
Advanced model checking
for verification and
safety assessment

Alessandro Cimatti

Fondazione Bruno Kessler (FBK)

Invited Lectures, University of Udine

Lecture 2

Lecture prepared in collaboration with

Stefano Tonetta and Marco Gario

Some slides borrowed from Cristian Mattarei, Marco Bozzano, Anthony Pires

Alessandro Cimatti - Invited Lectures, UniUD 1

Lecture 2

 Safety Assessment
 Fault Extension

 Fault Tree Computation

 Requirements Analysis

 Contract Based Design

 Contract-Based Safety Assessment

 Case-Studies
 WBS

 NASA

 Wrap-up

Alessandro Cimatti - Invited Lectures, UniUD 2

Safety Assessment

3Alessandro Cimatti - Invited Lectures, UniUD

Safety Assessment

The safety assessment process provides a

methodology to evaluate the design of systems, and to

determine that the associated hazards have been

properly addressed…

…and it should be planned to provide the

necessary assurance that all relevant failure conditions

have been identified and considered.

4Alessandro Cimatti - Invited Lectures, UniUD

Aerospace Recommended Practice 4761
SAE International

Model-Based Safety Assessment (MBSA)

 Used for the evaluation of safety critical systems
e.g., redundancy / fault tolerance

 The nominal system description is extended by
allowing faulty behaviors (fault injection)

 Find all possible fault configurations that may
cause the reachability of an unwanted condition
(a.k.a. Top Level Event - TLE)

 Assume 𝑀 ⊨ 𝜙

 TLE ≔ ¬𝜙

• Bad states in case of invariant property

• Generalized also to LTL

5Alessandro Cimatti - Invited Lectures, UniUD

Model Extension

 From nominal 𝑀 ≔ 〈𝑉, 𝐼, 𝑇〉 to extended
𝑀𝑋 ≔ 〈𝑉𝑋, 𝐼𝑋, 𝑇𝑋〉 model, where 𝑉 ∪ 𝐹 ⊆ 𝑉𝑋

 Extended model with disabled fault variables
(i.e. set to FALSE) should have the same
behavior as the nominal one

 Symbolic Fault Injection, additional
behavior in parallel to the nominal one,
selected via a mode selector:

6

Nominal
behavior

Faulty
behavior

Mode
selector

Alessandro Cimatti - Invited Lectures, UniUD

Model-Based Fault Injection

7

Nominal
behavior

Faulty
behavior

Mode
selector

1

0

Faults
Behavior
Library

Faults
Dynamics

Library

Alessandro Cimatti - Invited Lectures, UniUD

Fault Tree Analysis

8

Fault Injection:

Cutsets computation:

Minimal cutsets computation:

Formula representing the minimal cutsets:

Alessandro Cimatti - Invited Lectures, UniUD

Minimal Cutsets Computation

 Given an extended model MX ≔ 〈𝑉𝑋, 𝐼𝑋, 𝑇𝑋〉, find

all minimal Faults Configurations FC

(Cutsets) s.t. ∃ trace 𝜋 triggering FC and

witnessing MX ⊭ 𝜑

9

¬𝜑𝑰𝒏𝒊𝒕

State Space

𝑓1

Example: CS = {{𝑓1, 𝑓2, 𝑓4}, {𝑓1, 𝑓2}}

𝑓1 𝑓2

𝑓2𝑓1

𝑓4

Not
Minimal

Alessandro Cimatti - Invited Lectures, UniUD

Minimal Cutsets Computation

 Given an extended model MX ≔ 〈𝑉𝑋, 𝐼𝑋, 𝑇𝑋〉, find

all minimal Faults Configurations FC

(Cutsets) s.t. ∃ trace 𝜋 triggering FC and

witnessing MX ⊭ 𝜑

10

¬𝜑𝑰𝒏𝒊𝒕

State Space

𝑓1

𝑓1 𝑓2

𝑓2𝑓1

𝑓4

Example: MCS = {{𝑓1, 𝑓2}}

Alessandro Cimatti - Invited Lectures, UniUD

Fault Tree Analysis

11

Single
Point of
Failure

Alessandro Cimatti - Invited Lectures, UniUD

Fault Tree Analysis

12

Double
Failure

Alessandro Cimatti - Invited Lectures, UniUD

Fault Tree Analysis

13Alessandro Cimatti - Invited Lectures, UniUD

Fault Tree Analysis

14Alessandro Cimatti - Invited Lectures, UniUD

Fault Tree Analysis

15

X

Not
Minimal

Alessandro Cimatti - Invited Lectures, UniUD

Fault Tree Analysis

16Alessandro Cimatti - Invited Lectures, UniUD

Fault Tree Analysis

17Alessandro Cimatti - Invited Lectures, UniUD

CS computation as parameter synthesis

 Parameter synthesis problem:

 Transition system extended with parameters X: 𝑉, 𝐼, 𝑇, 𝑋
such that

• 𝐼 is a formula over 𝑉 ∪ 𝑋

• 𝑇 is a formula over 𝑉 ∪ 𝑋 ∪ 𝑉′

 Valuation 𝛾 of 𝑋 induces a transition system M𝛾 ≔

𝑉, 𝛾 𝐼 , 𝛾 𝑇

 Problem: find all 𝛾 such that 𝑀𝛾 ⊨ 𝜙

• Or dually find all 𝛾 such that 𝑀𝛾 ⊭ 𝜙

 CS computation as parameter synthesis:

 Faults ℱ as parameters

 𝑀𝑋 as parametric transition system

 Find all assignments to ℱ such that 𝑀𝛾
𝑋 ⊭ 𝜙

18Alessandro Cimatti - Invited Lectures, UniUD

Parameter synthesis

19Alessandro Cimatti - Invited Lectures, UniUD

Start from
𝜌 = ⊤

Consider 𝑀 ≔ 〈𝑉 ∪ 𝑈, 𝐼 ∧ 𝜌, 𝑇 ∧ 𝜌 ∧ Get counterexamples
𝑠0 𝑉, 𝑈 , 𝑠1 𝑉, 𝑈 ,… , 𝑠𝑘(𝑉, 𝑈)

Compute
𝑏𝑎𝑑 𝑈 ≔ ∃𝑉. 𝑠0(𝑉, 𝑈)

Update
𝜌 ≔ 𝜌 ∧ ¬𝑏𝑎𝑑

𝑀 ⊨ 𝜙

𝑀 ⊭ 𝜙

Return 𝜌

Exploiting IC3 incrementality

 At each iteration:

 𝐼 ≔ 𝐼 ∧ ¬𝑏𝑎𝑑

 𝑇 ≔ 𝑇 ∧ ¬𝑏𝑎𝑑

 No need to restart from scratch

 IC3 can keep previous frames 𝐹𝑖

 Similarly, exploit incrementality in the underlying
SAT/SMT solver

20Alessandro Cimatti - Invited Lectures, UniUD

Requirements
Analysis

21Alessandro Cimatti - Invited Lectures, UniUD

Property correctness

 Standard problem: correctness of design against
set of properties.

 Properties given as golden.

 Possible issues:

 Properties wrongly formalized.

 Properties may be abstract version of real requirements

(to enable verification)

 Set of properties incomplete.

 Same problems addressed by Requirements
Engineering

22Alessandro Cimatti - Invited Lectures, UniUD

Requirements engineering

 Old discipline (more than twenty years).

 Goal: precise and complete requirements.

 Many techniques on the different aspects:

 management,

 elicitation,

 analysis,

 validation.

 Why: errors in requirements take longer to find
and correct than those inserted in later phases ⇒
higher cost

 More important in safety-critical application

23Alessandro Cimatti - Invited Lectures, UniUD

Vayager and Galileo examples

 Lutz in 1993 analyzed the Voyager and the Galileo
software errors uncovered during integration and
testing.

 Half errors were safety-related, half not.

 Most were functional faults: operating, conditional,
or behavioral discrepancies with functional
requirements.

 Primary cause (62% on Voyager, 79% on Galileo)
is mis-understanding the requirements.

24Alessandro Cimatti - Invited Lectures, UniUD

Standard Check List

 Analysis performed with a check list.

 Manual or automatic (based on linguistic
techniques) to check if requirements are (IEEE Std
830-1993)
 Complete: define all situations
 Consistent: no contradictory statements
 Correct: allow all and only desired behaviors
 Modifiable: well structured, separation of concerns
 Ranked: prioritized according to importance
 Testable: specified tests
 Traceable: identifier for each statement
 Unambiguous: only one possible interpretation
 Valid: all stakeholders must be able to understand,

analyze and accept the requirement
 Verifiable: ability to check design against the

requirement.

25Alessandro Cimatti - Invited Lectures, UniUD

Formal validation loop

Formalized
Requirements

Verification
results

Informal
Requirements

26Alessandro Cimatti - Invited Lectures, UniUD

Formalization
(domain
expert)

Verification
(automatic

engine)

Analysis and
refinement
(domain
expert)

Formal checks and feedback

 Formal properties capture the semantics of requirements
 No model to refine the semantics of propositions
 Requires rich property specification language

• E.g. first-order temporal logic

 Formal checks:
 Consistency: free of contradictions
 Scenario compatibility: desired behaviors are admitted
 Property entailment: undesired behaviors are not admitted
 Realizability: an implementation is possible
 Inherent vacuity: free of redundant/vacuous subformulas
 Completeness: every situation is constrained

 Formal feedback:
 Traces: witnesses of consistency, compatibility, property

violation
 Cores: subset of inconsistent, incompatible, property-

entailing formulas

27Alessandro Cimatti - Invited Lectures, UniUD

Reduction to Satisfiability

 Check if requirements are:

 consistent, i.e. if they do not contain some contradiction

 not too strict, i.e. if they do allow some desired behavior
𝜓𝑑

 not too weak, i.e. if they rule out some undesired
behavior 𝜓𝑢

 All reduced to satisfiability:
 Consistency: 𝑖𝜙𝑖
 Admit desired behavior: 𝑖𝜙𝑖 ∧ 𝜓𝑢
 Does not forbid undesired behavior: 𝑖𝜙𝑖 ∧ 𝜓𝑢

28Alessandro Cimatti - Invited Lectures, UniUD

Satisfiability procedure

 Reduce the problem to model checking

 𝜙 is satisfiable iff 𝑀𝑈 ⊭ ¬𝜙
 Where 𝑀𝑈 is the universal model

 Use standard automata-theoretic approach to
model checking

 𝜙𝐴 Boolean abstraction of 𝜙 replacing 𝑝(𝑉) with Boolean
𝑣𝑝

 𝑀𝜙 obtained from 𝑀𝜙𝐴 by adding 𝑝 𝑣𝑝 ↔ 𝑝

29Alessandro Cimatti - Invited Lectures, UniUD

Contract Based
Design

Alessandro Cimatti - Invited Lectures, UniUD 30

Component-based design

 So far, system seen as monolithic behavioral
model

 A component can be defined as a unit of
composition with contractually specified interfaces
 Hides internal information

 Defines interface to interact with the environment

 Component-based design ideal for
 Separation of concerns

 Independent development

 Reuse of components

 First conceived for software, now popular also for
system architectural design (SysML, AADL, AF3,
Altarica, …)

31Alessandro Cimatti - Invited Lectures, UniUD

Specifying components with contracts

 Component hierarchically
decomposed

 Requirements/properties
specified at different levels of
the hierarchy

 Contract: assumptions +
guarantees

 Assumptions: properties
expected to be satisfied by the
environment

 Guarantees: properties
expected to be satisfied by the
component in response

 Correspond to pre/post
conditions of standard SW
contracts

A

B C

D E

32 Alessandro Cimatti - Invited Lectures, UniUD

Stepwise refinement

 Specify components while
designing
 decomposing the

specification based on the
decomposition of the
architecture

 Early check of
requirements
 Ensure the correctness of

the decomposition
 Does the contract of A

follow from the contracts of
B and C?

 Independent refinement:
 Based on above check, B

and C can be developed
independently.

A

B C

D E

Alessandro Cimatti - Invited Lectures, UniUD 33

Component reuse

 Library of trusted
components

 Implementation +
contracts

 Pluggable?

 compare
contracts!

34Alessandro Cimatti - Invited Lectures, UniUD

A

B C

D E

D E

C

Compositional verification

A

CD ED E C

Alessandro Cimatti - Invited Lectures, UniUD 35

Compositional verification techniques

 Compositional verification:
 Prove properties of the components (for example, with model

checking).
 Combine components’ properties to prove system’s property without

looking into the internals of the components (sometimes reduced to
validity/satisfiability check for composition of properties).

 Formally:
𝑆1 ⊨ 𝑃1, 𝑆2 ⊨ 𝑃2, … , 𝑆𝑛 ⊨ 𝑃𝑛
𝛾𝑆(𝑆1, 𝑆2, … , 𝑆𝑛) ⊨ 𝛾𝑃(𝑃1, 𝑃2, … , 𝑃𝑛)

𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 ⊨ 𝑃

𝛾𝑆 𝑆1, 𝑆2, … , 𝑆𝑛 ⊨ 𝑃

 𝛾𝑃 combines the properties depending on the connections used
in 𝛾𝑆

 E.g. synchronous case:
𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 = 𝜌𝛾𝑆 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛

 where 𝜌𝛾𝑆
is the renaming of symbols defined by the connections in 𝛾𝑆.

36Alessandro Cimatti - Invited Lectures, UniUD

Contract-based compositional

 Components interact with an environment.
 Input/output data/events
 Input controlled by environment, output controlled by

component

 May be input enabled or possibly blocking.

 Blocking an input means constraining the
environment.
 The component can be used only in some environment

(assumptions!)

 Compositional rule is not just an implication!
 Guarantees of subcomponents must be stronger
 Assumptions of subcomponents must be weaker

 Contract-based design requires a formal definition of
components’ syntax and semantics

37Alessandro Cimatti - Invited Lectures, UniUD

Black-box component interface

 A component interface defines boundary of the
interaction between the component and its environment.

 Consists of:
 Set of input and output ports (syntax)

• Ports represent visible data and events exchanged with
environment.

 Set of traces (semantics)
• Traces as sequences of events and assignments to data ports.

38Alessandro Cimatti - Invited Lectures, UniUD

Component

In
p
u
t

O
u
tp

u
t

Component

Glass-box component structure

 A component has an internal structure.

 Architecture view:
 Subcomponents
 Inter-connections
 Delegations

 State-machine view:
 Internal state
 Internal transitions
 Language over the ports

39
Alessandro Cimatti - Invited Lectures, UniUD

In
p
u
t

O
u
tp

u
t

Component

Sub1

Sub2

Implementation and Environment

 𝐼𝑆: input ports of component 𝑆

 𝑂𝑆: output ports of 𝑆

 𝑉𝑆 = 𝐼𝑆 ∪ 𝑂𝑆: all ports of 𝑆

 Implementation/environment of 𝑆: transition
system 〈𝑉, 𝐼, 𝑇〉 with 𝑉𝑆 ⊆ 𝑉

40Alessandro Cimatti - Invited Lectures, UniUD

ES

VI VOVH VI
VO V’H

Composite components and connections

 Components are composed to create composite
components.

 Different kind of compositions:
 Synchronous,
 Asynchronous,
 Synchronizations:

• Rendez-vous vs. buffered;
• Pairwise, multicast, broadcast, multicast with a receiver

 Connections map (general rule of architecture
languages):
 Input ports of the composite component
 Output ports of the subcomponents
Into
 Output ports of the composite component
 Input ports of the subcomponents.

41Alessandro Cimatti - Invited Lectures, UniUD

Composite components and connections

 𝑆𝑢𝑏𝑆: subcomponents of 𝑆

 Connection

𝛾: (𝑂𝑆∪

𝑆′∈𝑆𝑢𝑏𝑆

𝐼𝑆′)

→ (𝐼𝑆 ∪

𝑆′∈𝑆𝑢𝑏𝑆

𝑂𝑆′)

 Example:

 𝛾 𝑜 = 𝑜2
 𝛾 𝑖2 = 𝑜1
 𝛾 𝑖1 = 𝑖

42Alessandro Cimatti - Invited Lectures, UniUD

System

A

B

𝑖 𝑜

𝑖 𝑖1 𝑜1
𝑖2

𝑜2 𝑜

Composite components and connections

 Standard synchronous product:
 𝑀1 = 〈𝑉1, 𝐼1, 𝑇1〉 and 𝑀2 = 〈𝑉2, 𝐼2, 𝑇2〉

 𝑀1 ×𝑀2 ≔ 〈𝑉1 ∪ 𝑉2, 𝐼1 ∧ 𝐼2, 𝑇1 ∧ 𝑇2〉

 With connection 𝛾:

 𝑀1 ×𝛾 𝑀2 ≔ 〈𝛾(𝑉1 ∪ 𝑉2), 𝛾(𝐼1 ∧ 𝐼2), 𝛾(𝑇1 ∧ 𝑇2)〉

 Where
• 𝛾 𝑉 ≔ 𝑣 𝑣 ∈ 𝑉 ∖ 𝑑𝑜𝑚 𝛾 𝑜𝑟 𝑣 = 𝛾 𝑤 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑤 ∈ V}

• 𝛾 𝜙 ≔ 𝜙[𝑣 ↦ 𝛾 𝑣]

 Given implementations 𝑀1, … ,𝑀𝑛 for 𝑆𝑢𝑏𝑆 = 𝑆1, … , 𝑆𝑛,
and environment 𝐸
 Composite implementation of 𝑆:

• 𝑀1 ×𝛾 …×𝛾 𝑀𝑛
 Composite environment of 𝑆𝑖:

• 𝑀1 ×𝛾 …×𝛾 𝑀𝑗≠𝑖 ×𝛾 …×𝛾 𝑀𝑛 ×𝛾 𝐸

43Alessandro Cimatti - Invited Lectures, UniUD

LTL contracts

 A contract of component 𝑆 is a pair 〈𝐴, 𝐺〉 of LTL
formulas over 𝑉𝑆
 𝐴 is the assumption

 𝐺 is the guarantee

 𝐸𝑛𝑣 is a correct environment iff 𝐸𝑛𝑣 ⊨ 𝐴

 𝐼𝑚𝑝 is a correct implementation iff 𝐼𝑚𝑝 ⊨ 𝐴 → 𝐺

44
Alessandro Cimatti - Invited Lectures, UniUD

Trace-based contract refinement

 The set of contracts 𝐶𝑖 refines 𝐶 with the connection 𝛾
(𝐶𝑖 ≼𝛾 𝐶) iff for all correct implementations 𝐼𝑚𝑝𝑖 of 𝐶𝑖
and correct environment 𝐸𝑛𝑣 of 𝐶:
1. The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C.
2. For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct

environment of 𝐶𝑘.

 Verification problem:
 check if a given refinement
is correct (independently from
implementations).

45

Component

Sub

Sub

C

C1

C2

Alessandro Cimatti - Invited Lectures, UniUD

Proof obligations for contract refinement

 Given 𝐶1 = 𝛼1, 𝛽1 , … , 𝐶𝑛 = 𝛼𝑛, 𝛽𝑛 , 𝐶 = 〈𝛼, 𝛽〉

 Proof obligations for 𝐶𝑖 ≼ 𝐶:

 𝛾 1≤𝑗≤𝑛 𝛼𝑗 → 𝛽𝑗 → 𝛼 → 𝛽

 𝛾 2≤𝑗≤𝑛 𝛼𝑗 → 𝛽𝑗 → 𝛼 → 𝛼1

 …

 𝛾 1≤𝑗≤𝑛,𝑗≠𝑖 𝛼𝑗 → 𝛽𝑗 → 𝛼 → 𝛼𝑖

 …

 𝛾 1≤𝑗≤𝑛−1 𝛼𝑗 → 𝛽𝑗 → 𝛼 → 𝛼𝑛

 Theorem: 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are
valid. [CT12]

46Alessandro Cimatti - Invited Lectures, UniUD

Assume-guarantee reasoning

 Correspond to one direction of the contract
refinement.

 Many works focused on finding the right
assumption/guarantee.

 E.g. how to break circularity?

 𝐺 𝐴 → 𝐵 ∧ 𝐺 𝐵 → 𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is false

 Induction-based mechanisms

𝐵 ∧ 𝐺 𝐴 → 𝑋𝐵 ∧ 𝐴 ∧ 𝐺 𝐵 → 𝑋𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is true

47Alessandro Cimatti - Invited Lectures, UniUD

Contract Based
Safety Assessment

Alessandro Cimatti - Invited Lectures, UniUD 48

Contract-Based Safety Assessment

 “Monolithic” safety assessment artifacts e.g.,
minimal cutsets, might be not easily
understandable

 Need for more structured safety artifacts e.g.,
hierarchically organized fault trees

 Leverage the architectural decomposition of
contract-based design

 Perform automated Safety Assessment on a
Contract-Based system decomposition

Alessandro Cimatti - Invited Lectures, UniUD 49

Formal Verification, Validation, and
Safety Assessment

50

Model Checking Fault Injection
Model-Based

Safety Assessment

M
o

n
o

li
th

ic
C

o
m

p
o

s
it

io
n

a
l

Verification & Validation Safety Assessment

Alessandro Cimatti - Invited Lectures, UniUD

Formal Verification, Validation, and
Safety Assessment

51

Model Checking Fault Injection
Model-Based

Safety Assessment

AB	 C	

A	 B	

ABC	

Contract-Based Design

M
o

n
o

li
th

ic
C

o
m

p
o

s
it

io
n

a
l

Verification & Validation Safety Assessment

Alessandro Cimatti - Invited Lectures, UniUD

Formal Verification, Validation, and
Safety Assessment

52

Model Checking Fault Injection
Model-Based

Safety Assessment

AB	 C	

A	 B	

ABC	

AB	 C	

A	 B	

ABC	

AB	 C	

A	 B	

ABC	

X	

X	

X	

X	 X	

Contract-Based Design
Contract-Based
Fault Injection

M
o

n
o

li
th

ic
C

o
m

p
o

s
it

io
n

a
l

Verification & Validation Safety Assessment

Alessandro Cimatti - Invited Lectures, UniUD

Formal Verification, Validation, and
Safety Assessment

53

Model Checking Fault Injection
Model-Based

Safety Assessment

AB	 C	

A	 B	

ABC	

AB	 C	

A	 B	

ABC	

AB	 C	

A	 B	

ABC	

X	

X	

X	

X	 X	

AB	 C	

A	 B	

ABC	

X	

X	

X	

X	 X	

Failure	of	C	Failure	of	AB	

Failure	of	ABC	

Failure	of	B	Failure	of	A	

Contract-Based Design
Contract-Based
Fault Injection

Contract-Based
Safety Assessment

M
o

n
o

li
th

ic
C

o
m

p
o

s
it

io
n

a
l

Verification & Validation Safety Assessment

Alessandro Cimatti - Invited Lectures, UniUD

Contract-Based Safety Assessment

54

AB C

ABC

Alessandro Cimatti - Invited Lectures, UniUD

Contract-Based Safety Assessment

55

AB C

ABC

AB C

ABC

X

X

X

Alessandro Cimatti - Invited Lectures, UniUD

• Extension of contracts (fault injection) from a Contract-
Based decomposition

Contract-Based Safety Assessment

56

AB C

ABC

AB C

ABC

X

X

X Failure of CFailure of AB

Failure of ABC

Alessandro Cimatti - Invited Lectures, UniUD

• Extension of contracts (fault injection) from a Contract-
Based decomposition

• Automated Formal Safety Assessment i.e., Fault Tree
Analysis

Contract-Based Safety Assessment

57

AB C

A B

ABC

AB C

A B

ABC

X

X

X

X X

Failure of CFailure of AB

Failure of BFailure of A

• Extension of contracts (fault injection) from a Contract-
Based decomposition

• Automated Formal Safety Assessment i.e., Fault Tree
Analysis

• Support for components refinement

Alessandro Cimatti - Invited Lectures, UniUD

Failure of ABC

Contract-Based Fault Injection

58

ABC

Alessandro Cimatti - Invited Lectures, UniUD

Contract-Based Fault Injection

59

ABC ABC
X

• Additional input and output failure ports
• Contract extension

Alessandro Cimatti - Invited Lectures, UniUD

Contract-Based Fault Injection

60

ABC ABC
X

• Additional input and output failure ports
• Contract extension

Alessandro Cimatti - Invited Lectures, UniUD

Contract-Based Fault Injection

61

ABC ABC
X

• Additional input and output failure ports
• Contract extension

Alessandro Cimatti - Invited Lectures, UniUD

Starlight Example

62Alessandro Cimatti - Invited Lectures, UniUD

Starlight reqs formalization

 Req-Sys-secure: No high-level data shall be
sent by L to the external world.
 Formal-Sys-secure: never is_high(last_data(outL))

 Req-User-secure: The user shall switch the
dispatcher to high before entering high-level
data.
 Formal-User-secure: always

((is_high(last_data(cmd))) implies ((not
switch_to_low) since switch_to_high))

 Proved system guarantess Formal-Sys-secure
assuming Formal-User-secure.

 Req-Sys-safe: No single failure shall cause a
loss of Req-Sys-secure.

63Alessandro Cimatti - Invited Lectures, UniUD

Starlight fault tree for secure req

64Alessandro Cimatti - Invited Lectures, UniUD

Case-Studies

Alessandro Cimatti - Invited Lectures, UniUD 65

AIR6110 Wheel Braking System

 Joint scientific study with Boeing

 Context
 Aerospace systems become more complex and integrated
 Safety assessment process is critical

• Evaluate whether a selected design is sufficiently robust with respect
to the criticality of the system and faults occurrence

 Objectives:
 Analyze the system safety through mathematical models and

techniques
 Demonstrate the usefulness and suitability of these techniques for

improving the overall traditional development and supporting aircraft
certification

 Case study:
 Aerospace Information Report 6110:

• Traditional Contiguous Aircraft/System Development Process Example

 Wheel Brake System of a fictional dual-engine aircraft
• 300-350 passengers, 5h max of flight
• 2 main landing gears (4 wheels each)

66Alessandro Cimatti - Invited Lectures, UniUD

WBS: Overview

2Alessandro Cimatti - Invited Lectures, UniUD

WBS: Adopted approach

3Alessandro Cimatti - Invited Lectures, UniUD

V & V

Safety Assessment

Fault extension Fault trees computation

Architecture
decomposition

& Contracts
ocra language

• Automatic contract
refinement verification

• Automatic fault
extension

• Automatic hierarchical
fault tree generation

• Over-approximation

Behavioral
Implementation
(Leaf components

& System)
smv language

• Automatic compositional
verification

• Automatic monolithic
verification

• Failure modes defined
by the user

• Generation of the
extended system
implementation

• Automatic flat fault tree
generation

xSAP

OCRA

xSAP

OCRA OCRA

Semi-
automatic
Generation

MODELING

ANALYSIS

nuXmv

OCRA

𝑀 ⊨ 𝜑

𝑀

𝑀 ⇝ 𝑀 𝐹 𝛿 𝐹 ∶ 𝑀 𝐹 ⊨ 𝜑/

WBS: Conclusion

 Results:
 Cover the process described in AIR6110 with formal methods
 Production of modular descriptions of 5 architectures variants

• Analysis of their characteristics in terms of a set of requirements expressed as
properties

• Production of more than 3000 fault trees
• Production of reliability measures

 Detection of an unexpected flaw in the process
• Detection of the wrong position of the accumulator earlier in the process

 Lessons learned:
 Going from informal to formal allows highlighting the missing information of the

AIR6110 to reproduce the process
 OCRA modular modeling allows a massive reuse of the design through

architectures variant
 Automated and efficient engines as IC3 is a key factor
 MBSA is crucial in this context:

• Automatic extension of the nominal model with faults
• Automatic generation of artifacts eases the analysis and the architecture

comparison in terms of safety

4Alessandro Cimatti - Invited Lectures, UniUD

NASA NextGen Air Traffic Control

 Problem:
 4x airspace traffic in the next 20 years
 Currently technology cannot scale
 Need to increase automation, while preserving safety

 Apply Formal Methods to study the quality and
Safety of many design proposals concerning the
allocation of tasks between Air and Ground

 Objective:
 Highlight Implicit assumptions
 Model and Study a design space with more than 1600

proposals
 Time-Frame: 12 Man-Month

 Joint project with NASA Ames and Langley

Alessandro Cimatti - Invited Lectures, UniUD 70

NextGen: Proposed Solution

 Identify dimensions of the design space

 Use a parametric model to encode all designs (symbolically)

 Unified design architecture makes it possible to push complexity
into the leaf components

 Use contracts to validate components behavior

 Perform Model-Checking against interesting properties, and rank
solutions based on their “quality”

 Perform Fault-Tree analysis to understand the resilience to faults

Alessandro Cimatti - Invited Lectures, UniUD 71

NextGen: Results

 Independently reproduced 2 known
problems

 High-lighted a mismatch in requirements
for one design proposal

 Results discussed and validated by NASA
engineers

 Lessons Learned:
 Model Validation is a key step
 Technology is mature to tackle problems of

realistic size
 Lots of data: Need better ways to present

complex results in an accessible way

Alessandro Cimatti - Invited Lectures, UniUD 72

Alessandro Cimatti - Invited Lectures, UniUD 73

Wrap-up

Alessandro Cimatti - Invited Lectures, UniUD 74

Lecture Summary

 Importance of Safety Assessment

 Contract-Based Design
 Specify & Validate Requirement

 Decompose Requirements onto
Architecture

 Implement Leaf components

 Functional correctness guaranteed by
Contract-Decomposition

 CBSA: Leverage contracts to perform
Safety Assessment

Alessandro Cimatti - Invited Lectures, UniUD 75

Readings

A list of suggested readings on the topics of the course. The list is not meant to be
complete.

 Model-Based Safety Assessment:

 Marco Bozzano, Adolfo Villafiorita: Improving System Reliability via Model Checking: The
FSAP/NuSMV-SA Safety Analysis Platform. SAFECOMP 2003: 49-62

 Marco Bozzano, Alessandro Cimatti, Francesco Tapparo: Symbolic Fault Tree Analysis for
Reactive Systems. ATVA 2007: 162-176

 Marco Bozzano, Alessandro Cimatti, Alberto Griggio, Cristian Mattarei: Efficient Anytime
Techniques for Model-Based Safety Analysis. CAV (1) 2015: 603-621

 Parameter Synthesis:

 Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: Parameter synthesis
with IC3. FMCAD 2013: 165-168

76Alessandro Cimatti - Invited Lectures, UniUD

Readings

 Requirements Formalization and Validation:

 Alessandro Cimatti, Marco Roveri, Alessandro Cimatti: Requirements Validation for Hybrid
Systems. CAV 2009: 188-203

 Alessandro Cimatti, Marco Roveri, Angelo Susi, Alessandro Cimatti: Validation of requirements
for hybrid systems: A formal approach. ACM Trans. Softw. Eng. Methodol. 21(4): 22 (2012)

 Compositional Verification:

 Kenneth L. McMillan: Circular Compositional Reasoning about Liveness. CHARME 1999: 342-
345

 Anubhav Gupta, Kenneth L. McMillan, Zhaohui Fu: Automated assumption generation for
compositional verification. Formal Methods in System Design 32(3): 285-301 (2008)

 Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan: Compositional
Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD
2015: 89-96

77Alessandro Cimatti - Invited Lectures, UniUD

Readings

 Contract-Based Design with Temporal Logics:

 Alessandro Cimatti, Alessandro Cimatti: A Property-Based Proof System for Contract-Based Design.
EUROMICRO-SEAA 2012: 21-28

 Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, Andrzej
Wasowski: Moving from Specifications to Contracts in Component-Based Design. FASE 2012: 43-58

 Darren D. Cofer, Andrew Gacek, Steven P. Miller, Michael W. Whalen, Brian LaValley, Lui Sha: Compositional
Verification of Architectural Models. NASA Formal Methods 2012: 126-140

 Alessandro Cimatti, Alessandro Cimatti: Contracts-refinement proof system for component-based embedded
systems. Sci. Comput. Program. 97: 333-348 (2015)

 Thi Thieu Hoa Le, Roberto Passerone, Ulrich Fahrenberg, Axel Legay: A tag contract framework for modeling
heterogeneous systems. Sci. Comput. Program. 115-116: 225-246 (2016)

 Alessandro Cimatti, Ramiro Demasi, Alessandro Cimatti: Tightening a Contract Refinement. SEFM 2016

 Adrien Champion, Arie Gurfinkel, Temesghen Kahsai, Cesare Tinelli: CoCoSpec: A mode aware contract
language. SEFM 2016

78Alessandro Cimatti - Invited Lectures, UniUD

Readings

 Contract-Based Safety Assessment:

 Marco Bozzano, Alessandro Cimatti, Cristian Mattarei, Alessandro Cimatti: Formal Safety Assessment via Contract-Based Design. ATVA
2014: 81-97

 Case Studies:

 Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, D. Jones, G. Kimberly, T. Petri, R. Robinson, Alessandro Cimatti: Formal
Design and Safety Analysis of AIR6110 Wheel Brake System. CAV (1) 2015: 518-535

 Cristian Mattarei, Alessandro Cimatti, Marco Gario, Alessandro Cimatti, Kristin Y. Rozier: Comparing Different Functional Allocations in
Automated Air Traffic Control Design. FMCAD 2015: 112-119

 Tools used in the course:

 Alessandro Cimatti, Michele Dorigatti, Alessandro Cimatti: OCRA: A tool for checking the refinement of temporal contracts. ASE 2013: 702-
705

 Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri,
Alessandro Cimatti: The nuXmv Symbolic Model Checker. CAV 2014: 334-342

 Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Marco Gario, Alberto Griggio, Cristian Mattarei, Andrea Micheli,
Gianni Zampedri: The xSAP Safety Analysis Platform. TACAS 2016: 533-539

79Alessandro Cimatti - Invited Lectures, UniUD

