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Model checking

Model checking: the desired properties of a system are checked
against a model of it

» the model is usually a (finite) state-transition system

» system properties are specified by a temporal logic (LTL, CTL,
and the like)

Distinctive features of model checking:
» exaustive check of all the possible behaviours
» fully automatic process
» a counterexample is produced for a violated property
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Point-based vs. interval-based model checking

Model checking is usually point-based:
> properties express requirements over points (snapshots) of a
computation (states of the state-transition system)

» they are specified by means of point-based temporal logics
such as LTL and CTL

Interval-based properties express conditions on computation
stretches, e.g., actions with duration, accomplishments, and
temporal aggregations, instead of on computation states

A lot of work has been done on interval temporal logic (ITL)
satisfiability checking.

Little work has been done on ITL model checking (Bozzelli,

Lomuscio, Michaliszyn, Molinari, Montanari, Murano, Perelli, Peron,
Sala)

Interval Temporal Logic Model Checking Angelo Montanari



Outline of the talk

» the model checking problem for interval temporal logics
» complexity results: the general picture

» the case of the interval temporal logic AABBE
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The modeling of the system: Kripke structures

» HS formulas are interpreted
over (finite) state-transition
systems, whose states are
labeled with sets of
proposition letters (Kripke
structures)

» Aninterval is a trace (finite
path) in a Kripke structure

A finite Kripke structure
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HS: the modal logic of Allen’s interval relations

The thirteen binary ordering relations between two intervals on a
linear order form the set of Allen’s interval relations

They give rise to corresponding unary modalities over frames where
intervals are primitive entities:

» HS features a modality for any Allen ordering relation between
pairs of intervals (except for equality)

Allen rel. HS Definition Example
Xo———o)
meets Ay [x,Y]|Ralv, 2] &= y=v Ve — oz
before Ly [xylR|v,z] &= y<v Ve —ez
started-by (B) [x,¥]Rglv,z] &= x=VAz<y ve—ez
finished-by (E) [x,y|Relv,z] & y=zAx<v Ve—ez
contains (D) [x,y]Ro[v,2] & x<vAz<y Ve—ez
overlaps (O) [x,y]Rolv,z] & x<v<y<z Ve —ez

All modalities can be expressed by means of (A), (B), (E), and
their transposed modalities only
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HS semantics and model checking

Truth of a formula 1) over a trace p of a Kripke structure K =
(ar, W, 6, u, wp) defined by induction on the complexity of :

» K, pEpiffpe mwestates(p) p(w), for any letter p € AP
(homogeneity assumption);

» negation, disjunction, and conjunction are standard;

» X, p E(A) ¢ iffthereis atrace p’ s.t. Ist(p) = fst(p’) and
K p EY;

» K, p E(B) ¢ iff there is a prefix p’ of p s.t. K, p’ E ;

» K, p E(E) ¢ iff there is a suffix p’ of p s.t. K, p’ E ¥;

» the semantic clauses for (A), (B), and (E) are similar

Model Checking
KX E ¢ < forallinitial traces p of X, it holds that X, p =
Possibly infinitely many traces!
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Remark: HS state semantics (HS4)

» According to the given semantics, HS modalities allow one to
branch both in the past and in the future
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An example: the Kripke structure Xscheqd

Vo
0
r '3
r2
Vo
OO0

ut
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A short account of Ksched

Kschea Models the behaviour of a scheduler serving 3 processes
which are continuously requesting the use of a common resource

Initial state: vp (no process is served in that state)
In v; and v; the i-th process is served (p; holds in those states)

The scheduler cannot serve the same process twice in two
successive rounds:
> process i is served in state v;, then, after “some time”, a
transition u; from v; to v; is taken; subsequently, process i
cannot be served again immediately, as v; is not directly
reachable from v;
» a transition rj, with j # i, from v to v; is then taken and process
j is served

It can be easily generalised to an arbitrary number of processes
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Some meaningful properties to be checked over Xscheq

Validity of properties over all legal computation intervals can be
forced by modality [E] (they are suffixes of at least one initial trace)

Property 1: in any computation interval of length at least 4, at least 2
processes are witnessed (YES/no process can be executed twice in a row)

Ksched E [E1(CEY* T — (x(p1,p2) V x(P1,P3) V x(P2,P3))),

where x(p,q)=(E) (A)p A (E) (A)q

Property 2: in any computation interval of length at least 11, process 3 is
executed at least once (NO/the scheduler can postpone the execution of a
process ad libitum)

Ksched ¥ [E]E)'° T — (E) (A) ps)

Property 3: in any computation interval of length at least 6, all processes
are witnessed (NO/the scheduler should be forced to execute them in a
strictly periodic manner, which is not the case)

Ksche ¥ [E1(E)° = ((E) (AYp1 A (E) (A)p2 A (E) (A) p3))
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Model checking: the key notion of BEk-descriptor

» The BE-nesting depth of an HS formula ¢ (Nestge (1)) is the
maximum degree of nesting of modalities B and E in

» Two traces p and p’ of a Kripke structure X are k-equivalent if
andonly if X, p E ¢ iff X, p’ = ¢ for all HS-formulas ¢ with
NeStBE(lP) <k
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Model checking: the key notion of BEk-descriptor

» The BE-nesting depth of an HS formula ¢ (Nestge (1)) is the
maximum degree of nesting of modalities B and E in

» Two traces p and p’ of a Kripke structure X are k-equivalent if
andonly if X, p E ¢ iff X, p’ = ¢ for all HS-formulas ¢ with
NeStBE(lP) <k

We provide a suitable tree representation for a trace, called a
BE-descriptor

The BEk-descriptor for a trace p = voV1..Vm—_1 Vin, denoted BEx(p),
is defined as follows:

Vo, {V4, .., Vm-1},Vm) <« descriptor element

BEk—1(pp,)  BEk-1(pp,) e BEk-1(ps,) BEk-1(ps;) /’\
1 ppy, PPy, - - - prefixes of p T ps,, ps, - - - suffixes of p

Remark: the descriptor does not feature sibling isomorphic subtrees
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An example of a BEo-descriptor

The BE>-descriptor for the

trace p = vovi vgv1 (for the

sake of readability, only the
subtrees for prefixes are

displayed)

(vo, {vo, v1}, v1)

(vo, {vo, v1}, vo) (vo, {vo, v1}, vo) (vo, {vi},vo) (vo, i}, v1)

(o, {vo,vi},vo) (vo,{vi},v0) (vo,{},v1) (vo,{vi},vo) (vo,{},v1) (vo,{}, v1)
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An example of a BEo-descriptor

The BE>-descriptor for the

trace p = vovi vgv1 (for the

sake of readability, only the
subtrees for prefixes are

displayed)

(vo, {vo, v1}, v1)

TV

(vo, {vo, v1}, vo) (vo, {vo, v1}, vo) (vo, {1}, vo)  (vo, {}, v1)
(o, {vo,vi},vo) (vo,{vi},v0) (vo,{},v1) (vo,{vi},vo) (vo,{},v1) (vo,{}, v1)

Remark: the subtree to the left is associated with both prefixes
VoVy vg’ and vyvq vg (there are no sibling isomorphic subtrees in the
descriptor)
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Decidability of model checking for full HS
FACT 1: For any Kripke structure X and any BE-nesting depth

k > 0, the number of different BE,-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)
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Decidability of model checking for full HS

FACT 1: For any Kripke structure X and any BE-nesting depth
k > 0, the number of different BE,-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces p and p’ of a Kripke structure % described by
the same BE descriptor are k-equivalent
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Decidability of model checking for full HS

FACT 1: For any Kripke structure X and any BE-nesting depth
k > 0, the number of different BE,-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces p and p’ of a Kripke structure % described by
the same BE descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

@ A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619
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Decidability of model checking for full HS

FACT 1: For any Kripke structure X and any BE-nesting depth
k > 0, the number of different BE,-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces p and p’ of a Kripke structure % described by
the same BE descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

@ A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?
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The logic BE

Theorem
The model checking problem for BE, over finite Kripke structures, is
EXPSPACE-hard

@ L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval
Temporal Logic Model Checking: The Border Between Good and Bad HS
Fragments, IJCAR 2016

Proof (sketch): a polynomial-time reduction from a domino-tiling
problem for grids with rows of single exponential length

» for an instance I of the problem, we build a Kripke structure X7 and
a BE formula ¢ in polynomial time

» there is an initial trace of X satisfying ¢ iff there is a tiling of 7

> K7 | -y iff there exists no tiling of 7
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BE hardness: encoding of the domino-tiling problem

Instance of the tiling problem: (C, A, n, dinit, dfinar), With C a finite set
of colors and A C C X C X C x C a set of tuples (cg, c., cT,CR)

Kk K P N K
do ‘ d1 ‘ dz L o } } 77777 d2"72 dzn 1 dFin
E— e dr
— i [ d e
— arniasti el
R ‘ d{—1 dl/ d:/'+1 R ' J : '
| : i—1 | : b=
e o aT
C | ! | C | P
,,,,, ‘ I /
d| | | || %, |
String (interval) encoding of the problem
TOWO . o W ..
[ o000 o100 - [a [1-11]s[aqqfo--00] ai[1-00] - [at, [1-11]s]
column 0 column 1 column 2" — 1 column 0 column 1 column 2" — 1
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The complexity picture

full HS nonELEMENTARY
EXPSPACE-hard

thardness

BE nonELEMENTARY
EXPSPACE-hard

ARBBE, aREBE | EXPSPACE |
PSPACE-hard
hardness / | AABB | PSPACE-complete | | AAEE | PSPACE-complete |

hardness

hardness —
[ E | PSPACE-complete |

hard B
ardness B ‘ PSPACE-complete ‘

hardness ,| AAE PNP-complete >
upper-bound '\- PNP_complete upper-bound
_ NP[O(log? n)] Uppef-bm _ NP[O(log? m)] _ NP[O(log? n)]
AA \P— A A P hardness AB, AE P!
PNPIOUogM]_hard hardness pPNPIOUogM]_hard PNP[O(ogm]_hard

hardness

| ARBE | PSPACE-complete |

‘ (E) ‘ coNP-complete ‘

Prop ‘ coNP-complete ‘

[ <® [ conP-complete | hardness
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Three main gaps to fill

The picture shows that there three main gaps to fill:

» full HS and BE are in between nonELEMENTARY and
EXPSPACE

» AABBE, AAEBE, ABBE, AEBE, ABBE, and AEBE are in
between EXPSPACE and PSPACE

» A,A,AA, AB, and AE are in between PNPIO(0g® m] gang
PNP[O(Iog ]
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The logic AABBE

Let us consider the case of the logic AABBE, which is obtained

from full HS (AABBEE) by removing modality (E)
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The logic AABBE

Let us consider the case of the logic AABBE, which is obtained

from full HS (AABBEE) by removing modality (E)

A high-level account of the solution:
» we can restrict our attention to prefixes (Bk-descriptors suffice)
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The logic AABBE

Let us consider the case of the logic AABBE, which is obtained

from full HS (AABBEE) by removing modality (E)

A high-level account of the solution:
» we can restrict our attention to prefixes (Bk-descriptors suffice)

» the size of the tree representation of Bi-descriptors is larger
than necessary (redundancy) and it prevents their efficient
exploitation in model checking algorithms
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The logic AABBE

Let us consider the case of the logic AABBE, which is obtained

from full HS (AABBEE) by removing modality (E)

A high-level account of the solution:
» we can restrict our attention to prefixes (Bk-descriptors suffice)

» the size of the tree representation of Bi-descriptors is larger
than necessary (redundancy) and it prevents their efficient
exploitation in model checking algorithms

» a trace representative can be chosen to represent a (possibly
infinite) set of traces with the same By-descriptor

Interval Temporal Logic Model Checking Angelo Montanari



The logic AABBE

Let us consider the case of the logic AABBE, which is obtained

from full HS (AABBEE) by removing modality (E)

A high-level account of the solution:
» we can restrict our attention to prefixes (Bk-descriptors suffice)

» the size of the tree representation of Bi-descriptors is larger
than necessary (redundancy) and it prevents their efficient
exploitation in model checking algorithms

» a trace representative can be chosen to represent a (possibly
infinite) set of traces with the same By-descriptor

» a bound, which depends on both the number |W| of states of
the Kripke structure and the B-nesting depth k, can be given to
the length of trace representatives
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Prefix-bisimilarity

Definition (Prefix-bisimilarity)
Two traces p and p’ are h-prefix bisimilar if the following conditions
inductively hold:
» forh=0:
fst(p) = fst(p’), Ist(p) = Ist(p’), and states(p) = states(p’)
» forh > 0:
p and p’ are 0-prefix bisimilar and for each proper prefix v of p
(resp., proper prefix v" of p’), there exists a proper prefix v of
p’ (resp., proper prefix v of p) such that v and v’ are
(h — 1)-prefix bisimilar

» h-prefix bisimilarity is an equivalence relation over the set of
traces

» h-prefix bisimilarity propagates downwards
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h-prefix bisimilarity = h-equivalence

Proposition
Leth > 0, and p and p’ be two h-prefix bisimilar traces of a Kripke

structure . For each AABBE formula 1, with B-nesting of i less
than or equal to h, it holds that

KpEY = K p EY
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Induced trace

Definition (Induced trace)

Let p be a trace of length n of a Kripke structure X. A trace induced
by p is a trace m of K such that there exists an increasing
sequence of p-positions iy < ... < ik, where iy =1, ik =n, and

= p(i1) - p(ix)

If 7 is induced by p = fst(nt) = fst(p), Ist(rr) =Ist(p), and
It] < |pl
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Prefix-skeleton sampling

Definition (Prefix-skeleton sampling)
Let p be a trace of a Kripke structure X = (a2, W, 5, u, wp).
Given two p-positions i and j, with i < j, the prefix-skeleton
sampling of p(i,j) is the minimal set P of p-positions in the interval
[7,]] satisfying:

> i,jEP;

» for each state w € W occurring along p(/ + 1,j — 1), the

minimal position k € [i + 1,j — 1] such that p(k) = wisin P

P={i,i+1,i+4,i+6,5}
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h-prefix sampling

Definition (h-prefix sampling)
For each h > 1, the h-prefix sampling of p is the minimal set P, of
p-positions inductively satisfying the following conditions:
» for h =1: Py is the prefix-skeleton sampling of p;
» forh > 1:
> Pp 2 Pp_1 and
» for all pairs of consecutive positions i,/ in Py_1, the
prefix-skeleton sampling of p(i, /) is in Py

Proposition
The h-prefix sampling Py, of (any) p is such that |Py| < (IW| + 2)"
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A small model (trace) result

Given a trace p, we can derive another trace p’, induced by p and
h-prefix bisimilar to p, such that |p’| < (|[W| + 2)"*2 as follows:
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A small model (trace) result

Given a trace p, we can derive another trace p’, induced by p and
h-prefix bisimilar to p, such that |p’| < (|[W| + 2)"*2 as follows:

1. we first compute the (h + 1)-prefix sampling P+ of p;
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A small model (trace) result

Given a trace p, we can derive another trace p’, induced by p and
h-prefix bisimilar to p, such that |p’| < (|[W| + 2)"*2 as follows:

1. we first compute the (h + 1)-prefix sampling P+ of p;
2. then, for all pairs of consecutive p-positions i,j in Ppy4, we
consider a trace induced by p(i,j), with no repeated

occurrences of any state, except at most the first and last ones
(hence no longer than (W] + 2));
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A small model (trace) result

Given a trace p, we can derive another trace p’, induced by p and
h-prefix bisimilar to p, such that |p’| < (|[W| + 2)"*2 as follows:

1. we first compute the (h + 1)-prefix sampling P+ of p;

2. then, for all pairs of consecutive p-positions i,j in Ppy4, we
consider a trace induced by p(i,j), with no repeated
occurrences of any state, except at most the first and last ones
(hence no longer than (W] + 2));

3. p’ is just the ordered concatenation of all these traces
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A small model (trace) result

Given a trace p, we can derive another trace p’, induced by p and
h-prefix bisimilar to p, such that |p’| < (|[W| + 2)"*2 as follows:
1. we first compute the (h + 1)-prefix sampling P+ of p;

2. then, for all pairs of consecutive p-positions i,j in Ppy4, we
consider a trace induced by p(i,j), with no repeated
occurrences of any state, except at most the first and last ones
(hence no longer than (W] + 2));

3. p’ is just the ordered concatenation of all these traces

p and p’ can be proved to be h-prefix bisimilar, and thus
p’ is indistinguishable from p with respect to the fulfilment of any
formula 1P, with B-nesting of 1/ (abbreviated Nestg(1)) < h

By the previous bound on |Pp|, it holds that |p’| < (|W| + 2)"+2
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An EXPSPACE model checking algorithm for AABBE

Algorithm 1 ModCheck(X, 1)

: h < Nestg(1))

1
2: u <« New (Unravelling(X, wo, h)) < wy initial state of K
3:

4
5

while u.hasMoreTracks() do

p' «— u.getNextTrack()

if Check(X, h, ¥, p’) = 0 thenreturn 0: “X, p’ |~ "<« Counterexample found X
return 1: “X | ¢” < Model checking OK \/

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval

Temporal Logic Model Checking Based on Track Bisimilarity and Prefix
Sampling, ICTCS 2016
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PSPACE-hardness of AABBE model checking

PSPACE-hardness of the model checking problem for the fragment
B (and thus for AABBE) can be proved by a reduction from the QBF
problem

Theorem _ o
The model checking problem for B, and thus for AABBE, over finite
Kripke structures is PSPACE-hard

AABBE model checking is thus in between PSPACE and
EXPSPACE (remind: BE model checking is EXPSPACE-hard)

@ A. Molinari, A. Montanari, A. Peron, and P. Sala, Model Checking
Well-Behaved Fragments of HS: The (Almost) Final Picture, KR 2016
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Latest developments

> Interval vs. Point Temporal Logic Model Checking: an
Expressiveness Comparison

» Model Checking Complex Systems against ITL Specifications
with Regular Expressions
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