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The interval temporal logic AA

Formulas of the logic are recursively defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ∨ϕ | 〈A〉ϕ | 〈A〉ϕ ([A] = ¬〈A〉¬ as usual; same for [A])

〈A〉ϕ

ϕ
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AA expressiveness - the formula ImmediateSucc

It can be shown that AA is expressive enough to distinguish
between satisfiability over the class of all linear orders and the class
of dense (resp., discrete) ones.

Let ImmediateSucc be the AA formula:

〈A〉〈A〉p∧ [A][A][A]¬p

ImmediateSucc is satisfiable over the class of all (resp., discrete) linear orders,
but it is not satisfiable over dense linear orders.
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AA expressiveness - the formula NoImmediateSucc
Let NoImmediateSucc be the AA formula:

〈A〉>∧ [A](p∧ [A]p∧ [A]¬p)∧ 〈A〉〈A〉[A]([A]p∨ 〈A〉〈A〉¬p)

NoImmediateSucc is satisfiable over the class of all (resp., dense) linear orders,
but it is not satisfiable over discrete linear orders.
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Decidability of AA over the class of all linear orders

How to check an AA formula ϕ for satisfiability?

Outline of the proof:

I FROM the existence of an interval model for ϕ
I TO the existence of a (possibly infinite) ϕ-labeled interval

structure (STANDARD)
I TO the existence of a finite pseudo-model for ϕ (DIFFICULT)
I TO the existence of a tableau for ϕ with a blocked branch

(EASY)

D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco. Optimal tableau
systems for propositional neighborhood logic over all, dense, and discrete
linear orders. TABLEAUX 2011
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Basic machinery

closure of ϕ: the set CL(ϕ) of all subformulae of ϕ and of their
negations

temporal formulae of ϕ: the set TF(ϕ) ⊆ CL(ϕ) of subformulae of
the forms 〈A〉ψ, [A]ψ, 〈A〉ψ, and [A]ψ

maximal set of requests for ϕ: a subset of TF(ϕ) such that for
every 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ S iff ¬〈A〉ψ 6∈ S (the same for
〈A〉ψ)

ϕ-atom: a set A ⊆ CL(ϕ) such that (i) for every ψ ∈ CL(ϕ),
ψ ∈ A iff ¬ψ 6∈ A, and (ii) for every ψ1 ∨ψ2 ∈ CL(ϕ),
ψ1 ∨ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

We denote by Aϕ the set of all ϕ-atoms.
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Interval models and ϕ-labeled interval structures

Let D be a set of points, D = 〈D,<〉 be a linear order on it, and
I(D) be the set of all intervals over D

Interval model: a pair M = 〈D,V〉, where D = 〈D,<〉 and
V : I(D) 7→ 2AP

ϕ-labeled interval structure (ϕ-LIS): a pair L = 〈D,L〉, where
L : I(D) 7→ Aϕ is such that, for every pair [di,dj], [dj,dk] ∈ I(D)
and every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ L([di,dj]), then
ψ ∈ L([dj,dk]) (the same for [A]ψ)

ϕ-LIS represent candidate models (they satisfy local conditions and
universal temporal conditions). We must guarantee that existential
temporal conditions are satisfied as well: fulfilling ϕ-LIS

Theorem. ϕ is satisfiable iff there exists a fulfilling ϕ-LIS
L = 〈D,L〉 with ϕ ∈ L([di,dj]) for some [di,dj] ∈ I(D)
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How to make the notion of fulfilling ϕ-LIS effective?

Given a ϕ-LIS L and d ∈ D, we define the sets of future and past
requests for d (REQL

f(d) and REQL
p(d), respectively)

dd ′

〈A〉p

[A]q

Future requests for d

〈A〉p

[A]q

Past requests for d ′

We say that a future request 〈A〉ψ is fulfilled for d in L if there exists
d ∈ D such that ψ ∈ L([d,d]) (the same for past requests). We say that
d is fulfilled in L if all its future and past requests (REQL(d)) are fulfilled.
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The key notion of interval tuple

Let ϕ be an AA formula, A be a ϕ-atom, and S1,S2 ⊆ TF(ϕ) be
two maximal sets of requests. We say that the triplet 〈S1,A,S2〉 is
an interval tuple if

(i) for every [A]ψ ∈ S1, ψ ∈ A;
(ii) for every 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ A iff
〈A〉ψ ∈ S2;
(iii) for every ψ ∈ A such that 〈A〉ψ ∈ TF(ϕ),
〈A〉ψ ∈ S1.

The same for past operators.

dd ′

S2S1 A

Let L be a ϕ-LIS for ϕ and d,d ′ ∈ D. It can be easily shown that
〈REQL(d),L([d,d ′]), REQL(d ′)〉 is an interval tuple
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From fulfilling ϕ-LISs to pseudo-models

Let L be a ϕ-LIS and 〈R,A,R ′〉 be an interval tuple. If there exists
[d,d ′] such that L([d,d ′]) = A, REQL(d) = R, and
REQL(d ′) = R ′, we say that 〈R,A,R ′〉 occurs in L (at [d,d ′]).
Moreover, if 〈R,A,R ′〉 occurs in L at [d,d ′] and both d and d ′ are
fulfilled in L, we say that 〈R,A,R ′〉 is fulfilled in L (via [d,d ′]).

Given a finite ϕ-LIS L for ϕ, we say that L is a pseudo-model for
ϕ if every interval tuple 〈R,A,R ′〉 that occurs in L is fulfilled.

Being L is a pseudo-model for ϕ does not guarantee L to be
fulfilling, since L can feature multiple occurrences of the same
interval tuple, associated with different intervals.

However, it is possible to prove that any pseudo-model can be
turned into a fulfilling LIS (for ϕ).
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Decidability

Lemma 1. Given a pseudo-model L for ϕ, there exists a fulfilling
LIS L ′ that satisfies ϕ.

Lemma 2. Given a formula ϕ and a fulfilling LIS L that satisfies it,
there exists a pseudo-model L ′ for ϕ, with |D ′| 6 2 · |ϕ| · 23·|ϕ|+1.

Theorem. The satisfiability problem for AA over the class of all
linear orders is decidable.

The decidability proof for AA over all linear orders can be tailored
to the cases of dense linear orders and (weakly) discrete linear
orders.
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The dense case

In the case of dense models, we force each point in a pseudo-model
for ϕ to satisfy the following covering condition.

Let L = 〈D,L〉 be a pseudo-model for an AA formula ϕ and
d ∈ D. We say that d is covered if either d is not unique or (d is
unique and) both its immediate predecessor (if any) and successor
(if any) are not unique.

Such a condition guarantees us that we can always insert a point in
between any pair of consecutive points, thus producing a dense
model for ϕ.
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The dense case: the idea

We want to build a dense model for ϕ by duplicating non-unique
points only.

The idea behind the notion of covering is the following:
the closest points to a non-unique point d in a pseudo-model must
not be unique, and thus we can duplicate them instead of d.
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The discrete case

In the discrete case, we force each point in a pseudo-model for ϕ to
satisfy the following safety property.

Let L = 〈D,L〉 be a pseudo-model for an AA formula ϕ and
d ∈ D. We say that d is safe if either d is not unique or (d is
unique and) both its immediate predecessor (if any) and successor
(if any) are fulfilled.

Such a condition guarantees us that all points added during the
construction of the fulfilling LIS get their (definitive) immediate
successor and immediate predecessor in at most one step.
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How does the proof of Lemma 1 work?

Basic idea: we show how to obtain a fulfilling LIS L ′ starting from
a pseudo-model L as the limit of a possibly infinite sequence of
pseudo-models L0(= L),L1,L2, . . . by fixing defects of points in the
current pseudo-model (that is, existential temporal formulae whose
requests are not fulfilled) in a principled way.

Points that must be checked for fulfillment are managed by a queue
(this guarantees us that all defects are sooner or later fixed).

Initially, the queue consists of all and only those points d ∈ D such
that d is not fulfilled in the given pseudo-model L.
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Proof of Lemma 1: fulfilling requests

d ′′′ d ′′ d ′ dj d ′′ d d̂ d ′′

d is the node on the top of
the queue.
d ′ is the maximum node with
REQL(d ′) = REQL(d) which
is fulfilled.
dj is the node such that
ψ ∈ Li(d

′,dj) and ψ is not
fulfilled for d.
It can be proved
that PastLi(d) = PastLi(d ′).

d̂ is the point introduced at
step i+ 1. We have
REQL(d̂) = REQL(dj) and
Li+1(d, d̂) = Li(d

′,dj).
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A tableau system for AA over all linear orders

Basic notions.

A tableau for ϕ: a special decorated tree T.

We associate a finite linear order DB = 〈DB,<〉 and a request
function ReqB : DB 7→ REQϕ with every branch B of T.

Every node n in B is labeled with a pair 〈[di,dj],An〉 such that
the triple 〈ReqB(di),An, ReqB(dj)〉 is an interval tuple.

The initial tableau for ϕ consists of a single node (a single branch
B) labeled with a pair 〈[d0,d1],A〉, where DB = {d0 < d1} and
ϕ ∈ A.



Temporal Representation and Reasoning in Interval Temporal Logics A. Montanari, P. Sala, and D. Della Monica

Fulfilling conditions

Given a point d ∈ DB and a formula 〈A〉ψ ∈ REQB(d), we say
that 〈A〉ψ is fulfilled in B for d if there exists a node n ′ ∈ B such
that n ′ is labeled with 〈[d,d ′],An ′〉 and ψ ∈ An ′ (same for the
past).

Given a point d ∈ DB, we say that d is fulfilled in B if every 〈A〉ψ
(resp., 〈A〉ψ) in ReqB(d) is fulfilled in B for d.

Let T be a tableau and B be a branch of T, with DB = {d0 < . . . <
dk}.

We denote by B ·n the expansion of B with an immediate successor
node n and by B · n1| . . . |nh the expansion of B with h immediate
successor nodes n1, . . . ,nh.
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Expansion rules
To expand B, we apply one of the following expansion rules:
〈A〉-rule: there exist dj ∈ DB and 〈A〉ψ ∈ REQB(dj) such that 〈A〉ψ is
not fulfilled in B for dj.

I There is not an interval tuple 〈ReqB(dj), A,S〉, with ψ ∈ A. We
close B.

I Let 〈ReqB(dj),A,S〉 be such an interval tuple. We take a new point
d and we expand B with h = k− j+ 1 immediate successor nodes
n1, . . . ,nh such that, for every 1 6 l 6 h, DB·nl

= DB∪
{dj+l−1 < d < dj+l}, nl = 〈[dj,d],A〉, with REQB·nl

(d) = S, and
REQB·nl

(d ′) = REQB(d
′) for every d ′ ∈ DB.

〈A〉-rule: symmetric to the 〈A〉-rule.
Fill-in rule:

I There are di,dj, with di < dj, such that no node in B is decorated
with [di,dj], but there is an interval tuple 〈REQB(di),A,
REQB(dj)〉. We expand B with a node n = 〈[di,dj],A〉.

I Such an interval tuple does not exist. We close B.
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The notion of blocked branch

A node n = 〈[di,dj],A〉 in a branch B is active if for every
predecessor n ′ = 〈[d,d ′],A ′〉 of n in B, the interval tuples
〈ReqB(di),A,ReqB(dj)〉 and 〈ReqB(d),A ′,ReqB(d ′)〉 are
different.
A point d ∈ DB is active if there is an active node n in B such that
n = 〈[d,d ′],A〉 or n = 〈[d ′,d],A〉, for some d ′ ∈ DB and some
atom A.

Let B be a non-closed branch. B is complete if for every
di,dj ∈ DB, with di < dj, there is a node n in B labeled with
n = 〈[di,dj],A〉, for some atom A.
If B is complete, then the pair 〈DB,LB〉 such that, for every
[di,dj] ∈ I(DB), LB([di,dj]) = A if and only if there is a node n
in B labeled with 〈[di,dj],A〉, is a LIS.

Let B be a non-closed branch. B is blocked if B is complete and,
for every active point d ∈ B, d is fulfilled in B.
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Expansion strategy

We start from an initial tableau for ϕ and we apply the expansion
rules to all the non-blocked and non-closed branches B.

The expansion strategy is the following one:

1. Apply the Fill-in rule until it generates no new nodes in B.

2. If there exist an active point d ∈ DB and a formula
〈A〉ψ ∈ ReqB(d) such that 〈A〉ψ is not fulfilled in B for d, then
apply the 〈A〉-rule on d. Go back to step 1.

3. If there exist an active point d ∈ DB and a formula
〈A〉ψ ∈ ReqB(d) such that 〈A〉ψ is not fulfilled in B for d, then
apply the 〈A〉-rule on d. Go back to step 1.

A tableau T for ϕ is final if and only if every branch B of T is
closed or blocked.
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Termination, soundness, and completeness

Termination.
Let T be a final tableau for ϕ and B be a branch of T. We have
that |B| 6 (2 · |ϕ| · 23·|ϕ|+1) · (2 · |ϕ| · 23·|ϕ|+1 − 1)/2.

Soundness.
Let T be a final tableau for ϕ. If T features one blocked branch,
then ϕ is satisfiable over all linear orders.

Completeness.
Let ϕ be an AA formula which is satisfiable over the class of all
linear orders. Then there exists a final tableau for it with at least
one blocked branch.

The tableau system can be tailored to the dense and discrete cases.
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The dense case

By adding the following rule, we obtain a procedure for the dense
case.

Dense rule: If there exist two consecutive points di,di+1 in
DB which are not covered, we proceed as follows. If there is
not an interval tuple 〈ReqB(di),A,S〉 for some S ∈ REQϕ
and some atom A ∈ Aϕ, we close the branch B.
Otherwise, let 〈ReqB(di),A,S〉 be such an interval tuple. We
expand B with a node n, labeled with 〈[di,d],A〉, such that
REQB·n(d) = S and DB·n = DB ∪ {di < d < di+1}.
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The discrete case

By adding the following rules, we obtain a procedure for the discrete
case.

I Successor rule. If there is dj ∈ DB such that dj is unique in DB, its
immediate successor dj+1 in DB is not fulfilled, there is a node n
labeled by 〈[dj,dj+1],An, free〉, for some atom An, in B, and there
is no node n ′ labeled by 〈[dj,dj+1],An′ ,unit〉, for some atom An′ ,
in B, then we proceed as follows. We expand B with 2 immediate
successor nodes n1,n2 such that n1 = 〈[dj,dj+1],An,unit〉 and
n2 = 〈[dj,d],A ′,unit〉, with dj < d < dj+1 and there is an
interval tuple 〈ReqB(dj),A ′,S〉, for some A ′ and S (the existence
of such an interval tuple is guaranteed by the existence of a node n
with label 〈[dj,dj+1],An, free〉). We have that DB·n1

= DB and
DB·n2

= DB ∪ {dj < d < dj+1}. Moreover, REQB·n2
(d) = S and

REQB·n2
(d ′) = REQB(d

′) for every d ′ ∈ DB.
I Predecessor rule Symmetric to the Successor rule
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What about AA formulas interpreted over the reals?

When we consider a fragment of first-order logic over the reals, we
must keep in mind that:

PROPERTY: Löwenheim-Skölem Theorem states that if a
first-order sentence ϕ has a model, then it has a countable
one. Such a result allows us to restrict our attention to AA
formulas which are satisfiable on both Q and R, since the case
of a formula which is satisfiable on R and unsatisfiable on Q is
not possible;
PROBLEM: when models built on real numbers come into
play, we cannot rely anymore on an enumeration procedure for
generating the models.

As we will see, we can use the property to solve the problem by
introducing suitable sufficient and necessary conditions under which
a model on Q can be turned on a model on R.
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Separability power of AA: the formula NoReal

Let NoReal be the AA formula:

p∧ 〈A〉〈A〉q∧ [G]((p→ 〈A〉p)∧ (q→ 〈A〉q)∧

(p→ [A]([A]p∧ [A][A]p))∧ (q→ [A]([A]q∧ [A][A]q))∧

¬(p∧q)∧ (¬p∧¬q→ 〈A〉p∧ 〈A〉q)),

where [G] is the universal operator defined as follows:

[G]ψ = ψ∧ [A][A][A]ψ∧ [A][A][A]ψ∧ [A][A][A]ψ∧ [A][A][A]ψ

NoReal is satisfiable over the class of dense linear orders (over the rationals), but it
is not satisfiable over the real numbers

p∧ 〈A〉〈A〉q
. . .

p, 〈A〉p
〈A〉p∧ 〈A〉q,¬p,¬q

p p p
. . .

√
2 qqq
. . .

q, 〈A〉q
. . .
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Forcing Q models to be safely turned into R ones

An AA formula ϕ is satisfiable over the reals iff there exist a model
L = 〈Q,L〉 for it and two functions:

I Finf : REQ
L → D (infimum region function) such that for

each R ∈ REQL Finf(R) = d 6= −∞ implies for each d ′ < d
REQL(d ′) 6= R and if REQL(d) 6= R we have that for each
ε > 0 there exists d ′′ with REQL(d ′′) = R and d ′′ − d < ε

I Fsup : REQL → D (supremum region function) symmetric to
Finf
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A tableau for AA over the reals (1)

The tableau system for dense linear orders (Tableau System for
General Linear Orders + Dense Rule) can be extended to obtain
a tableau system for R by adding the following expansion rules:

I inf-rule: Let R ∈ range(REQB) be such that FBinf is
undefined, di be the least point in DB, with REQB(di) = R,
and S be a set of requests. We expand B with h = 2i+ 3
accumulation nodes n0, . . . ,nh−1, where n0 = 〈R, inf,−∞〉
and for each 0 6 j 6 i, n2j+2 = 〈R, inf,dj〉, where
dj−1 < d < dj (d < d0 for j = 0) is a new point with
REQB·n2j+1

(d) = S;
I sup-rule: symmetric to the inf-rule;
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A tableau for AA over the reals (cont’d)

I inf-chain rule: Let d ∈ DB be such that
RBinf = {R0, . . . ,Rn}( 6= ∅) and 1 6 i 6 n be such that for
each d ′ ∈ DB, with REQ(d ′) = R, FutureB(d ′) 6=
FutureB(d). If there is not an interval tuple of the form
〈REQB(d),A,Ri〉, for some A, we close B.
Otherwise, let 〈REQB(d),A,Ri〉 be such an interval tuple and
d be the immediate successor of d in DB. We choose a new
point d < d ′ < d and we expand B with a node
n = 〈[d,d ′],A〉 such that REQB·n(d ′) = R;

I sup-chain rule: symmetric to the inf-chain rule.

A. Montanari, P.Sala. An optimal tableau system for the logic of temporal
neighborhood over the reals, TIME 2012.
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AA extensions undecidable over the reals

As we have already pointed out, Löwenheim-Skölem Theorem is a
good starting point to prove decidability of fragments of first-order
logic over the reals.

However, there are fragments of first-order logic that turn out to be
decidable over Q and undecidable over R.

Recently, we have discovered that this is the case with the interval
temporal logic AABB which turns out to be decidable over Q and
undecidable over R.

A. Montanari, G. Puppis, and P. Sala, Decidability of the interval
temporal logic AABB over the rationals, MFCS 2014.


