General complexity bounds

Complexity of the EF-Problem

It is easy to prove that the problem is in PSPACE
The difficult part is proving hardness for PSPACE
The problem is in fact PSPACE-complete

It is proved by reducing QBF (Quantified Boolean Formula) to
the problem of determining whether Il has a winning strategy

QBF formulas have the form

E|X1VX25|X3 st QXk (Cl VACERWAN Cn)

where each C; is a disjunction of literals

QBF is in PSPACE

X1 =F X1 =T
xp =F xp=T xo=F xo=T
X3:F X3:T X3:F X3:T X3:F X3:T X3:F X3—T
$(0,0,0) $(0,0,1) $(0,1,0) $(0,1,1) $(1,0,0) $(1,0,1) $(1,1,0) $(1,1,1)

e Exhaustive search of the evaluation tree

For each node, only one bit of information (true/false)
V-nodes are true iff both children are true

J-nodes are true iff at least one child is true

Space proportional to the tree height (recursion depth)

QBF is in PSPACE

On input ¢:

e If ¢ has no quantifiers, then evaluate ¢ and accept iff it is
true.

e If @ = Ix ¢, then recursively evaluate ¢'[x = 0] and ¢'[x = 1]
and accept iff either computation accepts.

o If & =Vx @', then recursively evaluate ¢'[x = 0] and
¢’[x = 1] and accept iff both computations accept.

e Recursion depth = number of variables of ¢ and each level
stores values of formula for one variable, so total space used

for recursion is linear. Evaluating ¢ at each level also requires
linear space, but this can be shared between calls.

The EF-problem is PSPACE-complete

Theorem (Pezzoli)

The EF-problem for finite structures over any fixed signature that

contains at least one binary and one ternary relation is
PSPACE-complete.

Sketch

The proof for hardness goes by reducing QBF to the
EF-problem

Given a QBF formula ¢ of the form
E|X1VX2 cee EIXQT_:[VXQT (Cl VANCERWAN Cn),

we build two structures A and B over £ = {E, H}, where E is
binary and H is ternary, such that | wins Go,,1(A, B) iff ¢ is
satisfiable

of the proof

I's moves correspond to existential quantifiers
II's moves correspond to universal quantifiers
Structures A and B consist of r blocks

Each block is made of a certain number of subgraphs, called
“gadgets”, which are of three types: J, L, and I

Some elements of the domains are labelled by truth values or
pairs of truth values

Some elements in the last block (block 1) are labelled by
clauses of ¢

A pair of consecutive rounds i, 1+ 1 is played within
block [1/2] and corresponds to instantiate a pair of
consecutive variables 3x;Vxi 1

Sketch of the proof (cont.)

e At round i, | assigns the truth value T (resp., F) to variable x;

by choosing an element in block [1/2] of one of the structures
(say, A) “labelled” by T (resp., F)

e Il is forced to reply by choosing an element “labelled” by a pair
of truth values TT or TF (resp., FT or FF) in B, which
corresponds to recording |'s assignment (the first truth value)
and to assign a truth value to variable x; 1 (the second truth
value)

e At round 1+ 1, | chooses an “unlabelled” element in B

e |l is forced to reply by recording the truth value of x{,1 in A
by choosing an element “labelled” the same as the second
truth value chosen at round 1

Sketch of the proof (cont.)

E.g., the pair of rounds may go like this:

round 1 round 1+ 1
s:T(xi) d:F(xiy1) A
d:TF(xixir1) s:7 B

e The “labelling” is encoded by a ternary relation H such that
H(w, v, w) holds iff
e u and v are adjacent in the same block
e W is in the last block and is labelled by clause C;
e Clause Cj is made true by the truth values that label u
and/or v

Gadgets Ji, Lk

Circled node are special neighbours

Gadget Ly

four nodes in the middle

e four nodes in the middle

have k special neighbours have k special neighbours

and target t (two with target t and two
e four nodes in the middle with target t')

have k — 1 special e four nodes in the middle

neighbours and target t’ have k — 1 special

neighbours (two with
target t and two with
target t')

Gadget Iy

t t/

e x and x’ are linked to 16 nodes each (nodes in the middle)
Each node in the middle is the source of a gadget Jy_1 or
L1

All gadgets share the same two targets t and t’

Each node in the middle has either k or k — 1 special
neighbours

I is symmetric if I's special neighbours are removed

Forcing pairs

Lemma (Forcing lemma)

In the (k + 1)-moves EF-game on (I, x, I, x’), I can force the pair
(t,t’), but Il has a winning strategy in the k-moves EF-game that
allows him to reply t tot and t’ to t’.

e Notation: let kxG denote a node adjacent to x, with k
special neighbours, and which is the source of a gadget of

type Gy_1, with G € {J, L}
In the (k 4 1)-moves game | starts by playing v = kx]

Il must answer with w = kx'L
e otherwise, | wins by moving into the special neighbours

| chooses w(k — 1)t" in Ly_1

Il must answer v(k — 1)t in Jy_1

Remark
The above lemma says nothing about who has a winning strategy.

Forcing pairs (cont.)

(T, %) PRS- (T,)

X
©

=N
(7 G B

Forcing pairs (cont.)

(T, %) (T, x")

N
,

Forcing pairs (cont.)

(T, %) (T, x")

gy
() f ()

Forcing pairs (cont.)

(T, x) (Tie, ")

Forcing pairs (cont.)

(T, x) (T, x)

X
k

gy
(. (d () (K] B

The whole structure

A

Block 1 |

Block 2 sl s Tes
Block 3 e

e The game will proceed by choosing two vertices in each block,
from top to bottom, according to the strategy of the forcing
lemma

e The two vertices in each block are the source of a gadget Ji
or L, and a vertex in the middle in the same gadget

e The pairs of vertices connecting two blocks are never chosen
by the players

The whole structure (cont.)

A

Block 1 |

Up to now, A and B are (2r + 1)-equivalent
A “meta-labelling” of the vertices is introduced

The last block of each structure is slightly changed

The “meta-labelling” induces a ternary relation H

H relates a winning strategy for | with the satisfiability of a
formula ¢

The truth-value labelling

e Same labelling no matter what ¢ is

e Just a convenience for defining H

e There are no unary predicates in the vocabulary

e Of the four vertices kx]J, two are labelled T and the other two F

e For each group of four vertices kxL, (k — 1)xJ, (k — 1)xL,
(k — 1)x/J (two groups of four vertices),(k — 1)x'L and kx'L,
one is labelled TT, one TF, one FT, one FF

e Of the four vertices in the middle of any gadget Jx_1 with

k — 1 special neighbours, or k — 2 special neighbours, two are
labelled T and two F

e In gadget L1 _; the two vertices (k — 1)zt’ and the two
vertices (k — 2)zt are not labelled

e Of the two remaining vertices (k — 1)zt and the two
(k —2)zt’, one is labelled T and the other F

The truth-value labelling (cont.)

X X

Eﬂﬂﬂﬂ@@@ﬂ@@ﬂﬂﬂﬂﬂﬂ@@
01016 G!ﬁﬂ?@@ﬁ!ﬁ@@@@@@iﬁﬂ?@@@Iﬁ@ﬁ?@ﬁ?@ﬁ?ﬁﬁﬁ?@@

Gadget Jx—1 Gadget Ly 1
e Only the sources of the gadgets Jx_1 and Lk _1, the vertices in
the middle of Jx_1 and half of the vertices in the middle of
Lx_1 are labelled by (pairs of) truth values

Labelling vertices by clauses

e The last block is labelled in a way that depends on ¢

e In the last block, t and t’ are replaced by two sets of elements
labelled by clauses of ¢

e t’ is replaced by 2r + 1 vertices labelled Cy, 2r + 1 vertices
labelled C», ..., 2r + 1 vertices labelled C,

e tis replaced by 2r + 1 vertices labelled Cq, ..., 2r+ 1 vertices
labelled C,,, plus an unlabelled vertex

e The new vertices are not mutually adjacent, but they are
adjacent to all the vertices previously connected to t’ or t,
respectively

e The labelling of vertices with (pairs of) truth values and
clauses is used to define the ternary relation H

The ternary relation H

Definition (Ternary relation H)

H(u, v, w) holds if, and only iff, u and v are consecutive in the
same block [1/2], w is in the last block, w is labelled by a clause C
and one of the following holds:

e uis labelled a € {T, F}, v is labelled b € {T, F}, or
e u is labelled ab, with a,b € {T, F}, v is not labelled, or
e u is labelled ac, v is labelled b, with a,b,c € {T, F},

and assigning a to x; and b to xj.1 makes C true

Lawful strategies

e | starts playing in A

e Then, | will play in A at every odd round and in B at every
even round

e Besides, | plays on the “left” of A in odd rounds and on the
“right” of B in even rounds

e At each odd round, Il is forced to record I's choice in B, i.e., if
| picks an element labelled T in A then Il must reply with TT
or TF, but not with FF or FT (otherwise, she is bound to lose
in less than 2r 4 1 rounds)

e Similarly, Il is forced to record its choice in A at the next
round, i.e., if she has chosen TF in B then she will pick an
element labelled by F in A

e If Il fails to play like that, at some following round | may pick
an element labelled by a clause C that appears in some triple
of H, but Il would not be able to do so in the opposite
structure

What if Il does not record I's choices?

Example

¢ T 1 ¥xoIxa Vg (ks Vxa) Axi A1V x3) A (X3 V xa))

Suppose that during a game the following labelling is determined:

round 1 round 2 round 3 round 4

s: F(xq) d: F(xo) s : F(x3) d:F(xq) A
d: FF(x1x2) ST d: TF(x3x4) s:v/ B

e |l does not record the move made by | at round 3

e At round 5, | jumps to an element labelled by clause X3V x4
in A, which determines a triple in H

e Il, however, cannot find a corresponding element in B (no
clause is satisfied when x4 is false, but x3 is true)

What if Il does not record I's choices?

Example

b & Ix,WxoTnsVxa (X3 V x2) AXg A (X V x3) A (xa V X4))

Suppose that during a game the following labelling is determined:

round 1 round 2

s : F(x1) d:F(xo) A
d: TF(x1x2) s:T B

e Il does not record the move made by | at round 1

e At round 3, | may choose an element labelled by X; in A,
which determines a triple in H

e Il, however, cannot find a corresponding element in B (no
clause is satisfied when x; is true and x; is false)

How | wins if ¢ is satisfiable

e Suppose that ¢ is satisfiable

e Assuming that | follows a lawful strategy and Il correctly
records the truth values, the choices of the players will
determine the same truth assignment for the variables of ¢,
both in A and B

e At the last round, | chooses the only vertex w not labelled by
any clause at the bottom of A

e But, by the forcing lemma, Il is bound to choose a vertex w’
at the bottom of B labelled by some clause C, or to choose a
vertex not adjacent to the choice | has made in B in the
previous round

e In the latter case, Il loses immediately

e In the former case, since | has played in such a way to build a
satisfying assignment and Il has recorded such assignment
in B, the last choice by Il will determine a triple (1, v/, w’) of
H?®, for some previously chosen vertices 1’ and v’

e But (u,v,w) & H# for corresponding u,v in A

Complexity results for pebble games

e Pebble games are a variant of EF-games in which each player
has a limited number of pebbles and re-uses them

e They correspond to formulas with a bounded number of
variables

Theorem
Given a positive integer k and structures A and B the problem of
determining whether Il has a winning strategy in the existential

k-pebble game on A and B is EXPTIME-complete.

Corollary

All algorithms for determining whether k-strong consistency can be
established are inherently exponential.

[P. G. Kolaitis, J. Panttaja
On the Complexity of Existential Pebble Games
CSL 2003

The proof of EXPTIME-completeness is not that easy. . .

Fig.7. A subgraph of M*

Fig. 10. This is component decomposition of the Duplicator’s graph for the reduction

Conclusions

e EF-games not explored much algorithmically

e What is the complexity of the EF-problem for (labelled)
arbitrary trees?

e What is complexity of the EF-problem for signature containing
only a binary relations E (i.e., graphs)?

e The question for the complexity of first-order equivalence for
finite structures, that is, isomorphism, is open (strictly related
to the graph isomorphism problem)

e Simpler proofs?
e May notions from Combinatorial Game Theory help?
e Berlekamp's et al. Winning Ways

