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Safety Assessment
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Safety Assessment

The safety assessment process provides a 

methodology to evaluate the design of systems, and to 

determine that the associated hazards have been 

properly addressed…

…and it should be planned to provide the 

necessary assurance that all relevant failure conditions 

have been identified and considered.
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Model-Based Safety Assessment (MBSA)

 Used for the evaluation of safety critical systems 
e.g., redundancy / fault tolerance

 The nominal system description is extended by 
allowing faulty behaviors (fault injection)

 Find all possible fault configurations that may 
cause the reachability of an unwanted condition 
(a.k.a. Top Level Event - TLE)

 Assume 𝑀 ⊨ 𝜙

 TLE ≔ ¬𝜙

• Bad states in case of invariant property

• Generalized also to LTL
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Model Extension

 From nominal 𝑀 ≔ 〈𝑉, 𝐼, 𝑇〉 to extended
𝑀𝑋 ≔ 〈𝑉𝑋, 𝐼𝑋, 𝑇𝑋〉 model, where 𝑉 ∪ 𝐹 ⊆ 𝑉𝑋

 Extended model with disabled fault variables 
(i.e. set to FALSE) should have the same 
behavior as the nominal one

 Symbolic Fault Injection, additional 
behavior in parallel to the nominal one, 
selected via a mode selector:
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Model-Based Fault Injection
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Fault Tree Analysis
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Fault Injection:

Cutsets computation:

Minimal cutsets computation:

Formula representing the minimal cutsets:
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Minimal Cutsets Computation

 Given an extended model MX ≔ 〈𝑉𝑋, 𝐼𝑋, 𝑇𝑋〉, find 

all minimal Faults Configurations FC 

(Cutsets) s.t. ∃ trace 𝜋 triggering FC and 

witnessing MX ⊭ 𝜑
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Minimal Cutsets Computation

 Given an extended model MX ≔ 〈𝑉𝑋, 𝐼𝑋, 𝑇𝑋〉, find 

all minimal Faults Configurations FC 

(Cutsets) s.t. ∃ trace 𝜋 triggering FC and 

witnessing MX ⊭ 𝜑

10

¬𝜑𝑰𝒏𝒊𝒕

State Space

𝑓1

𝑓1 𝑓2

𝑓2𝑓1

𝑓4

Example: MCS = {{𝑓1, 𝑓2}}

Alessandro Cimatti - Invited Lectures, UniUD



Fault Tree Analysis
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Fault Tree Analysis
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Fault Tree Analysis
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Fault Tree Analysis
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Fault Tree Analysis
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Fault Tree Analysis
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Fault Tree Analysis
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CS computation as parameter synthesis

 Parameter synthesis problem:

 Transition system extended with parameters X: 𝑉, 𝐼, 𝑇, 𝑋
such that

• 𝐼 is a formula over 𝑉 ∪ 𝑋

• 𝑇 is a formula over 𝑉 ∪ 𝑋 ∪ 𝑉′

 Valuation 𝛾 of 𝑋 induces a transition system M𝛾 ≔

𝑉, 𝛾 𝐼 , 𝛾 𝑇

 Problem: find all 𝛾 such that 𝑀𝛾 ⊨ 𝜙

• Or dually find all 𝛾 such that 𝑀𝛾 ⊭ 𝜙

 CS computation as parameter synthesis:

 Faults ℱ as parameters

 𝑀𝑋 as parametric transition system

 Find all assignments to ℱ such that 𝑀𝛾
𝑋 ⊭ 𝜙
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Parameter synthesis
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Start from 
𝜌 = ⊤

Consider 𝑀 ≔ 〈𝑉 ∪ 𝑈, 𝐼 ∧ 𝜌, 𝑇 ∧ 𝜌 ∧ Get counterexamples 
𝑠0 𝑉, 𝑈 , 𝑠1 𝑉, 𝑈 ,… , 𝑠𝑘(𝑉, 𝑈)

Compute 
𝑏𝑎𝑑 𝑈 ≔ ∃𝑉. 𝑠0(𝑉, 𝑈)

Update
𝜌 ≔ 𝜌 ∧ ¬𝑏𝑎𝑑

𝑀 ⊨ 𝜙

𝑀 ⊭ 𝜙

Return 𝜌



Exploiting IC3 incrementality

 At each iteration:

 𝐼 ≔ 𝐼 ∧ ¬𝑏𝑎𝑑

 𝑇 ≔ 𝑇 ∧ ¬𝑏𝑎𝑑

 No need to restart from scratch

 IC3 can keep previous frames 𝐹𝑖

 Similarly, exploit incrementality in the underlying 
SAT/SMT solver
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Requirements 
Analysis
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Property correctness

 Standard problem: correctness of design against 
set of properties.

 Properties given as golden.

 Possible issues:

 Properties wrongly formalized.

 Properties may be abstract version of real requirements 

(to enable verification)

 Set of properties incomplete.

 Same problems addressed by Requirements 
Engineering
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Requirements engineering

 Old discipline (more than twenty years).

 Goal: precise and complete requirements.

 Many techniques on the different aspects:

 management, 

 elicitation, 

 analysis, 

 validation.

 Why: errors in requirements take longer to find 
and correct than those inserted in later phases ⇒
higher cost

 More important in safety-critical application
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Vayager and Galileo examples

 Lutz in 1993 analyzed the Voyager and the Galileo 
software errors uncovered during integration and 
testing.

 Half errors were safety-related, half not.

 Most were functional faults: operating, conditional, 
or behavioral discrepancies with functional 
requirements.

 Primary cause (62% on Voyager, 79% on Galileo) 
is mis-understanding the requirements.
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Standard Check List

 Analysis performed with a check list.

 Manual or automatic (based on linguistic 
techniques) to check if requirements are (IEEE Std 
830-1993)
 Complete: define all situations
 Consistent: no contradictory statements
 Correct: allow all and only desired behaviors
 Modifiable: well structured, separation of concerns
 Ranked:  prioritized according to importance
 Testable:  specified tests
 Traceable:  identifier for each statement
 Unambiguous: only one possible interpretation 
 Valid: all stakeholders  must be able to understand, 

analyze and accept the requirement
 Verifiable: ability to check design against the 

requirement.
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Formal validation loop

Formalized 
Requirements

Verification 
results

Informal 
Requirements
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Formal checks and feedback

 Formal properties capture the semantics of requirements
 No model to refine the semantics of propositions
 Requires rich property specification language

• E.g. first-order temporal logic 

 Formal checks:
 Consistency: free of contradictions
 Scenario compatibility: desired behaviors are admitted
 Property entailment: undesired behaviors are not admitted
 Realizability:  an implementation is possible
 Inherent vacuity:  free of redundant/vacuous subformulas
 Completeness:  every situation is constrained

 Formal feedback:
 Traces: witnesses of consistency, compatibility, property 

violation
 Cores:  subset of inconsistent, incompatible, property-

entailing formulas
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Reduction to Satisfiability

 Check if requirements are:

 consistent, i.e. if they do not contain some contradiction

 not too strict, i.e. if they do allow some desired behavior 
𝜓𝑑

 not too weak, i.e. if they rule out some undesired 
behavior 𝜓𝑢

 All reduced to satisfiability:
 Consistency:  𝑖𝜙𝑖
 Admit desired behavior:  𝑖𝜙𝑖 ∧ 𝜓𝑢
 Does not forbid undesired behavior:  𝑖𝜙𝑖 ∧ 𝜓𝑢
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Satisfiability procedure

 Reduce the problem to model checking

 𝜙 is satisfiable iff 𝑀𝑈 ⊭ ¬𝜙
 Where 𝑀𝑈 is the universal model

 Use standard automata-theoretic approach to 
model checking

 𝜙𝐴 Boolean abstraction of 𝜙 replacing 𝑝(𝑉) with Boolean 
𝑣𝑝

 𝑀𝜙 obtained from 𝑀𝜙𝐴 by adding  𝑝 𝑣𝑝 ↔ 𝑝
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Contract Based 
Design
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Component-based design

 So far, system seen as monolithic behavioral 
model

 A component can be defined as a unit of 
composition with contractually specified interfaces
 Hides internal information

 Defines interface to interact with the environment

 Component-based design ideal for
 Separation of concerns

 Independent development

 Reuse of components

 First conceived for software, now popular also for 
system architectural design (SysML, AADL, AF3, 
Altarica, …)
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Specifying components with contracts

 Component hierarchically 
decomposed

 Requirements/properties 
specified at different levels of 
the hierarchy

 Contract: assumptions + 
guarantees

 Assumptions: properties 
expected to be satisfied by the 
environment

 Guarantees: properties 
expected to be satisfied by the 
component in response

 Correspond to pre/post 
conditions of standard SW 
contracts

A

B C

D E
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Stepwise refinement

 Specify components while 
designing
 decomposing the 

specification based on the 
decomposition of the 
architecture

 Early check of 
requirements
 Ensure the correctness of 

the decomposition
 Does the contract of A 

follow from the contracts of 
B and C?

 Independent refinement:
 Based on above check, B 

and C can be developed 
independently.

A

B C

D E

Alessandro Cimatti - Invited Lectures, UniUD 33



Component reuse

 Library of trusted 
components 

 Implementation + 
contracts

 Pluggable?

 compare 
contracts!
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Compositional verification

A
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Compositional verification techniques

 Compositional verification:
 Prove properties of the components (for example, with model 

checking).
 Combine components’ properties to prove system’s property without  

looking into the internals of the components (sometimes reduced to 
validity/satisfiability check for composition of properties).

 Formally:
𝑆1 ⊨ 𝑃1, 𝑆2 ⊨ 𝑃2, … , 𝑆𝑛 ⊨ 𝑃𝑛
𝛾𝑆(𝑆1, 𝑆2, … , 𝑆𝑛) ⊨ 𝛾𝑃(𝑃1, 𝑃2, … , 𝑃𝑛)

𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 ⊨ 𝑃

𝛾𝑆 𝑆1, 𝑆2, … , 𝑆𝑛 ⊨ 𝑃

 𝛾𝑃 combines the properties depending on the connections used 
in 𝛾𝑆

 E.g. synchronous case:
𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 = 𝜌𝛾𝑆 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛

 where 𝜌𝛾𝑆
is the renaming of symbols defined by the connections in 𝛾𝑆.

36Alessandro Cimatti - Invited Lectures, UniUD



Contract-based compositional

 Components interact with an environment.
 Input/output data/events
 Input controlled by environment, output controlled by 

component

 May be input enabled or possibly blocking.

 Blocking an input means constraining the 
environment.
 The component can be used only in some environment 

(assumptions!)

 Compositional rule is not just an implication!
 Guarantees of subcomponents must be stronger
 Assumptions of subcomponents must be weaker

 Contract-based design requires a formal definition of 
components’ syntax and semantics
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Black-box component interface

 A component interface defines boundary of the 
interaction between the component and its environment.

 Consists of:
 Set of input and output ports (syntax)

• Ports represent visible data and events exchanged with 
environment.

 Set of traces (semantics)
• Traces as sequences of events and assignments to data ports.
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Component

Glass-box component structure

 A component has an internal structure.

 Architecture view:
 Subcomponents
 Inter-connections
 Delegations

 State-machine view:
 Internal state
 Internal transitions
 Language over the ports

39
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Implementation and Environment

 𝐼𝑆: input ports of component 𝑆

 𝑂𝑆: output ports of 𝑆

 𝑉𝑆 = 𝐼𝑆 ∪ 𝑂𝑆: all ports of 𝑆

 Implementation/environment of 𝑆: transition 
system 〈𝑉, 𝐼, 𝑇〉 with 𝑉𝑆 ⊆ 𝑉
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Composite components and connections

 Components are composed to create composite 
components.

 Different kind of compositions:
 Synchronous,
 Asynchronous,
 Synchronizations:

• Rendez-vous vs. buffered;
• Pairwise, multicast, broadcast, multicast with a receiver

 Connections map (general rule of architecture 
languages):
 Input ports of the composite component
 Output ports of the subcomponents
Into
 Output ports of the composite component
 Input ports of the subcomponents.
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Composite components and connections

 𝑆𝑢𝑏𝑆: subcomponents of 𝑆

 Connection 

𝛾: (𝑂𝑆∪  

𝑆′∈𝑆𝑢𝑏𝑆

𝐼𝑆′)

→ (𝐼𝑆 ∪  

𝑆′∈𝑆𝑢𝑏𝑆

𝑂𝑆′)

 Example:

 𝛾 𝑜 = 𝑜2
 𝛾 𝑖2 = 𝑜1
 𝛾 𝑖1 = 𝑖
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Composite components and connections

 Standard synchronous product:
 𝑀1 = 〈𝑉1, 𝐼1, 𝑇1〉 and 𝑀2 = 〈𝑉2, 𝐼2, 𝑇2〉

 𝑀1 ×𝑀2 ≔ 〈𝑉1 ∪ 𝑉2, 𝐼1 ∧ 𝐼2, 𝑇1 ∧ 𝑇2〉

 With connection 𝛾:

 𝑀1 ×𝛾 𝑀2 ≔ 〈𝛾(𝑉1 ∪ 𝑉2), 𝛾(𝐼1 ∧ 𝐼2), 𝛾(𝑇1 ∧ 𝑇2)〉

 Where
• 𝛾 𝑉 ≔ 𝑣 𝑣 ∈ 𝑉 ∖ 𝑑𝑜𝑚 𝛾 𝑜𝑟 𝑣 = 𝛾 𝑤 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑤 ∈ V}

• 𝛾 𝜙 ≔ 𝜙[𝑣 ↦ 𝛾 𝑣 ]

 Given implementations 𝑀1, … ,𝑀𝑛 for 𝑆𝑢𝑏𝑆 = 𝑆1, … , 𝑆𝑛, 
and environment 𝐸
 Composite implementation of 𝑆:

• 𝑀1 ×𝛾 …×𝛾 𝑀𝑛
 Composite environment of 𝑆𝑖:

• 𝑀1 ×𝛾 …×𝛾 𝑀𝑗≠𝑖 ×𝛾 …×𝛾 𝑀𝑛 ×𝛾 𝐸
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LTL contracts

 A contract of component 𝑆 is a pair 〈𝐴, 𝐺〉 of LTL 
formulas over 𝑉𝑆
 𝐴 is the assumption 

 𝐺 is the guarantee

 𝐸𝑛𝑣 is a correct environment iff 𝐸𝑛𝑣 ⊨ 𝐴

 𝐼𝑚𝑝 is a correct implementation iff 𝐼𝑚𝑝 ⊨ 𝐴 → 𝐺

44
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Trace-based contract refinement

 The set of contracts 𝐶𝑖 refines 𝐶 with the connection 𝛾
( 𝐶𝑖 ≼𝛾 𝐶) iff for all correct implementations 𝐼𝑚𝑝𝑖 of 𝐶𝑖
and correct environment 𝐸𝑛𝑣 of 𝐶:
1. The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C.
2. For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct 

environment of 𝐶𝑘.

 Verification problem: 
 check if a given refinement 
is correct (independently from 
implementations).
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Proof obligations for contract refinement

 Given 𝐶1 = 𝛼1, 𝛽1 , … , 𝐶𝑛 = 𝛼𝑛, 𝛽𝑛 , 𝐶 = 〈𝛼, 𝛽〉

 Proof obligations for 𝐶𝑖 ≼ 𝐶:

 𝛾  1≤𝑗≤𝑛 𝛼𝑗 → 𝛽𝑗 → 𝛼 → 𝛽

 𝛾  2≤𝑗≤𝑛 𝛼𝑗 → 𝛽𝑗 → 𝛼 → 𝛼1

 …

 𝛾  1≤𝑗≤𝑛,𝑗≠𝑖 𝛼𝑗 → 𝛽𝑗 → 𝛼 → 𝛼𝑖

 …

 𝛾  1≤𝑗≤𝑛−1 𝛼𝑗 → 𝛽𝑗 → 𝛼 → 𝛼𝑛

 Theorem: 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are 
valid. [CT12]
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Assume-guarantee reasoning

 Correspond to one direction of the contract 
refinement.

 Many works focused on finding the right 
assumption/guarantee.

 E.g. how to break circularity?

 𝐺 𝐴 → 𝐵 ∧ 𝐺 𝐵 → 𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is false

 Induction-based mechanisms

𝐵 ∧ 𝐺 𝐴 → 𝑋𝐵 ∧ 𝐴 ∧ 𝐺 𝐵 → 𝑋𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is true
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Contract Based 
Safety Assessment
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Contract-Based Safety Assessment

 “Monolithic” safety assessment artifacts e.g., 
minimal cutsets, might be not easily 
understandable

 Need for more structured safety artifacts e.g., 
hierarchically organized fault trees

 Leverage the architectural decomposition of 
contract-based design

 Perform automated Safety Assessment on a 
Contract-Based system decomposition
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Formal Verification, Validation, and 
Safety Assessment
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Formal Verification, Validation, and 
Safety Assessment

51

Model Checking Fault Injection
Model-Based

Safety Assessment

AB	 C	

A	 B	

ABC	

Contract-Based Design

M
o

n
o

li
th

ic
C

o
m

p
o

s
it

io
n

a
l

Verification & Validation Safety Assessment

Alessandro Cimatti - Invited Lectures, UniUD



Formal Verification, Validation, and 
Safety Assessment
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Formal Verification, Validation, and 
Safety Assessment
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Contract-Based Safety Assessment

54

AB C

ABC

Alessandro Cimatti - Invited Lectures, UniUD



Contract-Based Safety Assessment
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• Extension of contracts (fault injection) from a Contract-
Based decomposition



Contract-Based Safety Assessment
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• Extension of contracts (fault injection) from a Contract-
Based decomposition

• Automated Formal Safety Assessment i.e., Fault Tree 
Analysis



Contract-Based Safety Assessment
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• Extension of contracts (fault injection) from a Contract-
Based decomposition

• Automated Formal Safety Assessment i.e., Fault Tree 
Analysis

• Support for components refinement
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Contract-Based Fault Injection
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Contract-Based Fault Injection
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• Additional input and output failure ports
• Contract extension
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Contract-Based Fault Injection
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ABC ABC
X

• Additional input and output failure ports
• Contract extension
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Contract-Based Fault Injection
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ABC ABC
X

• Additional input and output failure ports
• Contract extension
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Starlight Example
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Starlight reqs formalization

 Req-Sys-secure: No high-level data shall be 
sent by L to the external world.
 Formal-Sys-secure: never is_high(last_data(outL))

 Req-User-secure: The user shall switch the 
dispatcher to high before entering high-level 
data.
 Formal-User-secure: always 

((is_high(last_data(cmd))) implies ((not 
switch_to_low) since switch_to_high))

 Proved system guarantess Formal-Sys-secure 
assuming Formal-User-secure.

 Req-Sys-safe: No single failure shall cause a 
loss of Req-Sys-secure.
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Starlight fault tree for secure req
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Case-Studies
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AIR6110 Wheel Braking System

 Joint scientific study with Boeing

 Context
 Aerospace systems become more complex and integrated
 Safety assessment process is critical

• Evaluate whether a selected design is sufficiently robust with respect 
to the criticality of the system and faults occurrence

 Objectives:
 Analyze the system safety through mathematical models and 

techniques
 Demonstrate the usefulness and suitability of these techniques for 

improving the overall traditional development and supporting aircraft 
certification 

 Case study:
 Aerospace Information Report 6110: 

• Traditional Contiguous Aircraft/System Development Process Example

 Wheel Brake System of a fictional dual-engine aircraft 
• 300-350 passengers, 5h max of flight
• 2 main landing gears (4 wheels each)

66Alessandro Cimatti - Invited Lectures, UniUD



WBS: Overview
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WBS: Adopted approach
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V & V

Safety Assessment

Fault extension Fault trees computation

Architecture
decomposition

& Contracts
ocra language

• Automatic contract
refinement verification

• Automatic fault 
extension

• Automatic hierarchical 
fault tree generation

• Over-approximation

Behavioral
Implementation
(Leaf components

& System)
smv language

• Automatic compositional 
verification

• Automatic monolithic
verification

• Failure modes defined 
by the user

• Generation of the 
extended system 
implementation

• Automatic flat fault tree 
generation

xSAP

OCRA

xSAP

OCRA OCRA

Semi-
automatic 
Generation

MODELING

ANALYSIS

nuXmv

OCRA
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WBS: Conclusion

 Results: 
 Cover the process described in AIR6110 with formal methods
 Production of modular descriptions of 5 architectures variants

• Analysis of their characteristics in terms of a set of requirements expressed as 
properties

• Production of more than 3000 fault trees
• Production of reliability measures

 Detection of an unexpected flaw in the process
• Detection of the wrong position of the accumulator earlier in the process

 Lessons learned:
 Going from informal to formal allows highlighting the missing information of the 

AIR6110 to reproduce the process
 OCRA modular modeling allows a massive reuse of the design through 

architectures variant
 Automated and efficient engines as IC3 is a key factor
 MBSA is crucial in this context:

• Automatic extension of the nominal model with faults
• Automatic generation of artifacts eases the analysis and the architecture 

comparison in terms of safety
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NASA NextGen Air Traffic Control 

 Problem:
 4x airspace traffic in the next 20 years
 Currently technology cannot scale
 Need to increase automation, while preserving safety

 Apply Formal Methods to study the quality and 
Safety of many design proposals concerning the 
allocation of tasks between Air and Ground

 Objective: 
 Highlight Implicit assumptions
 Model and Study a design space with more than 1600

proposals
 Time-Frame: 12 Man-Month

 Joint project with NASA Ames and Langley
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NextGen: Proposed Solution

 Identify dimensions of the design space

 Use a parametric model to encode all designs (symbolically)

 Unified design architecture makes it possible to push complexity 
into the leaf components

 Use contracts to validate components behavior

 Perform Model-Checking against interesting properties, and rank 
solutions based on their “quality”

 Perform Fault-Tree analysis to understand the resilience to faults

Alessandro Cimatti - Invited Lectures, UniUD 71



NextGen: Results

 Independently reproduced 2 known 
problems

 High-lighted a mismatch in requirements 
for one design proposal

 Results discussed and validated by NASA 
engineers

 Lessons Learned:
 Model Validation is a key step
 Technology is mature to tackle problems of 

realistic size
 Lots of data: Need better ways to present 

complex results in an accessible way
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Wrap-up
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Lecture Summary

 Importance of Safety Assessment

 Contract-Based Design
 Specify & Validate Requirement

 Decompose Requirements onto 
Architecture

 Implement Leaf components

 Functional correctness guaranteed by 
Contract-Decomposition

 CBSA: Leverage contracts to perform 
Safety Assessment
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Readings

A list of suggested readings on the topics of the course. The list is not meant to be 
complete.

 Model-Based Safety Assessment:

 Marco Bozzano, Adolfo Villafiorita: Improving System Reliability via Model Checking: The 
FSAP/NuSMV-SA Safety Analysis Platform. SAFECOMP 2003: 49-62

 Marco Bozzano, Alessandro Cimatti, Francesco Tapparo: Symbolic Fault Tree Analysis for 
Reactive Systems. ATVA 2007: 162-176

 Marco Bozzano, Alessandro Cimatti, Alberto Griggio, Cristian Mattarei: Efficient Anytime 
Techniques for Model-Based Safety Analysis. CAV (1) 2015: 603-621

 Parameter Synthesis:

 Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: Parameter synthesis 
with IC3. FMCAD 2013: 165-168
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Readings

 Requirements Formalization and Validation:

 Alessandro Cimatti, Marco Roveri, Alessandro Cimatti: Requirements Validation for Hybrid 
Systems. CAV 2009: 188-203

 Alessandro Cimatti, Marco Roveri, Angelo Susi, Alessandro Cimatti: Validation of requirements 
for hybrid systems: A formal approach. ACM Trans. Softw. Eng. Methodol. 21(4): 22 (2012)

 Compositional Verification:

 Kenneth L. McMillan: Circular Compositional Reasoning about Liveness. CHARME 1999: 342-
345

 Anubhav Gupta, Kenneth L. McMillan, Zhaohui Fu: Automated assumption generation for 
compositional verification. Formal Methods in System Design 32(3): 285-301 (2008)

 Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan: Compositional 
Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 
2015: 89-96
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Readings

 Contract-Based Design with Temporal Logics:

 Alessandro Cimatti, Alessandro Cimatti: A Property-Based Proof System for Contract-Based Design. 
EUROMICRO-SEAA 2012: 21-28

 Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, Andrzej 
Wasowski: Moving from Specifications to Contracts in Component-Based Design. FASE 2012: 43-58

 Darren D. Cofer, Andrew Gacek, Steven P. Miller, Michael W. Whalen, Brian LaValley, Lui Sha: Compositional 
Verification of Architectural Models. NASA Formal Methods 2012: 126-140

 Alessandro Cimatti, Alessandro Cimatti: Contracts-refinement proof system for component-based embedded 
systems. Sci. Comput. Program. 97: 333-348 (2015)

 Thi Thieu Hoa Le, Roberto Passerone, Ulrich Fahrenberg, Axel Legay: A tag contract framework for modeling 
heterogeneous systems. Sci. Comput. Program. 115-116: 225-246 (2016)

 Alessandro Cimatti, Ramiro Demasi, Alessandro Cimatti: Tightening a Contract Refinement. SEFM 2016

 Adrien Champion, Arie Gurfinkel, Temesghen Kahsai, Cesare Tinelli: CoCoSpec: A mode aware contract 
language. SEFM 2016
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Readings

 Contract-Based Safety Assessment:

 Marco Bozzano, Alessandro Cimatti, Cristian Mattarei, Alessandro Cimatti: Formal Safety Assessment via Contract-Based Design. ATVA 
2014: 81-97

 Case Studies:

 Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, D. Jones, G. Kimberly, T. Petri, R. Robinson, Alessandro Cimatti: Formal 
Design and Safety Analysis of AIR6110 Wheel Brake System. CAV (1) 2015: 518-535

 Cristian Mattarei, Alessandro Cimatti, Marco Gario, Alessandro Cimatti, Kristin Y. Rozier: Comparing Different Functional Allocations in 
Automated Air Traffic Control Design. FMCAD 2015: 112-119

 Tools used in the course:

 Alessandro Cimatti, Michele Dorigatti, Alessandro Cimatti: OCRA: A tool for checking the refinement of temporal contracts. ASE 2013: 702-
705

 Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, 
Alessandro Cimatti: The nuXmv Symbolic Model Checker. CAV 2014: 334-342

 Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Marco Gario, Alberto Griggio, Cristian Mattarei, Andrea Micheli, 
Gianni Zampedri: The xSAP Safety Analysis Platform. TACAS 2016: 533-539
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