
Introduction to EF-games

Inexpressivity results for first-order logic

Normal forms for first-order logic

Algorithms and complexity for specific classes of structures

General complexity bounds

Complexity of the EF-Problem

• It is easy to prove that the problem is in PSPACE

• The difficult part is proving hardness for PSPACE

• The problem is in fact PSPACE-complete

• It is proved by reducing QBF (Quantified Boolean Formula) to

the problem of determining whether II has a winning strategy

• QBF formulas have the form

∃x1∀x2∃x3 · · ·Qxk (C1 ∧ · · ·∧ Cn)

where each Cj is a disjunction of literals



QBF is in PSPACE

x1 = F x1 = T

x2 = F x2 = T x2 = F x2 = T

x3 = F x3 = T x3 = F x3 = T x3 = F x3 = T x3 = F x3 = T

∃ ∃ ∃ ∃

∀ ∀

∃

φ(0, 0, 0) φ(0, 0, 1) φ(0, 1, 0) φ(0, 1, 1) φ(1, 0, 0) φ(1, 0, 1) φ(1, 1, 0) φ(1, 1, 1)

• Exhaustive search of the evaluation tree

• For each node, only one bit of information (true/false)

• ∀-nodes are true iff both children are true

• ∃-nodes are true iff at least one child is true

• Space proportional to the tree height (recursion depth)

QBF is in PSPACE

On input φ:

• If φ has no quantifiers, then evaluate φ and accept iff it is

true.

• If φ = ∃xφ, then recursively evaluate φ
�[x = 0] and φ

�[x = 1]
and accept iff either computation accepts.

• If φ = ∀xφ �, then recursively evaluate φ
�[x = 0] and

φ
�[x = 1] and accept iff both computations accept.

• Recursion depth = number of variables of φ and each level

stores values of formula for one variable, so total space used

for recursion is linear. Evaluating φ at each level also requires

linear space, but this can be shared between calls.



The EF-problem is PSPACE-complete

Theorem (Pezzoli)
The EF-problem for finite structures over any fixed signature that
contains at least one binary and one ternary relation is
PSPACE-complete.

• The proof for hardness goes by reducing QBF to the

EF-problem

• Given a QBF formula φ of the form

∃x1∀x2 · · · ∃x2r−1∀x2r (C1 ∧ · · ·∧ Cn),

we build two structures A and B over Σ = {E,H}, where E is

binary and H is ternary, such that I wins G2r+1(A,B) iff φ is

satisfiable

Sketch of the proof

• I’s moves correspond to existential quantifiers

• II’s moves correspond to universal quantifiers

• Structures A and B consist of r blocks

• Each block is made of a certain number of subgraphs, called

“gadgets”, which are of three types: J, L, and I

• Some elements of the domains are labelled by truth values or

pairs of truth values

• Some elements in the last block (block r) are labelled by

clauses of φ

• A pair of consecutive rounds i, i+ 1 is played within

block �i/2� and corresponds to instantiate a pair of

consecutive variables ∃xi∀xi+1



Sketch of the proof (cont.)

• At round i, I assigns the truth value T (resp., F) to variable xi

by choosing an element in block �i/2� of one of the structures

(say, A) “labelled” by T (resp., F)

• II is forced to reply by choosing an element “labelled” by a pair

of truth values TT or TF (resp., FT or FF) in B, which

corresponds to recording I’s assignment (the first truth value)

and to assign a truth value to variable xi+1 (the second truth

value)

• At round i+ 1, I chooses an “unlabelled” element in B

• II is forced to reply by recording the truth value of xi+1 in A
by choosing an element “labelled” the same as the second

truth value chosen at round i

Sketch of the proof (cont.)

E.g., the pair of rounds may go like this:

round i round i+ 1

s : T(xi) d : F(xi+1) A
d : TF(xixi+1) s : r B

• The “labelling” is encoded by a ternary relation H such that

H(u, v,w) holds iff

• u and v are adjacent in the same block
• w is in the last block and is labelled by clause Cj

• Clause Cj is made true by the truth values that label u
and/or v



Gadgets Jk, Lk

Circled node are special neighbours
z

t t
�

k

k

k

k

k− 1
k− 1
k− 1
k− 1

Gadget Jk
• four nodes in the middle

have k special neighbours

and target t

• four nodes in the middle

have k− 1 special

neighbours and target t �

z

t t
�

k

k− 1
k

k− 1

k

k− 1
k

k− 1

Gadget Lk
• four nodes in the middle

have k special neighbours

(two with target t and two

with target t �)

• four nodes in the middle

have k− 1 special

neighbours (two with

target t and two with

target t �)

Gadget Ik

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

• x and x
� are linked to 16 nodes each (nodes in the middle)

• Each node in the middle is the source of a gadget Jk−1 or

Lk−1
• All gadgets share the same two targets t and t

�

• Each node in the middle has either k or k− 1 special

neighbours

• Ik is symmetric if Ik’s special neighbours are removed



Forcing pairs

Lemma (Forcing lemma)
In the (k+ 1)-moves EF-game on (Ik, x, Ik, x �), I can force the pair
(t, t �), but II has a winning strategy in the k-moves EF-game that
allows him to reply t to t and t

� to t
�.

• Notation: let kxG denote a node adjacent to x, with k

special neighbours, and which is the source of a gadget of

type Gk−1, with G ∈ {J,L}

• In the (k+ 1)-moves game I starts by playing v = kxJ

• II must answer with w = kx
�
L

• otherwise, I wins by moving into the special neighbours

• I chooses w(k− 1)t � in Lk−1

• II must answer v(k− 1)t in Jk−1

Remark
The above lemma says nothing about who has a winning strategy.

Forcing pairs (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

(Ik, x) (Ik, x �)

v

t t
�

k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

xk

w

t t
�

k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

x
� k



Forcing pairs (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

(Ik, x) (Ik, x �)

v

t t
�

k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

xk

w

t t
�

k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

x
� k

Forcing pairs (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

(Ik, x) (Ik, x �)

v

t t
�

k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

xk

w

t t
�

k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

x
� k



Forcing pairs (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

(Ik, x) (Ik, x �)

v

t t
�

k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

xk

w

t t
�

k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

x
� k

Forcing pairs (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

(Ik, x) (Ik, x �)

v

t t
�

k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

xk

w

t t
�

k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

x
� k



The whole structure

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−3 Lk−3Jk−3 Lk−3 Jk−3 Lk−3 Jk−3 Lk−3 Lk−3
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−5 Lk−5Jk−5 Lk−5 Jk−5 Lk−5 Jk−5 Lk−5 Lk−5
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

s

Ik

Ik−2

Ik−4

I2

Block 1

Block 2

Block 3

A

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−3 Lk−3Jk−3 Lk−3 Jk−3 Lk−3 Jk−3 Lk−3 Lk−3
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−5 Lk−5Jk−5 Lk−5 Jk−5 Lk−5 Jk−5 Lk−5 Lk−5
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

s
�

Ik

Ik−2

Ik−4

I2

B

• The game will proceed by choosing two vertices in each block,

from top to bottom, according to the strategy of the forcing

lemma

• The two vertices in each block are the source of a gadget Jh

or Lh and a vertex in the middle in the same gadget

• The pairs of vertices connecting two blocks are never chosen

by the players

The whole structure (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−3 Lk−3Jk−3 Lk−3 Jk−3 Lk−3 Jk−3 Lk−3 Lk−3
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−5 Lk−5Jk−5 Lk−5 Jk−5 Lk−5 Jk−5 Lk−5 Lk−5
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

s

Ik

Ik−2

Ik−4

I2

Block 1

Block 2

Block 3

A

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−3 Lk−3Jk−3 Lk−3 Jk−3 Lk−3 Jk−3 Lk−3 Lk−3
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

Jk−5 Lk−5Jk−5 Lk−5 Jk−5 Lk−5 Jk−5 Lk−5 Lk−5
k k k k

k k k k

k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1

k− 1 k− 1 k− 1 k− 1 k− 1 k− 1
k− 1 k− 1 k− 1 k− 1 k− 1 k− 1

k k

k k

x x
�

t t
�

s
�

Ik

Ik−2

Ik−4

I2

B

• Up to now, A and B are (2r+ 1)-equivalent

• A “meta-labelling” of the vertices is introduced

• The last block of each structure is slightly changed

• The “meta-labelling” induces a ternary relation H

• H relates a winning strategy for I with the satisfiability of a

formula φ



The truth-value labelling

• Same labelling no matter what φ is

• Just a convenience for defining H

• There are no unary predicates in the vocabulary

• Of the four vertices kxJ, two are labelled T and the other two F

• For each group of four vertices kxL, (k− 1)xJ, (k− 1)xL,

(k− 1)x �
J (two groups of four vertices),(k− 1)x �

L and kx
�
L,

one is labelled TT , one TF, one FT , one FF

• Of the four vertices in the middle of any gadget Jk−1 with

k− 1 special neighbours, or k− 2 special neighbours, two are

labelled T and two F

• In gadget Lk−1 the two vertices (k− 1)zt � and the two

vertices (k− 2)zt are not labelled

• Of the two remaining vertices (k− 1)zt and the two

(k− 2)zt �, one is labelled T and the other F

The truth-value labelling (cont.)

Jk−1 Lk−1Jk−1 Lk−1 Jk−1 Lk−1 Jk−1 Lk−1 Lk−1

k k k kk k k k

T T F F

k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1k− 1 k kk k

TT TT TT TT TT TT TTTF TF TF TF TF TF TFFT FT FT FT FT FT FTFF FF FF FF FF FF FF

x x
�

t t
�

z

t t
�

k− 1
k− 1
k− 1
k− 1

k− 2
k− 2
k− 2
k− 2

T T T TF F F F

Gadget Jk−1

z

t t
�

k− 1
k− 2
k− 1
k− 2

k− 1
k− 2
k− 1
k− 2

T F T F

Gadget Lk−1

• Only the sources of the gadgets Jk−1 and Lk−1, the vertices in

the middle of Jk−1 and half of the vertices in the middle of

Lk−1 are labelled by (pairs of) truth values



Labelling vertices by clauses

• The last block is labelled in a way that depends on φ

• In the last block, t and t
� are replaced by two sets of elements

labelled by clauses of φ

• t
� is replaced by 2r+ 1 vertices labelled C1, 2r+ 1 vertices

labelled C2, . . . , 2r+ 1 vertices labelled Cn

• t is replaced by 2r+ 1 vertices labelled C1, . . . , 2r+ 1 vertices

labelled Cn, plus an unlabelled vertex
• The new vertices are not mutually adjacent, but they are

adjacent to all the vertices previously connected to t
� or t,

respectively

• The labelling of vertices with (pairs of) truth values and

clauses is used to define the ternary relation H

The ternary relation H

Definition (Ternary relation H)
H(u, v,w) holds if, and only iff, u and v are consecutive in the

same block �i/2�, w is in the last block, w is labelled by a clause C

and one of the following holds:

• u is labelled a ∈ {T , F}, v is labelled b ∈ {T , F}, or

• u is labelled ab, with a,b ∈ {T , F}, v is not labelled, or

• u is labelled ac, v is labelled b, with a,b, c ∈ {T , F},

and assigning a to xi and b to xi+1 makes C true



Lawful strategies

• I starts playing in A

• Then, I will play in A at every odd round and in B at every

even round

• Besides, I plays on the “left” of A in odd rounds and on the

“right” of B in even rounds

• At each odd round, II is forced to record I’s choice in B, i.e., if

I picks an element labelled T in A then II must reply with TT

or TF, but not with FF or FT (otherwise, she is bound to lose

in less than 2r+ 1 rounds)

• Similarly, II is forced to record its choice in A at the next

round, i.e., if she has chosen TF in B then she will pick an

element labelled by F in A

• If II fails to play like that, at some following round I may pick

an element labelled by a clause C that appears in some triple

of H, but II would not be able to do so in the opposite

structure

What if II does not record I’s choices?

Example

φ
def
= ∃x1∀x2∃x3∀x4 ((x̄3 ∨ x2)∧ x̄1 ∧ (x1 ∨ x̄3)∧ (x̄3 ∨ x4))

Suppose that during a game the following labelling is determined:

round 1 round 2 round 3 round 4

s : F(x1) d : F(x2) s : F(x3) d : F(x4) A
d : FF(x1x2) s : r d : TF(x3x4) s : r � B

• II does not record the move made by I at round 3

• At round 5, I jumps to an element labelled by clause x̄3 ∨ x4
in A, which determines a triple in H

• II, however, cannot find a corresponding element in B (no

clause is satisfied when x4 is false, but x3 is true)



What if II does not record I’s choices?

Example

φ
def
= ∃x1∀x2∃x3∀x4 ((x̄3 ∨ x2)∧ x̄1 ∧ (x2 ∨ x3)∧ (x4 ∨ x̄4))

Suppose that during a game the following labelling is determined:

round 1 round 2

s : F(x1) d : F(x2) A
d : TF(x1x2) s : r B

• II does not record the move made by I at round 1

• At round 3, I may choose an element labelled by x̄1 in A,

which determines a triple in H

• II, however, cannot find a corresponding element in B (no

clause is satisfied when x1 is true and x2 is false)

How I wins if φ is satisfiable

• Suppose that φ is satisfiable

• Assuming that I follows a lawful strategy and II correctly

records the truth values, the choices of the players will

determine the same truth assignment for the variables of φ,

both in A and B

• At the last round, I chooses the only vertex w not labelled by

any clause at the bottom of A

• But, by the forcing lemma, II is bound to choose a vertex w
�

at the bottom of B labelled by some clause C, or to choose a

vertex not adjacent to the choice I has made in B in the

previous round

• In the latter case, II loses immediately

• In the former case, since I has played in such a way to build a

satisfying assignment and II has recorded such assignment

in B, the last choice by II will determine a triple (u �, v �,w �) of

H
B, for some previously chosen vertices u � and v

�

• But (u, v,w) �∈ H
A for corresponding u, v in A



Complexity results for pebble games

• Pebble games are a variant of EF-games in which each player

has a limited number of pebbles and re-uses them

• They correspond to formulas with a bounded number of

variables

Theorem
Given a positive integer k and structures A and B the problem of
determining whether II has a winning strategy in the existential
k-pebble game on A and B is EXPTIME-complete.

Corollary
All algorithms for determining whether k-strong consistency can be
established are inherently exponential.

P. G. Kolaitis, J. Panttaja

On the Complexity of Existential Pebble Games

CSL 2003

The proof of EXPTIME-completeness is not that easy. . .

i j i i’ j j’

h’hh

Fig. 2. I Gadget based on the one from [7]. is on the left and is on the right.

3.2 Single Input One-Way Switches

The Single Input One-Way Switches are used to restrict the ways in which the Spoiler

can win the game. The basic intuition is that the Spoiler can only make progress in one

particular direction; moreover, to do so he must use all of his pebbles.

This lemma is similar to Lemma 14 from [7], adapted to the -pebble game.

Lemma 1. For every there exists a pair of graphs and with ,

, and distinguished pairs of vertices, and

, such that:

y

x

y y’

O Ox x’4
S

4
D

Fig. 3. Single Input One-Way Switch

1. The Spoiler can reach from in the -pebble game on .

2. There exist two disjoint sets of positions of the -pebble game on ,

called Pretrapped and Trapped positions such that:

(a) Pretrapped and Trapped positions are partial homomorphisms

(b) The Duplicator can avoid positions that are not Trapped and not Pretrapped

from Pretrapped positions

x x x x

y y y y y y y y yy y y

0 1

1 2 3 1 2 31
0

1
1 0

2
1
2

0
3

1
3

Fig. 5. Gadget

x x

y y y y y y y y yy y y

x x 1

1 2 3 1 2 31
0

1
1 0

2
1
2

0
3

1
3

0

Fig. 6. Gadget

Lemma 7. For every , in the -pebble game on , from a position

, , the Duplicator can choose any , and avoid for

.

4.2 Multiple Input One-Way Switches for the -pebble game

The idea of the Multiple Input One-Way Switch is to restrict the Spoiler’s potential

winning strategies. We simulate each node in the KAI game by using three nodes

in the Duplicator’s graph, . These correspond to not having pebble on in

the simulated game, having a pebble on in the simulated game, and no information

about , respectively. In the Multiple Input One-Way Switch, the Spoiler can only

make progress if he has information about each node in the simulated game. Also, if

the Spoiler attempts to play backwards through the Switch, he will end up with no

information about any nodes in the simulated game.

Lemma 8. For every , there exists a pair of graphs , and such that

and the following properties hold:

x x x x

y y y y

0 1 10

1y y

xxx x

y y

1 2 2 2

1 2
1 2

1 2 1 1

1 1 2 2
100

Fig. 7. A subgraph of

1. From a position , the Spoiler can reach the

position in the -pebble game on and

.

2. There exist two disjoint sets of positions of the -pebble game on ,

called Pretrapped and Trapped positions such that:

(a) Pretrapped and Trapped positions are partial homomorphisms

(b) The Duplicator can avoid positions that are not Pretrapped and not Trapped

from Pretrapped positions

(c) The Duplicator can avoid positions that are not Trapped from Trapped posi-

tions

(d) From any position where

, the Duplicator can avoid for all .

(e) All positions that are subsets of positions of the form

, are PreTrapped.

(f) If is Pretrapped and , then is Pretrapped for all

(g) Any position in which all of the Spoiler’s pebbles are on nodes , is Trapped.

(h) If is Trapped and , then is Trapped for all

Moreover, is and is .

4.3 The Rule Gadget

The Rule gadgets are used to simulate a move of the KAI game. One rule gadget causes

the Spoiler to lose if the rule gadget corresponds to a rule that cannot be applied, and

another causes the Duplicator to lose if the rule cannot be applied.

By combining this lemmawith the properties of theMultiple Input One-Way Switch,

we obtain a sufficient condition for the Duplicator to win the -pebble game.

4.5 Reduction from KAI Game to -pebble game

I I I

R

M

R

M

M

R

M

R

y

x

x

y

T

D

Fig. 10. This is component decomposition of the Duplicator’s graph for the reduction

Theorem 12. Determining the winner of the -pebble game with part of the

input is EXPTIME-Complete.

Proof. (Outline)We will give a polynomial-time reduction from the KAI Game to the

-pebble game. Given an instance of the KAI game, we form an in-

stance of the -pebble game as follows.

The Duplicator’s graph and the Spoiler’s graph each have two sides. One side rep-

resents Player I’s turn in the KAI game, while the other side represents Player II’s turn.

First, we build Player I’s side of the graph. For each , we form three nodes

in , called . These three nodes correspond to specific information about

the simulated KAI game. If there is a pebble on , then there is a pebble on in the

KAI game, and corresponds to no pebble on . A pebble on in the Duplicator’s

graph means that the Spoiler has made a mistake. For each , construct a



Conclusions

• EF-games not explored much algorithmically

• What is the complexity of the EF-problem for (labelled)
arbitrary trees?

• What is complexity of the EF-problem for signature containing
only a binary relations E (i.e., graphs)?

• The question for the complexity of first-order equivalence for
finite structures, that is, isomorphism, is open (strictly related
to the graph isomorphism problem)

• Simpler proofs?

• May notions from Combinatorial Game Theory help?

• Berlekamp’s et al. Winning Ways


