2 (we assume that suf u = ε if
|u| < 2). Note that suf u ∈ Γ ∗ for every u ∈ Dom(G). Now, we define a suitable equivalence between
the vertices of G: we say that two vertices u, v ∈ Dom(G) are equivalent, denoted u ≡ v, iff the
two sets {w ∈ S · Γ ∗ : w · suf u ∈ Fu} and {w ∈ S · Γ ∗ : w · suf v ∈ Fv} coincide (intuitively, the two
frontiers Fu and Fv coincide after the removal of the corresponding suffixes). Such an equivalence is
commonly known as the end-isomorphism equivalence. It is easy to see that if u ≡ v, then Gu and Gv
are isomorphic graphs. Moreover, the equivalence ≡ has finite index. This means that there are only

finitely many non-isomorphic ends of G.

We now denote by U any complete set of representatives for the ≡-classes. Then, for each word u ∈ U ,

we fix (i) an arbitrary ordering on the frontier vertices of Fu, thus writing Fu = (f
(u)
1 , ..., f

(u)
hu

), and (ii)
a bijective mapping ι from U to a finite set N (disjoint from A) of non-terminal symbols, thus writing
N = {ι(u) : u ∈ U}. We let the arity kι(u) of a non-terminal symbol ι(u) be exactly the number hu
of the frontier vertices in Fu. Then, for each representative u ∈ U and for each label a ∈ A, we define

E
(u)
a as the set of all a-labeled edges of Gu that have at least one vertex of length exactly |u| as target.

We also define, for each representative u ∈ U and for each non-terminal symbol γ ∈ N , the set E
(u)
γ

of all γ-labeled hyperedges of the form (x1 · suf w, ..., xkγ
· suf w), where w is a vertex of Gu of length

|u| + 1, v is the representative of [w]≡ in U , γ = ι(v), and xi · suf v = f
(v)
i for all 1 ≤ i ≤ kγ = hv.

We finally define the graph grammar G that associates to each non-terminal symbol γ = ι(u), with

u ∈ U , the hypergraph Hγ consisting of the edge relations (E
(u)
a)a∈A∪N (the vertices are implicitly

defined as the targets of these edges and their colors range over {⊥, 1, ..., kγ} and are determined by
the ordering of the frontier vertices in Fu). It is routine to check that the pattern graph Gω(ι(v0)),
where v0 is the representative of the initial configuration s0 · γ0 in U , is isomorphic to the context-free
graph G of P . Since G generates a connected graph of finite degree starting from axiom ι(v0), G can
be transformed into an equivalent uniform graph grammar G′. 2

As an example, consider the pushdown automaton P depicted in Figure 4.5 and its context-free
graph G. Note that P is already in normal form. Let ≡ be the equivalence between the vertices
of G induced by end-isomorphisms. It is easy to see that there are exactly 2 equivalence classes,
namely, {s0γ0, s1γ0} and {s0γnγ0, s1γ

nγ0 : n > 0}. Thus, we can define the set U = {s0γ0, s0γγ0} of
representatives of ≡-equivalence classes and let ι : U → N be any bijection from U to the finite set
of non-terminal symbols N = {λ0, λ1}. Finally, it turns out that the graph grammar G = (Hλ)λ∈N
represented in Figure 4.6 generates from axiom λ0 a pattern graph isomorphic to G.

1

2

λ0 a

b

c

d

λ1

1

2

λ1 a

b

c

d

λ1

Fig. 4.6. Extraction of a graph grammar from a pushdown automaton in normal form.

Theorem 3 (Muller and Schupp [62]). For every graph grammar G and for every axiom γ0 ∈ N , if
Gω(γ0) is a connected graph of finite degree, then there is a pushdown automaton P whose context-free
graph is isomorphic to Gω(γ0).

Proof (sketch). From the previous observations, we can assume that G = (Hγ)γ∈N is a uniform
graph grammar. Moreover, by removing useless rules and non-terminal symbols, by properly renaming
vertices, and by possibly adding new rules, we can assume, without loss of generality, that that G and
γ0 satisfy the following properties:
i) for every axiom γ ∈ N , the pattern graph Gω(e) is non-empty,
ii) every non-terminal γ ∈ N labels at least one hyperedge in some hypergraph generated by G

starting from axiom γ0,
iii) all graphs in G have separate output vertices, namely, every output vertex in a graph Hγ is target

of a unique hyperedge,
iv) hyperedges in each graph Hγ have distinct labels, namely, for every pair of non-terminal symbols

γ, γ′ ∈ N , Hγ contains at most one γ′-labeled hyperedge,

v) all graphs in G have separate vertices, namely, for every pair of non-terminal symbols γ, γ′ ∈ N ,
Dom(Hγ) ∩ Dom(Hγ′) = ∅,

vi) kγ0 = 1, namely, the axiom γ0 has arity 1.
We denote by V the set of all vertices of hypergraphs of G, namely, V =

⋃
γ∈N Dom(Hγ). Now, we fix

a non-terminal symbol γ ∈ N and we define the function τγ from Dom(Hγ) to V ∪ (V ·N) as follows.
For every vertex v of Hγ , if v is is target of A-labeled edges only, then we set τγ(v) = v; otherwise,
if v is the i-th target of a (unique) γ′-labeled hyperedge (v1, ..., vkγ

) (namely, v = vi), then we set
τγ(v) = vi · γ′. Note that, since the graphs of G have separate outputs, the function τγ is well defined.
Moreover, note that the images of τγ can be viewed as words over the alphabet Γ = V ∪N .
We now define a prefix rewriting system R = (Γ,A, P), where P consists of all rules of the forms
(τγ(v) · γ, a, τγ(v′) · γ), where γ ∈ N and (v, v′) is an a-labeled edge in Hγ . We further let v0 be
the (unique) vertex of Hγ0 which is colored by 1 (i.e., the vertex that corresponds to the target of
a γ0-labeled hyperedge during an application of a rewriting rule). The connected component of the
transition graph of R that includes the word v0 ·γ0 is easily shown to be isomorphic to Gω(γ0). Finally,
it is not difficult to transform the prefix rewriting system R into a pushdown automaton P whose
context-free graph is isomorphic to Gω(γ0). 2

We now show that context-free graphs can be obtained from infinite complete trees via inverse

finite mappings and rational restrictions.

Theorem 4 (Caucal [19]). Let P = (S,A, Γ, δ, s0, γ0) be a pushdown automaton. The context-free
graph of P can be obtained from an infinite |S| + |Γ |-ary complete tree by applying an inverse finite
mapping followed by a rational restriction.

Proof. Let P = (S,A, Γ, δ, s0, γ0) be a pushdown automaton, let G = (V, (Ea)a∈A) be its context-free
graph, and let TS∪Γ be the infinite S ∪ Γ -labeled complete tree. As usual, we identify the vertices of
the tree TS∪Γ by words over A ∪ Γ (recall that ε denotes the root of the tree). We then encode the
configurations of P by words over S ∪ Γ . In such a case, it is convenient to represent a configuration
(s, w) ∈ S × Γ ∗ in its reversed order, namely, by the word wrev · s, where wrev denotes the reversal
of the stack content w. In such a way, P-configurations can be viewed as a vertices of TS∪Γ and the
transitions of P can modeled by the suffix-rewriting system R = (S ∪ Γ,A, P), where

P = {({γ · s}, a, {urev · s′}) : (s, a, γ, u, s′ ∈ δ}.

Note that the context-free graph G coincides (up to isomorphisms) with the transition graph G′ of
R restricted to those vertices which are reachable from γ0s0 via paths that traverse edges in both
directions. Moreover, it easy to see that the transition graph G′ of R can be obtained from TS∪Γ by
applying the inverse finite mapping h−1, where, for each a ∈ A,

h(a) = {s̄ · γ̄ · urev · s′ : ({γ · s}, a, {urev · s′}) ∈ P}.

It remains to show that the context-free graph G can be obtained from G′ by restricting its domain
to a suitable regular language. To do that, we define the relation ; between words over S∪Γ ∪ S̄∪ Γ̄
such that w ; w′ if w′ can be obtained from w by erasing one substring of the form x·x̄, for x ∈ S∪Γ .
We then denote by ;

∗ the reflexive and transitive closure of ; and, given any language L over
S ∪ Γ ∪ S̄ ∪ Γ̄ , we define ;

∗ (L) = {w′ ∈ (S ∪ Γ ∪ S̄ ∪ Γ̄)∗ : ∃ w ∈ L. w ;
∗ w′}. By exploiting

finite-state automata, it is easy to prove that, if L is a regular language, then ;
∗ (L) is a regular

language as well. In particular, if we let

L =
⋃

a∈A

(
h(a) ∪ h(a)

rev)

(here h(a) denotes the regular language {w̄ : w ∈ h(a)}), then the language

L′ = ;
∗ ({γ0s0} · L

∗) ∩ (Γ ∗ · S)

is regular as well. It is easy to check that the graph G is isomorphic to the L’-restriction of G′. 2

Recall that inverse finite mappings are special forms of MSO-definable interpretations and hence
they are MSO-compatible. Therefore, as a corollary of Theorem 4, we obtain that every context-free
graph has a decidable MSO-theory. Here, we give an alternative proof of such a corollary by directly
exploiting MSO-definable interpretations (see also [72]).

Corollary 2 (Muller and Schupp [62]). The class of context-free graphs enjoy decidable MSO-
theories.

Proof. Let P = (S,A, Γ, δ, s0, γ0) be a pushdown automaton and G = (V, (Ea)a∈A) its context-free
graph. We provide an MSO-definable interpretation of G into the infinite S ∪Γ -labeled complete tree
TS∪Γ : the decidability of the MSO-theory of G will follows immediately from Rabin’s Theorem and
from the MSO-compatibility of MSO-definable interpretations. By definition, every configuration of
P is a pair of the form (s, w), with s ∈ S and w ∈ Γ ∗. We represent the configuration (s, w) by the
(unique) vertex in the tree TS∪Γ that is reachable from the root via a path labeled by wrev · s. An
MSO-definable interpretation of G in TS∪Γ can be defined as follows. Every edge relation Ea can be
defined by a suitable MSO-formula ψa(x, y) that states that there exist a vertex w in TS∪Γ and a
transition (s, a, γ, u, s′) of P such that
i) w is accessible from the root via a path labeled over Γ ,
ii) x denotes the target of a γ · s-labeled path from w,
iii) y denotes the target of an urev · s′-labeled path from w.
The set of vertices of G consists of all and only the configurations reachable from the initial one (s0, γ0)
via paths that traverse edges in both directions. Thus, it can be defined by a suitable MSO-formula
φ(x) which states that for every set X , if X contains the word γ0s0 and it is closed under the relations
Ea and E−1

a = {(v, u) : (u, v) ∈ Ea}, for all a ∈ A, then X contains x. 2

Below, we prove a converse inclusion which implies that the graphs obtained by applying inverse
finite mappings to infinite complete trees and then restricting to accessible vertices are exactly the
context-free graphs.

Theorem 5 (Caucal [19]). Let TA be the infinite A-labeled complete tree, v0 a vertex of TA, and
h : B → P((A ∪ Ā)∗) a finite mapping. The graph obtained by restricting h−1(TA) to the vertices
that are accessible from v0 via paths that traverse edges in both directions is a context-free graph.

Proof (sketch). Since the inverse finite mapping h−1 is applied to the deterministic tree TA, we can
assume, without loss of generality, that every word in h(b), for any b ∈ B, belongs to the language
Ā∗ ·A∗. Indeed, if this is not the case, then we can substitute h with the equivalent finite mapping h′

such that, for every b ∈ B,
h′(b) = ;

∗ (h(b)) ∩ (Ā∗ · A∗)

(recall that ; is the relation such that w ; w′ iff w′ is obtained from w by erasing one substring
of the form a · ā, for a ∈ A. Under such an assumption, we can define the prefix-rewriting system
R = (A,B, P), where P = {({u}, b, {v}) : b ∈ B, ūrev · v ∈ h(b)}. It is immediate to see that the
transition graph of R coincides with h−1(TA). Moreover, one can easily translate R into a pushdown
automaton P whose context-free graph is isomorphic to the restriction of h−1(TA) to the vertices
accessible from v0 via paths that traverse edges in both directions. 2

4.2 Prefix-recognizable graphs

In the previous section we defined the context-free graphs as the transitions graphs of accessible
configurations of pushdown automata. We then proved that context-free graphs can be obtained from
infinite complete trees via inverse finite mappings and rational restrictions. In Section 2.3, we also
remarked that pushdown systems are a proper subclass of prefix-rewriting systems. This naturally
leads to the definition of prefix-recognizable graphs [19, 21], which are rational restrictions of the

transition graphs of prefix-rewriting systems 4. It turns out that prefix-recognizable graphs strictly
include the context-free graphs of Muller and Schupp and the regular graph of Courcelle (i.e., pattern
graphs of unrestricted hyperedge-replacement graph grammars). Moreover, prefix-recognizable graph
can be obtained from the infinite binary complete tree via inverse rational mappings and rational
restrictions and they turn out to be the largest class of graphs that enjoy decidable MSO-theories
provable by MSO-definable interpretations in the infinite binary tree.

Definition 10. Given a prefix-rewriting system R = (Γ,A, P) and a regular language L ⊆ Γ ∗, the
corresponding prefix-recognizable graph is the graph G = (L, (Ea)a∈A), where, for each a ∈ A, Ea is
the set of all pairs (u · w, v · w) ∈ L × L for which there is a rule (U, a, V) ∈ P satisfying u ∈ U and
v ∈ V .

Unlike pushdown systems, prefix-rewriting systems are devoid of control states and they allow one
to rewrite a word (on ‘the top of the stack’) rather than a single letter. Moreover, any rule (U, a, V)
gives rise to an in general infinite set of rewrite triples (u, a, v), with u ∈ U and v ∈ V (recall that
both U and V are possibly infinite languages recognized by finite-state automata). It is immediate to
see that prefix-recognizable graphs may present vertices with infinite in- and out-degree. Consider, for
instance, the prefix-rewriting system R = (Γ,A, P), where Γ = {X}, A = {<}, and P consists of a
single rule ({ε}, <, {X}+

); the prefix-recognizable graph of R, depicted in Figure 4.7, is an isomorphic
copy of (N, <) and it has vertices with infinite out-degree and unbounded in-degree.

ε X XX XXX XXXX< < < < <

< < <

< <

Fig. 4.7. A prefix-recognizable graph.

External presentations of prefix-recognizable graphs. We start by showing, in analogy to
Theorem 4, that prefix-recognizable graphs are obtained from infinite complete trees (hence from the
infinite binary complete tree) via inverse rational mappings.

Theorem 6 (Caucal [19]). Let R = (Γ,A, P) be a prefix-rewriting system and let L ⊆ Γ ∗ be a
regular language. The prefix-recognizable graph of R and L can be obtained from an infinite |Γ |-ary
complete tree by applying an inverse rational mapping and a rational restriction.

Proof. The proof is a straightforward generalization of Theorem 4. Let R = (Γ,A, P) be a prefix-
rewriting system, L ⊆ Γ ∗ a regular language, and G = (L, (Ea)a∈A) the corresponding prefix-
recognizable graph. We denote by TΓ be the infinite Γ -labeled complete tree and we identify its
vertices by words over Γ . We represent a configuration w of R by the reversed word wrev ∈ Lrev. It
is immediate to see that the prefix-recognizable graph G can be obtained from TΓ by applying the
inverse rational mapping h−1, where, for each a ∈ A,

h(a) = {ū · vrev : ∃ (U, a, V) ∈ P. u ∈ U, v ∈ V }

followed by the Lrev-restriction (note that Lrev is a regular language). 2

4 Actually, in their original formulation, the prefix-recognizable graphs were defined as the graphs resulting
from the infinite binary complete tree via inverse rational mappings and rational restrictions and then they
were showed to coincide with the rational restrictions of the transition graphs of prefix-rewriting systems.

Since inverse rational mappings are special cases of MSO-definable interpretations, Theorem 6
immediately implies every prefix-recognizable graph has a decidable MSO-theory. Here, we give an
alternative proof of such a result by directly exploiting MSO-definable interpretations.

Corollary 3 (Muller and Schupp [62]). The class of prefix-recognizable graphs enjoy decidable
MSO-theories.

Proof. The proof generalizes that of Corollary 2. Let R = (Γ,A, P) be a prefix-rewriting system, L ⊆
Γ ∗ a regular language, and G = (L, (Ea)a∈A) the corresponding prefix-recognizable graph. We show
how to obtainG from the infinite Γ -labeled complete tree TΓ via an MSO-definable interpretation. The
edge relation induced by a rule (U, a, V) ∈ P can be defined by a suitable MSO-formula ψU,a,V (x, y)
that states that there exist a vertex w in TΓ and two words u, v ∈ Γ ∗ such that
i) u ∈ U rev,
ii) v ∈ V rev,
iii) x denotes the target of an u-labeled path from w,
iv) y denotes the target of a v-labeled path from w
(note that the first two conditions can be expressed in terms of existence of successful runs of the
automata that recognize the regular languages U rev and V rev). The disjunction of the formulas
ψU,a,V (x, y), one for each a-labeled rule (U, a, V) of the prefix-rewriting system, is a formula that
defines the edge relation Ea of G. Finally, the MSO-formula φ(x) defining the domain L of G is ob-
tained by constraining the variable x to be instanciated by those vertices in TΓ that are accessible
from the root via paths labeled by words in L (this is done by expressing the existence of successful
runs for the automaton recognizing the regular language L). 2

The converse of Theorem 6 also holds.

Theorem 7 (Caucal [19]). Let TA be the infinite A-labeled complete tree, let h : B → P((A∪ Ā)∗)
be a rational mapping, and let L ⊆ A∗ be a regular language. The graph h−1(TA)|L is a prefix-
recognizable graph.

Proof (sketch). The proof is almost identical to that of Theorem 5. Since the inverse rational mapping
h−1 is applied to the deterministic tree TA, we can assume, without loss of generality, that every word
in h(b), for any b ∈ B, belongs to the language Ā∗ ·A∗. Under such an assumption, we can define the
prefix-rewriting system R = (A,B, P), where P = {(f(h(b)), b, g(h(b))rev) : b ∈ B} and f (resp. g) is
the natural extension to the languages of the function that erases all symbols from A (resp. from Ā)
in a given word (notice that both f and g preserve regularity of languages). It is immediate to see
that the Lrev-restriction of the transition graph of R coincides with h−1(TA)|L. 2

As for graph grammars, in [39, 26] it has been proved that the graphs obtained via vertex-
replacement operations can be also obtained from the infinite binary tree via special forms of MSO-
definable interpretations, which are very similar to inverse rational mappings followed by rational
restrictions. On the grounds of the previous results, this suggests the fact, proved in [4], that the
prefix-recognizable graphs are exactly the graphs specified by deterministic graph grammars written
with vertex-replacement operations. Since hyperedge- and vertex-replacement operations are equally
expressive for sets of simple hypergraphs of bounded in- and out-degree [42, 43], this also shows that
the connected components of prefix-recognizable graphs of bounded degree are exactly the context-free
graphs.

Finally, it is possible to show that the prefix-recognizable graphs are exactly the rational restrictions
of ε-closures of transition graphs of pushdown systems with ε-moves.

Theorem 8 (Stirling [68]). The prefix-recognizable graphs are isomorphic to the rational restrictions
of ε-closures of transition graphs of pushdown systems with ε-moves.

Proof (sketch). We first prove that any rational restriction of the ε-closure of the transition graph of a
pushdown system P = (S,A ∪ {ε}, Γ, δ) is a prefix-recognizable graph. Let G be the transition graph
of P and let G′ be the A∪{#}-labeled graph obtained from G by replacing every ε-labeled edge by a
corresponding #-labeled edges, where # is a fresh symbol. Since P is a special case of prefix-rewriting
system, G′ can be obtained from the infinite binary complete tree T2 via an inverse rational mapping
h−1. Moreover, the ε-closure of G is definable in G′ via another inverse rational mapping j−1 such
that j(a) = {a}·{#}∗ for all a ∈ A. Since, the functional composition j−1 ◦h−1 of two inverse rational
mappings is an inverse rational mapping as well, this shows that, for every regular language L ⊆ Γ ∗,
G′ = (j−1 ◦ h−1)(T2)|L is a prefix-recognizable graph.
As for the converse inclusion, let R = (Γ,A, P) be a prefix-rewriting system, where P consists of
the following rewriting rules (U1, a1, V1), ..., (Un, an, Vn), and let L ⊆ Γ ∗ be a regular language. For
each 1 ≤ i ≤ n, we denote by Ai = (Si, Γ, δi, Ii,Fi) and by A′

i = (S′
i, Γ, δ

′
i, I

′
i,F

′
i) the finite-state

automata recognizing Ui and (Vi)
rev respectively (note that both are regular languages). Without loss

of generality, we can assume that these automata have pairwise disjoint sets of states. We denote
by q# a fresh state not belonging to any set Si or S′

i. Then, we define the pushdown system P =
(Q ∪ {q#}, A ∪ {ε}, Γ, δ) such that
• Q =

⋃
1≤i≤n(Si ∪ S

′
i),

• δ consists of transitions of the following forms

(q#, ε, γ, γ, s) if s ∈ Ii and γ ∈ Γ

(s, ε, γ, ε, s′) if (s, γ, s′) ∈ δi

(s, ε, γ, γ, s′) if s ∈ Fi, s
′ ∈ I′

i, and γ ∈ Γ

(s, ε, γ, γ′γ, s′) if (s, γ′, s′) ∈ δ′i and γ ∈ Γ

(s, ai, γ, γ, q#) if s ∈ I ′
i and γ ∈ Γ.

It is routine to check that the L′-restriction, where L′ = {q#} · L, of the ε-closure of the transition
graph of P is isomorphic to the prefix-recognizable graph of P and L. 2

5 The contraction method

In this section we study the model-checking problem for MSO logics interpreted over the semi-infinite
line (i.e., (N, <)) and over branching structures (e.g., the infinite complete binary tree) expanded with
unary predicates. The model-checking problem is tackled by reducing it to the acceptance problem
for sequential Büchi automata and Rabin tree automata, respectively.

In the following, we start by considering expansions of (N, <) by unary predicates. As for expansions
of (N, <) by binary predicates, it is worth to remark that undecidability arises already in very simple
cases, like for instance the relation {(n, 2n) : n ∈ N}). Moreover, according to Seese’s conjecture [66],
positive results for the decidability of the MSO-theories of this kind of structures can always be
obtained by using MSO-definable interpretations over tree structures with decidable MSO-theories.
This last remark gives a motivation for studying, in Section 5.2, the decidability of the model-checking
problem for MSO logics interpreted over tree structures.

5.1 The case of the semi-infinite line

We first reduce the model-checking problem for MSO logic interpreted over an expanded structure
(N, <, P), where P ⊆ N, to the acceptance problem for sequential Büchi automata. Precisely, given an
MSO-formula ψ(X), we know from Büchi’s Theorem [6] how to compute a Büchi automaton A such
that (N, <) � ψ[P] iff A accepts the characteristic word wP ∈ {0, 1}ω associated to P . The problem
of deciding whether a given automaton A accepts a fixed word w is called acceptance problem and it
is denoted by Accw.

We just saw that the model-checking problem for an expanded structure (N, <, P) is reducible to
the problem AccwP

. Moreover, the latter problem is easily seen to be decidable if wP is an ultimately

periodic word. In [36] Elgot and Rabin found several interesting predicates P for which wP is not
ultimately periodic and AccwP

is still decidable, notably the predicate {n! : n ∈ N} of the factorial
numbers and the predicate {nk : n ∈ N} of the k-th powers. Their approach was based on a reduction
of Accw to the case of ultimately periodic words. Given P as one of the predicates mentioned above,
they showed that, for any Büchi automaton A, contiguous repetitions of the symbol 0 in wP can be
contracted in such a way that an ultimately periodic word w′ is obtained which is accepted by A iff
wP is accepted by A. In [15, 16], Carton and Thomas generalized such a method to the class of the
so-called residually (or profinitely) ultimately periodic predicates, which includes morphic predicates
(e.g., Thue-Morse word predicate, Fibonacci numbers) as well as non-morphic ones (e.g., factorial
numbers). Later in [65], Rabinovich showed that the class of residually ultimately periodic predicates
is the largest class of unary predicates P for which the MSO-theory of (N, <, P) is decidable. In the
following, we describe in detail Carton and Thomas’s approach.

We start with some preliminary definitions. A (possibly infinite) set S endowed with an internal
binary operation · is said to be a semigroup if · is associative, namely, for every a, b, c ∈ S, a · (b · c) =
(a · b) · c. A monoid is a semigroup (S, ·) that contains the identity element (i.e., the element 1S such
that, for every a ∈ S, a·1S = 1S ·a = a). As an example, the set A∗ of all finite words over the alphabet
A equipped with the concatenation operator · is a monoid (its identity element is the empty word ε).
A morphism from a semigroup (resp., a monoid) (S, ·) into a semigroup (resp., monoid) (S′,�) is any
function µ from S to S′ such that, for every a, b ∈ S, µ(a ·b) = µ(a)�µ(b) (resp., µ(a ·b) = µ(a)�µ(b)
and µ(1S) = 1S′). Note that a morphism from a semigroup/monoid (S, ·) into a semigroup/monoid
(S′, ·) is completely determined by the images of the individual elements of S.

Definition 11. An infinite sequence (un)n≥0 of finite words on alphabet A is said to be residually
ultimately periodic if for any morphism µ from the semigroup (A∗, ·) into a finite semigroup (S,�),
the sequence (µ(un))n≥0 is ultimately periodic.

This property is said to be effective iff one can compute, for any given morphism µ from the semigroup
(A∗, ·) into a finite semigroup (S,�), two integers p and q such that for every n ≥ p, µ(un) = µ(un+q).
An infinite word w is called effectively residually ultimately periodic if we can provide a factorization
of w of the form u0u1u2... such that (un)n≥0 is effectively residually ultimately periodic.

As an example, the sequence (an!)n≥0, where a is a fixed symbol, is effectively residually ultimately
periodic. Indeed, the sequence can be easily shown to be effectively residually ultimately constant,
since it is well known that for any element a of a finite semigroup (S, ·) and any integer n > |S|, an!

is equal to a fixed element, usually denoted aω. A slight variant of the previous example shows that
the sequence (un)n≥0, where un = 0nn!−1 · 1 is also effectively residually ultimately constant. Since
(n+1)!−n!− 1 = nn!− 1, the word w = u0u1u2... is the characteristic word of the factorial predicate
P = {n! : n ∈ N} and it is also effectively residually ultimately periodic.

Indistinguishability of words. We can exploit the standard relation ∼A of indistinguishability for a
sequential Büchi automaton A to reduce an instance of the acceptance problem over a non-ultimately
periodic word to an equivalent instance over an ultimately periodic word.

The relation ∼A groups finite words on which A behaves in a similar way. Precisely, it is defined
as follows: for every pair of words u, v ∈ A∗, u ∼A v if for every pair of states p, q of A, there is a run
of A from p to q reading u (and visiting a final state) iff there is a run of A from p to q reading v
(and visiting a final state).

The relation ∼A is an equivalence of finite index (it has at most 3n
2

different equivalence classes,
where n is the number of states of A) and it is compatible with the operation of concatenation,
namely, if u0, u1, u2, ... and v0, v1, v2, ... are two sequences of words such that ui ∼A vi for all i ∈ N,
then w = u0u1u2... ∼A v0v1v2... = w′. Intuitively, this means that, given any Büchi automaton A and

any infinite word w, we can replace a substring u of w by a ∼A-equivalent one u′ and obtain an infinite
word w′ which is indistinguishable from w, namely, w ∈ L (A) iff w′ ∈ L (A). By repeatedly applying
substitutions of this form, one can reduce the acceptance problem for a non-ultimately periodic word to
the acceptance problem for an ultimately periodic one. As a consequence, the acceptance problem for
effectively residually ultimately periodic words (e.g., the characteristic word of the factorial predicate)
turns out to be decidable. Such a result is stated and proved formally in the sequel.

Proposition 1. Given a sequential Büchi automaton A one can compute another automaton A′ such
that for any infinite word w = u0u1u2... w ∈ L (A) iff w′ ∈ L (A′), where w′ = [u0]∼A

[u1]∼A
[u2]∼A

...
and each [ui]∼A

is the ∼A-equivalence class of ui (since ∼A has finite index, w′ can be thought of as
an infinite word).

Proof. Let A = (S,A, δ, I, F) be a sequential Büchi automaton. The automaton A′ = (S′, A′, δ′, I ′, F ′)

has two distinct copies, q̄ and q̃, of each state q of A, namely, S′ = S̄ ∪ S̃. The input alphabet of A′ is
the set of all ∼A-equivalence classes, which we know to be finite. Then, for any ∼A-equivalence class
C, we let
1. (p̄, C, q̄) ∈ δ′ and (p̃, C, q̄) ∈ δ′ iff A can go from p to q by reading any word in C and visiting at

least one final state;
2. (p̄, C, q̃) ∈ δ′ and (p̃, C, q̃) ∈ δ′ iff A can go from p to q by reading any word in C and visiting no

final state.
The initial states of A′ are all and only the states q̃ with q ∈ I. The final states of A′ are all and
only the states q̄ with q ∈ F . It can be easily verified that A′ accepts w′ = [u0]∼A

[u1]∼A
[u2]∼A

... iff
A accepts w = u0u1u2.... 2

Corollary 4. The acceptance problem for effectively residually ultimately periodic words is decidable.

Proof. The claim follows almost trivially from previous observations. Let w = u0u1u2... be an infinite
word, where (un)n≥0 is an effectively residually ultimately periodic sequence. Now, let A be a generic
sequential Büchi automaton and let A′ be the set of all ∼A-equivalence classes. Let µ : A∗ → A′ be
the function that maps a finite word u to its ∼A-equivalence class [u]∼A

. Notice that the concatenation
operator · can be naturally extended to elements of A′ by exploiting the compatibility of ∼A (namely,
[u]∼A

· [v]∼A
= [u ·v]∼A

). Thus, µ turns out to be a morphism from the semigroup (A∗, ·) into the finite
semigroup (A′, ·). By definition of residually ultimately periodic sequence, (µ(un))n≥0 is an ultimately
periodic sequence and we are able to compute two indices p and q such that µ(un) = µ(un+q), for all
n ≥ p. By Proposition 1, one can obtain a Büchi automaton A′ that accepts the ultimately periodic
word w′ = (µ(u0)...µ(up−1)) · (µ(up)...µ(up+q−1))

ω iff A accepts w. 2

Closure properties of residually ultimately periodic functions In the previous part, we ob-
tained decidability results for expanded structures of the form (N, <, P) by exploiting noticeable
properties of effectively residually ultimately periodic words. Here we aim at providing a large class of
predicates of the form P = {f(n)}n≥0, where f is a strictly increasing function on natural numbers,
whose characteristic words are effectively residually ultimately periodic. Such a class of predicates is
defined in terms of strong closure properties w.r.t. natural arithmetic operations.

We start by defining ultimately periodic functions w.r.t. finite monoids and we prove some relevant
properties of them. Such a notion of function is found, with different but equivalent definitions, in many
areas of computer science (e.g., group theory, combinatorics of words, and automata theory). Roughly
speaking, ultimately periodic functions w.r.t. finite monoids are functions over the natural numbers
that manifest a strong repeating pattern whenever projected into any finite monoid. Examples of such
functions are i2, 2i, 2i − i2, ii, i!, and the exponential tower 22...2

.
Henceforth, for some given p ≥ 0, q > 0, and i ≥ 0, we denote by [i]p,q either the value i or the

value ((i− p) mod q) + p, depending on whether i < p or i ≥ p holds.

Definition 12. A function f : N → N is said to be ultimately periodic w.r.t. finite monoids if, given
k ≥ 0 and r > 0, one can compute p ≥ 0 and q > 0 such that, for every i ≥ 0,

[
f(i)

]
k,r

=
[
f([i]p,q)

]
k,r
. (1)

The famility of ‘ultimately periodic function w.r.t. finite monoids’ owes its name to the fact that
every function f satisfying Equation 1 can be characterized in terms of the periodicity of the sequences
of the form (af(i))i≥0, where a is an element of a finite (multiplicative) monoid (S, ·) (a0 is assumed
to be the identity element of the monoid). This is formally stated in the following Proposition 2. As a
matter of fact, such a characterization connects functions satisfying Definition 12 to sequences of words
satisfying Definition 11. Indeed, since (A∗, ·) is a monoid, given any ultimately periodic function w.r.t.
finite monoids f : N → N and any symbol a ∈ A, the sequence (un)n≥0 of words, where un = af(n),
turns out to be effectively residually ultimately periodic.

Proposition 2. A function f : N → N is ultimately periodic w.r.t. finite monoids iff, given any
finite (multiplicative) monoid5 (S, ·) and given any element e ∈ S, one can compute p ≥ 0 and q > 0
such that, for all i ≥ 0,

ef(i) = ef([i]p,q),

namely, the sequence (ef(i))i≥0 is (effectively) ultimately periodic.

Proof. Let assume that f satisfies Equation 1 and fix an arbitrary pair of integers k ≥ 0 and r > 0.
Then, there are p ≥ 0 and q > 0, computable from k and r, such that

[
f(i)

]
k,r

=
[
f([i]p,q)

]
k,r

holds

for all i ≥ 0. Now, given any finite monoid (S, ·) and any element e ∈ S, we know, from the Pigeonhole
Principle, that there exist two positive integers k ≥ 0 and r > 0, computable from (S, ·) and e, such
that ej = e[j]k,r holds for every j ≥ 0. Thus, we have ef(i) = e[f(i)]k,r = e[f([i]p,q)]k,r = ef([i]p,q).
For the converse implication, suppose that, given f : N → N, for every finite monoid (S, ·) and for
every element e ∈M , we can compute p ≥ 0 and q > 0 such that, for all i ≥ 0, ef(i) = ef([i]p,q) holds.
Let fix two integers k ≥ 0 and r > 0. We can chose (compute) a finite monoid (S, ·) and an element
e ∈ S such that r turns out to be the least integer such that er is the identity of S. Note that, by
construction, for any pair of integers i and j, ai = aj implies i mod r = j mod r, whence [i]k,r = [j]k,r.
From the hypothesis on f , we can compute p ≥ 0 and q > 0 such that, for every i ≥ 0, ef(i) = ef([i]p,q)

holds. Hence, for every i ≥ 0, we have [f(i)]k,r = [f([i]p,q)]k,r . 2

Below, we describe a number of ways to obtain residually ultimately periodic functions, starting
from a set of basic functions. Hereafter, we use i = j (mod m) as a shorthand for i mod m = j mod m.
We say that a function f : N → N has unbounded infimum if lim inf i → ∞f(i) = ∞. In such a case,
we understand that, for any given l ∈ N, we can compute i0 such that f(i) ≥ l holds, for all i ≥ i0.

Proposition 3. Let f and g be two ultimately periodic functions w.r.t. finite monoids. The following
functions are also ultimately periodic w.r.t. finite monoids:
1. (Sum) h = f + g, defined by h(i) = f(i) + g(i);
2. (Product) h = f ∗ g, defined by h(i) = f(i) ∗ g(i);
3. (Difference) h = f − g, defined by h(i) = f(i) − g(i), provided that h has unbounded infimum;

4. (Quotient) h = b fd c, defined by h(i) = b f(i)
d c, where d > 0;

5. (Exponentiation) h = fg, defined by h(i) = (f(i))g(i), provided that h has unbounded infimum;
6. (Exponential tower) h defined by h(0) = 1 and h(i+ 1) = bh(i), where b > 0;
7. (Fibonacci numbers) h defined by h(0) = h(1) = 1 and h(i+ 2) = h(i) + h(i+ 1);

8. (Generalized sum) h defined by h(i) =
∑i−1
j=0 f(j);

9. (Generalized product) h defined by h(i) =
∏i−1
j=0 f(j);

5 It should be noted that the claim of the proposition holds even if the term ‘monoid’ is replaced by ‘semi-
group’, provided that f(n) > 0 holds for every n ∈ N.

10. (Substitution) h = f ◦ g, defined by h(i) = g(f(i)).

Proof. As for cases 1. and 2., it suffices to note that the operator []l,r respects sums and products,
namely, [i+ j]l,r = [[i]l,r + [j]l,r]l,r and [i ∗ j]l,r = [[i]l,r ∗ [j]l,r]l,r, for every i, j ∈ N.

Similarly, one can show that []l,r respects differences, namely, [i − j]l,r = [[i]l,r − [j]l,r]l,r, provided
that i− j ≥ l. Thus, case 3. follows immediately if we assume that h = f − g has unbounded infimum.

Case 4. is proved by noticing that, for every l ≥ 0 and r > 0, [h(i)]l,r is either 0 or [[h(i− d)]l,r + 1]l,r,
depending on whether i < d or i ≥ d. Thus, by defining (h1(i), ..., hd(i)) = ([h(i)]l,r , ..., [h(i+d−1)]l,r),
we obtain

(h1(i+ 1), ..., hd(i+ 1)) =

{
(0, ..., 0) if i = 0,

(h2(i), ..., hd(i), [h1(i) + 1]l,r) if i > 0.

Since each value hj(i) ranges over the finite domain {0, ..., l+ r − 1}, we can apply the Pigeonhole
Principle and claim that there are two (computable) integers p ≥ 0 and q > 0 such that hj(i) =
hj(i+ q), for every i ≥ p and j ∈ [d]. This proves that [h(i)]l,r = [h([i]p,q)]l,r.

As for case 5., we preliminarily recall the definition of the ‘Euler totient function’ φ

φ(i) = i
∏

p prime dividing i

(
1 −

1

i

)

and the following two properties:

ba = ba +
a∑

i=1

((
a
i

)
ba−i ∗ 0

)
= ba +

a∑

i=1

((
a
i

)
ba−i ∗mi

)
= (b +m)a (mod m),

ba = ba ∗ 1 = ba ∗ bφ(m) = ba+φ(m) (mod m).

Since f and g satisfy Equation 1, one can compute p, p′ ≥ 0 and q, q′ ≥ 0 such that [f(i)]0,m =
[f([i]p,q)]0,m and [g(i)]0,φ(m) = [g([i]p′,q′)]0,φ(m). Now, by letting r = max(p, p′) and s = lcm(q, q′), we
obtain [

f(i)g(i)
]
0,m

=
[(

[f(i)]0,m
)[g(i)]0,φ(m)

]

0,m

=
[(

[f([i]r,s)]0,m
)[g([i]r,s)]0,φ(m)

]

0,m
=

[
f
(
[i]r,s

)g([i]r,s)
]

0,m
.

We can further generalize the above result for any l ≥ 0. Let σ(l) be the least integer i such that i ≥ r
and f(i)g(i) ≥ l (such a value exists and it is computable by hypothesis). Then, for every i ≥ σ(l), we
have [

f (i)g(i)
]

l,m
=

[
f (i)g(i) − l

]

0,m
+ l =

[[
f (i)g(i)

]
0,m

− l
]

0,m
+ l

=
[[
f

(
[i]σ(l),s

)g([i]σ(l),s)]
0,m

− l
]

0,m
+ l =

[
f
(
[i]σ(l),s

)g([i]σ(l),s)
]

l,m
.

This proves that h = fg satisfies Equation 1.

We now prove case 6.. We have h(0) = 1 and h(i) = bh(i−1), for every i > 0. Let r > 0 and, for every
l ≥ 0, let σ(l) = dlogb(l)e. We prove, by induction on j, that, for every 0 ≤ j ≤ r, l ≥ 0, and i ≥ σ(l),
the following equation holds

[
h(i+ j)

]
l,φr−j(r)

=
[
h(i+ j + 1)

]
l,φr−j(r)

.

The case j = 0 is almost trivial. Since φ(i) is strictly decreasing for i > 1, we have φr(r) = 1. This
implies that [h(i)]l,φr(r) = l = [h(i+ 1)]l,φr(r) holds for every i ≥ σ(l). Now, let j > 0. For every l ≥ 0

and for every i ≥ σ(l), we have

[
h(i+ j)

]

l,φr−j(r)
=

[
bh(i+(j−1))

]

l,φr−j(r)
=

[
b
[h(i+(j−1))]

σ(l),φr−(j−1)(r)

]

l,φr−j(r)

=
[
b
[h(i+(j−1)+1)]

σ(l),φr−(j−1) (r)

]

l,φr−j(r)

=
[
bh(i+(j−1)+1)

]

l,φr−j(r)
=

[
h(i+ j + 1)

]

l,φr−j(r)
.

In particular, by letting j = r, we have that, for every l ≥ 0 and i ≥ σ(l),

[
h(i+ r)

]
l,r

=
[
h(i+ r + 1)

]
l,r
.

Therefore, we can conclude that [h(i)]l,r = [h([i]σ(l)+r,1]l,r for every l ≥ 0, r > 0, and i ≥ 0.
In case 7., we have [h(i)]l,r = [[h(i−2)]l,r+[h(i−1)]l,r]l,r whenever i ≥ 2. By defining (h1(i), h2(i)) =
([h(i)]l,r, [h(i+ 1)]l,r), we have

(h1(i+ 1), h2(i+ 1)) =

{
([1]l,r, [1]l,r) if i = 0,

(h2(i), [h1(i) + h2(i)]l,r) if i > 0.

Since the values h1(i) and h2(i) range over the finite domain {0, ..., l+ r − 1}, we can apply the
Pigeonhole Principle and claim that there are two (computable) integers p ≥ 0 and q > 0 such that
(h1(i), h2(i)) = (h1(i+ q), h2(i+ q)), for every i ≥ p. This implies that [h(i)]l,r = [h([i]p,q)]l,r.
We now prove case 8. (case 9. follows similarly). Given a function f satisfying Equation 1, we fix
two integers l, r and we denote by p, q the (computable) integers such that [f(i)]l,r = [f([i]p,q)]l,r . We

further define S =
∑p+q

j=p+1 f(j) and we notice that
[∑p+nq

j=p+1 f(j)
]
l,r

=
[
nS

]
l,r

holds, for every integer

n ≥ 0. From the Pigeonhole Principle, there are suitable integers p′, q′ such that [p′nS]l,r = [(p′ +
q′)nS]l,r. Moreover, for every i ≥ p+ qq′, one can compute an integer ni such that i = [i]p,qq′ + niqq

′.
Thus, for every i ≥ p+ qq′, we obtain

[
h(i)

]

l,r
=

[i∑

j=0

f(j)
]

l,r
=

[[i]p,qq′∑

j=0

f(j) +

i∑

j=[n]p,qq′+1

f(j)
]

l,r

=
[[i]p,qq′∑

j=0

f(j) + q′niS
]

l,r
=

[[i]p,qq′∑

j=0

f(j) + q′[ni]p′,q′S
]

l,r
=

[
h([i]p,qq′)

]

l,r
.

It remains to show case 10.. This is immediately proved by noticing that, given l ≥ 0 and r > 0, one
can compute p, p′ ≥ 0 and q, q′ > 0 satisfying

[
g(f(i))

]
l,r

=
[
g([f(i)

]
p,q

)]l,r =
[
g([f([i]p′,q′)]p,q)

]
l,r

=
[
g(f([i]p′,q′))

]
l,r
.

2

As a consequence of Proposition 3, we know that if f : N → N is an ultimately periodic function
w.r.t. finite monoids such that f(n + 1) − f(n) has unbounded infimum (intuitively, the sequence
(f(n))n∈N grows in a superlinear way), then the sequence of words (un)n≥0, where u0 = 0f(0) · 1 and
un+1 = 0f(n+1)−f(n)−1 · 1, is effectively residually ultimately periodic. This further implies that if wP
is the characteristic word of the predicate P = {f(n) : n ∈ N}, then acceptance problem AccwP

is
decidable and so it is the model-checking problem for MSO logic over (N, <, P). As an example, this
result accounts for the decidability of (N, <, P), where P is {nk : n ∈ N}, {kn : n ∈ N}, {nn : n ∈ N},
{n! : n ∈ N}, etc.

Morphic words. Here we consider the class of morphic words, namely, those words that are generated
by repeatedly applying a fixed morphism. Let τ : A∗ → A∗ be a morphism from (A∗, ·) into (A∗, ·).
We denote by τn the n-fold iteration of τ and by xn the word τn(a), where a is a distinguished symbol
of A. If the first letter of τ(a) is a, then it is easily shown that each word xn is a prefix of xn+1. If
furthermore the sequence (|xn|)n≥0 is not bounded, then the sequence (xn)n≥0 converges to an infinite
word x, which is denoted by τω(a). Notice that x is a fixed point of τ , since x = τ(x).

As an example, consider the morphism τ such that τ(a) = ab, τ(b) = ccb and τ(c) = c. By letting
xn = τn(a), we have x0 = a, x1 = ab, x2 = abccb, x3 = abccbccccb, x4 = abccbccccbccccccb, etc. The
fixed point τω(a) of τ is easily shown to be x = abc2bc4bc6bc8....

Definition 13. An infinite word x over an alphabet B is said to be morphic if there is a morphism
τ from (A∗, ·) into (A∗, ·), a morphism σ from (A∗, ·) into (B∗, ·), and a symbol a ∈ A such that
x = σ(τω(a)).

Consider the morphism τ introduced before and its fixed point τω(a) = abc2bc4bc6bc8... and let σ be
the morphism such that σ(a) = 1, σ(b) = 1, and σ(c) = 0. The morphic word σ(τω(a)) = 1100100001...
is the characteristic word of the predicate P = {n2 : n ∈ N}. In fact, it can be proved that the
characteristic words of the predicates of the form {nk : n ∈ N} or {kn : n ∈ N} are morphic.

We conclude the section with the following result, which implies that the acceptance problem for
morphic words is decidable.

Proposition 4. Every morphic word x = σ(τω(a)) is effectively residually ultimately periodic.

Proof. Let τ(a) = a·u, u0 = a·u, and un = τn(u) for all n > 0. Clearly, we have x = σ(u0)σ(u1)σ(u2)....
Now, let µ be a generic morphism from (A∗, ·), where A is the alphabet of x, into a finite semigroup
(S,�). Since S is finite, there are only finitely many morphisms from (A∗, ·) into (S,�) and hence we
can find two indices p and q such that µ ◦ σ ◦ τn = µ ◦ σ ◦ τn+q, for every n ≥ p. This implies that
µ(un) = µ(un+q) for every n ≥ p, which shows that (un)n≥0 is an effectively residually ultimately
periodic sequence of words. 2

5.2 The case of tree structures

In this section we generalize the contraction method from expanded linear orderings to deterministic
colored trees. In analogy to Elgot and Rabin method, the resulting framework exploits a notion of
‘decomposition’ of trees and a suitable ‘indistinguishability’ relation for Rabin tree automata. However,
due to the complications involved by the notion of tree decomposition and due to the necessity of
considering Rabin tree automata rather than Büchi tree automata, the transfer of Elgot and Rabin
method to tree structures is far from being trivial and it needs a bit of notation and a number of
technical results. For further details, we refer the reader to [58, 56, 57].

Rabin’s Theorem [70] establishes a strong correspondence between MSO formulas satisfied by an
expanded tree structure (T, P̄) and Rabin (equivalently, Muller) tree automata accepting its char-
acteristic tree TP̄ : for every formula ϕ(X̄), one can compute a tree automaton A (and, conversely,
for every tree automaton A, one can compute a formula ϕ(X̄)) such that T � ϕ[P̄] iff TP̄ ∈ L (A).
Let us call acceptance problem of a given tree TP̄ , denoted Acc(TP̄), the problem of deciding, for any
tree automaton A, whether A accepts TP̄ . We have that the MSO-theory of a tree structure (T, P̄)
is decidable iff Acc(TP̄) is decidable. For the sake of simplicity, hereafter we shall omit the subscript
P̄ , thus writing T for TP̄ . Given a regular tree T , by viewing T as a tree automaton recognizing the
singleton {T } and by exploiting the closure of tree automata with respect to intersection and the
decidability of the emptiness problem, one can easily show that the problem Acc(T) is decidable. In
the following, we extend such a result to a large class of tree structures, including non-regular trees.
From now on, we shall use the term tree automaton to mean a Muller tree automaton, keeping in
mind that the results presented in this section are applicable to any other equivalent notion of tree
automaton.

Indistinguishability of trees. We start with some preliminary definitions. A partial run of a tree
automaton A = (S,A,C ∪ {⊥}, δ, I,F) on a non-empty full tree T is an S-colored tree P such that
Dom(P) = Dom(T) and for every internal vertex v of P ,

(
P (v), T (v), (P (va))a∈A

)
∈ δ. Given a tree

automaton A, for any non-empty full tree T and any partial run P of A on T , we define the feature
[T, P] as the triple

(P (ε), {(T (v), P (v), Img(P |πv) : v ∈ Fr(P)}, {Inf (P |π) : π ∈ Bch(P)})

where Fr(P) denotes the set of all leaves in P , πv denotes the access path of a leaf v in P , Img(P |πv)
denotes the set of states that occur along the access path πv of P , Bch(P) denotes the sets of all
infinite paths in P , and Inf (P |π) denotes the set of states that occur infinitely often along the infinite
path π of P .

We now define (C-colored) B-augmented trees. These trees have internal nodes colored over C
and leaves colored over C ∪ B, with B being a finite set disjoint from C. Even though a C-colored
B-augmented tree can be viewed as a C ∪B-colored tree, it is obviously not true that a C ∪B-colored
tree is a C-colored B-augmented tree. On the other hand, a C-colored tree can be always thought of
as a C-colored B-augmented tree, for any given B. We call the B-colored leaves in a B-augmented
tree markers, placeholders, or variables, depending on the context and the kind of operations we are
interested in.

In order to generalize the notions of partial run and feature to empty, non-full, and/orB-augmented
trees, we introduce a suitable operation that extends a tree with ⊥-colored vertices. The B-completion
of a (B-augmented) tree T is the tree TB defined as follows. If T is the empty tree, then TB is the infinite
complete ⊥-colored tree. If T is a non-empty tree, then Dom(TB) = Dom(T)∪(F ·A∗)∪(G·A∗), where
F = {va : v ∈ Fr(T), T (v) ∈ C, a ∈ A} and G = {va : v ∈ Dom(T) \ Fr(T), a ∈ A, va 6∈ Dom(T)},
TB(v) = T (v) for every v ∈ Dom(T), and TB(v) = ⊥ for every v ∈ (F · A∗) ∪ (G · A∗). Notice that
TB is a non-empty full B-augmented tree, whose leaves are all and only the B-colored leaves of T (if
any).

Given a B-augmented tree T and a tree automaton A, to decide whether T ∈ L (A) we define the
A, B-types of T as collections of features of the form [TB, P], where P ranges over a suitable set P of
partial runs of A on TB (different choices of P may result into different A, B-types of T). We allow P
to be a proper subset of the set of all partial runs of A on TB, because there can be partial runs which
are redundant with respect to others and thus can be ‘forgotten’. The notion of redundant partial run
is defined as follows. Given a B-augmented tree T and a tree automaton A, we define a relation �
over the set of all partial runs of A on TB such that P ′ is redundant with respect to P iff P � P ′.
For every pair of partial runs P, P ′ on TB, we have P � P ′ iff (i) P (ε) = P ′(ε), (ii) for every leaf v of
P , there is a leaf v′ of P ′ such that T (v) = T (v′), P (v) = P ′(v′), and Img(P |πv) = Img(P ′|πv′), and
(iii) for every infinite path π in P , there is an infinite path π′ in P ′ such that Inf (P |π) = Inf (P ′|π′).
Notice that the relation � is a quasi-order. Moreover, if P and P ′ are two runs of A on T , P � P ′,
and P ′ is a successful run, then P is a successful run as well. Given a set P of partial runs of A on TB,
we say that P is complete if for every partial run P ′ of A on TB, there is P ∈ P such that P � P ′.

Definition 14. Given a tree automaton A and a B-augmented tree T , an A, B-type of T is a set
of features of the form [TB, P], where P ranges over a complete set of partial runs of A on TB. The
basic A, B-type of T is the (unique) set of features of the form [TB, P], where P ranges over all partial
runs of A on TB.

We denote by TA,B the set of all possible A, B-types of (B-augmented) trees. Since TA,B is included
in the finite set P(S × P(B × S × P(S)) × P(P(S))), there exist only finitely many A, B-types,
for any choice of A and B.

It is possible to show that the acceptance problem for a colored tree T is equivalent to the problem
of computing (and checking) its A, ∅-types (according to Definition 14, an A, ∅-type is a collection of
features whose second component is the empty set) [58]. More precisely, we have that for any given

tree automaton A and for any given A, ∅-type of a tree T , one can establish whether T ∈ L (A) by
simply checking whether there exists a feature (s, ∅, {Wj}j∈J) of the A, ∅-type such that (i) s is an

initial state of A and (ii) for every j ∈ J , Wj is a set of states satisfying the acceptance condition of A.
Conversely, if Acc(T) is decidable (this is the case, for instance, with regular trees), then, for any given
tree automaton A, one can compute the basic A, ∅-type of T by an automaton-driven selection of the
T∅ features from the set of all candidate features. Such a selection can be done by building, for any
candidate feature f , an automaton Af such that Af accepts T∅ if and only if f belongs to the basic
A, ∅-type of T . As a general rule, the A, ∅-types of a tree T can be computed from its A, B-types, for
any given set B. As a corollary, we have that pairs of trees T, T ′ which have an A, B-type in common
are indistinguishable by the automaton A, that is, T ∈ L (A) iff T ′ ∈ L (A).

From trees to their retractions. We now show how A, B-types can actually be exploited to solve
non-trivial instances of the acceptance problem. To this end, we introduce the notion of factoriza-
tion, which allows us to decompose a tree T into basic components. Each component, called factor,
is obtained by selecting the elements of T that lie in between some distinguished vertices. Taking ad-
vantage of the notion of factorization, we define tree retractions, which are tree-shaped arrangements
of A, B-types corresponding to the factors of a tree. Then we prove that the acceptance problem for
a tree T can be reduced to the acceptance problem for a retraction of it.

Definition 15. Given a tree T , a factorization of T with respect to a set B is a (possibly non-
deterministic) B-labeled uncolored tree Π such that (i) Dom(Π) ⊆ Dom(T) and ε ∈ Dom(Π), (ii)
for all u, u′ ∈ Dom(Π), with u 6= u′, (u, u′) is an edge of Π iff u′ is a descendant of u in T and there
exist no other u′′ ∈ Dom(Π) that belong to the path from u to u′ in T , and (iii) the labels of Π edges
are arbitrarily chosen in B.

We can graphically represent a factorization of a tree by first identifying its vertices (e.g., the black
colored vertices in Figure 5.8) and then drawing the resulting edges together with the chosen labels
(e.g., the bold arrows in Figure 5.8).

b1

b2

b1

Fig. 5.8. An example of factorization.

The (marked) factors of a tree T with respect to a factorization Π are defined as follows. Let u ∈
Dom(Π) and Succ(u) = {u′ : (u, u′) is an edge of Π}. The unmarked factor of T rooted at u, denoted
by TΠ [u], is the tree obtained by selecting the vertices of T∅ which are descendants (in T∅) of u, but
not proper descendants in T∅) of any u′ ∈ Succ(u). For any vertex u 6= ε, we define the marker of u
as the label b ∈ B of the (unique) edge in Π with target u, and we denote it by mΠ [u]. The marked
factor of T rooted at u, denoted by T+

Π [u], is the tree obtained from TΠ [u] by recoloring each leaf u′

with the corresponding marker mΠ [u′]. Notice that a marked factor is a non-empty full B-augmented
tree whose leaves are colored over B. This allows us to define the A, B-types of the marked factors of
T .

Definition 16. Given a tree T , a tree automaton A, and a factorization Π of T with respect to a
set B, a retraction of T with respect to A and Π is a B-labeled TA,B-colored tree R such that (i)
Dom(R) = Dom(Π), (ii) (u, u′) is a b-labeled edge in R iff (u, u′) is a b-labeled edge in Π, and (iii)
each vertex u in R is colored with an A, B-type of the corresponding marked factor T+

Π [u].

Both Definition 15 and Definition 16 can be generalized to B-augmented trees. In general, a retraction
R, as well as a factorization Π , of T may be a nondeterministic tree, possibly having vertices with
unbounded (or even infinite) out-degree. Since tree automata operate on deterministic trees, we restrict
ourselves to retractions which are bisimilar to deterministic trees. Moreover, by definition, retractions
depend on automata, but, as a matter a fact, for all the considered tree structures, we shall provide a
single factorization from which we will be able to generate a suitable retraction for any tree automaton.

Given a tree T , a tree automaton A, and a factorization Π of T with respect to B, we now build
an automaton AB such that A accepts (the ∅-completion of) T iff AB accepts (the ∅-completion of)
a retraction R of T with respect to A and Π . The automaton AB mimics the behavior of A at a
‘coarser’ level and it can be effectively computed from A and B. Its input alphabet is the set TA,B of
all A, B-types, plus the additional symbol ⊥; its states encode the finite information processed by A
during its computations up to a certain point; its transitions compute the new states which (possibly)
extend information provided by the current state with information provided by the input symbol (the
A, B-type of a marked factor). The automaton AB is formally defined as follows.

Definition 17. Given a tree automaton A = (S,A,C ∪ {⊥}, δ, I,F) and a finite set B disjoint from
C, AB = (Z,B,TA,B ∪ {⊥}, δ′, I ′,F ′), where:
• Z = B ×

{
0, 1

}
× P

(
S × P(S) × P(S)

)
× P

(
P(S)

)
;

• for every state z = (c, x,U ,V) and every tuple (zb)b∈B ∈ ZB,
(
z,⊥, (zb)b∈B

)
∈ δ′ iff for all b ∈ B,

zb = (c, 1,U ,V);
• for every A, B-type t =

{(
sh, {(bi, qh,i, Qh,i)}i∈I , {Wh,j}j∈J

)}
h∈H

, where H, I, J are suitable sets

of indices, every state z = (c, 0,U ,V), where U = {(rl, Ul, Yl)}l∈L and V = {Vg}g∈G, for suitable

set of indices L,G, and every tuple (zb)b∈B ∈ ZB,
(
z, t, (zb)b∈B

)
∈ δ′ iff for all l ∈ L, there

exists hl ∈ H such that (i) rl = shl
and (ii) for all b ∈ B, zb = (b, 0,Ub,Vb), where Ub =

{(qhl,i, Qhl,i, Yl ∪Qhl,i)}l∈L,i∈I,bi=b
and Vb = V ∪ {Whl,j}l∈L,j∈J ;

• I ′ consists of all states of the form (c, 0, {(s, ∅, ∅)}, ∅), with c ∈ B and s ∈ I;
• F ′ consists of all sets of states of the form {(c1, x,U1,V), ..., (cn, x,Un,V)} such that (i) if x = 1,

then n = 1, U1 =
{
(rl, Ul, Yl)

}
l∈L

, and for all l ∈ L, the ∅-completion of the singleton tree c1 is

accepted by A[{rl}/I], where A[{rl}/I] is obtained from A by substituting {rl} for I, (ii) if x = 0
and for k = 1, . . . , n, Uk = {(rk,l, Uk,l, Yk)}l∈Lk

, where Lk is a suitable set of indices, then for all
∅ (L′

1 ⊆ L1, . . . , ∅ (L′
n ⊆ Ln,

⋃
1≤k≤n,l∈L′

k
Uk,l ∈ F , (iii) V ⊆ F .

The following main theorem reduces the acceptance problem for A over T to that for AB over R.

Theorem 9. Given a tree T , a tree automaton A, a factorization Π of T with respect to B, and a
retraction R of T with respect to A and Π, we have that T ∈ L (A) iff R ∈ L (AB).

The proof of Theorem 9 is rather involved (details can be found in [58]). It is based on a suitable
correspondence between (the features of) the runs of AB on R and (the features of) the runs of A
on the ∅-completion T∅ of T . More precisely, we say that a run P of A on T∅ corresponds to a run
Q of AB on R if and only if the feature [T∅, P] can be computed from the feature of [R,Q]. It is
possible to show that for every run Q of AB on R, there exists a corresponding run P of A on T∅.
Conversely, for every run P of A on T∅, there exists a run P ′ of A on T∅, with P ′ � P , and a run
Q of AB on R such that P ′ corresponds to Q (notice that there may not exist a run Q of AB on R
that directly corresponds to P). This two-way correspondence between runs allows one to compute
an A, ∅-type of T from any given AB, ∅-type of R. As a matter of fact, Theorem 9 can be generalized
to deal with partial runs, rather than complete runs, thus allowing one to compute an A, B-type t of

w Tw C

Fig. 5.9. A simple application example.

T from a given AB, ∅-type t′ of R. However, even in the case in which t′ is the basic AB, ∅-type of R,
we cannot guarantee the computed t to be the basic A, B-type of T . This further explains the need
for the notions of redundant partial run and complete set of partial runs.

We conclude the section with a simple application of the proposed decision method. Let w be an
infinite word over an alphabet C. It can be viewed as an expanded linear structure (ω,E, (Vc)c∈C),
where (i, j) ∈ E iff j = i + 1 and i ∈ Vc iff w[i] = c. We denote by Tw the infinite complete {1, 2}-
labeled tree obtained by coloring with w[i] the vertices that belongs to the i-th level of the tree, that
is, Tw(u) = w[|u|+1], for every u ∈ {1, 2}∗ (see Figure 5.9). If the MSO-theory of w is decidable, then
that of Tw is decidable as well. This can be proved by showing that Tw is nothing but the unfolding
of the graph G that is obtained from w via the MSO-definable interpretation that introduces a new
copy of each edge of w. Thus, by exploiting the MSO-compatibility of unfoldings, one can first reduce
the model checking problem for Tw to the one for G, which can in its turn be reduced to the one
for w. Our method provides an alternative proof of the decidability of the MSO-theory of Tw, which
is independent from the MSO-compatibility of the unfolding operation. Let B = {b} and Π be the
factorization of Tw with respect to B such that Dom(Π) = Dom(Tw) (all edges of Π are labeled
with the same symbol b). Given a tree automaton running on Tw, we denote by R a retraction of
Tw with respect to A and Π . There is an obvious computable function Ω that maps each symbol
c ∈ C to the basic A, B-type of the B-augmented tree c〈b, b〉. Hence, a retraction R can be obtained
from an MSO-definable interpretation of w which replaces every color c by the corresponding basic
A, B-type Ω(c). The decidability of the MSO-theory of R follows from the MSO-compatibility of
MSO-definable interpretations. By exploiting Theorem 9, we can then conclude that the MSO-theory
of Tw is decidable as well.

The class of reducible trees. Here we define the class of reducible trees, which properly includes
that of regular trees, whose elements enjoy decidable acceptance problems. Roughly speaking, the
decidability of the acceptance problem follows from the possibility of repeatedly reducing an instance
of the problem involving a reducible trees to an equivalent instance involving one of its retractions. We
also show that the class of reducible trees is closed with respect to various natural operations. These
results, besides showing the robustness of the class of reducible trees, provide a neat framework to
reason on retractions of trees and to easily transfer decidability results. Reducible trees are inductively
defined as follows.

Definition 18. Any regular tree is a rank 0 tree. Given a tree T and a natural number n > 0, T is
a rank n tree if, for every tree automaton A, there exist a finite set B, a factorization Π of T with
respect to B, and a retraction R of T with respect to A and Π such that (i) for every u ∈ Dom(Π),
the marked factor T+

Π [u] is a regular tree and (ii) R is a rank n− 1 tree. A reducible tree is a rank n
tree for some n ≥ 0.

According to Definition 18, the decidability of the MSO-theories of reducible trees follows from Theo-
rem 9 and the decidability of the MSO-theories of regular trees, provided that there exists an effective
way to compute B, (Π ,) and R from T for any A. Let the footprint of a tree T be the minimum amount
of information that should be provided to make the reduction from T to its retraction feasible. Such
a footprint can be inductively defined as follows. Given a rank 0 tree T , a footprint of T is any finite
rooted colored graph, whose unfolding is isomorphic to T . Given a rank n > 0 tree T , a footprint of
T is any computable function ξ mapping a tree automaton A to a set B and a footprint of a rank
n− 1 B-labeled tree R which is a retraction of T with respect to A. Hereafter, we restrict ourselves
to reducible trees which are modeled according to any suitable (extrinsic or intrinsic) representation
system that allows the computation of their footprints. Under such a restriction, we have the following
theorem.

Theorem 10. Reducible trees enjoy a decidable acceptance problem.

Closure properties of reducible trees. We say that the class of rank n trees (resp., reducible
trees) is effectively closed under a family F of operations on trees whenever the application of any
transformation t ∈ F results in a tree whose footprint is computable on the grounds of the footprints
of the input trees. In the following, we show that reducible trees are closed under (suitable variants
of) three powerful operations on trees, namely, finite-state recolorings, second-order tree substitutions,
and top-down deterministic tree transducers.

As for the first operation, we distinguish among three different notions of recoloring: finite-state
recoloring without lookahead (i.e., the output of a Mealy tree automaton working in top-down fashion
on an input colored tree), finite-state recoloring with bounded lookahead (which allows the inspection
of the subtree rooted at the current position up to a bounded depth and makes transitions dependent
on that portion of the subtree), and finite-state recoloring with rational lookahead (which allows the
inspection of the whole subtree rooted at the current position and classifies it according to a given
finite class of rational tree languages).

A second-order tree substitution of the form T JUcKc∈C replaces all c-colored vertices in the tree
T by a new tree Uc, simultaneously for all colors c ∈ C. The subtrees rooted at the 1-st, 2-nd,
..., k-th successor of a replaced c-colored vertex are possibly attached to the replacing tree Uc as
follows. We mark the leaves of Uc with elements from A, which act as placeholders for the subtrees to
be attached, making every replacing term an A-augmented tree. As an alternative, we can view any
second-order tree substitution either as a function σ, specified by some replacing terms U1, ..., Um, with
C = {c1, ..., cm}, that maps a tree T to the tree T JU1/c1, ..., Um/cmK, or as a function γ, specified by a
tree T and by an n-tuple of colors ci1 , ..., cin , with 1 ≤ n ≤ m, that maps the n-tuple of A-augmented
trees (U1, ..., Un) to T JU1/ci1 , ..., Un/cinK. These two latter views of a second-order tree substitution
give rise to the notions of tree morphism and tree insertion, respectively. We say that a tree morphism
(resp., a tree insertion) is regular if the trees U1, ..., Um are regular (resp., the tree T is regular).

Top-down deterministic tree transducers are finite-state machines that process a tree in a top-down
fashion and replace the vertex in the current position with a suitable regular tree, which may depend
on the current state and on the color of the vertex. At each computation step, different states can be
spread among different (copies of the) successors of the current vertex. Like finite-state recolorings,
tree transducers can be enriched with the facility of bounded/rational lookahead.

Theorem 11. For every natural number n, the class of rank n trees is effectively closed under finite-
state recolorings with bounded lookahead and regular tree morphisms.

Here we do not provide the details of the proofs of such closure properties (they can be found
in [58]). Instead, we give an intuitive idea of how they can be proved. Roughly speaking, closure
properties of reducible trees rest on the possibility of transferring the complexity of the tree resulting
from the application of a transformation back to the automaton running on the original tree. Let F

be the set of transformations of Theorem 11. First, one can easily prove that the class of regular trees
is closed under transformations in F (as well as with respect to many other natural transformations
of trees). As for the closure of rank n trees, with n > 0, under transformations in F , let us consider
a rank n tree T , a transformation t ∈ F mapping T to t(T), and a tree automaton A running over
t(T). We can build a suitable tree automaton A′ running on T , a rank n − 1 retraction R of T with
respect to A′, and a transformation t′ ∈ F mapping R to t′(R) such that t′(R) is a retraction of t(T)
with respect to A. Then, by exploiting induction on n, we have that t′(R) is a rank n− 1 tree, thus
showing that t(T) is a rank n tree.

The tree transformations we described so far are not independent. In particular, it is possible to
show that the composition of finite-state recolorings without lookahead (resp., with bounded, rational
lookahead) with regular tree morphisms subsumes deterministic top-down tree transducers without
lookahead (resp., with bounded, rational lookahead). More precisely, given a tree transducer T without
lookahead (resp., with bounded, rational lookahead), the output of T on a tree T can be obtained
by applying to T first a regular tree morphism, then a finite state-recoloring without lookahead
(resp., with bounded, rational lookahead), and finally another regular tree morphism. Conversely,
both finite-state recolorings without lookahead (resp., with bounded, rational lookahead) and regular
tree morphisms can be thought of as special cases of tree transducers without lookahead (resp., with
bounded, rational lookahead). Taking advantage of such relationships, we can exploit Theorem 11 to
prove that the class of reducible trees is effectively closed with respect to top-down deterministic tree
transducers without lookahead as well as with bounded lookahead. We expect the proof of the closure
property for reducible trees under finite-state recolorings with bounded lookahead to be extendable
to the more general case of finite-state recolorings with rational lookahead.

As for tree insertions, we have the following result.

Proposition 5. Let A be a tree automaton and γ a regular tree insertion. For any given A, A-type t,
one can compute an A, A-type t′ such that, for every A-augmented tree U , if t is an A, A-type of U ,
then t′ is an A, A-type of γ(U).

Proposition 5 states that for every regular tree insertion γ and every tree automaton A, there exists
a computable function γA : TA,A → TA,A that maps any A, A-type of a tree U to an A, A-type of
γ(U). The function γA is said an abstraction of the regular tree insertion γ. Moreover, if we denote
by AbstA,A the set of all abstractions of regular tree insertions and we endow it with the operation of
functional composition, then we can give AbstA,A the status of finite monoid. Indeed, we have that (i)
AbstA,A is a finite set (since there are only finitely many A, A-types in TA,A), (ii) tree insertions are
closed under functional composition (this follows from associativity of second-order tree substitutions),
(iii) abstractions of regular tree insertions are closed under functional composition (since regular tree
insertions map regular trees to regular trees), and (iv) there exists an abstraction idM playing the
role of the identity in AbstA,A.

On the effectiveness of the method. The class of reducible trees obviously includes all regular
trees; moreover, it includes a number of non-regular ones, such as, for instance, the unfoldings of
context-free graphs (algebraic trees), Cachat tree generators, and various deterministic trees outside
Caucal hierarchy. In the following we give a meaningful example of reducible trees (other examples
can be found in [58]).

To start with, we consider the well-known example of the semi-infinite line. Let L = (N, Ea, Eb, Ec)
be the semi-infinite line with a-labeled forward edges, b-labeled backward edges and c-labeled loops
(see the top part of Figure 5.10). Let TL be the unfolding of L from the leftmost vertex. The bottom
left part of Figure 5.10 depicts the tree TL, where, for each i ∈ N, Fi denotes the unfolding from the
rightmost vertex of the subgraph Li obtained by restricting L to set of vertices {0, ..., i− 1}. We give
an alternative proof of the decidability of the MSO-theory of TL, which exploits the closure properties

a

ā

a

ā

a

ā

#

F0

F0

F0

F0 F1

F1

F1

F1

a

a

#

#

a

a

#

#

a

a

#

#

a

a

#

#

#

#

a

a

ā

ā

ā

ā ā

ā

ā

ā

a

a

a

a a

a

a

a

F0

F1

F1

F2

F2

Fig. 5.10. Unfolding of the semi-infinite line.

of reducible trees instead of the MSO-compatibility of the unfolding operation. The idea is to give
an inductive definition of the components F0, F1, F2, ... that allows us to prove that TL is a rank 1
tree. By construction, every vertex v of TL corresponds to a unique path π in L. We denote by −�π the
last vertex of L along the path π and we define the factorization Π of T with respect to A by letting
Dom(Π) be the set of all vertices v of TL such that there is no a proper ancestor v′ of v for which
−�πv = −�π v′ , where πv (resp., πv′) denotes the unique path in L that corresponds to v (resp., v′) (the
set Dom(Π) is represented in Figure 5.10 by circled nodes). Then, we label the resulting edges of Π
with a single symbol a. Even though Π has unbounded degree, by identifying access paths with the
same length, we can obtain a deterministic A-labeled retraction RL of TL with respect to Π . Let F
and G be the two A-augmented trees depicted in the right part of Figure 5.10 and let γ be the regular
tree insertion specified by G (the vertices that must be substituted with the input of γ are colored
with x). Then, we set Fi = γi(F), for every i ∈ N. It is easy to see that, for every vertex u of Π at
distance i from the root, the marked factor of TL in u with respect to Π is isomorphic to the tree
Fi. Thus, the tree RL such that (i) Dom(RL) = {a}∗, (ii) RL(ε) is the basic A, A-type of F0, and
(iii) RL(ai+1) = γA(RL(ai)), for all i ∈ N, is a retraction of TL with respect to A and Π . Moreover,
RL is a regular tree (this follows from the Pigeonhole Principle, since TA,A is a finite set). Hence TL
is a rank 1 tree, whose footprint can be effectively computed, and, from Theorem 10, TL enjoys a
decidability MSO-theory.

The proof of the decidability of the MSO-theory of the unfolding of the semi-infinite line can be
generalized to reducible trees of rank higher than 1. Consider the following class of tree generators for
the Caucal hierarchy [20]. For any n ∈ N, the level n tree generators are obtained from the regular
trees via n-fold iterations of unfolding with backward edges and loops (we denote such an operation
with BackUnf). By exploiting the technique used to deal with the unfolding of the semi-infinite line,
it is possible to prove the following closure property [58]).

Theorem 12. Given a rank n tree T , BackUnf (T) is a rank n+1 tree, and thus the class of reducible
trees is effectively closed under BackUnf .

From Theorem 12 it immediately follows that level n tree generators are rank n trees, and thus their
MSO-theories are decidable.

On the relationships with Caucal hierarchy. The results about tree generators establish a
connection between reducible trees and deterministic trees in the Caucal hierarchy. Every deterministic
tree in the n+1-th level of the Caucal hierarchy (notice that the first level consists of all regular trees)
can indeed be obtained from a level n tree generator via a suitable inverse rational mapping [20].
Without loss of generality, in this specific setting, we can assume that inverse rational mappings are
specified by functions of the form h : B → P(A+), where A is the label set of the tree generator, B is
the label set of the resulting structure, and for every b ∈ B, h(b) is a rational language consisting only
of non-empty words over A. From a result of Colcombet and Löding [23], any inverse rational mapping
specified by a function h of the above form can be implemented via a tree transducer with rational

lookahead. Hence, every deterministic tree in the level n+ 1 of the Caucal hierarchy can be obtained
from a level n tree generator (a reducible tree) via a tree transducer with rational lookahead. Since tree
transducers with rational lookahead are subsumed by finite-state recolorings with rational lookahead
and regular tree morphisms, we have that, if the class of rank n trees were closed under finite-state
recolorings with rational lookahead, then reducible trees would capture all deterministic trees in the
Caucal hierarchy. As a matter of fact, we already know that rank n trees are closed under finite-
state recolorings with bounded lookahead. Moreover, if h is a finite mapping, namely, h(b) is a finite
language for every b ∈ B, then the inverse rational mapping specified by h (inverse finite mapping)
can be implemented via a tree transducer with bounded lookahead. This implies that reducible trees
capture all deterministic trees obtained by iterating unfoldings and inverse finite mappings, starting
from regular trees. Such a class of trees is properly included, starting from level 3, in the Caucal
hierarchy (as an example, the tree whose maximal paths are all and only the words of the form w ·w,
with w ∈ A∗, belongs to the 3-rd level of the Caucal hierarchy and it cannot be obtained via inverse
finite mappings and unfoldings starting from regular trees).

6 Rational and automatic graphs: properties and decidability

Rational graphs have been first introduced by Morvan in [59] as a strict extension of the families of
context-free graphs [62], regular (equational) graphs [25], and prefix recognizable graphs [19, 21]. To
define these graphs conveniently, we identify their vertices with the finite words from a given alphabet
A and we specify their edges via rational languages consisting of pairs of finite words.

6.1 Word transducers

In order to formally define languages consisting of pairs of words, we need to introduce the notion of
(word) transducer. A (word) transducer is a finite-state device that transforms an input word into an
output word. It can be equivalently thought of as a finite-state automaton accepting pairs of words,
rather than single words.

Definition 19. A (word) transducer is a 4-tuple T = (S,X, δ, I, F), where
• S is a finite set of states,
• X is a finite alphabet,
• δ : S ×X∗ ×X∗ × S is a transition relation,
• I (resp. F) is the set of initial (resp. final) states.

The transducer T accepts the pair (u, v) of words overX iff there exist (i) a factorization u = u1u2...un,
(ii) a factorization v = v1v2...vn, and (iii) a sequence of states s0, s1, ..., sn such that
• s0 ∈ I,
• sn ∈ F ,
• for all 1 ≤ i ≤ n, (si−1, ui, vi, si) ∈ δ.

1/0

0/1

0/0

1/1

ε/1
ε/ε

ε/0

0/ε

Fig. 6.11. An example of word transducer.

As an example, the transducer depicted in Figure 6.11 recognizes the set of all (reversed) binary
encodings of pairs of numbers of the form (n, n+ 1), with n ∈ N.

Notice that any transducer can be put in a normalized form, which requires that |u|+ |v| = 1 holds
for every transition (s, u, v, s′) ∈ δ. Note that, even with transducers in normalized form, either u or v
can be the empty word. This makes it possible for a transducer to accept pairs of words with different
lengths; moreover, it is easy to see that there is no bound on the size difference between the input
and the output in a generic transducer. A more restricted form of transducer, called synchronized
transducer, is obtained by enforcing |u| = |v| = 1 for every transition (s, u, v, s′) ∈ δ, namely, by
requiring that the transducer must produce exactly one symbol in output for each symbol read in
input. This forces the language recognized by a synchronized transducer to consist only of pairs of
words of the same length.

We say that a binary relation R ⊆ X∗×X∗ between finite words is rational if it can be recognized
by a word transducer. It is easy to see that the domain set and the image set of a rational relation are
rational languages. Moreover, it is easy to prove that rational relations are closed under intersection
and component-wise concatenation, namely, if R1 and R2 are rational relations, then the relation
R1∩R2 and the relationR1 ·R2 = {(u1 · u2, v1 · v2) : (u1, v1) ∈ R1, (u2, v2) ∈ R2} are rational. Finally,
it should be noted that the notion of rational relation can be easily generalized to the case of a relation
with an arbitrary arity (in such a case the transducer has transitions belonging to S × (X∗)k × S,
where k is the arity of the relation).

6.2 Internal presentations of rational and automatic graphs

In this section, we define rational and automatic graphs via word transducers.

Definition 20. A (Λ-labeled) rational graph G = (V, (Ea)a∈A) is defined by a tuple of (unrestricted)
transducers (Ta)a∈A as follows:
• Ea is the set of all pairs of the form (u, v) ∈ X∗ ×X∗ that are accepted by Ta,
• V = {u ∈ X∗ : ∃ v ∈ X∗, a ∈ Λ. (u, v) ∈ Ea} ∪ {v ∈ X∗ : ∃ u ∈ X∗, a ∈ Λ. (u, v) ∈ Ea}.

Figure 6.12 shows an example of rational graph, the infinite grid, together with the transducers that
define its edges (note that the vertices of the graph are finite words over {x, y} while the edges are
labeled over {a, b}). It can be easily showed that the infinite grid is in fact an automatic graph, namely,
it is possible to extend the words defining its vertices by padding symbols and then encode the edges
by synchornized transducers.

If the transducers that define a rational graph are synchronized, then the rational graph is said to be
synchronized rational or automatic. It should be noted that the languages recognized by synchronized

ε x xx

y xy xxy

yy xyy xxyy

a a a

a a a

a a a

b

b

b

b

b

b

b

b

b

x/x y/y

ε/x
Ta

x/x y/y

ε/y
Tb

Fig. 6.12. The infinite grid and its associated transducers.

transducers are strictly contained int the languages recognized by generic transducers. However, this
does not necessarily imply that the family of automatic graphs is strictly contained in the family of
rational graphs. In order to separate the family of automatic graphs from that of rational graphs,
one can reason on the growth rate of the out-degree of vertices in the case of graphs with finite
out-degree (notice that both rational and automatic graphs can have infinite out-degree). Precisely,
it can be proved (see [60]) that for any rational graph G of finite out-degree and for any vertex
x in G, there exists c ∈ N such that the out-degree of the vertices at distance n of x is at most
cc

n

. Such an upper bound can be actually reached: consider, for instance, the rational graph Grat

specified by a single transducer T = (S,X, δ, I, F), where S = I = F = {q}, X = {x, y}, and
δ = {(q, α, βγ, q) : α, β, γ ∈ X}. On the other hand, in the case of automatic graphs of finite out-
degree, the upper bound turns out to be simply exponential: for any automatic graph G of finite
out-degree and for any vertex x in G, there exists c ∈ N such that the out-degree of the vertices at
distance n of x is at most cn [60]. This shows that the graph Grat is rational but not synchronized and,
in particular, that the family of automatic graphs is a strict sub-family of that of rational graphs.

6.3 External presentations of rational and automatic graphs

Recall that prefix recognizable graphs [19, 21] can be obtained from the infinite binary complete tree
via inverse rational mappings followed by rational restrictions. Here we characterize the family of
rational graphs in terms of inverse linear mappings and rational restrictions of the infinite binary
complete tree.

We start with some preliminary definitions.

We denote by T2 the infinite binary complete tree and we assume that its edges are labeled over
the set A = {1, 2}. Given a context-free mapping h : B → P((A ∪ Ā)∗), we say that h is linear if
every set h(b) is a context-free linear language, namely, a language generated by a grammar Gb with
at most one non-terminal symbol on the right-hand side of each production rule. If all production
rules of each grammar Gb are either of the form p → ū q v or p → ε, where p and q are non-terminal
symbols and u, v ∈ {1, 2}∗, then h is said to be a special linear mapping. Moreover, if |u| = |v| holds
for every production of the form p → ū q v, then the mapping is said to be synchronized.

Now, let G = (V, (Eb)b∈B) be a graph whose domain consists of finite words over an alphabet X .
We define the L-restriction of G, where L ⊆ X∗, the graph G|L = (L, (E′

b)b∈b), where E′
b = Eb∩L×L.

A rational restriction is an L-restriction, where L is a rational language. Notice that a restriction is
applicable to any graph that results from an inverse mapping of T2 (i.e., the infinite complete binary
tree).

As an example, consider the infinite complete binary tree T2, the special linear mapping h that
maps a to {2̄n · 1 · 2n : n ∈ N} and b to {2}, and the rational restriction specified by the language
L = {1}∗ · {2}∗. It is easy to see that the graph h−1(T2)|L (see Figure 6.13) is isomorphic to the
infinite grid, which is a rational graph.

a

a

a

a

a
a

b

b

b

b

b b

Fig. 6.13. The grid as a result of an inverse special linear mapping and a rational restriction.

In the following, we show that every rational graph can be obtained from the infinite binary
complete tree by means of an inverse special linear mapping followed by a rational restriction. Also
the converse result holds, thus providing an alternative (external) characterization of rational graphs.

Proposition 6 (Morvan [59]). Any rational graph G can be obtained from T2 via an inverse special
linear mapping followed by a rational restriction.

Proof. Let G be rational graph specified by a tuple of transducers (Ta)a∈A. For the sake of simplicity,
we assume that the transducers (Ta)a∈A work on the alphabet X = {1, 2} (this is not a restriction
since we can easily embed any non-binary tree into T2). We denote by d : X∗ → X∗ the morphism
that maps 1 to 11 and 2 to 22 and by r(u) the reversal of a finite word u. Now, for each transducer
Ta = (Sa, X, δa, Ia, Fa), with a ∈ A, we define a new transducer T ′

a = (S′
a, X, δ

′
a, I

′
a, F

′
a) such that

• S′
a = Sa ∪ {s0,a}, where s0,a is a fresh state not belonging to Sa,

• δ′a = {(s, d(u), d(v), s′) : (s, u, v, s′) ∈ δa} ∪ {(s0,a, 12, 12, s) : s ∈ Ia},
• I ′a = {s0,a},
• F ′

a = Fa.
It is easy to check that the graph G′ generated by (T ′

a)a∈A is isomorphic to G. We now show that
there is a special linear mapping and a rational restriction that generate exactly G′ from T2.
For each transducer T ′

a , we define the linear grammar Ga as follows. We let the non-terminal symbols
of Ga be all and only the states s ∈ Sa of T ′

a and we let s′ → r(ū) s v be a production of Ga for each
transition (s, u, v, s′) of T ′

a . We then add the production s0,a → ε, where s0,a is the (unique) initial
state of T ′

a . We define:
• La as the union, over all final states s ∈ Fa, of the language generated by Ga starting from the

non-terminal symbol s (notice that La ⊆ (X ∪ X̄)∗),
• h : A∗ → P((X ∪ X̄)∗) as the mapping such that h(a) = La,
• L as the language consisting of all vertices of G′.

Clearly, La is a finite union of linear languages and hence it is a linear language as well. Moreover, it
is easy to see that (u, v) is an a-labeled edge of G′ iff r(ū) · v ∈ La. As regards the language L, it is
a finite union of domains and images of rational relations and hence it is rational. We now show that
G′ = h−1(T2)|L, which implies that G is isomorphic to h−1(T2)|L. We assume that the vertices of T2

are identified by the sequences of labels of their access paths (namely, the empty word ε identifies the
root, 1 and 2 identify its successors, and so on).

Let (u, v) be an a-labeled edge of G′. Clearly, u, v ∈ L and r(ū) · v ∈ h(a), from which it follows
that (u, v) is an a-labeled edge of h−1(T2)|L. Conversely, let (u, v) be an a-labeled edge of h−1(T2)|L.
Clearly, u, v ∈ L and there are words w, u0, v0 ∈ X∗ such that (i) u = w · u0, (ii) v = w · v0, and (iii)
r(ū0) ∈ La. Now, since u, u0, v, v0 belong to L, their lengths are even integers and hence the length of
w is also even. By construction, every word in L starts with 12 and then is a succession of 11’s and
22’s. These facts imply that w must be the empty word ε and hence u0 = u and v0 = v, from which
it follows that (u, v) is an a-labeled edge of G′. 2

Proposition 7 (Morvan [59]). Let X = {1, 2} be the set of edge labels of the infinite binary complete
tree T2, h : A → P((X ∪ X̄)∗) a special linear mapping, and L ⊆ X∗ a rational language. The graph
G = h−1(T2)|L is rational.

Proof. By definition of special linear mapping, we have that h(a) ⊆ X̄∗ · X∗. We now fix a ∈ A
and denote by Ga the grammar that generates h(a) starting from an initial non-terminal symbol p0,a.
Suppose that the production rules of Ga are either of the form p → ū q v or p → ε, where p
and q are non-terminal symbols and u, v ∈ X∗. We define the transducer Ta = (Sa, X, δa, Ia, Fa) as
follows:
• Sa is the set of all non-terminal symbols of the grammar Ga,
• δa is the set of all transitions (q, r(u), v, p) such that p → ū q v is a production of Ga (r(u) denotes

the reversal of u),
• Ia is the set of all non-terminal symbols p such that p → ε is a production rul in Ga,
• Fa = {p0,a} (namely, the unique final state of Ta is the initial non-terminal symbol of Ga).

One can easily verify that, for every u, v ∈ X∗, (r(u), v) is accepted by Ta iff r(ū)v ∈ h(a). This implies
that the rational graph G1 generated by the tuple of transducers (Ta)a∈A is a subgraph of h−1(T2).
Indeed, every edge (u, v) in G1 corresponds to a path in T2 that goes from a vertex u to the root and
from the root to a vertex v).
On the grounds of G1, we can define another graph G2 such that G2 = h−1(T2): if suffices to let the
edges of G2 be all and only the pairs of the form (w · u,w · v), where w ∈ X∗ and (u, v) is an edge
of G1. It is not difficult to show that G2 is a rational graph as well. Moreover, we can show that
G2 = h−1(T2). Indeed, if (u, v) is an a-labeled edge of G2, then there are w, u0, v0 ∈ X∗ such that
(i) u = w · u0, (ii) v = w · v0, and (iii) (u0, v0) is an a-labeled edge of G1. Since G1 is a subgraph of
h−1(T2), this implies that r(ū0)v0 ∈ h(a) and hence T2 contains a r(ū0)-labeled path from u0 to the
root and a v-labeled path from the root to v0. The same holds if we consider the subtree of T2 rooted
at w instead of T2. Therefore, (u, v) = (w · u0, w · v0) is an a-labeled edge of h−1(T2). The converse
implication works exactly in the same way.
It remains to show that the L-restriction of G2 = h−1(T2) is a rational graph, but this follows easily
since G2|L can be obtained by intersecting each edge relation of G2 with L × L and since rational
relations (namely, relations defined by word transducers) are closed under intersection. 2

As regards automatic graphs, it is straightforward to modify the above proofs and show that
a graph is automatic iff it can be obtained from the infinite binary complete tree via an inverse

synchronized linear mapping followed by a rational restriction.

6.4 Decidability properties of rational and automatic graphs

In this section we investigate the decidability of crucial problems (e.g., satisfiability for first-order logic)
involving rational and automatic graphs. The first is a negative result, stating that the satisfiability
problem for first-order logic over rational graphs is undecidable.

Proposition 8 (Morvan [59]). The problem of establishing, given a rational graph G and a first-
order formula ψ, whether ψ is satisfiable in G is undecidable.

Proof. We reduce the Post’s Correspondence Problem [48], shortly PCP, to the satisfiability problem
for FO logic over rational graphs. A PCP-instance is a pair (ū, v̄) of word lists, where ū = (u1, ..., uk)
and v̄ = (v1, ..., vk). Such an instance is positive if there are n-indices i1, ..., in, with n ≥ 1, such that
ui1 · ui2 · ... · uin = vi1 · vi2 · ... · vin . It is known that the halting problem for Turing machines is
reducible to the PCP and hence the latter is an undecidable problem. In order to reduce the PCP
to the satisfiability problem for FO logic over rational graphs, we consider a generic PCP-instance
(ū, v̄) ∈(X∗)k × (X∗)k and we define the transducer Tū,v̄ = (S,X, δ, I, F), where:
• S = {s0, s1},
• δ = {(s0, ui, vi, s1) : 1 ≤ i ≤ k} ∪ {(s1, ui, vi, s1) : 1 ≤ i ≤ k},
• I = {s0},
• F = {s1}.

Clearly, the rational graph Gū,v̄ generated by Tū,v̄ contains an edge from a vertex x back to the same
vertex x iff the PCP-instance (ū, v̄) is positive. In particular, the PCP-instance (ū, v̄) is positive iff
the formula ψ = ∃ x. (x, x) ∈ E is satisfiable in Gū,v̄. 2

The above result can be refined by showing that there is a single rational graph G with an unde-
cidable first-order theory.

Theorem 13 (Thomas [71]). There is a single rational graph G for which the problem of establishing
whether a given first-order formula ψ is satisfiable in G is undecidable.

Proof. In order to obtain a single rational graph with an undecidable first-order theory, we refine the
construction provided in the proof of Proposition 8. We use a universal Turing machine M and the
encoding of its undecidable halting problem (for different input words w) into a family of instances
of the Post Correspondence Problem. For simplicity of exposition, we refer here to the standard
construction of the undecidability of the PCP as one finds it in textbooks (see [48]): a Turing machine
M with input word w is converted into a PCP-instance (ū, v̄), where ū = (u1, ..., uk), v̄ = (v1, ..., vk)
and ui, vi ∈ X∗, with X consisting of states and tape letters of M plus a special symbol # (for
the separation between the M -configurations in a computation). If the input word is w = a1...am,
then u1 is set to be the initial configuration word u(w) = #q0a1...am of M ; furthermore, we have
always v1 = # and u2, ..., uk, v2, ..., vk only depend on M . Then the standard construction ensures
that M halts on input w iff the PCP-instance (ū, v̄) has a special solution, namely, an index sequence
(i2, ..., in) such that u(w) · ui2 · ... · uin = # · vi2 · ... · vin . Let G0 be the graph obtained by following
a construction in analogy to that of Proposition 8. The vertices of G0 are words over the alphabet X
and the edges are all pairs (x, y) for which there exist an input word w and some indices i2, ..., in such
that x = u(w) ·ui2 · ... ·uin and y = # ·vi2 · ... ·vin . Clearly, G0 is rational and it contains an edge from
a word x to itself iff there is a special solution of some PCP-instance ((u(w), u2, ..., uk), (#, v2, ..., vk)).
In order to address the input words x explicitly in the graph G0, we add further vertices and edge
relations Ea, for a ∈ X . A u(w)-labeled path via the vertices will lead to a vertex of G0 with prefix
u(w); if the latter vertex has an edge back to itself then a special solution for the PCP-instance
((u(w), u2, ..., uk), (#, v2, ..., vk)) can be inferred. The new vertices are words over a copy X of the
alphabet X , consisting of underlined versions of the X-letters. For any word u(w) we shall add the
vertices which arise from the underlined versions of the proper prefixes of u(w), and we introduce an
a-labeled edge from any such underlined word z to z · a (including the case z = ε). There are also
edges to non-underlined words: we have an a-labeled edge from the underlined version of z to any
non-underlined word which has z · a as a prefix. We denote by G the resulting graph. It is easy to
prove that G is rational. Moreover, the PCP-instance ((u(w), u2, ..., uk), (#, v2, ..., vk)) has a special
solution iff G contains a path, labeled by u(w), from the vertex ε to a vertex which has an edge back
to itself. Such a condition can be expressed by a suitable first-order formula ψw, that is defined on
the grounds of the input word w. Thus, we have that the Turing machine M halts on input w iff G
satisfies ψw. In this way, we proved that there is a graph, G, whose first-order theory is undecidable.
2

We now consider the satisfiability problem for first-order logics interpreted over automatic graphs,
which form a strict sub-family of rational graphs.

Theorem 14 (Hodgson [47], Khoussainov and Nerode [51]). The satisfiability problem for
first-order logic over automatic graphs is decidable.

Proof. The proof is based on an idea which was first proposed by Büchi in [5]. Let G = (V, (Ea)a∈A)
be an automatic graph, generated by a tuple of synchronized transducers (Ta)a∈A working on an
alphabet X . We then consider a generic first-order formula ψ(x1, ..., xk) with free variables and the k-
ary relation Rψ = {(v1, ..., vk) ∈ V k : G � ψ[v1, ..., vk]}. We show that each such Rψ is a synchronized
rational relation, namely, it can be recognized by a synchronized word transducer Tψ working on k-
tuples of words. For the sake of simplicity, we think of a synchronized transducer as a standard finite-
state automaton working on a suitable alphabet. Precisely, we view a k-tuple of words (w1, ..., wk)
over the alphabet X as a single word w over the alphabet (X ∪ {$})k, where w[i] = (w1[i], ..., wk[i])
and $ is used to fill up the words w1, ..., wk at the end to achieve equal length. Thus, a synchronized
transducer defining a k-ary relation Rψ ⊆ (X∗)k can be viewed as a finite-state automaton recognizing
a language Lψ over the alphabet (X ∪ {$})k. We show by induction on the structure of ψ that there
exist such an automaton Tψ recognizing the language Lψ, provided that G is an automatic graph.
The case for relations defined by atomic formulas of the form x = y (resp. (x, y) ∈ Ea)) is trivial: we
simply let Tψ be the automaton recognizing the language {(w,w) : w ∈ V }, which is rational since
V is rational (resp. the automaton Ta). As for the induction steps, involving the connectives ¬, ∨ ,
and the existential quantifier ∃, one uses closures of finite-state automata under boolean operations
and projection. As for the connective ∨ , it should be noted that, in general, Lψ1 ∨ ψ2 does not
coincide with Lψ1 ∪ Lψ2 (in fact, the union may also be undefined). This happens when some free
variables in two given first-order formulas, e.g. ψ1(x1, ..., xk, z1, ..., zm) and ψ2(y1, ..., yh, z1, ..., zm),
are different. In order to correctly define the language Lψ1 ∨ ψ2 , we need to preliminary perform the
so-called cylindrification of Lψ1 and Lψ2 , which yields the languages

L′
ψ1

= {(u1, ..., uk, v1, ..., vh, w1, ..., wm) : (u1, ..., uk, w1, ..., wm) ∈ Lψ1 , (v1, ..., vh) ∈ (X ∪ {$})h},

L′
ψ2

= {(u1, ..., uk, v1, ..., vh, w1, ..., wm) : (v1, ..., vh, w1, ..., wm) ∈ Lψ2 , (u1, ..., uh) ∈ (X ∪ {$})k}.

Finite-state automata are easily proved to be closed under cylindrification. Moreover, the language
Lψ1 ∨ ψ2 can be computed as L′

ψ1
∪ L′

ψ2
, which completes the proof. 2

We just proved that the first-order theory of an automatic graph is decidable. However, as soon as
we try to extend first-order logic with reachability or transitive closure operators, we get undecidability.
In particular, this implies that the monadic second-order theories of automatic graphs are undecidable
as well. Other examples of problems that turn out to be undecidable over automatic graphs are the
problem of testing whether two given automatic graphs are isomorphic and the problem of testing
whether a given automatic graph is connected (proofs can be found in [10]).

Proposition 9. The reachability problem over automatic graphs is undecidable.

Proof. Let M be a generic Turing machine. We show that the transition graph of M is automatic.
As a consequence, we will obtain that the reachability problem for automatic graphs (to which the
halting problem for Turing machines reduces) is undecidable. We encode an M -configuration having
state q, tape contents w and head position p, by the word w0 q w1, where |w0| = p and w0 · w1 = w.
At each transition w0 q w1 −−→

M
w′

0 q
′ w′

1, only the symbols around the state are changed. Thus, the

set of all pair of words (w0 q w1, w
′
0 q

′ w′
1) representing a M -transitions (or, equivalently, edges of the

transition graph of M) can be recognized by a suitable word transducer. 2

We conclude this section with some further remarks and possible generalizations of automatic
graphs (we also refer the interested reader to [8, 51]).

We already mentioned that the notion of word transducer can be generalized to allow specifications of
k-ary relations on words, with k arbitrary. This makes it possible to introduce the so-called automatic

structures, that are structures of the form (V, (R
(ki)
i)i∈I), where V is a set of words over an alphabet X

and each R
(ki)
i is a ki-ary relation over X∗. Clearly, automatic graphs are special cases of automatic

structures (where all relations are binary). However, the proof of Theorem 14 works fine also for
the case of automatic structures, which shows that automatic structures enjoy a decidable first-order
theory. A notable example of automatic structure is (N,+), where + is the usual addition operator for
natural numbers (thought of as a ternary relation). Indeed, one can represent natural numbers by their
reversed binary encodings and then specify the relation + by a suitable synchronized transducer. Thus,
the decidability of the first-order theory of (N,+) implies the decidability of the Presburger arithmetic
[46]. Such a result can be easily generalized to the expanded (automatic) structure (N,+, |p), where
|p is the binary relation defined, for some p ≥ 2, by x |p y iff x is a power of p dividing y (using
p-ary encodings rather than binary encodings one can easily build suitable transducers representing
the relations + and |p).

Another possible generalization of automatic structures is the notion of ω-automatic structure. The
definition is analogous to the one for automatic structures except that the elements of an ω-automatic
structure are represented by infinite words from some regular ω-language and the relations are recog-
nizable by synchronized transducers working on infinite words (or, equivalently, by Büchi automata).
It is clear that all automatic structures are ω-automatic. In fact, there exist some ω-automatic struc-
tures that encompass uncountably many elements, from which it follows that automatic structures
are a strict sub-family of ω-automatic structures. Moreover, like automatic structures, ω-automatic
structures enjoy a decidable first-order theory. Example of ω-automatic structures are (R,+) and its
expansion (R,+,≤, |p, 1), where |p is now defined as x |p y iff ∃ n, k ∈ Z. x = pn ∧ y = kx.

7 Reachability problems: issues and algorithms

There are two main different approaches for solving a (plain) reachability problem. The first one is the
forward reachability analysis, which starts from the set I of source vertices and computes the transitive
closure of the transition relation of the graph (often referred as the Post relation). It turns out that
(I, F) is a positive instance of the reachability problem iff Post∗(I)∩F 6= ∅, where Post∗(I) is the limit
of the infinite increasing sequence {Xi}i≥0 given by X0 = I and Xi+1 = Xi∪Post(Xi). The backward
reachability analisys, instead, consists in repeatedly applying the inverse of the Post relation (denoted
Pre) starting from the set F of target vertices. Clearly, (I, F) is a positive instance of the reachability
problem iff Pre∗(F) ∩ I 6= ∅, where Pre∗(F) is the limit of the infinite increasing sequence {Yi}i≥0

given by Y0 = F and Yi+1 = Yi ∪ Pre(Yi). In the case of finite graphs, both sequences {Xi}i≥0 and
{Yi}i≥0 reach a fixed point in a finite number of steps, thus providing effective (but usually inefficient)
solutions to the reachability problem. Unfortunately, this no longer happens for any interesting class
of infinite graphs, where the infinite sequences {Xi}i≥0 and {Yi}i≥0 often turn out to be strictly
increasing. In order to guarantee termination, suitable convergence acceleration techniques are used.
Intuitively, they are based on over-approximations of the Post and the Pre relations, which make the
attractor construction effective over certain classes of infinite graphs (e.g., the pushdown transitin
graphs and the transition graphs of Petri nets).

Even though the forward and the backward approaches are somehow related and both of them
can be applied to a number of different structures and problems (cf. [50, 1]), the latter method is
usually preferred for its simplicity and robustness. As a matter of fact, it has been recognized that
some algorithms which were developed for certain classes of systems (e.g. pushdown systems, Petri
nets) and based on backward reachability analysis, could be generalized to cope with several natural
extensions of those systems (e.g. higher-order pushdown systems [12], ground tree rewriting systems
[55], timed Petri nets and vector addition systems [2]).

As regards the solutions to the variants of the plain reachability problem, it is worth to remark
that there exist classes of graphs enjoying a decidable plain reachability problem but an undecidable
recurrent reachability problem (e.g., transition graphs of lossy channels [3]), as well as graphs enjoying
a decidable recurrent reachability problem but an undecidable constrained reachability problem (e.g.,
transition graphs of ground tree rewriting systems [55]). Thus, it is clear that each variant of the reach-
ability problem should be tackled by adopting ad hoc techniques, possibly based on generalizations of
the two basic approaches mentioned above. In the sequel, we shall focus our attention on backward
reachability analysis only, by applying it to the plain reachability problem over pushdown transition
graphs and over the transition graphs of Petri nets.

7.1 Reachability over pushdown transition graphs

In this section we tackle the (plain) reachability problem over pushdown graphs (i.e., transition graphs
of ε-free pushdown systems, which are pushdown automata devoid of initial configurations) via back-
ward reachability analysis. Since the addressed problem does not involve the edge labels of the tran-
sition graph, we can get rid of the input symbols of the pushdown automaton. Let P = (Q,Γ,∆) be
an input-free ε-free pushdown system and let G = (V,E) be the transition graph of P . Note that the
vertices of G are exactly the configurations of P . Clearly, ((q, γw), (r, vw)) ∈ E iff (q, γ, v, r) ∈ ∆.

Definition 21. The predecessor function Pre : P(Q × Γ ∗) → P(Q × Γ ∗) of a pushdown system
P = (Q,Γ,∆) is defined as follows: given a set S ⊆ Q×Γ ∗ of configurations, (q, w) belongs to Pre(S)
iff there exist (r, v) ∈ S such that ((q, w), (r, v)) ∈ E. The reflexive and transitive closure of Pre is the
function Pre∗ defined by Pre∗(S) =

⋃
i≥0 Prei(S).

We identify the vertices in G with the finite words from the language QΓ ∗ and we symbolically
represent a (possibily infinite) set of vertices by means of a sequential finite-state automaton over the
alphabet Q ∪ Γ . We then let X0 = F be the set of target vertices and Xi+1, for all i > 0, be the
set Xi ∪ Pre(Xi). Clearly, Pre∗(F) coincides with the least fixpoint

⋃
i≥0Xi of the infinite sequence

X0, X1, X2, Notice that if Xi+1 = Xi holds for some i ≥ 0, then it immediately follows that there
is i ≥ 0 such that Xi = Pre∗(F). Unfortunately, it may happen that X0, X1, X2, ... is an infinite
sequence of strictly increasing sets, thus implying that Xi (Pre∗(F) holds for every i ≥ 0 (consider,
for instance, the pushdown automaton with a single control state q, a single stack symbol γ, and a
single transition (q, γ, ε, q) and the set of target states F = {(q, ε)}).

The basic idea underlying the solution to the reachability problem over pushdown transition graphs
is to compute the set Pre∗(F) as the limit of another sequence of sets Y0, Y1, Y2, ..., for which we can
prove the following fundamental properties:

∃ i ≥ 0. Yi+1 = Yi, (2)

∀ i ≥ 0. Xi ⊆ Yi, (3)

∀ i ≥ 0. Yi ⊆
⋃

j≥0

Xj . (4)

The first property implies that there always exists i ≥ 0 such that Yi+1 = Yi, thus ensuring the
termination of the procedure that computes the least fixpoint of the sequence Y0, Y1, Y2, The second
property ensures that the Yi’s are over-approximations of the Xi’s, thus implying that the limit of the
sequence Y0, Y1, Y2, ... includes (at least) the set Pre∗(F). The third property ensures that only the
elements of Pre∗(F) are captured.

In the following, we define the sets Yi by providing an effective construction of their automaton-
based representations Ai. Precisely, we build a finite-state automaton Ai+1 representing the set Yi+1

on the grounds of a given automaton Ai representing the set Yi. We start with an automaton A0

representing the set Y0 = F of target vertices. Without loss of generality, we can assume that

• A0 has a single initial state s0, which is not final and has no incoming transitions;
• for each q ∈ Q, A0 contains a single q-labeled transition; such a transition connects the initial

state s0 to a state which is denoted by sq;
• for each q ∈ Q, no other transitions, apart from (s0, q, sq), reach the state sq.

The next automaton Ai+1 is obtained by simply adding new transitions to the automaton Ai, while
preserving its states, as described in the following Definition 22 (note that the transitions that are
added to Ai to lead Ai+1 start from the immediate successors of the initial state). For the sake of

brevity, we use s
w

−−→
Ai

s′ to mean that there is a run of the automaton Ai that starts in s, ends in s′,

and reads the word w.

Definition 22. Let Ai be an automaton representing the set Yi of vertices, let s0 be the (unique)
initial state of Ai, and let sq, for each q ∈ Q, be the (unique) state such that (s0, q, sq) is a transition
of Ai. The automaton Ai+1 representing the set Yi+1 is obtained from Ai by adding a new transition

(sq, γ, p) for each transition (q, γ, v, r) of P and for each state p such that sr
v

−−→
Ai

p, .

We now show that the sets of vertices represented by the automata A0,A1,A2, ... define an in-
creasing sequence that satisfy Properties 2, 3, and 4.

Lemma 1. Let A0,A1,A2, ... be a sequence of automata satisfying Definition 22. The sequence Y0, Y1, Y2, ...
of the sets represented by A0,A1,A2, ... satisfies Property 2.

Proof. The claim is easily proved by noticing that Ai+1 has the same (initial/final) states of Ai and
the same or more transitions. Since any automaton with n states and m input symbols can have at
most n2m transitions, it immediately follows that Yn2m = Yn2m+1, where n is the number of states of
A0 and m = |Q| + |Γ |. 2

Lemma 2. Let A0,A1,A2, ... be a sequence of automata satisfying Definition 22. The sequence Y0, Y1, Y2, ...
of the sets represented by A0,A1,A2, ... satisfies Property 3.

Proof. We prove the claim by using induction on i. The base case is trivial. Let us assume that Xi ⊆ Yi
and prove that Xi+1 ⊆ Yi+1 follows. If a configuration (q, γw) of P belongs to Xi+1 but not to Xi,
then there must exist a configuration (r, vw) in Xi such that (q, γ, v, r) ∈ ∆. Since the word rvw
representing the configuration (r, vw) is accepted by the automaton Ai, we have that

s0
r

−−→
Ai

sr
v

−−→
Ai

s
w

−−→
Ai

f,

where f is a final state of Ai. Then, by construction,

s0
q

−−→
Ai+1

sq
γ

−−→
Ai+1

s
w

−−→
Ai+1

f,

which shows that the configuration (q, γw) belongs to Yi+1 as well. 2

In order to prove Property 4, we need the following technical lemma:

Lemma 3. Let A0,A1,A2, ... be a sequence of automata satisfying Definition 22. For every i ≥ 0, if

s0
q

−−→
Ai

sq
w

−−→
Ai

p, then the pushdown graph G contains a path from (q, w) to another vertex (r, v),

where s0
r

−−→
A0

sr
v

−−→
A0

p.

Proof. We prove a stronger result: if p coincides with an immediate successor st of the initial state,
then not only the lemma holds, but also there is a path in G from (q, w) to the configuration (t, ε)
(this means that we may take r = t and v = ε). The proof is by induction on i.

The base case is trivial: we simply take r = q and v = w. Notice that, since the automaton A0 has no
transitions leading to the initial state or to a successor of it, if p coincides with an immediate successor
st of the initial state, then we must have w = ε and p = sq and this implies that G contains a path
from (q, w) to (q, ε).

As for the induction step, let i > 0 and let ρ be a run satisfying s0
q

−−→
Ai

sq
w

−−→
Ai

p. We prove the claim

by using induction on the number k of times that ρ uses a transition of Ai that does not belong to
Ai−1. If k = 0, then ρ is a run of Ai−1 as well and the claim follows trivially by inductive hypothesis.
Otherwise, if k > 0, we can assume that w = w′γw′′ and

s0
q

−−→
Ai

sq
w′

−−→
Ai

sq′
γ

−−→
Ai

p′
w′′

−−→
Ai

p,

where q′ and p′ are suitable states of Ai and the transition (sq′ , γ, p
′) does not belong to Ai−1 (notice

that all transitions which are added to Ai−1 to yield Ai must start from a successor of the initial
vertex). Now, we consider the run of Ai on w′ starting in sq and ending in sq′ . From the inductive
hypothesis, we know that G contains a path from (q, w′) to (q′, ε). Moreover, since the transition
(sq′ , γ, p

′) has been added to the automaton Ai−1, there must exist a state r′ ∈ Q and a word v′ ∈ Γ ∗

such that (q′, γ, v′, r′) ∈ ∆ and

sr′
v′

−−→
Ai−1

p′.

From the latter property and from the main inductive hypothesis, we know that G contains a path
from (r′, v′) to another vertex (r′′, v′′), where

sr′′
v′′

−−→
A0

p′.

This implies that there is a run ρ′ of Ai from sr′′ to p reading v′′w′′ and containing less than k
applications of new transitions. Thus, by applying the inductive hypothesis on ρ′, we know that G
contains a path from (r′′, v′′w′′) to another vertex (r, v), where

sr
v

−−→
A0

p.

Since we already know that G contains (i) a path from (q, w′) to (q′, ε), (ii) an edge from (q′, γ) to
(r′, v′), and (iii) a path from (r′, v′) to (r′′, v′′), then G contains also a path from (q, w) to (r, v), where

s0
r

−−→
A0

sr
v

−−→
A0

p.

Assume now that p is an immediate successor st of the initial state s0. Since

s0
q

−−→
Ai

sq
w′

−−→
Ai

sq′
γ

−−→
Ai

p′
w′′

−−→
Ai

st,

and since every transition of Ai that leads to st must starts either from s0 or from a successor of s0
(this is easily verified by applying the construction of Definition 22), p′ must also be a successor st′

of s0. Moreover, from the above equation and from inductive hypothesis, we know that G contains (i)
a path from (q, w′) to (q′, ε), (ii) an edge from (q′, γ) to (p′, ε), and (iii) a path from (p′, w′′) to (p, ε).
This immediately implies that G contains a path from (q, w) to (p, ε).
This is the result we wished to prove. 2

Lemma 4. Let A0,A1,A2, ... be a sequence of automata satisfying Definition 22. The sequence Y0, Y1, Y2, ...
of the sets represented by A0,A1,A2, ... satisfies Property 4.

Proof. The proof is by induction on i. The case i = 0 is trivial since Y0 = F . So, let assume that

(q, w) ∈ Yi, with i > 0. By definition of Yi, s0
q

−−→
Ai

sq
w

−−→
Ai

p, where p is a final state of Ai. By Lemma

3, G contains a path from (q, w) to another vertex (r, v), where r
v

−−→
A0

p. Since Y0 = F , (r, v) ∈ F and

hence (q, w) ∈ Pre∗(F). 2

Putting together Lemma 1, 2, and 4, we have the following main result.

Theorem 15. Given a pushdown system P and an automaton A representing a set F of target vertices
of the transition graph of P, one can compute an automaton APre∗ representing the set Pre∗(F).

It should be noted that the construction of the automaton APre∗ requires only polynomial time in
the size (i.e. number of states and transitoins) of P and A. Indeed, if we denote by m the size of P
and by n the size of A, we have:
• APre∗ has the same number n of states of A,
• at most n2m transitions are added to A to yield APre∗ ,
• during the construction of each automaton A0,A1,A2, ..., polynomial time suffices to decide if a

new transition can be added to the current automaton.

p q

pop(γ6)
pop(γ4)

push(γ1γ2)pop(γ5)
push(γ4γ3)

Fig. 7.14. A pushdown system.

We conclude the section with an example of application of the described construction. Let P =
(Q,Γ,∆) be a pushdown system, where Q = {p, q}, Γ = {γ1, γ2, γ3, γ4, γ5, γ6}, and ∆ = {(p, γ6, ε, q),
(p, γ5, γ4γ3, q), (q, γ4, γ1γ2, q)} (see Figure 7.14). Consider now the set of target configurations F =
{(q, γ1γ2γ3)}, which can be represented by an automaton A0. In the sequel, the reader should refer to
Figure 7.15 in order to follow easily the construction. During the first step of the backward reachability
analysis, we know that A0 can go from the initial state to the final state reading the word qγ1γ2γ3,
so we add to A0 a γ4-labeled transition from the state sq to its successor. In such a way we obtain
an automaton A1 representing the set of configurations Y1 = {(q, γ1γ2γ3), (q, γ4γ3)}. During the
second step, we add to A1 a γ5-labeled transition from sp to the final state, thus obtaining the
automaton A2 representing the set of configurations Y2 = {(q, γ1γ2γ3), (q, γ4γ3), (p, γ5)}. At the third
step, we add to A2 a γ6-labeled transition from sp to sp and we obtain the automaton A3 representing
Y3 = {(q, γ1γ2γ3), (q, γ4γ3), (p, γ

∗
6γ5)}. At this point the construction stops since no further transitions

can be added. Hence, we have APre∗ = A3 and Pre∗(F) = Y3.
Notice that in this example we have X1 = Y1, X2 = Y2, but X3 ⊂ Y3. Indeed, in the third step
of the construction, after adding the γ6-labeled transition, A3 accepts all the configurations of the
form (p, γk6γ5, with k ≥ 1. However, despite the fact that these configurations are not immediate
predecessors of elements in X2, they are all in Pre∗(F) because (p, γk6 γ5) ∈ Xk+2 for all k ≥ 1.

The backward reachability analysis described in this section can be generalized to cope with more
powerful variants of pushdown systems. As a matter of fact, in [11] Bouajjani et al. proved that a
similar construction can be performed over alternating pushdown systems. Differently from a simple
pushdown automaton, which can non-deterministically choose a successful computation, an alternating
pushdown automaton is able to spawn different computations at the same time and either check that
at least one successful computation exists (existential non-determinism) or check that all computations
from that point are successful (universal non-determinism). By analogy, the class of automata that is
used to represent increasing sets of reachable configurations is the alternating counterpart of the class of
sequential finite-state automata. This general setting allows to reason in a uniform way about analysis
problems where existential and universal path quantification must be considered. Meaningful examples
of applicative areas are the model-checking problems for branching-time logics (e.g. alternation-free
propositional µ-calculus) and the synthesis of winning strategies for 2-player games.

p

q γ1 γ2 γ3

Y0 = {(q, γ1γ2γ3)}

p

q γ1 γ2 γ3

γ4

Y1 = {(q, γ1γ2γ3), (q, γ4γ3)}

p

q γ1 γ2 γ3

γ4

γ5

Y2 = {(q, γ1γ2γ3), (q, γ4γ3), (p, γ5)}

p

q γ1 γ2 γ3

γ4

γ5

γ6

Y3 = {(q, γ1γ2γ3), (q, γ4γ3), (p, γ
∗
6γ5)}

Fig. 7.15. Construction of an automaton representing the set Pre∗(F).

It is also believed that the backward reachability analysis could be generalized to cope with the so-
called higher-order pushdown systems, which, roughly speaking, are automata working on level n
stacks rather than simple stacks (a level 1, or simple, stack is a finite word, a level n + 1 stack is a
stack of level n stacks). In this respect, partial results have already been obtained in the literature
for a restricted class of higher-order pushdown systems, precisely the higher-order pushdown systems
with no control states [12].

7.2 Reachability over transition graphs of Petri Nets

Petri nets, or place-transition nets, turned out to be classical models of concurrency, non-determinism,
and control flow. A Petri net can be viewed as a (non-simple6) directed bipartite graph, where the
domain is partitioned into two sets, the set of places and the set of transitions, and where arcs connect
places to transitions and vice versa (hence arcs from places to places or from transitions to transitions
are forbidden). The places from which an arc leads to a transition are called the input places of the
transition; the places to which arcs run from a transition are called the output places of the transition.
Places may contain any number of tokens. A distribution of tokens over the places of a Petri net is
called a marking (this defines a configuration of the corresponding transition system). A transition is
said to be enabled if there are tokens in every input place; when an enabled transition is activated
(notice that transitions are activated non-deterministically) a token is consumed from each input place
and a new token is put into each output place.

Here we report a formal definition of Petri net (a variety of other definitions exist in the literature,
which allows, for instance, the labeling of the transitions, the specification of how many tokens are

6 In a non-simple graph more than one edge can connect the same pair of vertices.

consumed/produced during the activation of each transition, or the association of a time stamp to
each token).

Definition 23. A Petri net is a 4-tuple (P, T, I, O), where
• P is a finite set of places,
• T is a finite set of transitions (disjoint from P),
• I : P × T → N is the input arc function (it specifies how many arcs go from a certain place to a

certain transition)
• O : T ×P → N is the output arc function (it specifies how many arcs go from a certain transition

to a certain place)

Let P = (P, T, I, O) be a Petri net. A marking of P is a function m : P → N that associates to each
place a certain number of tokens. We say that a marking m enables a transition t if for every place
p, m(p) ≥ I(p, t) (namely, if each place p contains at least I(p, t) tokens). A computation step of P
is then specified by the relation ∆, which defined as follows. Given two markings m,m′ : P → N

and a transition t ∈ T , (m,m′) ∈ ∆ iff m enables t and m′ satisfies m′(p) = m(p) − I(p, t) + O(t, p)
for every p ∈ P . A run of P is a (possibly infinite) sequence of markings m0,m1,m2... such that, for
every i ≥ 0, (mi,mi+1) ∈ ∆.

Graphically the places of a Petri net P are represented by circles and its transitions by horizontal
or vertical bars. A marking m of P net is represented by putting m(p) spots inside each circle p. As
an example, the Petri net depicted in Figure 7.16 models a simple mutual exclusion protocol between
two two processes (‘customer1’ and ‘customer2’) that compete to access a shared resource (‘waiter’).

customer1

waiter

customer2

take order serve food

Fig. 7.16. A Petri net modeling a simple mutual exclusion protocol.

A digression towards well quasi-orderings. We introduce some basic notations and terminology
about well quasi-orderings. We say that a binary relation � over a domain D is a quasi-ordering if it
satisfies the reflexive property (a � a for all a ∈ D) and the transitive property (a � b and b � c imply
a � c). � is then said to be a well quasi-ordering if there are no infinite strictly decreasing sequences
nor infinite sequences of pairwise incomparable elements. More formally, given any infinite sequence
of elements a0, a1, a2, ... ∈ D, it never happens that ai 6� aj for all i < j. Moreover, we say that a set
A is upward closed if, for every a ∈ A and for every b � a, b ∈ A holds. The following lemma implies
that, if � is a well quasi-ordering, then there is no infinite sequence A0 ⊂ A1 ⊂ A2 ⊂ ... of strictly
increasing upward closed sets.

Lemma 5. Given a quasi-ordering � on D, � is a well quasi-ordering iff for every infinite sequence
A0 ⊆ A1 ⊆ A2 ⊆ ... of upward closed subsets of D, there is k such that Ak = Ak+1.

Proof. As for the left to right implication, suppose, by contradiction, that we have an infinite sequence
A0 ⊂ A1 ⊂ A2 ⊂ ... of upward closed sets. It follows that there is a sequence a0, a1, a2, ... of elements
in D such that for every i ≥ 0 and for every j < i, ai ∈ Ai and aj 6∈ Aj . This means that aj 6� ai
for all j < i (otherwise ai ∈ Aj since Aj is upward closed), which violates the well quasi-ordering
assumption.
As for the converse implication, suppose that we have an infinite sequence of elements a0, a1, a2, ... in
D where aj 6� ai for all j < i. We define the infinite sequence A0, A1, A2, ... of upward closed sets,
where Ai = {b ∈ D}∃ j ≤ i. aj � b. It is clear that A0 ⊂ A1 ⊂ A2 ⊂ 2

Definition 24. Given a well quasi-ordering � and a (possibly infinite) set A, we say that M is a
minor set of A iff (i) M ⊆ A, (ii) for every a, b ∈M , a 6� b (namely, M contains pairwise incomparable
elements), and (iii) for every a ∈ A, there is b ∈M such that b � a (namely, M elements below each
element of A).

Lemma 6. If � is a well quasi-ordering, then for each set A there exists at least one finite minor set
of A.

Proof. Suppose that no finite minor set of A exists. We show that � is not a well quasi-ordering. We
define the infinite sequence a0, a1, a2, ... of elements in A as follows. Let a0 be any arbitrary element
in A. We choose ai+1 such that aj 6� ai+1 for every 0 ≤ j ≤ i. The element ai+1 exists, since otherwise
we could easily construct a minor set of the finite set {a0, a1, ..., ai}, which would be also a minor set
of A. It is clear that the infinite sequence a0, a1, a2, ... violates the well quasi-ordering assumption. 2

Notice that there may exist infinitely many minor sets of a given set A. However, if � is a partial
order, namely it satisfies also the anti-symmetric property (i.e. a � b and b � a imply a = b), then
there is a unique minor set of each set A, which we denote by min(A). Moreover, notice that if A
is upward closed, then the upward closure {b ∈ D}∃ a ∈ min(A). a � b of min(A) coincides with A.
Thus, we can finitely represent an upward closed set A by its minor set min(A).

Petri nets are well-structured systems. We now switch back to Petri nets and disclose some
relevant properties of them. Given a Petri net P = (P, T, I, O), we denote by MP the set of all
markings of the form m : P → N and by (MP , ∆) the transition system that consists of all possible
markings of P and all computation steps (m,m′) ∈ ∆. We then extend the usual ordering ≤ of the
naturals to a partial ordering � over MP as follows: for every pair of ω-markings m,m′ ∈ MP ,
m � m′ iff for every p ∈ P , m(p) ≤ m′(p). Notice that � is a well partial ordering and hence, by
Lemma 6, we can use minor sets to finitely represent upward closed sets of markings.

Definition 25. The predecessor function Pre : P(MP) → P(MP) of the transition system (MP , ∆)
corresponding to a Petri net P = (P, T, I, O) is defined as follows: given a set M ⊆ MP of markings,
m belongs to Pre(M) iff there exist m′ ∈ M such that (m,m′) ∈ ∆. The reflexive and transitive
closure of Pre is the function Pre∗ defined by Pre∗(M) =

⋃
i≥0 Prei(M).

Proposition 10. The function Pre of the transition system (MP , ∆) corresponding to a Petri net
P is monotonic w.r.t. �, namely, it maps upward closed sets of markings to upward closed sets of
markings.

Proof. Suppose that M ′ ⊆ MP is an upward closed set of markings for P and let M = Pre(M ′).
Consider a generic marking m ∈ M and a marking n � m. By definition of M , there is a marking
m′ ∈ M ′ such that (m,m′) ∈ ∆. In particular, there is a transition t ∈ T that is enabled in m and
such that m′(p) = m(p) − I(p, t) + O(t, p) for all p ∈ P . Clearly, t is enabled in n as well, and hence
(n, n′) ∈ ∆, where n′(p) = n(p)− I(p, t)+O(t, p) for every p ∈ P . This implies that n′ � n and hence,
since M ′ is upward closed, n′ ∈M ′. Again, by definition of M , we have n ∈M , which shows that M
is upward closed. 2

Proposition 10 yields to a straightforward algorithm that performs backward reachability analysis
on Petri nets. It simply starts from a given set F of target markings (represented by min(F)) and
repeatedly applies the Pre function, thus obtaining a sequence F = X0 ⊆ X1 ⊆ X2 ⊆ ... of increasing
upward closed sets. It should be noted that, at each step, the minor set min(Pre(Xi)) representing
Xi+1 can be effectively built from min(Xi). Lemma 5 then ensures termination of the algorithm, since
it implies that there always exists an index k such that Xk = Xk+1 and hence Xk = Pre∗(F).

It is worth to remark that the described approach can be applied to several different systems that
satisfy similar properties, namely:
• the existence of a well quasi-ordering on the data domain,
• the monotonicity of the corresponding Pre function,
• the computability of a minor set of Pre(Xi) from a minor set of Xi.

Meaningful examples of such systems, which are called well-structured in [1, 2, 44], are lossy chan-
nels systems, timed Petri nets, vector addition systems, basic parallel processes, real time automata,
relational automata, etc.

References

[1] P.A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. General decidability theorems for infinite-state
systems. In Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS), page
313. IEEE Computer Society, 1996.

[2] P.A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of programs with well
quasi-ordered domains. Information and Computation, 160(1-2):109–127, 2000.

[3] P.A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information and Computation,
127(2):91–101, 1996.

[4] K. Barthelmann. On equational simple graphs. Technical Report 9, Universität Mainz, Institut für
Informatik, 1997.

[5] J.R. Büchi. Weak second order arithmetic and finite automata. Z. Math. Logik Grundlag. Math., 6:66–92,
1960.

[6] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proceedings of the International
Congress for Logic, Methodology and Philosophy of Science, pages 1–11. Stanford University Press, 1962.

[7] J.R. Büchi. State-strategies for games in fσδ ∩ gδσ. Journal of Symbolic Logic, 48:1171–1198, 1983.
[8] A. Blumensath. Automatic structures, 1999.
[9] A. Blumensath. Prefix-recognizable graphs and monadic second-order logic. Technical Report AIB-06-

2001, RWTH Aachen, 2001.
[10] A. Blumensath and E. Grädel. Automatic structures. In Logic in Computer Science, pages 51–62, 2000.
[11] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to

model-checking. In International Conference on Concurrency Theory, pages 135–150, 1997.
[12] A. Bouajjani and A. Meyer. Symbolic reachability analysis of higher-order context-free processes. In

Proceedings of the 24th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), volume 3328 of Lecture Notes in Computer Science. Springer, 2004.

[13] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction. In J. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra. Elsevier, 2001.

[14] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and higher-order
pushdown automata. In Proceedings of the 23rd Conference on Foundations of Software Technology and
Theoretical Computer Science, volume 2914 of LNCS, pages 112–123. Springer-Verlag, 2003.

[15] O. Carton and W. Thomas. The monadic theory of morphic infinite words and generalizations. In
Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science
(MFCS), LNCS, pages 275–284. Springer-Verlag, 2000.

[16] O. Carton and W. Thomas. The monadic theory of morphic infinite words and generalizations. Infor-
mation and Computation, 176(1):51–65, 2002.

[17] D. Caucal. On the regular structure of prefix rewriting. In Proceedings of the 15th International Col-
loquium on Trees in Algebra and Programming (CAAP), volume 431 of LNCS, pages 87–102. Springer-
Verlag, 1990.

[18] D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer Science, 106:61–86, 1992.

[19] D. Caucal. On infinite transition graphs having a decidable monadic theory. In Proceedings of the 23nd
International Colloquium on Automata, Languages and Programming (ICALP), volume 1099 of LNCS,
pages 194–205. Springer-Verlag, 1996.

[20] D. Caucal. On infinite terms having a decidable monadic theory. In Proceedings of the 27th International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume 2420 of LNCS, pages
165–176. Springer-Verlag, 2002.

[21] D. Caucal. On infinite transition graphs having a decidable monadic theory. Theoretical Computer
Science, 290:79–115, 2003.

[22] D. Caucal and T. Knapik. An internal presentation of regular graphs by prefix-recognizable graphs.
Theory of Computing Systems, 34(4):299–336, 2001.

[23] T. Colcombet and C. Löding. On the expressiveness of deterministic transducers over infinite trees. In
Proceedings of the 21st Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume
2996 of LNCS, pages 428–439. Springer-Verlag, 2004.

[24] B. Courcelle. The monadic second-order logic of graphs II: Infinite graphs of bounded tree width. Math-
ematical Systems Theory, 21:187–221, 1989.

[25] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. Van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 193–242. Elsevier, 1990.

[26] B. Courcelle. The monadic second-order logic of graphs VII: Graphs as relational structures. Theoretical
Computer Science, 101(1):3–33, 1992.

[27] B. Courcelle. Monadic second-order graph transductions: a survey. Theoretical Computer Science, 126:53–
75, 1994.

[28] B. Courcelle. The monadic second-order theory of graphs IX: Machines and their behaviors. Theoretical
Computer Science, 151:125–162, 1995.

[29] B. Courcelle. The expression of graph properties and graph transformations in monadic second-order
logic. In G. Rozenberg, editor, Handbook of graph grammars and computing by graph transformations,
volume 1, pages 313–400. World Scientific, 1997.

[30] B. Courcelle and T. Knapik. The evaluation of first-order substitution is monadic second-order compat-
ible. Theoretical Computer Science, 281(1-2):177–206, 2002.

[31] B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph coverings and unfoldings of transition
systems. Annals of Pure Applied Logic, 92(1):35–62, 1998.

[32] W. Damm. An algebraic extension of the Chomsky-hierarchy. In Proceedings of the 8th Symposium on
Mathematical Foundations of Computer Science (MFCS), volume 74 of LNCS, pages 266–276. Springer-
Verlag, 1979.

[33] W. Damm. The IO- and OI-hierarchies. Theoretical Computer Science, 20:95–207, 1982.

[34] W. Damm and A. Goerdt. An automata-theoretic characterization of the OI-hierarchy. In Proceedings
of the 9th International Colloquium on Automata, Languages and Programming (ICALP), volume 140 of
LNCS, pages 141–153. Springer-Verlag, 1982.

[35] W. Damm and A. Goerdt. An automata-theoretical characterization of the OI-hierarchy. Information
and Control, 71(1):1–32, 1986.

[36] C.C. Elgot and M.O. Rabin. Decidability and undecidability of extensions of second (first) order theory
of (generalized) successor. Journal of Symbolic Logic, 31(2):169–181, 1966.

[37] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 995–1072. Elsevier, 1990.

[38] J. Engelfriet. Bottom-up and top-down tree transformations – a comparison. Mathematical Systems
Theory, 9(3):198–231, 1975.

[39] J. Engelfriet. A characterization of context-free NCE graph languages by monadic second-order logic on
trees. In Proceedings of the 4th International Workshop on Graph-grammars and Their Application to
Computer Science, pages 311–327. Springer, 1991.

[40] J. Engelfriet. Iterated stack automata and complexity classes. Information and Computation, 95(1):21–75,
1991.

[41] J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa, editors, Handbook of
formal languages, volume 3, pages 125–213. Springer, 1997.

[42] J. Engelfriet and L.M. Heyker. Hypergraph languages of bounded degree. Journal of Computer and
System Sciences, 48(1):58–89, 1994.

[43] J. Engelfriet, L.M. Heyker, and G. Leih. Context-free graphs languages of bounded degree are generated
by apex graph grammars. Acta Informatica, 31(4):341–368, 1994.

[44] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical Computer
Science, 256(1-2):63–92, 2001.

[45] F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiodó, 1984.
[46] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas and languages. Pacific Journal of Mathe-

matics, 16(2):285–296, 1966.
[47] B.R. Hodgson. On direct products of automaton decidable theories. Theoretical Computer Science,

19:331–335, 1982.
[48] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages and Compu-

tation. Addison-Wesley, 2001.
[49] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional mu-calculus with

respect to monadic second order logic. In U. Montanari and V. Sassone, editors, Proceedings of the 7th
International Conference on Concurrency Theory (CONCUR), volume 1119, pages 263–277. Springer,
1996.

[50] R.M. Karp and E. Miller. Parallel program schemata. Computer and System Sciences, 3(2):147–195,
1969.

[51] B. Khoussainov and A. Nerode. Automatic presentations of structures. In Selected Papers from the
International Workshop on Logical and Computational Complexity (LCC), volume 960 of Lecture Notes
in Computer Science, pages 367–392. Springer, 1994.

[52] T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic theories of hyperalgebraic trees. Lecture
Notes in Computer Science, 2044:253–267, 2001.

[53] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In Foundations of
Software Science and Computation Structure, pages 205–222, 2002.

[54] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–354, 1983.
[55] C. Löding. Reachability problems on regular ground tree rewriting graphs. Theory of Computing Systems,

39(2):347–383, 2006.
[56] A. Montanari and G. Puppis. Decidability of MSO theories of tree structures. In Proceedings of the

24th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
volume 3328 of LNCS, pages 430–442. Springer-Verlag, 2004.

[57] A. Montanari and G. Puppis. Decidability of the theory of the totally unbounded ω-layered structure. In
Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME),
pages 156–160, 2004.

[58] A. Montanari and G. Puppis. Deciding MSO theories of tree structures by tree contractions. Research
Report UDMI/2005/10, Dipartimento di Matematica e Informatica, Università di Udine, Italy, 2005.

[59] C. Morvan. On rational graphs. In Proceedings of 3rd International Conference on Foundations of
Software Science and Computation Structures (FOSSACS), pages 252–266, 2000.

[60] C. Morvan. Les graphes rationnels. PhD thesis, IFSIC Université de Rennes 1, 2001.
[61] A.W. Mostowski. Regular expressions for infinite trees and a standard form of automata. In Proceedings

of the 5th Symposium on Computation Theory, volume 208 of LNCS, pages 157–168. Springer-Verlag,
1984.

[62] D. Muller and P. Schupp. The theory of ends, pushdown automata, and second-order logics. Theoretical
Computer Science, 37:51–75, 1985.

[63] G. Puppis. Automata for branching and layered temporal structure. PhD thesis, Dipartimento di Matem-
atica e Informatica, Università di Udine, Italy, 2006.

[64] M.O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the
American Mathematical Society, 141:1–35, 1969.

[65] A. Rabinovich. On decidability of monadic logic of order over the naturals expanded by unary predicates.
In Logic Colloquium, 2005.

[66] D. Seese. The structure of models of decidable monadic theories of graphs. Annals of Pure and Applied
Logic, 53(2):169–195, 1991.

[67] A.L. Semenov. Decidability of monadic theories. In Proceedings of the 11th International Symposium on
Mathematical Foundations of Computer Science (MFCS), volume 176 of LNCS, pages 162–175. Springer-
Verlag, 1984.

[68] C. Stirling. Decidability of bisimulation equivalence for pushdown processes. Research Report EDI-INF-
RR-0005, Division of Informatics, University of Edinburgh, 2000.

[69] W. Thomas. Infinite trees and automaton definable relations over ω-words. In Proceedings of the 7th
Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 415 of LNCS, pages
263–277. Springer-Verlag, 1990.

[70] W. Thomas. Languages, automata, and logic. In G. Rozemberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 3, pages 389–455. Springer-Verlag, 1997.

[71] W. Thomas. A short introduction to infinite automata. In Revised Papers from the 5th International
Conference on Developments in Language Theory, pages 130–144. Springer, 2002.

[72] W. Thomas. Constructing infinite graphs with a decidable MSO-theory. In Proceedings of the 28th
International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS, pages
113–124. Springer-Verlag, 2003.

[73] I. Walukiewicz. Monadic second-order logic on tree-like structures. In Proceedings of the 13th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), volume 1046 of LNCS, pages 401–413.
Springer-Verlag, 1996.

[74] I. Walukiewicz. Monadic second-order logic on tree-like structures. Theoretical Computer Science,
275:311–346, 2002.

